1516

JOURNAL OF APPLIED METEOROLOGY

VOLUME 33

Characterizing Multiscale Variability of Zero Intermittency in Spatial Rainfall

PRAVEEN KUMAR
Universities Space Research Association/Hydrological Sciences Branch, NASA /Goddard Space Flight Center, Greenbell, Maryland

EFI FOUFOULA-GEORGIOU

St. Anthony Falls Hydraulic Laboratory, Department of Civil and Mineral Engineering, University of Minnesota, Minneapolis, Minnesota

(Manuscript received 20 August 1993, in final form 30 April 1994)

ABSTRACT

In this paper the authors study how zero intermittency in spatial rainfall, as described by the fraction of area
covered by rainfall, changes with spatial scale of rainfall measurement or representation. A statistical measure
of intermittency that describes the size distribution of “voids” (nonrainy areas imbedded inside rainy areas) as
a function of scale is also introduced. Morphological algorithms are proposed for reconstructing rainfall inter-
mittency at fine scales given the intermittency at coarser scales. These algorithms are envisioned to be useful
in hydroclimatological studies where the rainfall spatial variability at the subgrid scale needs to be reconstructed
from the results of synoptic- or mesoscale meteorological numerical models. The developed methodologies are
demonstrated and tested using data from a severe springtime midlatitude squall line and a mild midlatitude
winter storm monitored by a meteorological radar in Norman, Oklahoma.

1. Introduction

Rainfall is an intermittent process—that is, nonrainy
areas amidst rainy areas continue to exist—for a broad
range of spatial and temporal integration scales. Con-
sequently, the distribution of rainfall intensities is of
mixed type with an “atom at zero.” This feature of
rainfall gives rise to unique properties important both
for rainfall analysis and measurement. For example,
due to rainy areas engulfing nonrainy areas, when the
scale increases—that is, resolution decreases—the
mean areal rainfall intensity conditioned on being pos-
itive, decreases. Also, the fraction of area covered by
the storm increases with increasing scale (see, €.8., Figs.
6a and 7a to be discussed later in this paper). The
important point to note is that the fraction of area of
the viewing window covered by rainfall is a function
of the resolution at which rain intensity is represented
within the viewing window. This can have important
implications in certain hydroclimatology simulation
experiments (see Johnson et al. 1991 ) where the frac-
tion of the area covered by the storm is an important
parameter determining the response of the hydrologic
system.

Two kinds of climate models use the property of
fractional coverage: 1) GCMs (general circulation
models) where a storm can lie entirely inside a GCM
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grid (typically of size 250 km X 250 km) in which case
the GCM grid acts like a viewing window; and 2) RCMs
(regional climate models or mesoscale models), which
have much higher spatial resolution and are capable
of resolving the storm in more detail. In this case the
mesoscale grid provides the resolution, rather than the
viewing window, at which the rainfall is represented.
However, in many cases need arises to disaggregate the
outputs of these models to still finer resolutions such
as in driving a distributed parameter hydrologic model
using the output of these climate models. In this paper
we develop a methodology for upscaling and down-
scaling storm area (portion of the viewing window
covered by storm) derived from the rain intensities at
a certain resolution based on techniques of mathe-
matical morphology. The upscaling (going from small
to large scales) is done by a variant of a simple non-
linear morphological operation called dilation. How-
ever, the downscaling (going from large to small scales)
is more involved. The guiding premise behind the
downscaling methodology is the following: since frac-
tion of storm area increases with increasing scale (de-
creasing resolution), that is, the fraction of voids de-
creases with increasing scale, the voids should be al-
lowed to grow when downscaling. We discuss two
algorithms that accomplish this objective in a mor-
phologically consistent manner. They reconstruct in-
termittency from coarser to finer scales such that the
fraction of area covered by rain decreases with increas-
ing resolution. We develop a measure of the statistical
nature of intermittency using a probability distribution
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function that describes the size of voids as a function
of scale. One of the algorithms of downscaling storm
area relies on this size distribution function.

In section 2 the fundamental concepts of morpho-
logical operations, to the extent that they are relevant
to this research, are reviewed briefly. Detailed presen-
tations can be found in Serra (1982) and Giardina and
Dougherty (1988). In section 3 we develop the up-
scaling algorithm and present the results of morpho-
logical analysis on two rainfall datasets: a severe squall-
line storm and a winter storm over Norman, Okla-
homa. These datasets are described in detail in
appendix A. The statistical measure of intermittency,
characterized by the size distribution function of voids,
is also developed in this section. In section 4 we describe
the downscaling algorithms and present some results
using the rainfall data.

2. Review of morphological transforms

Morphology is the study of form and structure. The
structure of interest to us is the binary field (also called
intermittency field) generated by the rainfall intensities;
that is, if the rainfall intensities are nonzero then the
underlying set is assigned a value of 1 (denoted as Z, ),
and zero otherwise (denoted as Z;). This intermittency
field will be denoted as Z; that is, Z = Z, U Z,. Figures
1 and 2 show the binary fields obtained from frame 1
(see appendix A for definition of “frame™) of the squall
line and winter storms, respectively.

Morphological operators are nonlinear operators
that locally modify the geometrical features of images.

FIG. 1. Binary field obtained from frame 1 of the squall-line storm
on a grid of 512 X 512 (relative scale A = 1). Black represents rainy
areas and white represents nonrainy areas. The radial arcs are 25 km
apart covering a radius of 230 km.
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FI1G. 2. Same as Fig. | for frame | of the winter storm.
Fraction of area covered by rain is 18.8%.

The morphological operations are defined between two
sets A and B (in the plane), where A is the set we wish
to study and B is called the structuring element. The
structuring element B plays a role analogous to a kernel
in a convolution operation. The fundamental mor-
phological operations are Minkowski addition and
subtraction (see Serra 1982). Minkowski addition
A ® B is defined as

A®B=U A +p,

beB

(1)

that is, A ® B is constructed by translating A by each
element of B and then taking union of ail the resuiting
translates. Minkowski addition is also called (morpho-
logical) dilation operation and is written as D(A, B)
(=A ® B). Minkowski subtraction A © B is defined
as

AOB=[)A+0b.

bEB

(2)

In this operation, A is translated by each element of B
and then intersection is taken. The operation A © (—B)
is called morphological erosion and is denoted as E(A,
B) (—B represents a reflection of B about the origin).
The result of the erosion operation is the set of trans-
lation points such that the translated structuring ele-
ment B is contained within A.

Eroding the image by B has the effect of shrinking
the image in a manner determined by B, whereas di-
lation has the effect of expanding and smoothing the
image. Both dilation and erosion are invariant with
respect to translation. Although dilation and erosion
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are not inverse of each other, they share a duality prop-
erty with respect to complementation given as

[D(A,B)]"=E(A’,-B), (3)
[E(A, B)]"=D(A’, -B), (4)

where A’ denotes the complement or background of
A;thatis, A’= {x:x & A}. In other words, dilation
of an image can be accomphshed by erosion of the
complementary.image and vice versa.

Using the basic operations of Minkowski addition
and subtraction, more advanced operations called
opening [O(A, B)l and closmg [C(A B)] can be de-
ﬁned as .

O(A, B) = [A O(-B)]OB = D(E(A, B), B) (5)
C(A,B)=[A®(-B)|]OB= E(D(A, -B), -B),

' (6)
that is, opemng is erosion followed by dilation and
closing is dilation followed by erosion. The opening

and closing: operanons also satlsfy a duality property
given as

"C(A,B) = [O(A",B)]" (7)
O(A.B) = [C(A", B)]; (8)

that is, opening of an image can be accomplished by
closing of the complementary image and vice versa.
The effects of dilation, erosion, openmg, and closing
operations for an example are shown i in Fig. 3 (taken
from Giardina and Dougherty 1988) "As can be seen
from the example, closing has the effect of smoothing
an image from the outside by filling thin gulfs and small
holés and opening has the effect of smoothing an image
from the inside by suppressing the sharp capes and
cutting the narrow isthmuses of A in such a way that
O(A, B).c A = C(A, B). The size and shape of the
structuring element determines the nature and degree
of smoothing. For algorithms to apply the above mor-
phological operatlons to digital data, see Glardma and
Dougherty (1988).

3. Upscaling and morphologlcal analysns of bmary
rainfall ﬁelds

The objectlve of this section is to develop a mor-
phological operation that upscales (i.e., decreases res-
olution of) the binary rainfall intermittency field in a
manner that is equivalent to the intermittenicy field
obtained when the rainfall field is scaled by the con-
ventional method of averagmg 2X2 nonoverlappmg
adjacent pixels.

By S, let us denote the structurmg element gwen as

1, if 'x €10, 1)X]0, l)

0, otherw1se

S=S(X)={ 9)

Dilating Z by S and then downsampling every row and
column by a factor of 2 (i.e., keeping only alternate
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F1G. 3. lllustration of the effect of dilation, erosion, opening,
and closing morphological operations on a generic figure.

pixels in every row and column) gives a binary field
that is the same as the binary field obtained from the
scaled rainfall field, when this scaling is done by av-
eraging 2 X 2 nonoverlapping adjacent values. This is
due to the fact-that the morphological equivalent of
averaging 2 X 2 pixels is the dilation operation where
the structuring element is determined by the convo-
lution kernel. Clearly, the structuring element defined
above is the appropriate structuring element for 2 X 2
averaging of pixels. Figure 4 shows the field obtained
by morphological dilation of the binary field shown in
Fig. 1 using S and then downsampling by a factor of
2; that is, it depicts D(Z,, S) followed by downsam-
pling. Figure 5 shows the binary field correspondmg to
the scaled rainfall field obtained by averagmg non-
overlapping adjacent pixels. The validity of using S as
the structuring element can be seen by comparing Figs.
4 and 5, which are almost identical. The minor differ-
ences are because of thresholding error. For example,
we use a threshold of 0.01 mm h™! to distinguish be-
tween rainy and nonrainy areas. When the rainfall field
is averaged to obtain Fig. 5, some pixels that appear
rainy.at higher resolutions may appear as voids at lower
resolution if on averaging the intensity falls bélow the
threshold. Such a situation appears, for example, when
a rainy pixel with very low intensity is averaged along
with three adjacent nonrainy pixels. This condition,
however, does not arise when dilation is performed on
the binary field. The dilation can in general be per-
formed at different scales using AS, where AS denotes
A times dilation of S with 1tself—that is,S®S® .

®'S A times. We denote this general form of the up-
scahng operator as U,; that is,
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FIG. 4. Field obtained after dilation using S and downsampling
by a factor of 2 of the binary field obtained from frame | of the
squall-line storm shown in Fig. 1.

Uy, = D(Z,, \S)

followed by downsampling.

It was indicated in the introduction that an impor-
tant morphological measure of interest in rainfall
modeling is the fraction of total area covered by the
storm. Tables 1 and 2 give the values of the fraction
of the total area covered, ¥(\), with change of scale,
for several frames of the squall line and winter storms,
respectively, using S as the structuring element. The
viewing window is the square enclosing the radar scan
area of 230-km radius. Figures 6a and 7a show the plot
of these values. For the relation of relative scale A\ to
physical scale and grid resolution see Table 3.

Because, as scale increases, the fraction of area cov-
ered by the storm increases by engulfing nonrainy areas,
it is of interest to analyze the morphological properties
of these nonrainy areas. The nonrainy areas can be
embedded entirely inside rainy areas or they can be on
the boundary of rainy areas. The morphological prop-
erty of interest to us is the size distribution of these
“voids” (nonrainy area embedded inside rainy area).
The probabilistic measure of the size of the voids at
scale X is the cumulative size distribution function. The
size distribution function of voids, denoted as G()),
can be defined as

G(A\) =Pr{xeC(Z,NS)|xE Z}; (10)

that is, G()) represents the probability of a point be-
longing to the void to belong to the closing of the rainy
area, using structuring element S at scale A\. The size
of the void at x is the minimum value of \ such that x

FI1G. 5. Binary field obtained by averaging 2 X 2 nonoverlapping
pixels of frame 1 of the squall-line storm.

€ C(Z,, AS) given x € Zy. In simpler terms, it rep-
resents the chance of a void to disappear at the scale
A. The reason for using closing and not dilation in the
above definition is given in appendix B.

It can be shown that (see appendix B)

G :t%()\)—t’(l)’

1 — (1) (1D

where

H1)=Pr{x € Z,}, (12)

that is, fraction of the rainy area at the original reso-
lution, and

9.(\) = Pr{x € C(Z;, \S)}, (13)

that is, fraction of the rainy area after a closing has
been performed on Z, at scale A using S as the struc-
turing element. Using the following estimators for J(1)
and 9.(\):

< o area(Z,)
o) = area(Z) (14)
and
l§c()\) - M, (15)

area(Z)

an estimate of G(\) can be obtained from (11). Area
[C(Z,, AS)] in the above expression can be alterna-
tively obtained by scaling Z;, instead of S, using the
following equation:
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TABLE 1. Values of 9, 9., G, 91¢, and 932 at different (relative) scales A for several frames of the squall line dataset.

Time
(CST) Frame Parameter A=1 A=2 A=4 A=28 A=16 A=32 A =064
1152-1202 1 Dg 0.3483 0.3616 0.3847 0.4197 0.4775 0.5820 0.7030
P 0.3500 0.3640 0.3900 0.4290 0.4950 0.6370 0.7500
G 0.0031 0.0245 0.0644 0.1242 0.2255 0.4433 0.6166
oy 0.3747 0.3813 0.3946 0.4216
o3 0.4229 0.4280 0.4380 0.4583 0.4990
1231-1240 5 s 0.3200 0.3334 0.3560 0.3890 0.4434 0.5078 0.6090
DA 0.3220 0.3370 0.3620 0.3970 0.4500 0.5350 0.6720
G 0.0029 0.0250 0.0618 0.1132 0.1912 0.3162 0.5176
O 0.3754 0.3797 0.3884 0.4036
o2 0.3865 0.3902 0.3975 0.4126 0.4433
1319-1329 10 b4 0.3754 0.3895 0.4127 0.4500 0.5107 0.6094 0.6880
LA 0.3770 0.3920 0.4200 0.4590 0.5330 0.6560 0.7500
G 0.0032 0.0272 0.0720 0.1344 0.2528 0.4496 0.6000
IR 0.4143 0.4205 0.4329 0.4583
O 0.4733 0.4778 0.4868 0.5046 0.5400
1500-1509 15 J 0.3572 0.3687 0.3883 0.4195 0.4795 0.5625 0.6720
DA 0.3580 0.3710 0.3920 0.4260 0.5090 0.5980 0.7500
G 0.0016 0.0218 0.0544 0.1073 0.2364 0.3748 0.6112
vy 0.3895 0.3952 0.4068 0.4304
95 0.4415 0.4455 0.4536 0.4695 0.5010
1548-1558 20 D2 0.3770 0.3920 0.4173 0.4556 0.5205 0.6133 0.6880
J; 0.3790 0.3960 0.4240 0.4640 0.5470 0.6600 0.7030
G 0.0032 0.0305 0.0754 0.1396 0.2729 0.4543 0.5233
9 0.4252 0.4315 0.4442 0.4695
9% 0.4960 0.4998 0.5073 0.5225 0.5527
1637-1646 25 J 0.3900 0.4057 0.4326 0.4763 0.5391 0.6328 0.6720
DA 0.3920 0.4090 0.4400 0.4900 0.5650 0.6950 0.7190
G 0.0033 0.0311 0.0820 0.1639 0.2869 0.5000 0.5393
1 0.4466 0.4528 0.4651 0.4897
03 0.5044 0.5088 0.5175 0.5347 0.5684
C(Z,,AS) = [Z, ® (—=AS)] ©(AS) of scales, in some sense statistically self-similar. More

{eocs]ed

=>\C(121,S), (16)
A

where the second equality in the above equation holds
due to the linearity of the operations @ and ©. The
scaling of Z, by any real number « is meant in the
usual sense of scaling a field. Tables 1 and 2 list the
values of 9, J,, and G at various relative scales A for
several frames of the two storms using S as structuring
element and Figs. 6b and 7b show the plot of these
values on the log-log scale.

The continuous smooth variation of G(\) versus A
1s an indicator that “voids” of all sizes exist within the
rainfall field. If “voids™ of sizes less than, say Amax,
existed then G(\) would achieve a value of unity at A
= Amax. If voids of distinct sizes A, A,, . .., A, existed
then G would have jumps at these scales. The existence
of voids of all sizes is an indicator that the rainfall
intermittency field itself is, within appropriate range

research is required to establish the precise nature of
such a self-similarity.

The above methodology easily extends to more gen-
eral methods of scaling rainfall ficlds using the wavelet
multiresolution framework (see Kumar and Foufoula-
Georgiou 1993). In this framework, upscaling is per-
formed using convolution with a finite support function
®(x) called the scale function. Recall that the mor-
phological equivalent of convolution is the dilation
operation where the structuring element is determined
by the convolution kernel. The structuring element S,
corresponding to the scale function ®(x) is obtained
by assigning a value of unity to the union of all points
that lie within the support of the scale function. The
results developed above and in the following sections
are valid for the wavelet multiresolution framework if
Ss is used instead of S as the structuring element.

4. Downscaling rainfall fields

A problem that has become increasingly important
in recent hydroclimatological studies is the following.
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TABLE 2. Values of 9, 9., G, 91, and 93 at different (relative) scales A for several frames of the winter storm dataset.
Time
(CST) Frame Parameter A=1 A=2 A=4 A=28 A=16 A=32 A =64
1145-1150 1 9 0.1875 0.2085 0.2464 0.3115 0.4100 0.5195 0.6090
. 0.1890 0.2140 0.2570 0.3360 0.4380 0.5860 0.6720
G 0.0012 0.0320 0.0850 0.1823 0.3079 0.4901 0.5961
I 0.2901 0.2981 0.3140 0.3459
% 0.3459 0.3520 0.3640 0.3877 0.4336
1206-1210 5 D4 0.2230 0.2436 0.2809 0.3398 0.4277 0.5547 0.6250
DR 0.2250 0.2490 0.2920 0.3590 0.4520 0.6130 0.6720
G 0.0026 0.0335 0.0888 0.1750 0.2947 0.5019 0.5779
98 0.3142 0.3217 0.3367 0.3669
O 0.4187 0.4233 0.4325 0.4507 0.4863
1241-1247 10 9 0.1967 0.2148 0.2463 0.3003 0.3857 0.5078 0.5780
DR 0.1980 0.2190 0.2540 0.3170 0.4060 0.5740 0.5940
G 0.0012 0.0274 0.0710 0.1494 0.2603 0.4695 0.4944
I 0.2649 0.2731 0.2892 0.3215
b5 0.3492 0.3547 0.3655 0.3870 0.4287
1308-1313 15 s 0.1728 0.1891 0.2171 0.2668 0.3457 0.4726 0.5630
9. 0.1740 0.1920 0.2240 0.2820 0.3710 0.5200 0.6100
G 0.0012 0.0230 0.0617 0.1318 0.2394 0.4196 0.5284
9 0.2275 0.2354 0.2510 0.2825
97 0.3216 0.3268 0.3372 0.3577 0.3975
1340-1346 20 J 0.1283 0.1420 0.1665 0.2100 0.2734 0.3828 0.5000
DA 0.1300 0.1450 0.1730 0.2200 0.3010 0.4340 0.6100
G 0.0023 0.0195 0.0516 0.1055 0.1984 0.3509 0.5528
o 0.1687 0.1754 0.1888 0.2163
Oy 0.2386 0.2432 0.2521 0.2700 0.3066
1410-1416 25 J 0.1290 0.1398 0.1603 0.1975 0.2686 0.3711 0.4690
DA 0.1298 0.1420 0.1640 0.2070 0.2970 0.4020 0.5470
G 0.0010 0.0150 0.0403 0.0897 0.1930 0.3135 0.4800
oK 0.1621 0.1690 0.1829 0.2109
Y 0.2198 0.2248 0.2348 0.2546 0.2939

Suppose we are given rainfall intensities at a coarse
grid. How should we disaggregate these values to obtain
an intensity field at a finer scale (higher resolution)?
Such a problem, for example, arises when the output
of a mesoscale atmospheric model or general circula-
tion model (which is at a larger scale) is used to drive
a regional hydrologic model (at much smaller scale).
This problem of subgrid-scale disaggregation has three,
not necessarily independent, aspects to it—namely,
meteorological, statistical, and morphological. Here we
discuss the morphological aspects only and present ev-
idence that they relate to meteorology through the de-
pendence of the size distribution function to storm
type. Statistical aspects related to the spatial distribution
of nonrainy areas at different scales are not discussed.

Recognizing, from the analysis of the previous sec-
tion, that the fraction of area covered by rain is much
larger when computed at a large scale than at a small
scale, we need to find an algorithm that will appropri-
ately decrease the fraction of area covered when we go
from a large scale to a small scale (low to high reso-
lution). Within the rainfall intensity itself, there is no
statistical information that will help us accomplish this

objective. However, the morphological information can
be useful. For example, a void within or at the boundary
of the rainy area at a large scale can be thought to have
been left over from an even larger void at the finer
scale. Therefore, an inverse algorithm should allow
these voids to grow when the resolution increases. This
approach is markedly different from those currently
adopted, which assign a rainfall value to all points on
the finer grid that fall within a coarser grid that has a
positive rainfall value. Such an approach implicitly as-
sumes that the fraction of area covered by rainfall re-
mains constant with change in scale, an assumption
that is far from reality as seen from the results of the
previous section. Figure 8 shows the binary rainfall
field (at grid 512 X 512, defined as A = 1) obtained
using this traditional algorithm from a grid at a reso-
lution 2* times smaller than that shown in Fig. 2 (i.e.,
from a grid of 32 X 32) for the winter storm. As is
evident the fraction of area covered is significantly
larger than that at finest resolution shown in Fig. 2
(41.0% as compared to 18.8%, see Table 2). All com-
putations are performed with respect to the 512 X 512
rectangular grid that encloses the circular radar scan
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FIG. 6. Variation of (a) fraction of area covered ¢ and (b) size
distribution function G with respect to relative scale A for several
frames of the squall-line dataset.

area of radius 230 km. No correction is made for the
increased area of voids since all structuring elements
that are defined are squares and any correction applied
would not be consistent across scales. However, this
does not change the interpretation of the results.

A heuristic algorithm we propose to use to go from
a large scale to the next smaller scale (downscaling) is
to upsample every row and column by a factor of 2 and
perform a closing operation, and recursively continue
this procedure from the largest scale to the desired
smallest scale. We denote this operation as D,; that is,
D, is the upsampling followed by C(Z;, AS). Upsam-
pling entails inserting a zero between every row and
column.

=)
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FiG. 7. Variation of (a) fraction of area covered ¢ and (b) size
distribution function G with respect to relative scale A for several
frames of the winter storm dataset.
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TABLE 3. Relationship between relative scale,
grid resolution, and physical scale.

Relative scale

(linear) Grid Physical scale
(resolution) (km?)

1 512X 512 0.898 X 0.898

2 256 X 256 1.797 X 1.797

4 128 X 128 3.594 X 3.594

8 64 X 64 7.188 X 7.188

16 32x32 14.375 X 14.375

32 16 X 16 28.75 X 28.75
64 8§ X8 57.5 X 57.5
128 4X4 115 X 115

Given the field at some large scale Ay, we can re-
cursively construct the field at smaller scales A (<Ag)
using the above algorithm. Let 9 3°(\) denote the frac-
tion of area covered at scale A (<Ag) when the above
algorithm, that is, operator D,, is initiated at scale A,.
Tables 1 and 2 give the values of this parameter for
several frames for Ao = 16 and Ay = 32 for the squall
line and winter storm, respectively. As an illustration,
Fig. 9 shows the binary rainfall field at A = 1 for the
winter storm obtained using this algorithm starting at
Ao = 16 (grid of 32 X 32). The structuring element
used is S. The fraction of area covered (29.0%) is re-
markably smaller than that of the field obtained by
assuming a constant fraction of area covered by rain
(41%, shown in Fig. 8) and the storm area obtained is
similar to the original storm area (shown in Fig. 2).

FIG. 8. Binary field on a grid of 512 X 512 (relative scale A = 1)
obtained by enlarging the field on a grid 32 X 32 (relative scale A
= 16) for frame | of the winter storm. Fraction of area covered by
rain is 41%.
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F1G. 9. Binary field at grid of 512 X 512 (relative scale A = 1)
obtained by recursively upsampling and (morphologically) closing
the field at grid 32 X 32 (relative scale A = 16) for frame 1 of the
winter storm. Fraction of area covered by rain is 29%.

It can be seen by studying Tables | and 2 that the
larger the value of Ao—that is, the larger the scale at
which we initiate the algorithm—the larger the differ-
ence 9°(1) — 9(1)—that is, the difference between
the reconstructed and actual fraction of area covered
by storm. This is because voids of size less than Ao do
not “survive” at scale Ay, and consequently the algo-
rithm is unable to account for such voids. It is possible
to make an estimate of this difference 973(1) — 9(1)
using the size distribution function G()). It is easy to
see that since [1 — ¥#(1)] gives the fraction of voids at
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the unit scale, [ — 9(1)]G(Ao/2) is the fraction of
voids “engulfed” by the rainy area up to scale A (we
use Ag/2 in the above product because our scales in-
crease or decrease as powers of 2 and consequently Ao/
2 is the next lower scale to Ay). Hence,

Ip(1) + G(%)[l ~H D] = HAro). (17)

In this expression the approximation is because we use
closing or opening in the definition of size distribution
function (to be mathematically consistent), whereas
¥(\) is obtained using dilations. The approximation
error, however, is small as illustrated below. We define
the lhs of the expression (17) as 9pg(No); that is,
Fpg(Xo) =03(1) + G(Xo/2)[1 — 9(1)]. Table 4 gives
the values of 9pg(Ag), ?(Ng), and the percentage ap-
proximation error for several frames for the squall line
and the winter storms, respectively. As can be seen
from these results, the size distribution function, G(\),
is able to account for the voids at different scales fairly
well, although on the average the error increases with
increasing Ay. As mentioned earlier, the discrepancy
is due to the use of opening or closing in the size dis-
tribution function. One could, for heuristic reasons,
use erosion or dilation as the basis to define the size
distribution function but that will not yield a true size
distribution function (see appendix B).

To improve the performance of our downscaling al-
gorithm, we need to statistically incorporate voids at
various scales A (<)) as we recursively implement the
operator D, for scales A\ to unity. We call this modified
operator—that is, D, coupled with size distribution
function—as Dg,,. Therefore, Dg,) is the upsampling
followed by C(Z,, AS) coupled with G()\). This im-
proved algorithm can be implemented by developing
a spatial distribution model (e.g., Poisson or possibly
clustered models) for distribution of voids at different

TABLE 4. Values of %(\g) and ¥pg(Ao) and their discrepancy error for several frames of the squall line and winter storm.

Squall line Winter storm
Frame Ao M Ap) 9p6(No) Percent error I(No) Ipc(No) Percent error

1 16 0.4775 0.4556 4.59 0.4100 0.4382 —6.88
32 0.5820 0.5699 2.08 0.5195 0.5961 14.74

5 16 0.4434 0.4523 ~2.01 0.4770 0.4502 5.62
32 0.5078 0.5165 1.71 0.5547 0.6477 —16.76

10 16 0.5107 0.4982 2.45 0.3857 0.3849 0.21
32 0.6094 0.6312 ~3.58 0.5078 0.5583 -9.94

s 16 0.4795 0.4584 4.40 0.3457 0.3365 2.66
32 0.5625 0.5935 ~5.51 0.4726 0.5196 —9.94

20 16 0.5205 0.5122 1.59 0.2734 0.2607 4.65
32 0.6133 0.6660 ~8.59 0.3828 04115 -7.50

25 16 0.5391 0.5466 —1.39 0.2686 0.2402 10.57
32 0.6328 0.6794 -7.36 0.3711 0.3879 —4.53
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scales [characterized by G(XA)]. Such an algorithm
would require a parameterization of the size distribu-
tion function G(\) that can be obtained either by ex-
tensive analysis of many storms or by physical param-
eterization. Such a study is currently under investiga-
tion. )

5. Conclusions

Zero intermittency in spatial rainfall varies consid-.

erably with the scale at which rainfall is represented.
The fraction of area covered by rainfall (), which is
a common measure of intermittency, increases with
increasing scale A at a rate that depends on the type of
storm. For example, for the squall-line storm analyzed,
¥ changes from approximately 0.3 to 0.7 over spatial
integration scales of approximately 1 X 1 to 55 X 55
km?. For the winter-type storm this change is more
dramatic from 0.1 to 0.7 (see Fig. 7). The reason for
this change is that voids tend to disappear as the in-
tegration scale increases. A probabilistic measure of
this change [size distribution function of voids, G(\)}]
was introduced and was computed for the two storms
analyzed. It was found that this function is very similar
for both storms and its continuous nature reveals that
voids of all sizes exist in the storm area.

The objective of this paper was to develop a mor-
phologically based algorithm for reconstructing rainfall
intermittency across scales, that is, upscaling (going
from small scales to larger scales) and downscaling
(going from large scales to smaller scales). The up-
scaling algorithm was developed to produce a binary
field that is consistent with that obtained from the
scaled rainfall field. Two algorithms were developed to
downscale storm area. The first downscaling algorithm
attempts to reduce the fraction of area covered using
the morphology of the storm area at the large scale.
The second further improves the first algorithm by in-
corporating the size distribution function. These al-
gorithms are envisioned to be useful in subgrid-scale
disaggregation applications, which are of significant
importance in hydroclimatological modeling.

To address the subgrid-scale disaggregation of rainfall
we need to specifically address three issues, namely,
meteorological, statistical, and morphological. Al-
though, the morphological algorithms developed in this
work give a handle on subgrid-scale disaggregation
(downscaling) of storm area, they have to be carefully
coupled with the other two aspects. For example, while
reducing the fraction of area covered while downscal-
ing, the rain intensities need to be redistributed from
the larger area to the smaller area, satisfying certain
performance criteria such as preservation of total rain-
fall volume. Recognizing that although the mean rain-
fall changes with scale, it changes in a manner that the
total amount of rainfall volume does not change with
scale; one can use this as a criterion while redistributing
rain intensities. Such issues are currently under inves-
tigation.
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APPENDIX A
Description of Radar Rainfall Data

The storms used in this analysis are a squall-line
storm and a winter rainstorm that occurred over Nor-
man, Oklahoma. The squall-line storm occurred on
17 May 1987 and the winter storm on 22 February
1985. These storms were monitored by the National
Severe Storm Laboratory (NSSL) using a WSR-57 ra-
dar that is a 10-cm-wavelength system with a peak
power of 305 kW and a beamwidth of 2.2°. The con-
version of the cloud reflectivity (dBZ ) to rainfall rates
(mm h~') was done at NSSL in Norman, Oklahoma,
using the relationship Z = 300 R ', where R is rainfall
rate (mm h™") and the reflectivity factor dBZ is related
to Z (mm® m~3) by the relationship | dBZ = 10 logZ.
The rainfall intensity values for the squall-line storm
are available at a temporal integration scale of 10 min,
for 360 azimuths, with every azimuth containing 115
estimates for a range of 230 km (i.e., data at every 2
km X 1°). The data for the winter storm are available
at temporal integration scales of 5 min at the same
spatial resolution. Data for each time integration scales
(10 min for squall line and 5 min for winter rainstorm)
over the 360 azimuths are referred to as a “frame.”
The precipitation processing system, used to correlate
reflectivity and rainfall intensity, taking into account
the rain gauge observations, and adjustment for ground
clutter, etc., is described by O’Bannon and Ahnert
(1986). For the purpose of our analysis the original
data were converted to a rectangular grid lattice of size
512 X 512 by bilinear interpolation on the polar grid.
All results are with respect to this interpolated data.

APPENDIX B
Derivation of G(\)

To define a measure of the size distribution of voids,
a morphological size operator needs to be developed.
An operator T acting on an image A at scale (or size)
A [denoted as T)(A)] needs to satisfy the following
axiomatic properties, originally developed by Math-
eron, to qualify as a size operator (see Serra 1982,
chapter X):

1) TW(A)CA VA>O0;

that is, features larger than A are a'subset of the original
image.

2) IfBC Athe T\(B)C Ty(A) VA=0;

that is, T is an increasing transformation.

3) D[T0(A)] = Tyl D0 (A)] = Tmaxoun(A)
YA, A > 0.

4) Ty(A+x)=T(A) x€ER%
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that is, the size operator is translation invariant. A sizing
criterion is a criterion that satisfies the above four ax-
ioms. It can be shown that every morphological size
distribution operation is a union of (morphological)
openings using structuring elements that have convex
shape and are compact (see Serra 1982).

To study the size distribution we use the cumulative
size distribution function Go(A), which specifies the

proportion of the points x € A that have been elimi-

nated by the structuring element AB:

Go(A\)=Pr{x€O(A,AB)|xEA} A>0 (Bl)
—1-Pr{xE0(A,\B)|xEA} (B2)
:1_Pr{xEO(A,>\B)andeA} (B3)

Pr{x€A}

But Pr{x € O(A, AB)and x € A } is the same as Pr{x

€ O(A, AB)} since O(A, AB) C A (see Serra 1982,

p. 52), and therefore

Pr{x € O(A, A\B)}
Pr{xE€A}

Go(A)=1— (B4)

Similarly, we can derive an expression for the cu-
mulative size distribution G (\) of the complementary
field A":

G(M) =Pr{x& O(A’,\B)|[xE A'}. (BS)

Using Eq. (8) we get
G(A)=Pr{x€C(A,AB)|xEA"} (B6)
=Pr{xEC(A,)\B)andx€A’}. (B7)

PrixEA’}

Using the property that if A, C A then C(A,, B)
D C(A, B) (see Serra 1982, p. 52) we can further sim-
plify the above expression to get

Prix EC(A,\B)} —Pr{x €A}
1 —-Pr{xEA} '

G(\) = (B8)

The size distribution of the complementary image can
be obtained in terms of the closing operation on the
original image due to the duality of the two operations.

We can use Eq. (B4) for size distribution of the rainy
areas, Z,, and Eq. (B8) for the voids in the rainy areas.
Our main interest will be in the nature of G(\). For
the field Z we use the following estimators for the var-
ious probabilities in the above expressions:
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area(Z;)
area(Z)’

that is, fraction of the rainy area at the original reso-
lution.

Pr{x € 0(Z,, \S)}

Pr{x€Z,}=01)= (B9)

area[O(Z,, AS)]
area(Z) ’

that is, fraction of the rainy area after an opening has
been performed on Z, at scale A using S.

Pr{x € C(Z,, A\S)}

=Uo(A) = (B10)

area{C(Z,, A\S)]
area(Z) ’
that is, fraction of the rainy area after a closing has

been performed on Z; at scale A using S. Therefore,
for the rainfall process, Egs. (B4) and (B8) reduce to

=9.00) =

(B11)

9,0
Go(M) = 1 —3((1—)) (B12)
and
9.0 = 9(1
GO\) =+_)0—(1()—) (B13)
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