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Horizontal and vertical self-organization of braided rivers 
toward a critical state 

Victor B. Sapozhnikov and Eft Foufoula-Georgiou 
St. Anthony Falls Laboratory, University of Minnesota, Minneapolis 

Abstract. Self-organization in an experimental braided river is studied. It is shown that 
the experimental braided river self-organizes into a critical state where it shows dynamic 
scaling; that is, small and large parts of the river evolve statistically identically after proper 
renormalization of space and time. The dynamic scaling emerges during the process of 
approaching the critical state which involves self-adjustment of both profile (vertical self- 
organization) and braiding pattern (horizontal self-organization). The obtained result 
corroborates the hypothesis suggested by the authors earlier [Sapozhnikov and Foufoula- 
Georgiou, 1997] that braided rivers are self-organized critical systems. The results are also 
important for understanding and statistically predicting the behavior of natural braided 
rivers because, owing to external conditions (e.g., sudden streamflow changes), some of 
them may be driven out of the critical state and therefore may show deviation from 
dynamic scaling. 

1. Introduction 

Braided rivers are complex systems characterized by hierar- 
chical geometry and rapid evolution. Different approaches 
have been used to describe and understand their morphology 
and dynamics. A bulk of research on braided rivers has focused 
on detailed study of processes in a small area, such as flow and 
sediment flux around a single channel bar or confluence [Ash- 
more and Parker, 1983; Ashmore et al., 1992; Best, 1986, 1988; 
Bristow et al., 1993; Mosley, 1976, 1977; Robert, 1993]. Another 
approach involves exploring statistical properties of the spatial 
structure and evolution of braided rivers from the point of view 
of unraveling and quantifying scale relationships in space and 
time [Sapozhnikov and Foufoula-Georgiou, 1996, 1997; Fou- 
foula-Georgiou and Sapozhnikov, 1998]. It is hoped that this 
approach can shed new light on braided rivers as a whole in 
terms of understanding the underlying mechanisms responsi- 
ble for the formation and evolution of braided patterns, and 
statistical prediction of their behavior. 

From the analysis of three natural braided rivers, Sapozhni- 
kov and Foufoula-Georgiou [1996] showed that these rivers 
exhibit anisotropic spatial scaling in their static morphology. 
This implies that a smaller part of a river, stretched differently 
along the mainstream and the perpendicular directions, is sta- 
tistically identical to a larger part. Later, Sapozhnikov and 
Foufoula-Georgiou [1997] presented experimental evidence 
that in addition to the spatial scaling, stationary braided rivers 
(i.e., rivers given enough time to reach statistical equilibrium 
under constant external conditions) exhibit dynamic scaling in 
their evolution. The presence of dynamic scaling implies that a 
smaller part of a braided river evolves identically (in the sta- 
tistical sense) to a bigger part provided that time is rescaled by 
a factor which depends only on the ratio of the spatial scales of 
the two parts. 

The presence of dynamic scaling together with other theo- 
retical considerations led us to conjecture [Sapozhnikov and 
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Foufoula-Georgiou, 1997] that braided rivers belong to self- 
organized critical (SOC) systems [see Baket al., 1987]. Indeed, 
in stationary systems, dynamic scaling is a signature of critical 
state. Also, a large number of degrees of freedom (i.e., a large 
number of possible independent changes in the patterns) and 
nonlinearity, both of which are present in braided rivers, are 
typical of self-organized critical phenomena. SOC systems 
bring themselves to a critical state which is an attractor of their 
dynamics. This is different from traditional critical systems, 
which require external fine tuning of a driving parameter (e.g., 
temperature in the case of a magnetic material or concentra- 
tion in the case of a percolation system) to be brought to a 
critical state [e.g., Ma, 1976]. 

Since by definition SOC systems show critical behavior only 
after they have brought themselves to a critical state, which is 
also a statistical equilibrium state, Sapozhnikov and Foufoula- 
Georgiou [1997] left their experimental braided river to evolve 
until both its profile and braiding pattern reached equilibrium, 
and then the presence of SOC was tested. We note here that 
the profile reached the static equilibrium (i.e., it stopped 
changing), whereas the braiding pattern, while remaining sta- 
tistically the same, was undergoing continual changes (statisti- 
cal equilibrium). After the river reached the equilibrium state 
we analyzed it for criticality and, indeed, found the presence of 
dynamic scaling, an indicator of a critical state. 

However, a more thorough study of a SOC system requires 
exploration of its behavior not only at equilibrium but also 
before it reaches this state. Thus, in this study we examine an 
experimental braided river at different stages, as it approaches 
statistical equilibrium. There are two motivations for such a 
study. The first motivation is theoretical. It stems from the fact 
that critical systems show dynamic scaling at the critical state 
but deviate from dynamic scaling as they are driven out of this 
state [e.g., see Ma, 1976]. Therefore, to confirm that a state a 
system brought itself into is critical, it is important not only to 
demonstrate the presence of dynamic scaling at this state but 
also to show that the dynamic scaling was not present before 
and only arose as the system approached this state. The second 
motivation stems from the fact that in transferring results from 
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an idealized experimental environment to natural braided riv- 
ers one cannot neglect the fact that a natural river may not be 
exactly at the equilibrium state. This may be due to natural 
variability of external factors, as, for example, abrupt discharge 
changes or long-timescale tectonic events. Another reason is 
that the river may have changed its path, and therefore, even if 
the external conditions are stable after the change, the river 
might simply not have had enough time to reach the equilib- 
rium (this includes slope buildup and reworking external con- 
straints, like mountains). As discussed in section 5, knowing 
the behavior, in terms of deviation from dynamic scaling, of 
natural rivers which are not quite at the equilibrium state is 
needed for statistical prediction of the evolution of such rivers. 

In this work an experimental braided river is studied for 
presence of dynamic scaling at the equilibrium state and before 
it approached this state. The closeness to the equilibrium state 
is considered with respect to two factors: profile shape (vertical 
self-adjustment of the river) and braiding pattern (horizontal 
self-adjustment). A significantly larger body of data than that 
used by Sapozhnikov and Foufoula-Georgiou [1997] has been 
obtained and analyzed for the present study. 

It should be mentioned that the anisotropy of dynamic scal- 
ing, implying that the river evolution scales differently in the 
direction of the slope and in the perpendicular direction [see 
Foufoula-Georgiou and Sapozhnikov, 1998], has not been con- 
sidered herein. Rather, we employed the isotropic dynamic 
scaling framework of Sapozhnikov and Foufoula-Georgiou 
[1997], as it better suits the purpose of this study, which re- 
quires establishing presence or absence of dynamic scaling and 
not evaluating the scaling exponents. Also, the advantage of 
this framework is that it is more robust and less data- 

demanding and thus can handle "difficult" cases when the river 
has approached dynamic scaling but has not quite reached it 
yet. 

2. Review of the Theory 
The theoretical framework of testing for the presence of 

dynamic scaling based on changes in the analyzed objects is 
described in detail by Sapozhnikov and Foufoula-Georgiou 
[1997]. Here we present only in brief the essence of the theory. 

Spatial scaling in a fractal object implies that the object 
looks statistically the same at different spatial scales. If, addi- 
tionally, it evolves in such a way that after a proper rescaling of 
time its evolution is also statistically indistinguishable at dif- 
ferent scales, then we say that in addition to spatial scaling, the 
object exhibits dynamic scaling. The space-time rescaling has 
the form 

t2/t• = (L2/LO z (1) 

where L 1 and L 2 are the scales at which the evolution of the 
object is considered, t2/t I is the time rescaling factor, and z is 
called the dynamic scaling exponent. One can see (1) as pro- 
viding the space-time rescaling needed to have the projection 
of the evolution of part L• x L 1 on a screen, statistically 
indistinguishable from the projection of part L 2 X L 2 on a 
screen of the same size. 

Let us characterize the evolution of a stationary fractal ob- 
ject by "changes" in its pattern, where changes are defined as 
parts of the space which were not occupied by the object at a 
certain moment of time but became occupied after some time 
lag t. Let n (l' > l, t) denote the number of changes exceeding 

size I after some time lag t, and let D be the fractal dimension 
of the object (e.g., in this work it is the fractal dimension of the 
braided river spatial pattern). It can be shown [see Sapozhnikov 
and Foufoula-Georgiou, 1997] that the condition for dynamic 
scaling (1) can be written in terms of the statistics of changes 
as 

n(l' > l, t) = l-Z> f(t/l z) (2) 

where f( ) is some function. 
For time lag t = 0, there are no changes in the object, which 

implies n (l' > l, 0) = 0, and, correspondingly, f(0) = 0. If 
for small values of the argument the function f can be approx- 
imated by a power law, with some exponent/3, then the con- 
dition (2) for dynamic scaling takes the form 

n(l' > 1, t) • t•l -ø-•z (3) 

Although, in contrast to (2), (3) holds only for small values 
of t/l z, it can be conveniently used to facilitate the estimation 
of the dynamic scaling exponent z. Specifically, the following 
procedure of estimating z was employed by Sapozhnikov and 
Foufoula-Georgiou [1997]. It was based on their empirical find- 
ing that indeed in the experimental braided river, at small t/l • 
values, 

n(l' > l, t) • l -k (4) 

for every fixed value of the time lag t, and 

n(l' > 1, t)l • t t3 (5) 

for every fixed value of I. 
These two equations coincide with (3) with the dynamic 

exponent z given as 

z = (k - D)/13 (6) 

Thus, in a system showing dynamic scaling one can first esti- 
mate the k exponent from the log-log plots of n(l' > l, t) 
versus I (for several fixed values of t) and the/3 exponent from 
the log-log plot of n(l' > l, t)l k against t. This, together with 
the fractal dimension D of the system (estimated using, for 
example, the mass-in-a-box method; Mandelbrot [1982]) en- 
ables estimation of z using (6). Then one can plot for the 
estimated value of z, the values of n(l' > l, t)l r> versus t/l •, 
for all (and not only small) values of t/l •, to verify that the 
general equation of dynamic scaling (2) holds. Collapsing of all 
curves to a single curve, the f( ) curve in (2), would verify the 
presence of dynamic scaling in the river. The procedure is 
schematically displayed in Figure 1. 

3. Experimental Setup 
The experimental setup used to collect the data for this 

analysis is similar to that described by Sapozhnikov and Fou- 
foula-Georgiou [1997], and the reader is referred to that work 
for more details. Here we present only a brief description and 
then elaborate on the procedures we used to introduce vertical 
and horizontal disturbances in the system and to monitor its 
recovery. 

A 5 x 0.75 m experimental basin was constructed at the St. 
Anthony Falls Laboratory. Sediment and water were supplied 
continuously at a precisely controlled rate. The sediment and 
water were combined together in a mixing funnel before injec- 
tion into the basin. The grain size of the supplied sediment was 
0.12 + 0.03 mm. The water discharge was 20 g/s, and the 
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sediment supply was 0.6 g/s. A video camera recorded the 
evolution of the system. To visualize the river and monitor its 
depth, dye was supplied continuously during each videotaping 
session. After each videotaping session the dye supply was cut, 
and water flushed the dye from the system in a matter of a few 
hours. The recorded data were subsequently digitized for treat- 
ment and analysis. The studied region size was 0.75 x 1.0 m 
and was located between the 2.8 and 3.8 m marks (measured 
from the point of inflow). The final resolution of images was 3 
mm across the river and 1.5 mm along the river. 

The evolution of the braided river was characterized by 
monitoring changes in the pattern of the river and analyzing 
them according to the procedure described in section 2. It 
should be noticed that extracting the river patterns from the 
videotaped images presented significant difficulties, because 
very soon the sediment was colored with the same dye as water. 
However, extracting changes in the river patterns by subtract- 
ing images taken at different instants of time was found to be 
quite plausible, since the colored sediment patterns were al- 
most the same and got zeroed when subtracted. Although 
changes in a river are three-dimensional, as is the river itself, 
we only considered in our previous work and here their hori- 
zontal projections. Thus changes (reflected by differences in 
the darkness of the images) represent water depth changes 
which include the cases of covering with water a previously dry 
area or exposing a previously water-covered area. 

Before the experiment started, a certain initial amount of 
sediment was put manually in the basin such that a linear 
profile with a constant slope of 0.032 was formed (see Figure 
2). This linear shape of the profile was different from the 
concave-shaped profile of the same average slope which would 
have been obtained had it been left to build up itself. There- 
fore the initially imposed shape of the profile can be consid- 
ered as a vertical disturbance of the river. The profile of the 
river was monitored as it progressed. The initial profile and the 

Estimate k Estimate I• Estimate D 

(equation 4) (equation 5) (M(R)-R e) 

z=(k-D)/• 

1 
Verify dynamic scaling 

t/1 z 

equation (2) 

Figure 1. Schematic of estimation and verification procedure 
for dynamic scaling. 
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Figure 2. Evolution of the experimental braided river pro- 
file. 

profiles at the days when the video records of the river were 
taken are shown in Figure 2. 

At several instances of time (with different profiles of the 
river) we manually wiped out the braiding pattern, thus intro- 
ducing a horizontal disturbance. In these cases it took several 
hours for the river to recover the pattern. The process of 
recovering the braided pattern (horizontal self-adjustment of 
the river) was followed by recording the behavior of the river 
immediately after wiping out the braided pattern, after the 
pattern partially recovered, and after it recovered completely 
(the judgment on a complete recovery was made visually, by 
seeing that the degree of braiding was restored and that sta- 
tistically, the braiding pattern did not change anymore). We 
qualitatively characterized the degree of braiding by attributing 
each pattern to one of three groups: "not braided" (immedi- 
ately after the braiding pattern was erased), "half braided" 
(when the braiding was restored partially, usually about half an 
hour after the pattern was wiped out), and "fully braided" 
(several hours or more later). We did not characterize the 
degree of braiding more quantitatively, such as by computing 
the braiding index, because, as was mentioned earlier, the 
colored sediment did not allow accurate extraction of the 

braided river patterns, although it permitted accurate extrac- 
tion of changes. 

The process of recovery of the river from these disturbances 
was followed by recording the behavior of the river after the 
disturbances were introduced. We collected and analyzed the 
statistics of changes in the river at different days, as the river 
profile was building up and at different degrees of braiding. 
Table 1 displays the time the records were taken, the qualita- 
tive degree of braiding of the river for each record, and the 
average slope of the recorded region of the river (recall that 
this region had a length of 1 m and was located between the 2.8 
and 3.8 m marks measured from the inflow point). 

4. Results 

First, at different profiles and different degrees of recovery 
of the braided patterns (records 1-10 in Table 1), the param- 
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Table 1. Video Recordings of the Experimental Braided 
River 

Day of the 
Record ID Experiment Slope Braiding 

Record 1 3 0.037 none 

Record 2 3 0.037 half 
Record 3 4 0.041 full 
Record 4 9 0.058 none 

Record 5 9 0.058 half 

Record 6 10 0.063 full 
Record 7 15 0.080 full 
Record 8 15 0.080 none 
Record 9 15 0.080 half 

Record 10 16 0.081 full 

eter k was estimated from (4) using small values of the time lag 
t (4-32 s) and large enough values of l. The estimation was 
done only where appropriate, that is, where the n (l' > l, t) 
versus l dependencies were a series of reasonably parallel 
straight lines in the log-log scale (Figure 3). Then from (5) the 
values of /3 were estimated (Figure 4). From the estimated 
values k and/3 the dynamic scaling exponent z was calculated 
using (6). Table 2 shows the estimated values of the parameters 
k, /3, and z for different profiles and degrees of braiding. 
Absence of values for some records indicates lack of log-log 
linearity or parallelism in the n (l' > l, t) versus l dependence 
even for small t/l z values and therefore lack of dynamic scaling. 

As mentioned above, (4) and (5) express scaling only for 
small values of the t/l z parameter. They are convenient to use 
for estimating the dynamic scaling exponent z under the as- 
sumption that dynamic scaling is present in the system but by 
themselves are not enough to answer the question of whether 
dynamic scaling is indeed present. Only the general equation 
(2), which must be satisfied for all values of t/l •, can answer 
this question. Therefore, for all records which satisfied (4) and 
(5) we plotted (using the estimated values of z) the values of 
n(l' > l, t)l z> versus t/l •, for different time lags from 4 to 256 s 
to test for each of them if the dynamics of the river satisfy the 
general equation of dynamic scaling (2) at any time lag. The 
value of D was estimated from a tracing of the river (using a 
mass-in-a-box method) as 1.7. Presence of dynamic scaling 
would be indicated by the fact that all n(l' > l, t)l z> versus t/l • 
curves for all time lags collapse to a single curve. As one can 
see in Plate 1, where the plots are presented, only records 7 
and.10 reveal a reasonably good dynamic scaling. Note from 
Table 2 that these records correspond to the cases when the 
river was given enough time to develop the profile and to 
recover its braided pattern after it was wiped out. In all other 
cases when the river was not given enough time to either 
self-adjust its slope or to recover its braiding pattern after 
wiping it out, the dynamic scaling was not present. Thus the 

braided river paved its way to dynamic scaling through both 
vertical and horizontal self-organization. 

5. Discussion and Conclusions 

The main goal of this study was to provide more concrete 
evidence which would support or disprove our earlier hypoth- 
esis that braided rivers are self-organized critical systems 
[Sapozhnikov and Foufoula-Georgiou, 1997]. This hypothesis 
was based on our finding that in the statistical equilibrium state 
our experimental braided river showed dynamic scaling, and 
also on the fact that braided rivers are nonlinear systems with 
a high number of degrees of freedom, which is typical of SOC 
systems. However, there is one more crucial feature of critical 
systems: The quality of scaling in such systems depends on how 
close they are to the critical state [e.g., see Ma, 1976]. There- 
fore, to verify our hypothesis, we had to test whether the 
dynamic scaling really arises and improves with time, as the 
river undergoes self-organization. We believe that the results 
of this study showing that indeed dynamic scaling is not always 
present but develops only if the river is given enough time to 
self-organize strongly support our hypothesis and, together 
with the previous arguments, provide enough evidence that 
braided rivers are self-organized critical systems. Therefore 
they can be studied under the general framework of critical 
phenomena. This framework provides a conceptual basis for 
understanding critical systems as well as an apparatus for their 
description. 

A distinct feature which makes braided rivers (together with 
some other SOC systems, such as a sandpile) essentially dif- 
ferent from the traditional critical systems (such as magnetic 
materials) is the clear anisotropy between horizontal and ver- 
tical directions, produced by gravity. In fact, it was found in this 
study that the process of approaching the critical state by a 
braided river involves self-adjustment of both profile (vertical 
self-organization) and braiding pattern (horizontal self- 
organization). The theory of critical state of anisotropic sys- 
tems is not developed yet. However, one can hypothesize that 
in contrast to the well-studied traditional isotropic critical sys- 
tems, it takes tuning (self-tuning in the case of SOC systems) of 
more than one parameter to bring such systems to the critical 
state. Specifically, on the basis of the results of the experiment 
testifying that braided rivers exhibit dynamic scaling only after 
they undergo both vertical and horizontal self-adjustment, we 
conjecture that there are at least two self-tuning parameters 
which drive braided rivers to a critical state: One of them 

reflects vertical self-organization (profile self-adjustment), and 
the other accounts for horizontal self-organization (develop- 
ment of a braided pattern). 

It should be noted that the two objectives, (1) revealing how 
the river self-organizes if it is left to evolve freely and (2) 
following how different factors affect the presence of dynamic 

Table 2. Estimation of the k, /3, and z Parameters of the Experimental Braided River 

Braiding 
Day of the 
Experiment None Half Full 

3, 4 record 1: ... 
9, 10 record 4: ... 
15, 16 record 8: k = 2.00,/3 = 2.03, z = 0.15 

record 2: ... 

record 5: k = 2.43,/3 = 2.63, z = 0.28 
record 9: k = 2.41,/3 = 2.32, z = 0.31 

record 3: k = 2.63,/3 = 2.74, z = 0.34 
record 6: k = 2.12,/3 = 2.26, z = 0.19 
record 7: k = 2.49,/3 - 2.40, z = 0.33 
record 10: k - 2.67,/3 = 2.34, z = 0.41 

Absence of values for some records indicates lack of log-log linearity and thus lack of dynamic scaling. 
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scaling in the river, in a way conflict with each other from the 
point of view of their experimental implementation. This is 
because while the first one supposes that the river is left to 
evolve undisturbed, the second one requires introducing dis- 
turbances in the braided river system. This problem is common 
to all SOC systems which organize in a critical state them- 
selves, and it can leave one with the dilemma to either (1) only 
observe the system approaching the critical state and not con- 
trol the driving parameters or (2) control the parameters and 
accept the fact that the self-organization process is disturbed. 
However, one may be able to resolve this problem by separat- 
ing the two processes in time, namely, by introducing short- 
time disturbances and then allowing for undisturbed self- 
organization in the system. In our case this was easier to 
implement for the horizontal than for the vertical self- 
adjustment. The reason for that is that the braided river was 
fairly shallow (deepest channels were just several millimeters 
in depth), and thus horizontal disturbances, that is, distur- 
bances of the braided pattern, involved less bed material trans- 
port, even if the pattern was completely wiped out, and there- 
fore required less time to recover than drastic vertical 
disturbances (significant changes of the profile). Thus we were 
able to introduce horizontal disturbances several times by eras- 
ing the braiding pattern and observe the river self-recovery 
afterward, while the vertical disturbance was imposed only 
once, by creating an initial profile which was far from the one 
which the river would have produced itself had it been left 
undisturbed. 

It should be mentioned that on its way to the final equilib- 
rium, and if left to develop without interference, the profile of 
the river undergoes an infinite series of relatively stable pro- 
files. Although the profile keeps changing as the bed is built up, 
the change occurs significantly slower than the change caused 
by an artificially imposed profile disturbance of an arbitrary 
shape. Thus we call every naturally built profile a "quasi- 
equilibrium profile," in contrast to the profiles with the im- 
posed disturbance. As the river evolved, it was recovering from 
the initial vertical disturbance by approaching a profile of a 
quasi-equilibrium shape, and at the same time it was develop- 
ing toward the final equilibrium profile. This final equilibrium 
profile obtained by Sapozhnikov and Foufoula-Georgiou [1997] 
under the same conditions (same water and sand supply) is 
known to have a uniform slope of 0.15. We notice here, how- 
ever, that by the time the dynamic scaling in the system had 
been achieved, the river was far from its final equilibrium 
profile. Indeed, as one can see from Table 1, the slope of the 
observed region was 0.08 when the dynamic scaling was 
achieved, which is approximately half the final equilibrium 
slope of 0.15. Therefore we hypothesize that the river reached 
the dynamic scaling because it reached a profile of a quasi- 
equilibrium shape (which continued to develop via other quasi- 
equilibrium profiles to the final equilibrium) and not because it 
approached closely enough the final equilibrium profile. Fur- 
ther experiments involving disturbances of the shape of several 
quasi-equilibrium profiles, as they approach the final equilib- 
rium profile, are needed to answer this question conclusively. 
The disturbances would need to be small enough to enable 
introducing several of them before the final equilibrium profile 
is reached. 

It has been long argued in the literature that relating scaling 
in natural objects to their physical properties is a high-priority 
task. The finding of this work that dynamic scaling in braided 
rivers arises only as they approach equilibrium (statistical equi- 

librium for the braided pattern and quasi-equilibrium for the 
profile) provides a highly desired connection between the scal- 
ing properties of the rivers and their physical state (closeness 
to equilibrium). Besides, it provides a quantitative tool of judg- 
ing whether a braided river is close to equilibrium by checking 
its deviation from dynamic scaling. In a relatively short period 
of time one can collect information on the evolution of a 

natural river which would permit testing for the presence of 
dynamic scaling. The absence of dynamic scaling would imply 
that the river is far from equilibrium. 

Although we presented here evidence that dynamic scaling 
arises in braided rivers only as they approach a stationary 
(critical) state, it is important for prediction purposes to be 
able to characterize quantitatively their deviation from the 
dynamic scaling behavior as a function of their deviation from 
stationarity. For that one would have to introduce two param- 
eters describing the vertical and the horizontal self-organiza- 
tion of a braided river which would play the role of "temper- 
ature" in reaching the critical state of a traditional system. At 
this point we cannot be more specific other than suggesting 
that the first self-tuning parameter should reflect the shape of 
the profile (curvature and possibly the average slope) and the 
second one should depend on the braiding index. Considering 
the importance of old inactive channels as preferred pathways 
for active channel switching, an index which includes both 
active and inactive channels might be needed to describe the 
horizontal self-organization tuning parameter. The introduc- 
tion of such two parameters would allow description of braided 
rivers which did not quite reach the critical state, a case which 
is often expected in natural systems. Indeed, it is known from 
the theory of the critical state [e.g., see Ma, 1976] that systems 
which are close to a critical state but not quite in it show scaling 
up to a certain scale (the correlation scale) which depends on 
the closeness of the system to the critical state. Thus descrip- 
tion of such rivers in the dynamic scaling framework would still 
be possible, within, however, a more limited range of spatial 
and temporal scales. 
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