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Abstract 

The stochastic storm transposition (SST) technique has been developed and evaluated in 
previous studies for the estimation of exceedance probabilities of extreme precipitation depths. 
In this study it is extended to the estimation of exceedance probabilities of extreme design 
floods. The link between storms and flood peaks is provided by a rainfall-runoff transforma- 
tion and stochastic descriptions of antecedent moisture conditions and storm depth temporal 
distributions. Cumulative average catchment depths produced by the SST approach have been 
converted to a range of possible flood peak values using a rainfall-runoff model (the ARNO 
model) and a probabilistic disaggregation scheme of cumulative storm depths to hourly data. 
The analysis has been repeated for a range of fixed antecedent moisture conditions. The 
probabilities of exceedance of the produced flood peaks have been estimated and compared 
to highlight the effect of antecendent moisture conditions on the magnitude and frequency of 
produced floods as compared with the magnitude and frequency of the corresponding average 
catchment depths. 

1. Introduction 

It has been argued over the years that it is not feasible to estimate exceedance 
probabilities of very extreme floods or equivalently is not feasible to estimate the 
magnitude of very infrequent flood peaks, i.e., events of return period greater than 
103-lo4 years. Thus for the design of very large hydraulic structures, where failure 
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could cause possible loss of life and substantial property damage, deterministic 
(instead of risk-based) procedures have normally been used for estimation of the 
magnitude of design events. These estimates have mostly been based on the probable 
maximum flood (PMF) procedure, where probable maximum precipitation (PMP) 
estimates are deterministically converted to floods (e.g. see Wang and Jawed, 1986). 
PMF is defined as the flood resulting from the ‘extreme application’ over the basin of 
the PMP. PMP is the ‘theoretically greatest depth of precipitation that is physically 
possible over a particular drainage area at a certain time of the year’ (Huschke, 1959, 
p. 446). Although standardized methods of computing PMP and PMF estimates are 
usually used (e.g. see World Meterological Organization, 1973) the large subjectivity 
involved in the whole estimation process has several times led to estimation of 
significantly different values of design events by different agencies for the same loca- 
tion. A case in point is the Harriman dam in the upper Deerfield river basin (518 km2, 
or 200 square miles) in Whitingham, Virginia, for which the 24 h 200 square miles 
PMP value was estimated by the Yankee Atomic Electric Company in 1980 as 363 
mm (14.3 in), by the Franklin Research Institute in 1982 as 373 mm (14.7 in) and by 
the National Weather Service (NWS) in 1983 as more than 560 mm (22 in) (see 
Yankee Atomic Energy Company (YAEC), 1984). Another concern with the PMF 
estimates is that they might have different chances of being exceeded in different 
regions of the USA, which would mean an unequal level of flood protection at 
different sites. For example, Kraeger and Franz (1992) have estimated that the 
NWS PMF estimate for the Russian River, California, has a return period of more 
than 100 000 years, whereas that for the Sulphur River, Texas, has a return period of 
4000-5000 years, and for the Atlamaha River, Georgia, has a return period of 2.5 
billion years. 

Motivated by these problems, Foufoula-Georgiou (1989) and Wilson and Fou- 
foula-Georgiou (1990) developed a stochastic storm transposition (SST) approach, 
which emulates in a probabilistic framework the PMP estimation process, as a 
possible method of assessing the exceedance probability of very extreme precipita- 
tion depths. The underlying idea of the SST approach is the enlargement of the record 
of storms available for estimation by considering storms that have not occurred over 
the catchment of interest but that could have occurred over it. This approach leads to 
storm regionalization and estimation of the joint probability distribution of storm 
characteristics and storm occurrences within a prespecified storm transposition area. 
To date, the SST approach has been applied only for the estimation of exceedance 
probabilities of areally averaged catchment depths. What is needed for design, how- 
ever, is flood peaks and volumes. In this paper, the SST technique has been extended 
to a probabilistic procedure for estimation of annual exceedance probabilities of flood 
peaks and volumes by coupling it with a rainfall-runoff model. 

Many rainfall-runoff models are available, ranging from very simple lumped 
schemes (e.g. the curve number method) to very complicated, differential, distributed 
models (e.g. the SHE model, Abbott et al., 1986). In selecting a rainfall-runoff model 
to be used in a combined storm-runoff statistical analysis one has to define the 
aspects that are considered of primary importance in the physical rainfall-runoff 
transformation process. It is well recognized that the water storage capacity of the 
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soil and its initial water content are the most important aspects that affect the peak- 
runoff production process. Drainage and translation along hillslopes and network 
channels have a minor influence on the peak runoff production even if they maintain a 
significant influence on the flood volumes. In other words, the most important aspect 
to be well represented is the water balance component at soil level. This consideration 
allows us to avoid using extremely complicated models such as SHE, where, in 
addition, the large number of physical parameters to be defined at grid level would 
produce high uncertainty and render the Monte Carlo process totally impractical. On 
the other hand, extremely simplified models seem not to be sufficiently accurate to 
perform a reliable analysis. Thus the range of candidate models can be restricted to 
only a few conceptual ones. 

Recently, Franchini and Pacciani (199 1) have carried out a comparative analysis of 
several rainfall-runoff conceptual models (STANFORD, SACRAMENTO, TANK, 
ARNO, etc.) and have shown that significantly different models produce basically 
equivalent results, although the difficulty in understanding the sensitivity of the 
results to the model parameters increases in proportion to the complexity of the 
model structure. According to these results, the ARNO model has been considered 
as one of the most appropriate models to perform flood peak frequency analysis. In 
fact, it balances well a relatively complex structure with a probabilistic description of 
the spatial distribution of water storage capacity. 

This paper is arranged as follows. In the next section a brief description of the SST 
approach and the ARNO model is given, and the technique of coupling the SST 
approach with a rainfall-runoff model for estimation of exceedance probabilities 
of extreme flood peaks is developed. Then, we describe the set of available extreme 
storm data used in the analysis together with the distributional assumptions in the 
stochastic description of storm and basin characteristics. In Section 4 we present the 
results of an application of the flood peak frequency analysis method to a real case 
study, discuss the possible use of the obtained estimates in hydraulic design decisions, 
and illustrate the sensitivity of the results to antecedent moisture conditions of the 
basin. The paper ends with some concluding remarks on the still controversial subject 
of extreme flood frequency analysis and its use in design. 

2. Methods 

2.1. Brief description of the SST approach 

Let d(x, y, t) denote the rainfall depth deposited from a storm at the ground 
location of spatial coordinates (x,y) during a period of time (0, t]. For design 
purposes, a variable of particular interest is the maximum areally averaged depth 
that can occur over a catchment of area A, during a time period At, i.e. 

d,W = & A [4x, Y, ts + At) - 4x, Y, &>I dx dy (1) 
E 
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where the period At is equal to a critical duration of rainfall in terms of flood 
production, and t, is defined such that 

JJ 
k+,_v, 1, + At) - 4x, Y, &)I dx dy 2 

‘4, 

x [d&y, t + At) - d(x, y, t)] dxdy V t < t, - At (2) 

4 

where t, is the storm duration. 
Let A, denote the random vector of storm characteristics describing a storm. In 

general, A, will be composed if the parameters of a stochastic model describing the 
rainfall field. Depending on the model, these parameters may or may not be directly 
interpretable in terms of physical storm characteristics. Let A, denote the two-dimen- 
sional vector describing the position of a storm (here this position is called the storm 
center). The storm center may be defined as the location of the maximum observed 
total depth or as the location of the maximum accumulated depth over a specified 
period of time. Alternatively, it may be defined as the center of mass of the storm. 
Denoting by S2 = (A,, A,, the joint vector of storm characteristics and storm posi- 
tions, the cumulative distribution function of z(At) can be expressed as 

~;(a) E am,, = pr(z(At) 5 d) = J pr(&(At) I dlw) d&(w) (3) n 
where Fn(w) is the cumulative joint distribution function of the random vector a. Of 
interest is the exceedance probability of z(At), which can be obtained as 

G(d) = Gzcat,(d) = 1 - F(d) 

Let Z(t) denote the counting process of the number of extreme storms in an interval 
oft years (stationarity in time is assumed). The annual exceedance probability can be 
expressed as 

G’(d) = 1 - Tpr[z(At) 5 d]Z(l) = V] .pr[Z(l) = V] 
v=o 

(5) 

Assuming that Z(l), the random variable of the number of extreme storm occur- 
rences per year, is independent of the storm depths z(At), and that z(At) are 
independent and identically distributed random variables, the annual probability of 
exceedance of d,(At) can be written as 

G’(d) = 1 - ~[~~~~~)(d)lv.Pr[Z(l) = ~1 
II=0 

Assuming that Z( 1) follows a Poisson distribution with annual occurrence rate X (this 
is a realistic assumption shown by Wilson and Foufoula-Georgiou (1990) to hold true 
for the midwestern extreme storms considered in this study), the annual exceedance 
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probability of d,(At) can be shown to be 

Ga(d) = 1 - exp [-XG(d)] (7) 

Throughout the rest of the paper, d will be abbreviated as F(d) and ) 
F-&,(d) ad P(d). G(d) and G”(d) 

Qcat,( 
re ’ resent similar abbreviations. p 

2.2. ARNO model 

Two distinct components may be identified in the ARNO model (Todini, 1996). 
The first represents the soil-level water balance and the second the transfer to the 
outlet of the basin. The part representing the soil-level water balance is the most 
important and characterizes the model. It expresses the balance between the moisture 
content of the soil and the incoming (precipitation) and outgoing (evapotranspiration 
and runoff) quantities. The runoff is then subjected to a transfer operation which 
represents (1) the transfer to the network channels along the hillslopes, and (2) the 
transfer to the outlet of the basin along the channel network. The reader should refer 
to Todini (1996) for a more detailed description of the ARNO model. 

2.3. Stochastic storm transposition coupled with rainfall-runofmodeling 

Stochastic storm transposition (SST) is an event-type approach which provides 
values (and their associated exceedance probabilities) of cumulative precipitation 
depths over a specified period of time and averaged over the catchment area. Thus, 
in coupling SST with a rainfall-runoff (R-R) model, it is not possible to perform a 
continuous simulation with the R-R model but only event simulation. In this case, 
specification of the initial moisture condition plays an important role in the obtained 
distribution of flood peaks. Let us assume that the initial moisture condition, specified 
in the ARNO model with the parameter IV,,, is a random variable with a probability 
distribution FW,, (we). This probability distribution must be estimated from antece- 
dent moisture conditions of extreme storm events. 

To obtain runoff hydrographs the cumulative precipitation depths provided by the 
SST approach have to be distributed in small time intervals (e.g. hours) over their 
durations, as required by the time step of the R-R model. Let T(t) denote the set of 
nondimensional curves (mass curves) describing all possible temporal distributions of 
the cumulative precipitation depth over a specified duration and fret, (r( t)) its prob- 
ability distribution. As it is well known that the temporal distribution of extreme 
storm depths considerably affects the magnitude of the produced flood peaks, it is 
important to have a good estimate of the probability distribution of r(t). For this 
estimation hourly rainfall data from several extreme storms are needed. 

Finally, the basin characteristics, indirectly expressed by the parameters of the R- 
R model, also play an important role in the produced runoff peaks and volumes. Let 
us denote by !4 the vector of these parameters and by f*(+) the joint probability 
distribution of this vector. Most of the parameters of @ represent physical character- 
istics of the basin and may thus be considered as deterministic quantities to be 
estimated from calibration of the R-R model. 
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To obtain the probability of exceedance of flood peaks integration must be per- 
formed now not only over the random storm characteristics and locations (random 
vector a) but also over the random quantities IV,, !B, and T(t). Assuming that basin 
characteristics, initial soil moisture, and temporal distributions of storms are inde- 
pendent of each other, the exceedance probability of the peak runoff Qp can be written 
as 

G(q) = 1 - pr [Qp I qlw WO, $A +)I 
n wo * T(t) 

a&4fiv,,(wo, YdW~(t)(~(4) dw dwo dtidT(t) 

Finally, assuming that the number of extreme flood peaks per year follows a Poisson 
distribution with annual occurrence rate X’, the annual exceedance probability of 
flood peaks is given as 

G’(q) = 1 - exp [-X’G(q)] (9) 

3. Area of application and distributional assumptions 

3.1. Storm characteristics 

The area of study is the nine-state midwestern area of North Dakota, South 
Dakota, Nebraska, Kansas, Minnesota, Iowa, Missouri, Wisconsin, and Illinois 
shown in Fig. 1. This area was selected for its homogeneous climatological condi- 
tions, lack of orography, and existence of data of very extreme precipitation events 
over a period of more than 100 years as reported in the US Army Corps of Engineers 
(1945) storm catalog. All storms in the catalog which have their centers within this 
region and for which the maximum recorded 24 h average depth (At = 24 h) was 
greater than or equal to 20.32 cm (8.0 in) were used. Sixty-five such storms were 
identified, and a summary of their characteristics is given in Table 1. More details 
on these storms have been given by Wilson and Foufoula-Georgiou (1990). For each 
storm the maximum 24 h amount was used and was distributed in space according to 
a spread function fitted to the depth-area-duration (DAD) curves reported in the US 
Army Corps of Engineers catalog. This procedure produces maximum average depths 
over areas of given sizes, which is what is typically used for design. 

It was assumed that the maximum 24 h depth distribution within the storm area 
enclosed by the contour of 7.62 cm (3 in) (this area is referred to here as the storm area 
A,) is described by homocentric, geometrically similar contours around a single 
center. These contours were further approximated by ellipses of major to minor 
axis ratio equal to c and orientation of major axis equal to 4 (this angle being 
measured counterclockwise from the horizontal east-west direction). To distribute 
spatially the maximum 24 h average depth over an area A, (e.g. a(A)), the following 
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Fig. 1. The nine-state midwestern region and storm transposition area (dashed line) used in the analysis. 

spread function was assumed: 

d(A) = d,* exp (-kA “) (10) 

where d,’ represents the maximum 24 h recorded depth, taken as the storm center 
depth, and k and n are parameters estimated for each individual storm. 

The above simplified description of the storm’s spatial pattern results in the repre- 
sentation of the random vector fl by the following random variables 

n = [D,‘K*NC@xY]’ (11) 

where the prime denotes transpose, and Do*, K *, N, C, and @ denote the random 
variables taking on values dl,k,n, c and 4, respectively, and (X, Y) denotes the 
random vector of the spatial coordinates of the storm center position. 

From a statistical and cross-correlation analysis of the characteristics of the 
analyzed storms, Wilson and Foufoula-Georgiou (1990) reported the following 
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Table 1 
Characteristics of the extreme midwestem storms used in the analysis 

storm 
no. 

US Army Duration Max Area1 extent Storm center 
corps of (h) 24 h (square miles) 
Engineers depth (associated 

(in) average depth 

(in)) Town State Date 

1 MR 4-24 54 
2 MR4-5 20 
3 MR6-15 78 
4 MR 7-2A 78 
5 MR l-10 96 
6 MR 2-29 78 
7 MR 1-5 78 
8 MR 10-2 108 
9 MR 8-20 120 

10 MR l-9 168 
11 MR 3-14 120 
12 MR 4-2 96 
13 UMV l-11 108 
14 UMV 2-18 180 
15 UMV l-22 78 
16 OR 4-8 90 
17 SW 2-l 114 
18 MR 1-3A 30 
19 MR 2-22 102 
20 MR 4-3 78 
21 MR 6-2 96 
22 UMV 3-29 15 
23 GL 2-29 120 
24 MR l-23 96 
25 MR2-11 96 
26 MR 3-30 60 
27 UMV 2-5 12 
28 UMV 2-8 66 
29 UMV 3-20B 186 
30 UMV 3-21 42 
31 GL 2-12 120 
32 UMV2-14 63 
33 GL3-11 42 
34 MR 1-21A 102 
35 MR 3-6 48 
36 UMV 2-30 24 
37 MLV 1-3A 84 
38 GL 4-5 66 
39 MR 6-3 24 
40 MR 1-16A 120 
41 MR 6-l 72 
42 UMV2-15 24 
43 UMV 3-28 30 
44 MR l-28 78 

24.0 63300 (2.7) 
13.0 20000 (3.5) 
15.8 16000 (2.9) 
15.0 45000 (2.9) 
14.7 59000 (2.9) 
12.2 113500 (1.5) 
12.3 100000 (2.0) 
9.3 57000 (2.5) 

12.0 306000 (0.7) 
8.1 136000 (1.2) 
8.8 120000 (2.2) 

12.9 30000 (2.4) 
11.5 50000 (2.0) 
8.1 70000 (1.8) 

12.4 60000 (2.2) 
9.0 70000 (4.9) 

14.0 30000 (2.2) 
12.5 7200 (4.1) 
11.9 19900 (2.9) 
12.3 84000 (1.8) 
11.4 16000 (3.3) 
12.0 20000 (2.6) 
12.4 58000 (2.2) 
10.8 40000 (2.3) 
11.2 24000 (2.3) 
9.9 60000 (3.6) 

12.1 20000 (3.9) 
8.8 27000 (3.2) 
8.4 80000 (2.2) 

11.0 12600 (2.4) 
8.9 67000 (2.4) 
9.6 70000 (1.6) 

11.0 20000 (3.2) 
8.6 24300 (2.7) 
8.9 45000 (2.7) 

11.0 10400 (2.8) 
8.4 20000 (3.3) 

10.0 15000 (4.3) 
10.9 5000 (3.6) 
8.2 45000 (1.7) 
8.9 35000 (2.5) 
9.0 13000 (4.4) 

10.7 10500 (3.8) 
8.1 39000 (2.2) 

Boyden 
Grant Township 
nr. Station 
nr. Cole Camp 
Woodbum 
Grant City 
Primghar 
Council Grove 
nr. Holt 
Abilene 
Pleasanton 
Larrabee 
Ironwood 
Boonville 
Haywood 
Golconda 
nr. Neosho Falls 
Blanchard 
Warrensburg 
Greeley 
Lindsborg 
nr. Dumont 
nr. Merril 
Nemaha 
Moran 
Lebo 
nr. Bonapart 
Bethany 
Galesburg 
Thopson Farm 
Medford 
Washington 
Libertyville 
Warsaw 
Lockwood 
Oxford Junction 
Sikeston 
Butternut 
Ballard 
El Dorado 
Clifton Hill 
Gorin 
Mifflin 
Topeka 

IA 
NE 
NE 
MO 
IA 
MO 
IA 
KS 
MO 
KS 
KS 
IA 
MI 
MO 
WI 
IL 
KS 
IA 
IA 
NE 
KS 
IA 
WI 
NE 
KS 
KS 
IA 
MO 
IL 
MO 
WI 
IA 
IL 
MO 
MO 
IA 
MO 
WI 
MO 
KS 
MO 
MO 
WI 
KS 

Sept. 1926 
June 1940 
June 1944 
Aug. 1946 
Aug. 1903 
July 1922 
July 1900 
July 1951 
June 1947 
May 1903 
Sept. 1927 
June 1891 
July 1909 
Sept. 1905 
Aug. 1941 
Oct. 1910 
Sept. 1926 
July 1898 
Aug. 1919 
June 1896 
Oct. 1941 
June 1951 
July 1912 
July 1907 
Sept. 1915 
Nov. 1928 
June 1905 
July 1909 
Sept. 1941 
July 1942 
June 1905 
June 1930 
June 1938 
Aug. 1906 
Sept. 1925 
June 1944 
Sept. 1898 
July 1897 
June 1943 
June 1905 
June 1942 
June 1933 
July 1950 
Sept. 1909 
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Table 1 (continued) 

storm 
no. 

US Army Duration Max Area1 extent Storm center 
corps of (h) 24 h (square miles) 
Engineers depth (associated 

(in) average depth 

(in) Town State Date 

45 MR 3-1A 78 
46 MR 3-29 30 
41 UMV 2-22 30 
48 UMV 4-11 54 
49 MR 7-9 30 
50 GL 2-30 54 
51 MR3-11 54 
52 MR 2-23 66 
53 MR4-14A 90 
54 MR 4-12 42 
55 MR l-3B 30 
56 MR 2-3 18 
57 UMV l-4A 54 
58 UMV2-17 12 
59 OR 4-22 30 
60 MR 6-16 36 
61 MR 7-16 10 
62 UMV l-14B 126 
63 UMV 1-6 102 
64 UMV l-7A 78 
65 UMV 2-19 3 

9.0 3900 (3.9) 
10.0 14000 (3.1) 
9.0 23400 (2.8) 
9.2 28500 (2.3) 

10.0 8300 (4.1) 
8.9 5000 (3.4) 
8.9 13300 (2.3) 
8.7 58350 (2.6) 
8.5 67000 (2.3) 
8.4 13200 (3.7) 
8.3 20000 (2.5) 
8.0 6800 (3.9) 
8.0 32000 (2.1) 
8.4 15000 (2.9) 
8.0 24100 (3.6) 
9.1 5100 (2.2) 

10.0 220 (4.3) 
8.0 5000 (2.9) 
8.0 50000 (3.1) 
8.0 15200 (3.2) 
8.4 570 (2.4) 

Medicine Lodge 
Sharon Springs 
Gunder 
Galva 
Jerone 
Viroqua 
Chanute 
Bruning 
Hazelton 
Lincoln 
Edgehill 
Wichita 
Minnesota City 
Toledo 
Charleston 
nr. Bagnell 
nr. Gering 
Worthington 
Elk Point 
La Crosse 
Plainville 

KS 
KS 
IA 
IL 
IA 
WI 
KS 
NE 
ND 
NE 
MO 
KS 
MN 
IA 
IL 
MO 
NE 
MN 
SD 
WI 
IL 

Sept. 1923 
May 1938 
July 1940 
Aug. 1924 
July 1946 
July 1917 
Apr. 1927 
Sept. 1919 
June 1914 
Aug. 1910 
July 1898 
Sept. 1911 
June 1899 
Aug. 1929 
Sept. 1926 
Aug. 1944 
June 1947 
Aug. 1913 
Sept. 1900 
Oct. 1900 
May 1941 

properties of 0 which were used for the estimation of the joint probability distribution 

fnb-4: 
(1) The storm orientation Q is independent of all other random variables of a. 

Owing to the lack of maximum 24 h storm orientation data is was not possible to 
estimatef@(4), and the application of the method was restricted to the case of circular 
catchments for which the storm orientation Cp will have no effect and the integration 
over the parameter @ need not be considered. 

(2) The storm elongation parameter C is independent of all other random variables 
of the vector 0 and follows a distributionfc(c). However, to simplify the estimation 
of G(d), this parameter was taken to be a constant equal to the mode of its distribu- 
tion (c = 2.0) as it was shown by Wilson and Foufoula-Georgiou (1990) that small 
variations in this parameter have little effect on the estimation of the exceedance 
probabilities. 

(3) The parameters K* and N of the spatial spread function of Eq. (10) are 
dependent upon each other but are independent of all other random variables of 0. 
If we let K’ = In K*, then the pair (K’, N) follows a bivariate normal distribution 

fAv(k’> n) = 
1 

27m~‘cQr(l - p2)j - exp 
-+(K’, N) 

> 
02) 
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H(K’, N) = -l-J (c~)2_2p(c+) (?I$) + (y*} 
(13) 

Empirical frequency distributions of the parameters k’ and n have been given by 
Wilson and Foufoula-Georgiou (1990), together with details of the fitting procedure 
which produced the following estimates (obtained using variables in FPS units): 
GK, = -5.431,dK, = 1.335;b, = 0.597, sM = 0.147; and J = IjK,,N = -0.917. 

(4) Based on observations related to the spatial distribution of storm centers of 
extreme’ midwestern storms, Wilson and Foufoula-Georgiou (1990) hypothesized 
that the distribution of storm centers (X, I’) conditional on d,* > d,&, (where 
&in = 20.32 cm = 8 in) could be approximated by a transformed bivariate normal 
distribution independent in each direction. However, in our study, to reduce the 
computation time required by the Monte Carlo procedure, it has been decided to 
consider as transposition area a sub-area of about 1000 000 km* (as shown in Fig. 1) 
where the major concentrations of storm occurrences has been observed. For this sub- 
area it is reasonable to assume a uniform probability distribution for the spatial 
distribution of storm centers, i.e. 

where Z(x, y) is an indicator function defined over the region A,, as 

Z(&Y) = 
1 if (x,v) E A, 
o otherwise 

(5) The frequency distribution of the maximum 24 h storm center depth Do* was 
modeled by a shifted exponential distribution given by 

(16) 

with a$,, = 20.3 cm (8 in). The parameter 0 was estimated as 6 = 6 cm (2.38 in). 
(6) The number of extreme storm occurrences per year was modeled by a Poisson 

distribution given by 

e-‘A” 
p@(l) = 4 = 7) v=o,1,2,... (17) 

The parameter A, which is equal to the mean number of extreme storms per year, 
was estimated as 1.07 storms per year. In the present study, this estimate of X was also 
used as an estimate of A’ (annual rate of flood events) owing to lack of extreme flood 
data on which a more accurate estimate of A’ could be based. 
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Parameters of the ARNO model 

Water balance component 
Surface runoff 

b 

W, 

Drainage 
D Ill,” 

D max 
wd 

c 

Deep infiltration 

K 

o 

Ground water flow 
K 
n 

Transfer component 

Co, Do 

Cl,& 

Shape parameter of the storage capacity distribution curve 
Average storage capacity of the upper zone over the entire basin (mm) 

Drainage value at the threshold value of the moisture content 
W, (mm-’ h) 
Maximum drainage value (mm-’ h) 
Threshold value of moisture content used in calculating drainage (mm) 
Shape coefficient of the drainage curve: c = 1 linear; c = 2 quadratic 

Threshold value of moisture content used in calculating deep infiltration 

(mm) 
Percentage of ( W,, - W,) used in calculating deep infiltration 

Depletion rate constant of the lower zone (h-l) 
Number of linear reservoirs 

Convectivity (ms-‘), and diffusivity (m’ s-r), respectively, of the 
parabolic hydrograph for transfer along hillslopes towards the 
channel network 
Convectivity (m s-l), and diffusivity (m* SK’), respectively, of the 
parabolic hydrograph for transfer along the channel network 
towards the outlet 

3.2. Rainfall-runoff model parameterization and temporal distribution of storm depths 

As previously mentioned, the ARNO model has 14 parameters (see Table 2) 
forming the random vector 

* = {b, Wm, &in, &a,, wd, c, wi, a, K, n, CO, DO, Cl, DI) (18) 
To investigate the effect of the initial soil moisture condition W. on flood peaks and 
decide which parameters of 9 most significantly affect peak runoff, a sensitivity 
analysis was performed where one parameter was varied at a time in a wide range 
around a reference set of basin values as shown in Table 3. In this sensitivity analysis, 
which is basically referred to flood peak events, the effect of the groundwater flow was 
disregarded. The results indicated that the frequency of peak runoff is mostly affected 
by the initial soil moisture condition W. and average storage capacity W,,, (see Figs. 
2(a) and 2(b) and not by other parameters such as, for example, the parameters Ci 
and D, of the transfer function in the channel network towards the outlet (see Figs. 
2(c) and 2(d)). Thus S’ was reduced to only one parameter, W,. This parameter, 
expressing the average storage capacity of the basin, relates to physical characteris- 
tics of the basin of interest and therefore its value will in most cases be known by 
calibration of the R-R model. In such a case W,,, will be a deterministic variable. 
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Initial moisture condition and parameters of the ARNO model - reference set and values used in the 
sensitivity analysis 

Symbol Reference value Units Sensitivity analysis 

wo 
b 

W, 
Dmin 
D max 
wd 

c 

w, 

i 

n 

CO 

Do 

Cl 

Q 

50. 
0.2 
200. 
0.02 
1.0 
100. 
2.0 
0.0 
0.001 
0.0 
0 
0.5 
500. 
2.0 
5000. 

mm 

mm 

mm h-’ 
mm h-’ 
mm 

mm 

h-’ 

ms-’ 
m* SK’ 
ms-’ 
m* SC’ 

0.0 

0.0 

50. 
0.0 
0.0 
0.0 

50.0 
0.0 
_ 
_ 

0.3 
100. 
0.5 
1000. 

100. 
0.5 
175. 
0.5 
2.5 
90. 

100. 
0.005 
_ 
_ 

1.15 
550. 
2.25 
10000. 

200. 
1.0 
300. 
1.0 
5.0 
180. 
- 

150. 
0.01 
_ 
_ 

2.00 
1000. 
3.0 
20000. 

Regarding the parameterization of the temporal distribution of storm depths, we 
have used the results of Huff (1967), who has performed an extensive frequency 
analysis of temporal distributions of midwestern storms. He has classified time dis- 
tribution patterns in four probability groups, from the most severe (first quartile) to 
the least severe (fourth quartile). The probabilities of each quartile are 0.30,0.36,0.19, 
and 0.15, respectively. For each quartile he has provided a range of mass curves each 
with its associated probability of exceedance (see Fig. 3, for an example). This 
statistical description has been used herein to compute the probability density func- 
tion (pdf) of T(t). 

4. Results of simulation and sensitivity analysis 

The integrals in Eqs. (3) and (8), needed for the estimation of the exceedance 
probabilities of extreme precipitation depths and flood peaks, respectively, have 
been evaluated numerically via a Monte Carlo simulation. Synthetic storms were 
generated with elliptical shape of major to minor axis equal to two, storm center 
depth equal to dot (randomly selected from the pdffD: (4)) and spatial distribution 
of depths described by the spread function of Eq. (10) with parameters (k’,n) 
(sampled from FKfN(k’, n)). The triplet (d,“,k’, n) completely defines the area1 
extent of the storm A, (defined here as the area enclosed within the contour depth 
of 3 in (i.e. 7.62 cm)). Under the assumption of uniform distribution of storm centers 
within the transposition area A,, each storm can occur at any position within At, with 
the same probability. As only positions which will produce non-zero rainfall and 
runoff over the basin are of interest, the storms have been transported only within 
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Fig. 2. Frequency curves of flood peaks conditioned on greater than zero average catchment rainfall depth. 
Sensitivity of frequency curve to (a) initial moisture conditions Ws (lower curve is for 200 mm and upper 
curve for 0 mm), (b) average soil storage capacity IV,,, (lower curve is for 50 mm and upper curve for 300 
mm), (c) convectivity coefficient C, (upper curve is for 0.50 m SK’), and (d) diffusivity coefficient D, (lower 
curve is for 1000 mz s-t) of the transfer function in the channel network towards the basin outlet. 

the effective area of the catchment. The effective area (Y&) is defined as the area 
within which if a storm is centered it will have at least one point common with the 
catchment and thus will produce non-zero average rainfall depth and runoff. In 
general, the geometrical shape of A,K cannot be easily described analytically. 
Instead, it must be determined numerically, except for special cases, as, for exam- 
ple, a circular storm (of radius rS) and circular catchment (of radius r,) where A,n is 
also circular (with radius r, + r,). It should be noted that A,R changes every time a 
new storm is transposed over the catchment of interest. To reduce the computations, 
our analysis has considered a circular basin (of area A, equal to 200 km*) and 
elliptical storms of major axis rt and minor axis r2, and the assumption has been 
made that the effective area is also elliptical with major axis (r, + rl) and minor axis 

(r, + r2). 

Following the assumption of uniform distribution of storm centers within &, the 
storm centers also have a uniform distribution within A,R. That is, the probability of 
the storm center of storm i occurring at any point within its effective area A,n, is 
constant and equal to AK/&. Based on this, the probability of obtaining a zero 
average depth (and thus peak runoff) over the catchment has been approximated 
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0 20 40 60 60 loo 

Cumulative percent of storm time 

(a) 

10 % Probability 

40-l 50 % Probability 

40 

7 90 % Probability 

0 20 40 60 60 loo 

Cumulative percent of storm time 

@I 
Fig. 3. (a) Time distribution of first quartile storms. The probability shown is the chance that the observed 
storm pattern will lie to the left of the curve. (b) Selected histograms for first quartile storms (after Huff, 
1967). 

using the mean effective area as 
- 

@[&(At)=O]= l-Aerr/A,, 

and an estimate of F(d) has been obtained as 

(19) 

- - 
p(d) = 11 - &I&I + @4~@0 L Wh~l-4,1 

Thus, 

(20) 

- 
W) = [l - WIZW 2 ~>l[~effI~trl (21) 

and the annual exceedance probability is estimated as 

d’(d) = 1 - exp[-Ad(d)] (22) 

It is recalled that the SST method produces values of cumulative rainfall depths 
averaged over the catchment of interest and estimates of their annual exceedance 
probabilities. To convert these cumulative depths to flood peaks a disaggregation 
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scheme is needed to obtain the storm hyetograph, e.g. a sequence of hourly rainfall 
depths, which can be run through an R-R model to produce runoff hydrographs. A 
probabilistic disaggregation scheme has been used based on HufYs curves (Huff, 
1967), i.e. the temporal distribution of cumulative depths has been randomized 
according to its probability distribution Fr~~)(r(t)) as discussed above and integra- 
tion over FTcrJ (r( t)) has been performed. For the estimation of exceedance probabil- 
ities of runoff peaks numerical integration over the pdf of the random variables W0 
and W,,, is also needed. Determination of fW, (ws) requires availability of initial 
moisture condition data from a large set of extreme storms. Such data were not 
available in this study and therefore no attempt was made to characterize the pdf 
of W,,. Instead, several values of W, were selected corresponding to a range of initial 
moisture conditions from totally dry to saturated (W. = 0,40,100,160,180, and 200 
mm) and evaluation of flood peaks and their exceedance probabilities was performed 
conditional on these constant W. values. If probabilities could be assigned to these 
values it would be possible to integrate numerically and obtain the unconditional 
flood peak exceedance probabilities. Similarly, owing to difficulties in estimating the 
pdf of the parameter W, (which, in fact, in most cases might be desired to be kept 
constant to the deterministically obtained value via calibration) no integration over 
the pdf of W,,, has been performed. Instead, a constant value of W,,, equal to 200 mm 
has been considered as a reference value and the frequency analysis has been per- 
formed conditional on this value. Other values of W,,, can be considered as necessary. 

Numerical evaluation (via Monte Carlo simulation) of the stochastic integrals in 
Eqs. (3) and (8) produced the annual exceedance probability curves of 24 h areally 
averaged catchment depths ;i;: (Fig. 4(c)) and flood peaks QP (parts (a) of Figs. 4-8 for 
five different initial moisture conditions). In addition, another type of simulation was 
performed. Fixing W. and W,,, to a predefined set of values, a given 24 h average 
catchment depth q has produced a range of possible flood peak values QP, each 
corresponding to a different disaggregation and having a different chance of 
occurrence. Let us denote by (Q,) = E [Q,la the expected value of these QP values 
conditional on a specific constant value of d,, where expectation is taken only with 
respect to the probability distribution of temporal distributions Fr(,)((r(f)) of the 
cumulative depth d,. This expected value of (Q,) and the maximum and minimum 

possible Qp values <Q,,,,, and Qp,~in, respectively) have been computed and have 
been plotted in parts (b) of Figs. 4-8 for W. of 0 mm, 40mm, lOOmm, 160mm, and 
2OOmm, respectively, and W,,, of 200 mm. These figures provide an interesting link 
between the annual exceedance probability curve of 24 h average catchment depths 
(Fig. 4(c)) and peak flows (parts (a) of Figs. 4-8). 

To illustrate the use of these curves, let us consider, for example, Fig. 8 (very wet 
initial moisture conditions) and select a particular z depth equal to 300 mm. This 
depth has a probability of exceedance of approximately 6.6 x lop4 (see Fig, 4(c)) and 
can produce Q, values ranging between 1100 and 3600 m3 s-l with an average value 
of 1600 m3 s-i (averaging taken by integrating over the,pdf of temporal distributions) 
(see Fig. 8(b)). The annual probability of exceedance of this average (Q,) value 
is approximately 1.8 x 10e3 whereas that of Q,,,,, is approximately 2.4 x lo-’ and 

that of Qp.min is approximately 7.4 x 10P3. Now we select a particular QP value, 



M. Franchini et al. / Journal of Hydrology 175 (1996) 511-532 

Annual exceedance probabdity, G’(q) 

Average depth, ;il. [mm] 

Fig. 4. (a) Annual exceedance probability of flood peak Q,; (b) flood peak values vs 24 h average catchment 
depth; (c) annual exceedance probability of the 24 h average catchment rainfall depth d,. The middle curve 
in part(b) indicates the values of E&la, w h ere expectation is taken over the pdf of storm depth temporal 
distributions. The curve E[;il]Q,] is not shown as it almost coincides with the curve E[QJ~. The upper and 
lower curves in (b) indicate respectively the maximum and minimum Q, values that can be obtained from 
different disaggregations of the same 24 h storm depth. The parameters used are W’s = 0 mm (totally dry) 
and W, = 200 mm. 

Annual acedance probability. CP(yl 

Fig. 5. Same as Fig. 4 but with Wa = 40 mm (dry) and IV,,, 
not repeated. 

= 200 mm. Part (c) is the same as in Fig. 4, and is 
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annual excecdance probabilay, G”(q) 

Fig. 6. Same as Fig. 4 but with W,, = 100 mm (medium) and W,,, = 200 mm. Part(c) is the same as in Fig. 4, 
and is not repeated. 

e.g. 2000m3 s-i on the same graph. Its probability of exceedance is approximately 
6.9 x lop4 (see Fig. 8(a)). It should be noted that this QP value can be produced by a 
24 h average catchment depth ranging between 170 and 550 mm (see Fig. 8(b)) 
according to chances specified by the pdf of temporal distributions used to disaggregate 
these 24 h depths to hourly data. The expected value (where again expectation is taken 
over the pdf of storm depth temporal distributions) of these possible rainfall depths 
given the specified value of QP = 2000 m3 s-i, (d,) = E[&]Q,], is approximately 
380mm (in our case the curves E[z]Q,] and E[Q,]&] almost coincide), which has 
an annual exceedance probability of approximately 1.2 x 10P4. However, the mini- 
mum z that can produce peak flow of 2000 m3 s-l has a probability of exceedance 
approximately equal to 1.4 x 10e2 and a maximum value equal to 3.9 x 10-6. 

Fig. 9 compares the flood peak annual exceedance probability curves for different 
levels of initial moisture conditions. If one has information about the relative fre- 
quency of each initial moisture condition state, e.g. pi, a weighted average flood peak 
annual exceedance probability curve could be obtained. That curve would essentially 
represent the annual frequency estimates obtained by integration over the pdf of 
WO,fW,(wO). At the same time, the weighted average peak flow rate corresponding 

Fig. 7. Same as Fig. 4 but with W,, = 160 mm (wet) and IV,,, = 200 mm. Part (c) is the same as in Fig. 4 and 
is not repeated. 
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Annual exceedawe probability, G’(q) Average depth, ;i;: [mm] 

Fig. 8. Same as Fig. 4 but with Ws = 200 mm (saturated) and IV,,, = 200 mm. Part (c) is the same as in Fig. 
4, and is not repeated. 

to a fixed desired annual exceedance probability could be obtained. For example, 
given a particular value of the annual exceedance probability the peak flow rate could 
be obtained as Cp jQi, where Qi is the peak flow value for initial moisture condition 
Wd:, to account for the probabilistic nature of the initial moisture conditions at the 
beginning of the storm. 

WOO- 

Annual exceedance probability, G(q) 

Fig. 9. Comparison of annual excecdance probability curves of flood peaks for different initial moisture 
conditions ranging from totally dry ( Wc = 0 mm) lower curve to saturated ( Ws = 200 mm) upper curve. 
The four middle curves (from bottom to top) are for W,, = 40,100,160, and 180 mrn, respectively. 
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Effect of initial moisture conditions on frequency of a flood peak of a given magnitude and corresponding 
magnitudes and frequencies of 24 h relevant average catchment depths 

WO (mm) 0 40 100 160 180 200 
Qp (m3 s-‘) 2000 2000 2000 2000 2000 2000 
G’=(q) 4.1 x 10-6 8.9 x 1O-6 2.5 x 1O-5 8.2 x 10-j 1.71 x 1O-4 6.9 x 1O-4 
($) %lQJ (mm) 570 530 480 440 420 410 
r,rmn d (mm) 440 410 360 280 240 170 
d (mm) e,mBX 870 810 710 610 580 550 
G”((%)) 2.7 x 1O-6 4.9 x 10-6 1.45 x 10-5 3.5 x 10-S 4.4 x 10-5 6.2 x lo-’ 

To illustrate further the effect of antecedent moisture conditions on design deci- 
sions, let us consider as an example the case of an existing hydraulic structure 
designed to withstand a flood peak of 2000 m3 s-’ . The question arises as to what 
level of flood protection this design event offers. As Table 4 (and Fig. 9) illustrates, 
depending on the initial moisture condition W’s, the annual exceedance probability 
Ga(q) of this event varies considerably between approximately 4.1 x 10e6 (totally 
dry) and 6.9 x 10e4 (saturated) indicating a different level of flood protection in 
each case. This flood peak value might have been produced by a wide range of 24 h 
average catchment depths depending on the initial moisture condition W’s and the 
temporal distribution of storms as indicated in Table 4. The storm depth expected 
value (expectation taken with respect to the pdf of temporal distributions only) varies 
between 870 mm (totally dry) and 550 mm (saturated) and has corresponding annual 
exceedance probabilities 3.8 x lop6 to 1.1 x 10e4. A similar example, where now the 
probability of exceedance of the design event is fixed and the question arises as to 
what flood magnitude to use in sizing the hydraulic structure, can be seen in Table 5. 
As it is observed, the magnitude of that design event varies between 1080 m3 s-’ 
(totally dry) and 2900 m3 s-l (saturated) and the expected values of the 24 h average 
catchment depths corresponding to that design flood vary between 390 mm and 550 
mm with corresponding annual exceedance probabilities from 9.8 x lop5 (totally dry) 
to 3.8 x 10e6 (saturated). These differences in the exceedance probabilities of storm 
depths and corresponding flood peaks are reasonable, as it is expected that rare 
storms coupled with a deterministically fixed always very wet initial moisture condi- 
tion will produce floods which, by comparison with the frequency of the extreme 
storm, are not so unusual. These results would change if the probability of finding 

Table 5 
Effect of initial moisture conditions on magnitude of design floods of a given return period and correspond- 
ing magnitudes and frequencies of 24 h relevant average catchment depths 

WO (mm) 0 40 100 160 180 200 
GW 10-4 10-4 1o-4 1o-4 10-4 1o-4 
Q, Cm’ s-l) 1080 1320 1620 1940 2180 2900 
(4)= E(;illQp) bd ~0 410 410 420 460 590 
d bw 3mln 330 320 310 280 250 240 
d b4 
G%)) EmaX 

560 580 610 590 630 800 
7.1 x 10-s 6.2 x lo-’ 6.2 x lo-* 4.4 x 10-s 2.1 x 10-S 2.0 x 10-6 
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the basin so wet before extreme storms was accounted for in the estimation. For that, 
knowledge of the pdf of W. is needed. 

In general terms, the results in Figs. 4-8 show that the expected flood peak value 
E[QJ& is positioned symmetrically within the band of possible QP values produced 
by a single average depth z, only for the cases with initial moisture conditions W, 
which are either very dry or medium (W,, = 0,40, and 100 mm). For wetter initial 
moisture conditions (W. = 160,180, and 200 mm) the position of the E[QP]&] curve 
tends towards the lower QP curve while at the same time the width of the possible QP 
values increases (this implies that the range of possible & values that can produce the 
same single value of QP tends to increase). These aspects affect the slope of the 
exceedance probability curves of QP. In fact, whereas for the first three cases of 
Wo(O, 40, and 100 mm) the slope in the semi-log frequency plot is almost linear (see 
parts (a) of Figs. 4-6), when W. assumes larger values (160, 180, and 200 mm) an 
upwards increasing concave shape is observed (see Figs. 7(a)-8(a)). From a probabil- 
istic point of view this means that the exceedance probability of QP tends to be larger 
than the exceedance probability of the relevant average depth as the initial moisture 
condition tends to increase, i.e. as the soil storage reduces its dumping effect the range 
of possible average depths that can produce equal values of QP (depending on the 
different temporal distributions) tends to increase, particularly towards average 
depths with higher exceedance probability. Consequently, as already observed, the 
exceedance probability of the most extreme flood peaks decreases more slowly than 
that of the most extreme average depths. 

It is worth mentioning that the presented results are affected in their absolute values 
by the particular set of chosen parameters both for the stochastic structure of storms 
(vector 0) and the R-R model (vector 9). However, the relative behavior of the 
exceedance probability curves is expected to remain the same when different sets of 
parameters are used. Also, the obtained frequency curves are considered reliable 
between the range of annual exceedance frequencies of approximately 10m2 and 
lo-‘. The upper value (10e2) is imposed by the fact that only extreme storms (a 
‘censored’ sample) were used for the estimation of storm characteristics, and the 
lower value (lo-‘) is inferred from the fact that up to this range the frequency curves 
are not affected by the sample size used in the simulation. For example, Fig. 10 
compares the frequency curves obtained from a sample size of 400 000 storms (this 
is the sample size used in all previously reported results) and a much larger sample size 
of 2 000 000 storms. The curves are almost identical up to annual exceedance prob- 
abilities of lo-‘. 

5. Conclusions 

Regional flood frequency analysis has been the subject of considerable research 
over recent decades (e.g. Stedinger et al., 1993). However, even with regionalization, 
standard flood frequency analysis methods (based on extrapolation of a hypothesized 
probability distribution for floods) are not appropriate for estimation of design events 
of return period greater than 500- 1000 years. For very large hydraulic structures and 
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Annual exceedance probability, G”(y) 

Fig. 10. Comparison of annual exceedance probability curves for sample sizes of 400000 storms (broken 
line curve) and 2000000 storms (continuous line curve). The parameters used are W’, = 100 mm and 
w, = 200 mm. 

nuclear power plants there is need for design events with annual exceedance prob- 
abilities of the order of 1O-4-1O-8 years. Such large design events are usually esti- 
mated in a deterministic manner based on the so-called probable maximum flood 
(PMF) procedure. However, although in concept the PMF values cannot be 
exceeded, the PMF estimates are random variables that certainly can be exceeded, 
albeit with a small probability. Not attaching a probability of exceedance to PMF 
estimates (or other deterministically derived extreme design events) gives a false sense 
of security or leads to unnecessary overdesign. 

Recently, Foufoula-Georgiou (1989) and Wilson and Foufoula-Georgiou (1990) 
proposed and demonstrated the use of a stochastic storm transposition approach for 
estimation of the exceedance probability of very extreme precipitation depths over a 
basin. The results were encouraging in the sense that the method yielded robust 
estimates of very infrequent precipitation depths. In this paper, the SST approach 
has been extended to a probabilistic procedure for estimation of annual exceedance 
probabilities of flood peaks by coupling it with a rainfall-runoff model. In addition, 
to the stochastic description of storm characteristics and storm positions, the present 
extension to flood frequency estimation accounts for the probabilistic description of 
storm temporal distributions, initial moisture conditions, and other parameters of the 
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rainfall-runoff model that could result in considerably different estimates of flood 
peaks from the same average catchment depth. The results of our analysis have been 
reported in such a way as to facilitate an appreciation of the variability of the flood 
peaks (and their associated exceedance probabilities) that can be produced from a basin 
for a given specific average catchment depth owing to the variability of the temporal 
distribution of storm depths and variability in initial soil moisture conditions. The 
results highlight the importance of the unequal frequency of design storm depths and 
flood peaks, which is even more pronounced for very wet antecedent moisture conditions. 

Although the issue of deterministic vs. risk-based design of very large hydraulic 
structures is controversial on philosophical and even political grounds, the problems 
of offering an equal level of flood protection to existing or new sites and making 
decisions about the need for updating old structures are pragmatic. Even if one has 
reservations about the absolute value of the obtained frequency estimates, the proposed 
technique, if used on a comparative basis, offers an objective way of assessing the safety 
level of existing and new hydraulic structures and of determining the priority for costly 
retrofitting of old dams according to their comparative level of flood protection. 
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