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Abstract. As in any evolving process, including rainfall, variability in space and
time are not independent of each other but depend in a way particular to the
process at hand. Understanding and quantifying the space-time dependences in a
process over a range of scales is not always easy because these dependences may be
hidden under complex patterns with pronounced statistical variability at all scales.
In this paper, we report our efforts to understand the spatiotemporal organization
of rainfall at a range of scales (2 km to 20 km in space and 10 min to several hours in
time) and explore the existence of simple relationships which might connect the rate
of rainfall pattern evolution at small space and time scales to that at larger scales.
Specifically, we seek to understand whether there exist space-time transformations
under which these relationships can be parameterized in a simple scale-invariant
framework. On the basis of analysis of several tropical convective storms in Darwin,
Australia, we found that the rate of evolution of rainfall remains invariant under
space-time transformations of the form ¢ ~ L* (dynamic scaling). In other words,
the dependence of the statistical structure of rainfall on space (L) and time ()
can be reduced to a single parameter t/L?, where z is called the dynamic scaling
exponent. The space-time organization in rainfall, apart from being interesting in
its own right, permits the development of simple rainfall downscaling schemes which
incorporate both spatial and temporal persistence.

1. Introduction

Many studies [e.g., Gupta and Waymire, 1990; Schert-
zer and Lovejoy, 1987; Tessier et al., 1993; Kumar and
Foufoula-Georgiou, 1993a, b; Over and Gupta, 1994]
(see also Foufoula-Georgiou and Krajewsk: [1995] for a
review and further references) have demonstrated the
presence of a scale-invariant organization in spatial pre-
cipitation fields and have explored it for process un-
derstanding, relation of statistical to physical descrip-
tions and development of efficient rainfall downscaling
schemes. Temporal rainfall variability has also been
studied for the presence of scale-invariance [e.g., Ols-
son et al., 1993; Veneziano et al., 1996; Svensson et al.,
1996; Kumar, 1996; Cirsteanu and Foufoula-Georgiou,
1996; Venugopal and Foufoula-Georgiou, 1996; Cdrstea-
nu, 1997]. As in any evolving process, including rain-
fall, scales of variability in space and time are not in-
dependent of each other but relate in a way that might
depend on the mechanism producing the storm. If, for
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example, a frozen field was advected with a constant ve-
locity (without any other distortion), then spatial and
temporal scales of variation would be simply related to
each other via the advection velocity; that is, L = Ut.
Such an evolution is hardly the case for complex nat-
ural processes, including rainfall, at least outside the
range where some evidence for the presence of Taylor’s
hypothesis of turbulence has been suggested [e.g., Za-
wadzki, 1973].

Thus an important problem remains, the develop-
ment of a framework which enables one to study si-
multaneously space and time organization of rainfall.
If this framework is valid over a range of scales, then
it is especially useful, because it allows one to predict
the small-scale space-time rainfall variability from the
larger-scale variability which is typically available from
the output of a mesoscale model or from observations
of a remote sensing device. The issue of studying spa-
tiotemporal organization of precipitation at a range of
scales has been recently tackled by Over and Gupta
[1996] and Marsan et al. [1996]. Over and Gupta
[1996] proposed a space-time rainfall model based on
a multiplicative cascade in space and a Markovian evo-
lution of the cascade weights in time. Marsan et al.
[1996] proposed a space-time multifractal model based
on a three-dimensional anisotropic multiplicative cas-
cade. Both models start with specific choices of scaling,
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Figure 1. Schematic illustrating the change in intensity of a field (rainfall in this case) over a
box of size L x L (spatial scale L) centered around the location (%, ) during a time interval ¢.

different from each other, and reproduce fairly well the
spatiotemporal structure of rainfall.

In this paper, we propose a much simpler framework
for analyzing simultaneously the space and time rainfall
variability at a range of scales and parameterizing it in
a way that is directly inferred from observations rather
than imposed within a multiplicative cascade frame-
work. Specifically, we sought to understand whether
there exist space-time transformations under which re-
lationships which connect the rainfall pattern evolution
at small space-time scales to that at larger scales can
be parameterized in a simple scale-invariant framework.
We concentrated on the spatiotemporal organization of
rainfall at the range of scales of 2 km to 20 km in space
and 10 min to several hours in time, as these scales
could be resolved from the available single-radar data.

2. Framework of Analysis

Consider a spatially variable field that evolves over
time. We focus our attention on a particular location
(2, 7) of the field and study its evolution at that location
by measuring how much the intensity of the field, at
that location, has changed from time instant 7 to time
instant 7+ ¢, i.e., over a time lag ¢ (see Figure 1). Now
let us introduce a spatial scale parameter L and pose
the question as to how much the intensity of the field,
averaged over a box of size L X L centered around the
location (z,7), changed during a time interval ¢ (I to I'
in Figure 1).

By studying this change over different spatial and
temporal scales, one can get an idea of the statistical
structure of the evolution of the field at multiple space
and time scales. An issue that is of interest is to ex-
plore possible ways of rescaling space and time such
that the spatiotemporal structure of the field remains
statistically invariant. For that, we look for transforma-
tions that relate the dimensionless quantities ¢, /t; (ra-
tio of temporal scales) to Ly /L, (ratio of spatial scales),
i.e., t1 /ta = f (L1/Ls), because the resulting framework
would have the advantage of not being bound to a (ar-

bitrary) measuring unit. The only such transformation
- f, as shown below, is a power law. If

b, (B, b, (b
tp " \L2/)  ts " \Ls)

t1 _ t; to _ L1 Lz .

ts  tats _f(Lz) f(LS) ’
but

t1 _ L1 _ Ll L2

t3 —f(Ls) _f(Lz L3>'
Thus

L1 Lz _ L1 L2
f(fzz) ‘f(rz)f(fz:)

= f(l) = L%,
i.e., a power law.

A spatiotemporal organization of such a nature in a
process, 1.e., the statistical invariance of a measure of
evolution of the process under space-time transforma-
tions of the type ¢ ~ L?, is commonly referred to in
the literature as “dynamic scaling” [Czirok et al., 1993;
Kardar et al., 1986]. In other words, the presence of
dynamic scaling in a process would imply that the de-
pendence of the process on spatial scale L and on time
t can be reduced to dependence on a single parameter
t/L?, where z is the so-called dynamical scaling expo-
nent.

In the above discussion the evolution of the field was,
for simplicity, measured by the change in intensity of
the field over a time lag, i.e., by (I' — I) in the short
notation of Figure 1. This is applicable for a process
that is additive, i.e., a process for which increments
are independent of the intensity ((1 -1 ) = €, where €
is an independent identically distributed random vari-
able). However, for a multiplicative process for which
increments are dependent on the background intensity
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Figure 2. Evidence that normalized temporal rainfall fluctuations are independent of the back-
ground intensity. The plot on the left shows the temporal fluctuations of 2x2 km? rainfall

intensities over 10 min (i.e., values "~ I at all pixels (3,7) in the schematic of Figure 1) as

a function of the average rainfall intensity (i.e., (I' + I)/2 in the terminology of Figure 1). A
dependence of AI on I is apparent from this figure. If the fluctuations are normalized by the
average intensity, this dependence is no longer present (plot on the right) and (AI/I) can be
considered independent of I. These results are for the storm of January 4, 1994, in Darwin,
Australia, but similar results were found for other storms.

(I'/I =cor (I - n/I = 61), it would be more appro-
priate to study the evolution of the log of the process,
since log(process) is additive (InI' —InI = €"'). Obvi-
ously, only the evolution of nonzero values of the field
is studied in such a framework.

Thus, on the basis of evidence that relative changes
in spatial rainfall fluctuations are independent of inten-
sities [Perica and Foufoula-Georgiou, 1996], and that
relative changes in temporal rainfall fluctuations are
also independent of the background intensities (e.g., see
Figure 2), we choose to measure rainfall evolution at a
spatial scale L and time lag ¢ by a statistical character-
ization of the field

Alnl;;(L,t) =InIF;(r +t) —InIF;(r) (1)

where Iif'j (1) denotes the nonzero rainfall intensity at
location (%, 7), time instant 7, and spatial scale L. The
parameter ¢ represents the time lag over which the rain-
fall evolution is measured.

The measure described above is evaluated for all spa-
tial locations (%,7), all time instants 7, and for vari-
ous spatial and temporal scales, L and ¢, respectively.
Then, assuming homogeneity in space (i.e., indepen-
dence of the statistics of the process on the specific lo-
cation (¢,7)) and selecting regions in time where the
statistics of Alnl do not vary significantly around their
mean value for that region, statistical characterization
of Alnl; ; - (L,t) at spatial scale L and temporal scale ¢
is provided by the probability density function (PDF)
of AlnI(L,t). It is noted that the homogeneity in space
is a reasonable assumption given that the radar frame
can be seen as a fixed window within which the mov-
ing storm is observed. Thus unless there is a specific

reason to believe that relative changes in rainfall inten-
sities in a portion of the radar frame are much different
than in another portion (note that we are considering
the changes of nonzero rainfall only), a single probabil-
ity density function can be assumed for the Alnl values
at all positions (¢,7) of the frame. We also note here
that the Aln/ fields are spatially uncorrelated (e.g., see
Figure 3), so the PDFs of AlnI(L,t) are sufficient to
characterize the statistical structure of these fields at a
range of scales. It is thus the statistical invariance of the
PDF of AlnI(L,t), under a space-time transformation
of the type t ~ L* that we seek to explore.

The following gives an algorithmic approach toward
the testing for the presence of dynamic scaling in rain-
fall:

1. Alnl;;,(L,t) is computed for various time lags,
t (e.g., 10 min, 20 min, ...), and spatial scales, L (for
instance, 2 km, 4 km, ...), at all (¢, j) points of the field
and for all time instants 7 for which rainfall intensities
are nonzero at both instants (7 and 7+¢), t units apart.

2. Periods in time are identified within which the sta-
tistical properties of AlnI(L,t) do not depend signifi-
cantly on the absolute time coordinate 7 (see section
4.1 for details).

3. Within these periods, the PDFs of AlnI(L,t) are
evaluated for various time lags ¢ and spatial scales L.

4. The PDFs of AlnI(L,t) are checked to see if
they remain statistically invariant under the space-time
transformation, {/L* = constant. (1) First, the second
moments of the PDFs are checked to see if they remain
invariant under that transformation. For that, pairs of ¢
and L are found such that selected values of the second
moments of the PDFs remain constant, and then the
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Figure 3. Evidence that normalized temporal rainfall fluctuations (here at a spatial scale 2 km
and time lag of 10 min) are spatially uncorrelated. The circles represent the X correlation and the
asterisks represent the Y correlation. This figure is for the January 4, 1994, storm over Darwin,
Australia, but similar results were found for other storms.

corresponding iso-standard deviation lines are plotted
on an L versus ¢ plot. The log-log linearity of these lines
suggests the presence of dynamic scaling. The slope of
these lines, in turn, gives an estimate of the dynamic
scaling exponent, z. (2) Using this value of z, the en-
tire PDFs of AlnI(L,t) are evaluated for the pairs of
(t, L) corresponding to the iso-standard deviation lines
and are checked to see if they remain statistically in-
variant under the above-mentioned transformation.

3. Data Sets Used in Analysis

The data used in our analysis were radar-depicted
rainfall intensity fields at 2 km spatial resolution and
10 min temporal resolution, during the rainy season in
Darwin, Australia. The conversion of radar reflectivi-
ties from a Doppler radar, which had a 5 cm wavelength
and 1.65° beamwidth, to rainfall intensities was per-
formed by R. Houze’s group (personal communication,
1997) at the University of Washington. The storms we
analyzed are those of December 28 and 30, 1993, and
January 4, 1994. Figure 4 shows an instantaneous im-
age of the storm of December 28, 1993, at 1741 UTC.
The image (frame) is composed of 151 x 151 pixels,
with each pixel representing rainfall over a 2 km area.
For this storm, a total of 140 such frames, 10 min apart
from each other (=~ 24 hours of storm duration), are
available. Similar data are available for all other storms.

Figure 5 shows the variation of the mean intensity
(mm/h), standard deviation of the rainfall intensity,
and the percentage of nonzero pixels (i.e., the percent-
age of rain-covered area), over the total frame of 300

x 300 km? area, for the storms of December 28 and
30, 1993, and January 4, 1994. It is evident from these
figures that these statistical properties change consid-
erably over time, illustrating the temporal nonstation-
arity of the rainfall fields.

BER.931228.1241.rrmap

5 10 15 20 25 30

Figure 4. Radar-monitored rainfall field of December
28, 1993, in Darwin, Australia. The figure shows an in-
stantaneous image of the storm at 1741 UTC. The total
duration of the storm is approximately 24 hours (0500
UTC, December 28, 1993 to 0500 UTC, December 29,
1993). The intensities have been mapped onto 32 col-
ors (see color bar) to avoid the high intensities masking
the low intensities. The empty (circular) region in the
middle was excluded from the analysis.
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Figure 5. Temporal variation of the (a) mean, (b) standard deviation, and (c) percent of nonzero
pixel values, for the radar-monitored rainfall field of December 28, 1993 (left column); December
30, 1993 (middle column), and January 4, 1994 (right column), in Darwin, Australia.

4. Analysis

4.1. “Stationarity” Considerations

In section 2 an algorithmic approach to test for the
presence of dynamic scaling was presented. It was ar-
gued that AlnI(L,t) can be assumed statistically ho-
mogeneous in space within the radar frame, and thus
for a given spatial scale L and time lag ¢, a single PDF
of AlnI(L,t) can be used for the entire frame. However,
independence of this PDF on absolute time cannot be
assumed a priori. Thus the statistical moments of the
PDF of AlnI(L,t) must be checked to see how they
might change over time. Then, the assumption that all
AlnI values come from the same probability distribu-
tion can be made only within those time periods over

which the variation of the statistical moments of Alnl’s,
around their mean values for these periods, is not sig-
nificant.

It was found that the mean of Aln/ fluctuates, with
time, around zero, with a variation of about 10-15% of
the standard deviation of AlnI (see Figure 6). On the
other hand, the standard deviation of AlnI shows a sig-
nificant change with time, namely, a decreasing trend,
as is seen from Figure 6. The presence of such a change
in o(Alnl) poses the problem of identifying regions over
which the variation of ¢(Alnl) around its mean value
is not significant, such that a single PDF (for each time
lag and spatial scale) can be assumed in that region.

To decide on whether o(AlnI) varies significantly in
a region, two measures on o(Alnl) can be used: (1)
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Figure 6. Temporal variation of the mean (left column) and standard deviation (right column)
of Alnl for temporal scale (time lag) ¢ = 10 min and spatial scale L = 2 km for the storms of
December 28 (top) and 30, 1993 (middle), and January 4, 1994 (bottom). This figure illustrates
that the variability of the mean of Alnl is small compared to that of the standard deviation
of AlnI. Regions 1 and 2 indicate two regions where u(Alnl) and o(Alnl) do not fluctuate
significantly around their mean values for the region and thus were chosen for testing the presence

of dynaimic scaling in Aln/.

percentage of variation, i.e., (max - min)/average, and
(2) spread, i.e., standard deviation, of o(Alnl). The
latter measure is more stable than the former for the
reason that the percentage of variation depends pre-
dominantly only on two values, i.e., the maximum and
the minimum. Hence we choose the spread in o(Aln[)
as our measure to decide if the second moment of Alnf
changes significantly over time. For instance, consider
the top right plot in Figure 6 (for the storm of Decem-
ber 28, 1993). Region 1 has an average o(AlnI) equal
to 0.57 and a spread of 0.05. In other words, the fluc-
tuations in the standard deviation are small (= 10%)
compared to the average standard deviation in region

1, and hence it can be assumed that o(AlnI) does not
vary significantly around its mean in that region. Using
this criterion and a cutoff value of 15% in fluctuation
around the mean value, several such regions (referred to
as “stationary” regions) were identified for each storm.
Some of these regions are shown in Figure 6.

4.2. Results

The dynamic scaling testing procedure elaborated in
section 2 was then applied to several “stationary” re-
gions of all three storms. Here a detailed discussion
is presented for region 1 of the storm of December 28,
1993, and a summary of results is given for the other
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Figure 7. Selected PDFs of AlnI (for spatial scales, 2 and 8 km, and time lags, 10, 30, and 50
min) for region 1 of the storm of December 28, 1993.

regions. The spatial (aggregation level) and temporal
(time lag) scales at which AlnI(L,t) is computed are 2,
4, 8, and 16 km, and 10, 20, 30, ..., 80 min, respectively.
Figure 7 shows the PDFs of AlnI(L,¢) for selected spa-
tial scales (2 and 8 km) and temporal scales (10, 30,
and 50 min) for region 1 of the storm of December 28,
1993. As was expected, these PDFs are not identical
but depend on the spatial and temporal scale. It is
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worth mentioning here that the PDFs of AlnI(L,t) ex-
hibit normality. This is consistent with the results of
Kedem et al. [1990] who found log-normality in spa-
tially averaged rainrates from GATE data under various
space-time sampling designs.

Let E(AlnI)(L,t) (Z(Alnl), in short) denote the
standard deviation of the PDF formed from all values of
Alnl over a “stationary” region, e.g., region 1, at spa-

(b)
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Figure 8. Plot indicating the lack of spatial and temporal simple scaling of Alnl for the
December 28, 1993, storm: (a) plot of £(AlnI) for different spatial scales (bottom to top: 16, 8,
4, and 2) corresponding to time lags 10, 20, ..., 80 min; (b) plot of £(Aln[) for different time lags
(bottom to top: 10, 20, ..., 80 min) corresponding to spatial scales 2, 4, 8, and 16. The results
shown here are from analysis of region 1. Lack of log-log linearity indicates the absence of spatial
and temporal scaling in the standard deviations of Alnl.
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Table 1. Standard Deviations of Alnl, ¥(Alnl), With Time
Lag (Left to Right) and Aggregation Level (Top to Bottom),
for Region 1 of the Storm of December 28, 1993

Time Lag ¢, min

20

L km 10 30 40 50 60 70 80
2 058 077 0.89 097 105 111 1.17 1.21

4 047 067 079 087 095 1.01 1.07 1.12

8 035 0.55 0.67 076 0.84 090 096 1.01

16 023 0.40 053 063 071 0.77 0.83 0.88

tial scale L and time lag t. Note that £(Alnl) is differ-
ent from o(Alnl), which is the instantaneous (at time
instant 7) spatial standard deviation of AlnI(L,t). (In
fact, Z(Alnl) x o(Alnl), where the latter is the average
value of o(Alnl) over the “stationary” region.) Figures
8a and 8b show the variation of the standard deviation
Y(Alnl) of these PDFs with time lag and spatial scale,
respectively. As anticipated, ¥ increases with time lag
for a given spatial scale (presumably, new, distinct fea-
tures appear or existing patterns disappear with time)
and decreases with aggregation level for a given time lag
(since aggregation implies smoothing). The nonpower-
law behavior (equivalently, the nonlinear behavior in a
log-log plot) seen in the plots of Figure 8 indicates that
AlnI does not exhibit spatial or temporal scaling.

The values of £(AlnI) for the various spatial scales L
and time lags ¢, used to construct Figs. 8a and 8b, are
displayed in Table 1 in a matrix form. From Table 1,
one can (by linear interpolation) find pairs of L and ¢ for
which ¥ remains constant. In other words, one would
select a value of ¥ and, for each spatial scale, evaluate
by linear interpolation, from the table, the time corre-
sponding to the chosen . This is repeated for different
values of X. (It is to be noted that the values of ¥ cho-
sen fall completely within the range of the values in the
table of standard deviations as extrapolation should be
avoided.) Table 2 gives, for example, pairs of ¢ and L

Table 2. Time (in min) to
“Reach” Different Standard
Deviations (Left to Right:
0.6, 0.7, 0.8) for Various
Aggregation Levels (Top to
Bottom), for Region 1 of the
Storm of December 28, 1993

S(AlnI)
Lkm 06 07 08
2 111 163 224
4 166 228 316
8 244 333 451
16 374 494 64.7

Pairs (L,t) = (2, 11.1), (4,
16.6), (8, 24.4), and (16, 37.4)
give the same Z(Alnl) = 0.6,
and so on.

for which ¥ = 0.6, 0.7, and 0.8. If these (L,#) pairs for
every constant value of ¥ are found to satisfy ¢t ~ L%,
i.e., if they plot as straight lines (called iso-X lines) on a
log-log plot, then it supports the hypothesis that rain-
fall evolution exhibits dynamic scaling. Figure 9, which
is a plot of the values in Table 2, indeed shows log-log
linearity of the iso-X lines and thus verifies the dynamic
scaling hypothesis,

The value of z, the dynamic scaling exponent, is es-
timated from the slope of the iso-X lines. For example,
from Figure 9 the minimum least-squares straight line
fits give estimates of z = [0.58, 0.54, 0.51] corresponding
to ¥ = [0.6, 0.7, 0.8], respectively. These estimates of
z are not significantly different from each other at the
95% significance level and for all practical purposes a
single value of z can be assumed. This value can simply
be the average of the three estimates of z or can be the
estimate obtained from a single iso-X line correspond-
ing to the mean value o(Alnl) for that region. Note
that in this region the fluctuations of o around their
mean value @ are not statistically significant, and thus
a single iso-standard deviation line corresponding to &
suffices.

When the pairs (L, t) for which ¥(AlnI) remains con-
stant are found (see Table 2), the whole PDFs corre-
sponding to these ¥ values (and the corresponding z
values) can be evaluated. This can be done by linearly
interpolating the PDF ordinates that were computed
for various temporal scales (¢ = 10, 20, ..., 80 min)
and spatial scales (L = 2, 4, ..., 16 km) to the (L,t)
pairs of constant X(Alnl) shown in Table 2. For ex-
ample, the ordinates of the PDF for (L,t) = (2 km,
11.1 min) corresponding to £(Alnl) = 0.6 (Table 2)
are computed by linear interpolation of the ordinates of
the known PDFs for (L,t) = (2 km, 10 min) and (L, t)
= (2 km, 20 min). The same is done for all other iso-
Y pairs of (L,t). The similarity of these interpolated
PDFs (see Figure 10) confirms that not only Z(AlnJ)
but also the whole PDFs of (Alnl) remain statistically
invariant under the transformation ¢/L* = constant. It
is worth mentioning here that from the presence of dy-
namic scaling in ¥(Alnl), and the fact that the dis-
tributions of Alnl are Gaussian with zero mean (see
Figure 7), one could expect the statistical invariance of
the whole PDF's too. Similar results were found for the
other two storms. For example, Figure 11 shows that
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Figure 9. Plot illustrating the presence of dynamic
scaling in the standard deviations of AlnI for region 1
of the storm of December 28, 1993, in Darwin, Aus-
tralia. The log-log linear relationship between ¢ and L
for values of ¥(AlnJ) = 0.8, 0.7, and 0.6 (top to bot-
tom), verifies the presence of dynamic scaling and gives
estimates of the dynamic scaling exponent z = 0.51,
0.54, and 0.58, respectively.

dynamic scaling is present in the “stationary” regions
(region 1) of the storms of December 30, 1993, and Jan-
uary 4, 1994 respectively.

Thus from the analysis of the three Darwin storms
presented earlier, it is evident that there is dynamic
scaling present in the proposed measure of rainfall evo-
lution. Table 3 lists the values of z for all six “station-
ary” regions of the three storms shown in Figure 6. The
single value of z reported here is the estimate obtained
from the iso-standard deviation line corresponding to
o(AlnlI) for the region. Note that the value of z falls in
the range of 0.6-0.7 for four regions and is 0.8 and 1.2
for two regions. On further examination, the four re-
gions that have the z € [0.6, 0.7] correspond to regions
where the mean rainfall intensity and percentage-area
covered by rain, decrease, i.e., the dissipation stage of
the storm. On the other hand, the two regions where
z was found to be 0.8 and 1.2 come from exactly the
opposite scenario, namely, increasing mean rainfall in-
tensity and percentage-area covered by rain, i.e., the
buildup stage of the storm. This points to the possibil-
ity of the dependence of z on the dynamics of the storm
since presumably the storm parameters associated with
the dynamics of the buildup and dissipation stages of a
storm are differert. This issue needs to be further ex-
amined and many more storms analyzed to be able to
understand the dependence of z to the storm dynamics.

To understand the significance of the value of z, let
us consider z = 0.6. The presence of dynamic scaling
tells us that
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This implies that the time (¢5) it takes for a feature

of size 2x2 km? (L) to undergo the same evolution
(AlnI), as what a feature of size 16x16 km? (L) would

in time ¢, is
9\ 06
to=t | — ~ 0.3%y;
2 =1 <16) 0.3¢1;

that is, the rate of change of the 8-times smaller feature
is 3 times faster than the larger feature. Note that
the rate of evolution does not depend on the actual
sizes of the two features but only on their ratio. Such
a spatiotemporal organization in rainfall is interesting
and is also useful in developing parsimonious space-time
downscaling models. Such a model has been recently
explored by the authors and is presented in a companion
paper [Venugopal et al., 1999].

5. Conclusions

Several studies have investigated the multiscale struc-
ture of rainfall separately in space and time or have
imposed a particular structure in space and have in-
ferred the one in time and vice versa. In this study, an
attempt was made to study the multiscale spatiotem-
poral structure of rainfall simultaneously in space and
time. In particular, we explored the existence of a
space-time transformation such that rainfall evolution
remained statistically invariant over a range of scales. It
1s emphasized that the impetus of our study was not to
make inferences about the underlying physical mecha-
nisms producing rainfall. Rather we were motivated by
(1) the need to develop a simple framework under which
spatial and temporal rainfall could be studied simulta-
neously without imposing model structures but allow-
ing the data to indicate the underlying relationships,
and (2) the hope that these relationships can aid in dis-
aggregating large space-time scale rainfall fields (e.g.,
outputs of regional models) to smaller scales needed for
water resources management studies.

The findings of this research suggest that there ex-
ists a space-time transformation of the power-law form
t ~ L? under which rainfall evolution remains statis-

Table 3. Values of z for Different Regions of the Three
Storms Described in Section 3

Storm Date Region o(Alnl) Spread =z
December 28, 1993 1 0.57 0.05 0.6
2 0.95 0.09 1.2
December 30, 1993 1 1.02 0.05 0.7
2 0.63 0.08 0.6
January 4, 1994 1 0.65 0.4 0.6
2 1.02 0.05 0.8

Spread is the standard deviation of 6(Alnf) around the
mean value of o(Alnr).



31,608 VENUGOPAL ET AL.: EVIDENCE OF DYNAMIC SCALING IN SPACE-TIME RAINFALL
- Z(AlnI) = 0.6, z = 0.58
L=2km ; T=11.1 mins L=4km ; T=16.6 mins L=8km ; T=24.4mins L=16km ; T =37.4 mins
0.07 008 0.07
0.06] 0.06 0.06]
_005 _ _00s
£0.04 50-04 50-04
=0.03 = =0.03
0.02 0.02 0.02 -
0.01 0.01 0.01
93 -2 0 2 3 93 -2 0 2 0 3 —03 0 3
AlLnl) AlLnl) A(Lnl) AlLnl}
L (Alnl) = 0.8, z = 0.51
L=2km ; T=16.3 mins L =4km ; T=§1.6 mins L=8km ; T=45.1 mins L=16km ; T =64.7 mins
0.05]
0.04
Zo.0:
2

3 -2 2

0 0
AlLnl) AlLnl)

-2 - 0 1 2 -2

AlLni) atchn

Figure 10. For region 1 of the storm of December 28, 1993: confirmation that the PDFs remain
statistically invariant under the transformation ¢/L* = constant. The top row shows PDFs for
¥ (Alnl) = 0.6, z = 0.58 and pairs of (t,L) which satisfy ¢/L* = constant (see Table 2). The
bottom row shows the same for ¥ (AlnI) = 0.8, z = 0.51. Similar result holds for & (Alnf) =

0.7, z = 0.54.

tically invariant with scale. In other words, if ¢ and
L change in such a way that t/L” remains constant,
the evolution of the fields remains statistically invariant
(dynamic scaling). The value of the dynamic scaling ex-
ponent z was found to vary between 0.6 and 1.2, at least
for the three analyzed storms which were convective
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rainy-season storms in Darwin, Australia. For example,
a value of z = 0.6 would imply that the rate of change
of an 8-times smaller feature is 3-times faster than the
larger feature (since ¢, = #; X (Ly/8L3)*® ~ 0.3t,). Al-
though this type of relationship is not qualitatively sur-
prising, the physical ground for such a scale-invariant
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Figure 11. Plot illustrating the presence of dynamic scaling in the standard deviations of AlnJ
for (a) region 1 of the storm of December 30, 1993 (left), and (b) region 1 of the storm of January
4, 1994, in Darwin, Australia (right). The log-log linear relationship between ¢ and L for each
value of L(AlnI) given above supports the presence of dynamic scaling. For the left plot, the
curves from top to bottom correspond to X¥(Alnl) = 1.2, z = 0.67 and Z(Alnl) = 1.1,z = 0.7.
Similarly, for the right-hand plot, from top to bottom, X(Alnl) = 0.9, z = 0.63; £(AlnI) = 0.8,

z = 0.62; £(Alnl) = 0.7, z = 0.63.
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space-time organization in rainfall is not immediately
clear at this time. Further research is needed to ad-
dress this issue.

It is noted that the scaling exponent z in our dynamic
scaling approach bears a resemblance to the anisotropy
parameter H of Marsan et al. [1996]. Specifically, it
seems like there might exist a functional relation be-
tween z and H, namely, 2z = 1 - H. The value of
H that they obtained from their analysis of observed
radar rainfall data over the United States was = -0.2,
which matches the value of 2 & 1.2 that we obtained
for a portion of one tropical Darwin storm presented
here and also for several summertime midwestern con-
vective storms analyzed by Venugopal [1999]. However,
for several of the tropical storms analyzed herein as well
as in some midwestern convective storms analyzed by
Venugopal [1999], we found the value of 2 to be ap-
proximately 0.6 to 0.7. These values of z would corre-
spond to values of H between 0.3 and 0.4 in the work
of Marsan et al. [1996]. Such values were not reported
in their study. Further analysis needs to be done to in-
vestigate the full range of possible z and H values for
rainfall and also formally establish the aforementioned
functional relation between z and H. In addition, it
should be kept in mind that discrepancies in the ranges
of z and H could potentially come from differences in
the range of scales analyzed in the two studies (e.g., 2
to 6 km in our study versus > 8 km in their study).

It is speculated that z depends on physical proper-
ties of the storm environment, but no data are readily
available to thoroughly investigate the exact nature of
the relationship. For example, a possible parameter on
which z might depend is the temporal change of the con-
vective instability of the storm environment (VCAPE).
This variable is difficult to compute if sounding data
are available only every 6 to 12 hours and only at one
location within the storm coverage. We propose that
future research on this issue needs to employ state-of-
the-art numerical weather prediction models (mesoscale
or storm-scale models) where physically consistent (as-
suming that we have confidence in the model physics)
fields of precipitation and other environmental param-
eters can be produced and analyzed for (1) dynamic
scaling and (2) relations of the dynamic scaling expo-
nent with physical storm parameters.

The results reported in this study can be utilized to
develop a space-time rainfall downscaling model which
not only preserves the subgrid-scale spatial rainfall struc-
ture but also incorporates subgrid-scale temporal per-
sistence. Such a model has been proposed in a compan-
ion paper by Venugopal et al. [1999] and has been shown
successful in reproducing the subgrid space-time struc-
ture of rainfall given its large-scale space-time structure.
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