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Self-affinity in braided rivers 

Victor Sapozhnikov and Eft Foufoula-Georgiou 
St. Anthony Falls Laboratory, University of Minnesota, Minneapolis 

Abstract. Three braided rivers of different scales and different 

hydrologic/geomorphologic characteristics (the Aichilik and Hulahula in Alaska and the 
Brahmaputra in Bangladesh) are analyzed for spatial scaling using a logarithmic 
correlation integral method developed earlier by the authors. It is shown that the rivers 
exhibit anisotropic scaling (self-affinity) with fractal exponents v x = 0.72-0.74 and Vy = 
0.51-0.52, the x axis being oriented along the river and the y axis in the perpendicular 
direction. The fact that despite large differences in scales (0.5-15 km in braid plain width), 
slopes (7 x 10 -3 to 8 x 10-s), and types of bed material (gravel to sand), the analyzed 
braided rivers show similar spatial scaling deserves special attention. It might indicate the 
presence of universal features in the underlying mechanisms responsible for the formation 
of the spatial structure of braided rivers. Also, comparison of fractal characteristics of 
braided rivers with those of single-channel rivers and river networks suggests that braided 
rivers form a class of fractal objects lying between the classes of single-channel rivers and 
river networks. 

1. Introduction 

Braided rivers, i.e., rivers "having a number of alluvial chan- 
nels with bars and islands between meeting and dividing again" 
[Lane, 1957], form a separate class of hydrologic systems, other 
than single-channel rivers and river networks. They prevail in 
mountainous and glacial regions and are highly dynamic sys- 
tems characterized by intensive erosion, sediment transport 
and deposition, and frequent channel shifting. Study of the 
morphology of the braided rivers and processes governing their 
behavior is important in geomorphology, geology, hydrology, 
and environmental studies. The alluvial deposits of braided 
rivers are important reser*oirs of water, oil, gas, coal, sand, 
gravel, and heavy minerals. Despite their importance, braided 
rivers have not been studied as extensively as single-channel 
rivers and river networks (see, for example, Bristow and Best 
[1993]). In particular, there is a significant lack of quantitative 
studies in braided rivers; the existing models and frameworks 
are mostly qualitative. With the exception of the early work by 
Howard et al. [1970] it is only recently that some more quan- 
titative studies were carried out, such as, for example, that of 
Murray and Paola [1994, 1996], Murray [1995], and Webb 
[1995]. 

Braided rivers exist over a large range of scales from several 
meters to 20 km in width. It is clear that when applying results 
from one braided river to another of different size, or from a 
physical model to a real braided river, the issue of scale and its 
effect on the geometry, runoff, and forming processes of the 
river inevitably arises. Scale relationships are also important in 
understanding the internal structure of a particular braided 
river. Indeed, the processes shaping a braided river and caus- 
ing branching, confluence and bar growth, and erosion act over 
a wide range of scales and produce an internal structure which 
also manifests itself over a large range of scales. Exploring 
scale relations in the internal structure of braided rivers can 

help to understand better the processes responsible for sculp- 
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turing the river. To address these questions, quantitative tools 
for the description of the geometric and hydrologic character- 
istics of braided rivers are needed. 

In braided rivers, sinuosity of individual channels and their 
branching and confluence produces a rather complex and hi- 
erarchical spatial structure which needs appropriate tools for 
its description. Often, such complex structures find their nat- 
ural description in terms of self-similar or self-affine fractals 
[Mandelbrot, 1982]. At first glance the spatial structure of the 
whole braided river and its structure at the level of channels 

appear to have some kind of similarity [see Bristow and Best, 
1993]. This impression, however, needs to be either validated 
or disproved by quantitative analysis. 

The presence of scaling in a phenomenon means that statis- 
tical properties of the phenomenon at one scale relate to its 
statistical properties at another scale via a transformation 
which involves only the ratio of the two scales. This implies a 
certain invariance of the phenomenon under magnification or 
contraction (scale invariance). Objects showing the same spa- 
tial scaling in all directions (which makes it impossible to 
determine the scale of the object from its photograph) are 
called self-similar fractals and can be characterized by their 
fractal dimension D. In a more general case, scaling properties 
are different in different directions. Such anisotropically scaled 
objects are called self-affine fractals and are characterized by 
more than one fractal exponents which properly reflect scaling 
in each direction. In terms of fractal dimension a self-affine 

fractal is characterized not by one but rather by two fractal 
dimensions: the local fractal dimension D r and the global 
fractal dimension D o [Mandelbrot, 1986]. 

Spatial scaling has been established for single-channel rivers 
and river networks [see Tarboton et al., 1988; La Barbera and 
Rosso, 1989; Nikora, 1991; Sapozhnikov and Nikora, 1993; 
Peckham, 1995]. Moreover, it was shown that the fractal ge- 
ometry of river networks is closely connected to other hydro- 
logic characteristics, such as distribution of discharge masses 
and of energy dissipation in river basins [e.g., Rodriguez-Iturbe 
et al., 1992]. Nikora et al. [1993] demonstrated that natural and 
simulated individual streams show a complicated geometry: 
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self-similarity at small scales and self-affinity at larger scales. 
Self-affine behavior of the streams is caused by gravity which 
makes the streams scale differently in the direction of the 
mainstream slope and in the perpendicular direction. Self- 
affinity in natural river courses was also reported by Ijjasz- 
Vasquez et al. [1994]. Anisotropic spatial scaling ("external 
scaling," see section 2) was revealed in simulated river net- 
works [e.g., Kondoh et al., 1987; Meakin et al., 1991]. Nikora 
and Sapozhnikov [1993] found that both natural and simulated 
river networks show isotropic scaling at small scales and aniso- 
tropic scaling at larger scales. 

In contrast to a great number of papers existing on fractal 
properties of rivers and river networks the scaling in braided 
rivers has virtually not been studied. We are aware only of one 
study by Nikora et al. [1995], who analyzed several sections of 
New Zealand rivers as self-similar objects and reported fractal 
dimension D -- 1.5-1.7. However, the presence of gravity 
which causes the scaling anisotropy in individual streams and 
river networks provides reasons to expect self-affine geometry 
in the braided streams too. The problem is that until recently 
no method existed for analyzing scaling anisotropy (self- 
affinity) except for the special case of a nonbranched line [see 
Matsushita and Ouchi, 1989; Nikora et al., 1993] or of an object 
having a distinct hierarchical structure (e.g., one can easily find 
fractal exponents for a self-affine Sierpinsky carpet; see also 
Nikora and Sapozhnikov [1993] and Nikora [1994], who used 
scaling of subbasins to estimate fractal exponents of river net- 
works). 

It was only recently that a method was developed by the 
authors to study self-affinity in objects having any topology 
[Sapozhnikov and Foufoula-Georgiou, 1995]. The method is 
applied in this paper to study the self-atfine characteristics of 
three braided rivers (Brahmaputra in Bangladesh and Aichilik 
and Hulahula in Alaska). It is found that these rivers exhibit 
self-affine scaling, the fractal exponents being v x - 0.72-0.74 
and Vy = 0.51-0.52. The fact that the fractal exponents Vx 
and Vy are practically the same for all three rivers is worth 
noticing given that these rivers exist over disparate spatial 
scales (from 0.5 to 15 km in braid plain widths and from 6.4 to 
200 km in length of analyzed sections) and have different 
slopes (7 x 10 -3 to 8 x 10 -s) and different types of bed 
material (gravel to sand). 

This paper is structured as follows. In section 2 the differ- 
ence between "internal" and "external" fractal exponents is 
discussed. It is emphasized that the internal fractal exponents 
(v x and Vy) characterize the internal self-affine structure of a 
braided river; that is, they show how parts of the whole object 
scale with respect to each other. These exponents should not 
be confused with the external self-affine exponents (ax and Oty) 
which show how the whole object scales with respect to other 
(whole) objects and which could be obtained by analyzing a 
large number of rivers as realizations of an ensemble. Section 
3 presents a method for estimating the internal self-affine frac- 
tal exponents of an object of any geometry. More details of this 
method are given by Sapozhnikov and Foufoula-Georgiou 
[1995]. In section 4 the results of the application of this method 
to three braided rivers are presented. In section 5 we study 
robustness of the proposed method in estimating the fractal 
exponents of natural rivers. In section 6, scaling in the sizes of 
islands in the three studied rivers is analyzed and compared 
with the results obtained in section 4. Concluding remarks are 
given in section 7. 

2. Internal Versus External Self-Affine 

Scaling 
Each part of a self-affine object is an image of the whole 

object (either strictly or in a statistical sense) scaled differently 
in different directions. In other words, if we take a part of the 
object within a X x Y rectangle and then change X and Y in 
a certain different way, we will get the same pattern. This finds 
its mathematical expression in the relationship 

M(X, Y) • X '/vx • rl/vy (1) 

where M(X, Y) is the mass of the object within the rectangle 
of size X x Y and v x and Vy are the fractal exponents. In the 
case of self-similarity this equation takes the form 

M(R ) • R z>, (2) 

where R = X = Y is the length of the square side. 
While there are several methods for determination of the 

fractal dimension of self-similar objects, methods for determi- 
nation of the fractal exponents characterizing self-affine ob- 
jects seem to be much less developed. The fractal dimension of 
a self-similar object can be easily estimated from a pattern of 
the object. However, in a general case, one cannot find the 
fractal exponents v x and Vy from a pattern of a self-affine 
object. The problem is that the mass M scales only if the sides 
of the rectangle change in a certain different way, and in 
contrast to the self-similar case we do not know a priori how to 
change X and Y because we do not know the ratio Vx/Vy. We 
can only state that the mass within the rectangle scales pro- 
vided X 

The methods available for studying a general self-affine ob- 
ject do not analyze the geometry of the object but rather follow 
how the mass M o of the total object changes as the sides X o 
and Yo of the object change. If one has available either an 
ensemble of the same type of objects of different size or pat- 
terns of the object at different stages of growth, the ensemble 
or the evolution of the object can be characterized by expo- 
nents ax and ay using the relationship 

Mo(Xo, Yo) • •r•/•x• v'l/ay -0 (3) 

We will call a x and ay external exponents, in contrast to the 
internal exponents •'x and uy that characterize the geometry of 
the object. Since methods for extracting the internal exponents 
from a pattern of the object are not available in a general case, 
external exponents instead of internal ones have often been 
used to describe the geometry of the object [e.g., Kondoh et al., 
1987; Meakin et al., 1991]. However, this approach supposes 
that internal and external exponents are equivalent. Sapozhni- 
kov and Foufoula-Georgiou [1995] demonstrated that this sup- 
position is, generally speaking, wrong. To get an idea of the 
difference between internal and external exponents, let us con- 
sider here two examples. 

1. Let us consider a trajectory of a biased random walk, 
such that every jump has a projection on the x axis equal to 1 
and a projection on the y axis equal to 1 or -1 with equal 
probability (e.g., one can think of this trajectory as a simplified 
representation of a river). This trajectory is known to be a 
self-affine fractal [e.g., Mandelbrot, 1982, p. 350]. Its geometry 
is characterized by fractal exponents •'x - 1 (which implies 
that the average projection X of a part of the trajectory on the 
x axis depends linearly on its length, measured along the tra- 
jectory, or on its "mass" M) and •,y = 1/2 (implying that the 
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(o) 

(b) 

x 
Figure 1. Two types of ensembles of biased random walk 
trajectories ("rivers") having the same internal fractal expo- 
nents v x = 1, Vy = 1/2 but different external exponents ax 
and ay (two elements of each ensemble are shown). (a) The 
step length of the walk is preserved within the ensemble, which 
gives ax = 1, ay = 1/2, and (b) the number of steps is 
preserved within the ensemble, which gives a x = 1, ay - 1. 

projection Y of a part of the trajectory on the y axis is propor- 
tional to the square root of the length of that part of the 
trajectory). Suppose now that one has an ensemble of biased 
random walk trajectories and wants to find its external fractal 
exponents a x and ay, i.e., find the dependence of the projec- 
tions of the whole trajectory, X 0 and Y0, on the length of the 
trajectory Mo. It turns out that the values of the exponents ax 
and ay depend on the way the ensemble is constructed. If the 
length of the jump is preserved within the ensemble, as shown 
in Figure la (e.g., one can think of rivers having similar hy- 
drologic characteristics and therefore the same sinuosity), then 
a shorter trajectory is statistically equivalent to a part of same 
length of the longer trajectory; that is, it has the same projec- 
tion. Therefore the external exponents of the ensemble ax and 
ay are equal to the internal exponents v x and Vy of each 
trajectory. However, in another ensemble, shown in Figure lb, 
where the trajectories have the same number of jumps but each 
trajectory has a different jump length (e.g., one can think of 
rivers having different widths and therefore different charac- 
teristic lengths of persistence of the direction of their flows), 
both projections X 0 and Y0 of trajectories are obviously pro- 
portional to the length of the trajectories, i.e., ax = ay = 1, 
different from the internal exponents v x = i and Vy = 1/2. 

2. In some cases the ensemble of objects is characterized 
by the external exponents, but the internal exponents of the 
objects are not defined uniquely at all. As the simplest case, let 
us consider here compact objects. For example, Scheidegger 
river networks obtained by computer simulation are shown to 
be compact objects, and their ensemble is characterized by the 
values a x = 2/3, ay = 1/3 [Kondoh et al., 1987, p. 1913; 
Meakin et al., 1991, p. 409]. It is implied (e.g., see discussion 
after equation (4) ofKondoh et al. [1987]) that these exponents 
characterize the fractal geometry of the networks. However, 
the compactness of a two-dimensional object means that the 
object is just a piece of a plane. This, in turn, means that in 
contrast to the external components ax and ay, which charac- 
terize the ensemble of the networks, the internal exponents 
characterizing their geometry are not defined uniquely. For 

instance, it is quite obvious that a piece of a plane can be 
treated as a self-similar object as well and can be characterized 
by v x = Vy = 1/D = 1/2. The nonuniqueness of the fractal 
exponents v x and Vy can arise for noncompact objects too. 
Sapozhnikov and Foufoula-Georgiou [1995] showed that a class 
of noncompact fractal objects exists for which the internal 
exponents v x and Vy are still not defined uniquely and derived 
general conditions under which an object falls into this class. 

The above examples demonstrate that the external expo- 
nents a x and ay not only require a set of patterns for their 
estimation but, generally speaking,. are something different 
from the internal exponents v x and Vy. Therefore Sapozhnikov 
and Foufoula-Georgiou [1995] elaborated a method that en- 
abled extraction of the internal fractal exponents from a pat- 
tern of an object of any topology. This method is briefly pre- 
sented in the next section. The reader is referred to 

Sapozhnikov and Foufoula-Georgiou [1995] for more details 
and example applications. 

3. A Logarithmic Correlation Integral 
Method for Studying the Geometry 
of Self-Affine Objects 

3.1. Estimation of the Fractal Exponents Vx and Vy 
Let us write the scaling equation (equation (3)) describing a 

self-affine object in the form 

(X2/Xl) 1/vx = (Y21Y1)1/vy = (M21M1). (4) 

where M• = M(X•, Y•) is the mass of the object within a 
rectangle of size X• x Y• and M2 is similarly defined. Intro- 
ducing x = log X, y = log Y, and z = log M, we rewrite the 
above equation as 

x2-xl Y2-Yl 
- (5) 

Vx Vy 

or 

(dx/vx) = (dy/vy) = dz. (6) 

The function M(X, Y) is known as the correlation integral [see 
Grassberger and Procaccia, 1982, p. 191]. Here by analogy we 
call the function z(x, y) logarithmic correlation integral of the 
object under study. 

Notice from (5) and (6) that z(x, y) is a cylindric surface i.e., 
a surface that has constant derivative in a specific direction 
(the direction of the cylinder generating line). The second 
equality in (6) is true only if the first one is true. Comparing (6) 
with the generic equation of the differential of the z(x, y) 
function, that is, (Oz/Ox) dx + (Oz/Oy) dy = dz, we obtain 

Vx(OZ/oX) + v(Oz/Oy)= (7) 

The last relationship provides a method for estimating the 
fractal exponents v x and vy of a self-affine object. Indeed, 
having estimated the logarithmic correlation integral z(x, y) 
from a pattern of the object (by direct calculation of the mass 
M(X, Y) within rectangles of sizes X x Y), one can calculate 
the derivatives Oz(x, y)/Ox and Oz(x, y)/Oy and use them to 
find the values of v x and vy that satisfy (7). Ideally, two points 
(x, y) giving different values of the derivatives Oz(x, y)/Ox 
and O z(x, y)/Oy are sufficient, but for a good estimation it is 
preferable to compute the derivatives at all (x, y) points and 
follow a least squares estimation technique. The effectiveness 
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of this method in estimating the self-affine fractal exponents 
from single patterns is demonstrated by Sapozhnikov and Fou- 
foula-Georgiou [1995] using simulated fractal objects. 

3.2. Quantifying the Other Correlation Characteristics 
of Self-Alfine Objects 

The solution of (7), as well as of (6), is 

z(x, y) = • + • + o• 2Vx ' (8) 

where •o(0) is an arbitrary function of 0 = [(x/2Vx) - (y/ 

Relationship (8) shows that the fractal exponents Vx and Vy 
contain only part of the information on the correlation prop- 
erties of a fractal object. The rest of the information is con- 
tained in the function •o(0). Indeed, Sapozhnikov and Foufoula- 
Georgiou [1995, Figure 4] presented an example of fractal 
objects having the same values of v x and Vy and different 
correlation properties because their •o(0) functions are differ- 
ent. It can be seen from (5) and (8) that while the fractal 
exponents v x and vy determine the direction of the generating 
line of the cylindric surface z(x, y), the function •o(0) provides 
the additional information needed to describe the shape of any 
cross section of the cylindric surface. Thus together Vx, Vy, and 
•o(0) completely determine the shape of the logarithmic cor- 
relation integral surface z(x, y). 

By choosing the coordinate system (•, •, 0, such that the (•, 
•) plane is perpendicular to the direction of the cylinder gen- 
erating line, the surface z(x, y) can be expressed as a function 
of one variable, •(•), representing the curve of intersection of 
the cylinder with the (•, •) plane. Sapozhnikov and Foufoula- 
Georgiou [1995] showed that in this new coordinate system, the 
equation for the logarithmic correlation integral takes the form 

q(½) 2VxVyx/1 + Vx 2+ vy 2 

( + + •o • (9) 

The function •(•) is exactly what one sees viewing the z(x, y) 
surface from the direction of the generating line. Since the 
(•, •) plane is orthogonal to the direction of the generating 
line, it is preferable to use •(•) instead of •o(0) to describe the 
correlation properties of an object, since these properties are 
now not only complementary to the scaling exponents Vx and 
Vy (determining the direction of the generating line of the 
cylinder) but also independent of them. 

It can be shown that the function •o(0) has two linear as- 
ymptotes at positive and negative infinities [see Sapozhnikov 
and Foufoula-Georgiou, 1995, p. 563]. This gives an important 
feature of the z(x, y) surface, namely that, if large enough, it 
can be considered as composed of two asymptotic planes (see 
(14) and (15) below) and an intermediate zone between them. 
Also, it implies that •'(•) has two asymptotic values, •'(+•) 
and •'(-•), which can be used to quantify the correlation 
characteristics of a self-affine object, other than the fractal 
exponents Vx and Vy. In particular, we introduce two parame- 
ters characterizing the correlation properties of self-affine ob- 
jects: the "nonscaling anisotropy parameter" • defined as 

a -= [n' (-=) + n'(+=)]/2 (•o) 

and the "curvature parameter" K defined as 

-- [n'(-=) - n'(+=)]/2 (11) 

These two parameters are important characteristics of a 
self-affine object and complement the information contained in 
the fractal exponents v x and Vy. The value of • characterizes 
the anisotropy of the cross section of the function z(x, y). It is 
equal to zero when the cross section is isotropic and describes 
a different type of anisotropy of a self-affine object than the 
ratio of the scaling exponents Vx/%. In fact, Sapozhnikov and 
Foufoula-Georgiou [1995] showed that even a self-similar ob- 
ject (Vx = Vy) may have anisotropic correlation characteristics 
which are indicated by • 4= 0. To distinguish between these two 
types of anisotropy, we coined the terms "scaling anisotropy 
parameter" for Vx/Vy and "nonscaling anisotropy parameter" 
for & The parameter K is a measure of curvature of z(x, y). 
Sapozhnikov and Foufoula-Georgiou [1995] showed that if it is 
equal to zero, that is, the cylindric surface z(x, y) degenerates 
into a plane, the exponents Vx and Vy of the fractal object are 
not defined uniquely. 

3.3. Connection Between the Exponents Vx and Vy 
and Other Characteristics of Fractal Objects 

Let Dcx and Dcy be the fractal dimensions of cross sections 
of the object in the directions of the x and y axes and Dpx 2 and 
Dpy2 be the correlation fractal dimensions [see Grassberger and 
Procaccia, 1982] of the projections of the object on the x and 
y axes, respectively. Let us remind the reader that the gener- 
alized fractal dimensions D q are 

log (•] p,q) 
Dq = lim q 4:1 (12) •0 (q- 1) log e 

D1 = lim • Pi log Pi •--,0 log e ' (13) 
wherepi is the fraction of the measure in a box of size e (in our 
case it is the fraction of the object that projects into an interval 
of size e). D O is the fractal dimension of the support of the 
measure, and D 1 and D 2 are called information and correla- 
tion dimensions, respectively. Thus Dpx 2 and Dpy 2 are com- 
puted using (12) with q - 2 and with the p i obtained using the 
projections of the object on the x and y axes. 

Sapozhnikov and Foufoula-Georgiou [1995] showed the 
equations for the two asymptotic plane parts of the surface 
z(x, y) to be 

z_(x, y) = Dpx2X + DcyY (14) 

z+(x, y) = Dcxx + Dpy2Y (15) 

These relationships make it possible to demonstrate clearly 
what one gets when the fractal dimension of a self-affine object 
is determined: One finds how the mass within a X x Y rect- 

angle changes as its sides change proportionally to each other. 
In other words, one just finds the slope of the section of the 
plane z(x, y) by the plane y = x + a, where constant a = 
log (Y/X). If v x > Vy, then for positive values of a (Y > X), 
the plane y = x + a will intersect only the z_ (x, y) plane, 
while for negative values of a, both z_ (x, y) and z + (x, y) 
planes will be intersected. That creates two slopes, correspond- 
ing to what is called global and local fractal dimensions of a 
self-affine object DG and DL, correspondingly [Mandelbrot, 
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1986]. Putting y = x + a in (14) and (15), we obtain that for 
vx>Vy 

Do = Dpx2 + Dcy (16) 

DL = Dpy2 + Dcx (17) 

It is easy to see from (14), (15), and (7) that Mandelbrot's 
[1986] expressions 

Dc = (Vy- Vx + 1)/•y, (18) 

DL = (Vx - Vy + 1)/Vx (19) 

can be obtained as a special case (for Dpx2 = Dpy2 = 1) of the 
more general expressions derived here. 

Another set of useful relations, obtained from (7), (14), and 
(15), is 

vxDcx + vyDpy2 = 1 (20) 

vxD px2 + vyD cy = 1. (21) 

For example, these relationships can be used for estimation of 
v• and vy, given D c•, D cy, Dp•2, and Dpy2. Notice that for a 
self-similar object, (20) and (21) give 

Dcx + Dpy2 = Dcy + Dpx2 = D (22) 

where D is the fractal dimension of the object. 

4. Study of Spatial Scaling in Three 
Natural Rivers 

As mentioned in the introduction, braided rivers manifest 
salient features of their spatial structure at scales below their 
width, where branching comes into play. Therefore we focused 
in this study on scales smaller than the braid plain width. The 
patterns of three rivers were analyzed: the Brahmaputra River 
(Bangladesh), the Aichilik River (Alaska), and the Hulahula 
River (Alaska). We used the traced air and satellite photo 
images of these rivers and tried to capture anabranches up to 
the smallest possible width. The tracing was done by a geologist 
experienced in morphology of braided rivers and their field 
observation (A. Brad Murray, Department of Geology and 
Geophysics, University of Minnesota). In the tracing, only ac- 
tive channels, that is, channels which are connected to the 
drainage system, were included. The traced photo images were 
then digitized to produce images consisting of black and white 
pixels indicating the presence or absence of active channels. 
The pixel size for each river was chosen such that the resolu- 
tion of the digitized image was at least as good as the resolu- 
tion of the traced photo, so that no details of the tracing were 
lost due to digitization. 

The Brahmaputra is one of the world's largest rivers. It starts 
at Tibet and joins the Ganges near the Bay of Bengal. It is a 
very dynamic sand-bed river, with intensive bank erosion, mo- 
bile sand bars, less mobile islands, and frequent shifting of 
anabranches and switching flows between anabranches. The 
braid plain width of the Brahmaputra River reaches 20 km. 
The mean discharge is around 12,200 m3/s. The hydrograph of 
the Brahmaputra River shows high annual variations, with 
lower flows in winter and high flows in summer (causing severe 
floods). Its highly dynamic nature causes a serious threat to the 
surrounding cities and villages and presents considerable prob- 
lems for designers of bridges, roads, and other adjacent con- 
structions. The river carries about 500 million tons of sediment 

annually, mostly silt and sand. Figure 2a shows the digitized 
image of the reach of the Brahmaputra River between Teesta 
and Ganges confluences, in winter stage. 

The Aichilik and Hulahula Rivers are located at the North 

Slope of Alaska. The Alchilik is a gravel-bed river, with dom- 
inantly gravel to cobble-sized load. The gravel braid plain 
width is about 0.5 km. The river is fed largely by snow and 
permafrost melt. The Hulahula is a gravel-bed river, similar to 
the Alchilik except that it is a little larger (its braid plain is 
about 0.7 km) and largely glacially fed. The digitized photo 
images of the studied sections of the Alchilik and Hulahula 
Rivers are shown in Figures 2b and 2c, respectively. Some 
hydrologic and geomorphologic characteristics of the three 
rivers are summarized in Table 1. It can be seen from Table 1 

that the rivers under study are characterized by large differ- 
ences in their scales, slopes, and type of bed material. The 
braiding index (BI) for each river was computed as the average 
number of channels in cross sections of the photo image of the 
river (see Bristow and Best [1993] for several definitions of BI). 
Note that the BI is a resolution dependent quantity and there- 
fore the BI values reported in Table 1, although properly 
reflecting the geometry of the analyzed images, are not directly 
comparable to each other due to the different resolution of the 
analyzed images. For example, in the case of the Brahmaputra 
River the computed BI value is lower than its actual value since 
the sizes of the smallest existing channels are below the reso- 
lution of the photo used in this analysis. 

First, a traditional fractal analysis was applied. Square boxes 
of size R were positioned around every black pixel (i.e., every 
pixel indicating the presence of active channels), and the av- 
erage number of black pixels within squares of size R was 
computed. The "mass" M(R) was then calculated by multiply- 
ing this average number of pixels by the area of a pixel. Figures 
3a, 3b, and 3c present in log-log scale the dependence of M on 
R for the Brahmaputra, Aichilik, and Hulahula Rivers, respec- 
tively. For the Brahmaputra River the dependence follows a 
straight line up to the scale of 15 km, and the slope of the line 
is. 1.50. For the Aichilik and Hulahu!a Rivers, scaling is ob- 
served up to scales of 0.5 km and 0.7 km, respectively, and the 
slopes of the best fit straight lines are 1.58 and 1.54, respec- 
tively. One can see that for all three rivers, the upper scale of 
linearity of these lines coincides with the rivers' width shown in 
Table 1. The estimated values of the fractal dimensions agree 
with the results of Nikora et al. [1995], who found fractal 
dimension D = 1.5-1.7 for several New Zealand braided 

rivers using a box-counting method (number of cells containing 
the pattern as a function of the grid cell size). However, the 
linear (in log-log scale) M(R) dependence itself does not show 
whether the object is self-similar or self-attine. Indeed, self- 
attine objects can still show linear log-log dependence of 
M(R). As demonstrated in section 3 (see (14) and (15) and 
discussion afterward) the M(R) dependence may have either 
two slopes at different scales (Dz• at smaller scale and DG at 
bigger scale) or one slope DG. For example, in the case of the 
biased random walk considered in section 2, if the steps in the 
X direction have the same length as the steps in the Y direc- 
tion, one obtains just one trivial fractal dimension D• = 1 
which obviously does not reflect fully the scaling properties of 
this self-affme object expressed by the fractal exponents • = 1, 
Vy = 1/2. 

To find the fractal exponents of the braided rivers under 
investigation, we first estimated their logarithmic correlation 
integrals z(x, y) from the patterns of the rivers. The x axis was 
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(a) BRAI4MAPUTRA 

0 X 200 km 

(b) AICIIILIK 

Y 

0.7 km 

0 X 6.4 km 

2.6 km 

(c) I4ULAHULA 

X 20 kln 

Figure 2. The digitized images of (a) the Brahmaputra River (Bangladesh), (b) the Aichilik River (Alaska), 
and (c) the Hulahula River (Alaska). 

oriented along the line connecting the beginning and the end 
of the analyzed section of each river. The z(x, y) surface for 
the Brahmaputra River is presented in Figure 4; the surfaces 
for the other two rivers look similar and are not shown here. 

From the correlation integral surfaces z(x, y) we calculated 
numerically the derivatives 0 z (x, y)/0x and 0z(x, y)/0y and 
plotted the dependence Oz(x, y)/Oy versus Oz(x, y)/Ox. The 
dependence for the Brahmaputra River is presented in Figure 
5a. According to (7), in the self-affinity region the partial de- 
rivatives should show linear dependence. However, one can 
see that while the upper part of the plot in Figure 5a shows 
linearity, the dependence breaks in the lower part of the plot. 
It is natural to expect that there is a scaling break at a certain 
scale, namely for Y values bigger than the average width of the 
river (approximately 15 km). This scaling break is also re- 

flected in Figure 3a, showing deviation from the straight line 
for scales greater than 15 km. To check if the points in the 
lower part of the plot come from this range of scales, we cut off 
the part of the z(x, y) surface corresponding to the Y values 
higher than 15 km (see Figure 6 for the truncated z(x, y) 
surface of the Brahmaputra River). Figure 7a displays the 
values of the partial derivatives coming from the part of the 
correlation integral shown in Figure 6. The points show a good 
linear dependence, indicating that this part of the z(x, y) 
surface is cylindric; that is, the Brahmaputra River exhibits 
spatial scaling within the examined scales of Y (0.4-15 km: the 
width of the smallest included channels to braid plain width). 
Using (7) we calculated the values of the fractal exponents for 
the Brahmaputra River. They are Vx = 0.74 and Vy = 0.51. 
Similar analysis applied to the Aichilik and Hulahu!a Rivers 

Table 1. Hydrologic and Geomorphologic Characteristics of the Studied Rivers 

Brahmaputra Aichilik Hulahula 
, 

Reach width, km 15 0.5 0.7 
Reach length, km 200 6.4 20 
Mean channel depth, m 5 1 1 
Slope 0.000077 0.001 0.0007 
Braiding index* 3.8 6.8 5.2 
Predominant type of the bed material sand gravel gravel 

*The braiding index (BI) for each river was computed as the average nu, mber of channels in cross 
sections of the photo image of the river (see section 4 for more discussion). 
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Figure 3. Spatial scaling in the (a) Brahmaputra, (b) Aichi- 
lik, and (c) Hulahula Rivers indicated by straight-line log-log 
dependence of the "mass" M on the size of the square box R 
(see text for the definition). The slopes of the straight lines give 
the values of the fractal dimensions D. 

Figure 4. Logarithmic correlation integral surface z(x,y) of 
the Brahmaputra River. 

(Figures 5b, 5c, 7b, and 7c) gave fractal exponents v,, = 0.72, 
Vy = 0.51 and v,, = 0.74, vy = 0.52, respectively. These 
results imply that all three rivers are self-arline objects showing 
a rather high degree of anisotropy: vx/.vy = 1.4•5 for the 
Brahmaputra, vx/vy = 1.41 for the Aichilik, and v•/vy = 1.42 
for the Hulahula. The values of the fractal exponents v,, and vy 
agree with the results of the traditional fractal analysis shown 
in Figures 3a, 3b, and 3c ("mass" within a box as a function of 
the box size) which is expected to show a slope equal to the 
value of the global fractal dimension Do for a self-affine ob- 
ject. Indeed, for the estimated values of v,, and vy the global 
fractal dimensions according to Mandelbrot [1986] (see also 
(18) here) are found to be Do = 1.51 for the Brahmaputra, 
D o = 1.55 for the Aichilik, andD o = 1.50 for the Hulahula. 
These values are very close to the corresponding values of D 
obtained previously from the slopes of M(R) log-log linear 
dependence (1.50, 1.58, and 1.54, respectively). The results of 
the analysis are summarized in Table 2. 

Since the function z(x, y) of a fraCtal object is a cyIindric 
surface it can be viewed in the direction of the cylinder gen- 
erating line (see (5) and (6)). In other words, it is possible to 
adjust the rotation angle •0 about the z axis and the tile angle 
• above the (x, y) plane from which the surface is viewed to 
see only the edge of the surface (which is the rt({•) function of 
(9)). It is not difficult to show that the following relationships 
connecting the angles and the exponents hold 

tan •p = Vx/Vy (23) 

sin q• = (1 + • + v•) -v•'. (24) 

Figure 8 shows the z(x, y) surface O f the Brahmaputra River 
viewed from the angles q0 = 36.6 ø and •t = 47.7 ø determined by 
(23) and (24). It can be seen that z(x, y) really represents a 
cylindric surface and that the angles q0 and •t correspond to 
relationships (23) and (24). What one sees in Figure 8 is a cross 
section of the cylindric surface z(x, y) by a plane perpendic- 
ular to the cylinder generating line; that is, one sees the 
function (9). By the same procedure we rotated the z(x, y) 
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surfaces of the Aichilik and Hulahula Rivers at the appropriate 
½ and • angles and found that they look similar to the rotated 
z(x, y) surface of the Brahmaputra River sh9wn in Figure 8. 

As we already stated, the z(x, y) surface of a self-affine 
object asymptotically approaches two planes (one when x/2v x 
- y/2•,y is a large positive value and the other when it is a 
large negative value). Therefore, if the z(x, y) surface is large 
enough to reach its asymptotic behavior, one can think of it as 
being composed of two planes and an intermediate zone be- 
tween them. The analysis of the z(x, y) functions of all three 
rivers shows that they do not reach their asymptotic behavior 
within the studied region; that is, we deal only with the inter- 
mediate zone in this case. This did not allow us to estimate 

reliably the values of D cx, D cy, Dpx2, Dpy2, and accordingly, 
the anisotropy parameter/• and curvature parameter K. Rough 
estimates show that they are both of the order of 0.1, i.e., small 
values, which implies that the z(x, y) surfaces are not inclined 
significantly to the x or y axes (indicating that there is no 
significant nonscaling anisotropy in the patterns of the ana- 
lyzed rivers) and are not very curved. 

0.8 

0.6 

(b) 

,0 i 
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5. Robustness of Scaling Exponent Estimates 
In studying a natural river for self-affine scaling with the 

proposed method, there are three sources of subjectivity (and 
therefore uncertainty) which can potentially affect the ob- 
tained estimates of fractal exponents. The first source of sub- 
jectivity relates to the procedure of tracing the river image 
from an aerial photograph, the second relates to the selection 
of the orientation of the coordinate axes, and the third relates 
to the choice of the portion of the z(x, y) surface used for 
estimation of the fractal exponents •'x and •5,' The sensitivity of 
the obtained estimates to these three factors gives an indica- 
tion of the robustness of the proposed method in estimating 
the self-affme structure of a natural braided river. 

In tracing the river image from an aerial photograph one 
must decide whether or not to include small channels that are 

on the threshold of vision. To test the sensitivity of the esti- 

1.0 - 

0.8 

(o) 

Oz/Ox 
Figure 5. Dependence Oz(x, y)/Oy versus Oz(x, y)/Ox for 
the (a) Brahmaputra, (b) Aichilik, and (c) Hulahula Rivers. 
The partial derivatives are estimated from the entire correla- 
tion integral surfaces z (x, y) of the rivers (see Figure 4 for the 
z(x, y) surface of the Brahmaputra). 

Figure 6. Truncated logarithmic correlation integral surface 
z (x, y) of the Brahmaputra River. 
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Table 2. Fractal Characteristics of the Studied Rivers 

River Vx Vy Vx/Vy DG, (18) D, (2) 

Brahmaputra 0.74 0.51 1.45 1.51 1.50 
Aichilik 0.72 0.51 1.41 1.55 1.58 
Hulahula 0.74 0.52 1.42 1.50 1.54 

mated values of fractal exponents Ux and Uy to the tracing 
procedure, we analyzed two tracings of the same aerial photo- 
graph of the Aichilik River. The first tracing, for which the 
results were reported in the previous section, included all vis- 
ible channels, while the second tracing did not include the 
smallest, and therefore questionable, channels. The estimated 
values of the fractal exponents for the second tracing were 
Ux = 0.78 and Uy = 0.55, not very different from the corre- 
sponding exponents of the tracing which included all small 
channels (u x - 0.72 and Uy = 0.51). The anisotropy param- 
eter Ux/Uy = 1.42 was practically the same as in the first 
tracing (Ux/Uy = 1.41). Quite naturally, for this tracing, be- 
cause of absence of small details, the scaling breaks at small 
scales, so that up to the width of the smallest included channels 
(25 m) the M(R) dependence has a slope close to 2. For the 
same reason the z(x, y) surface of this tracing also deviated 
from a cylindric surface up to the scales of 15 m. This obser- 
vation suggests that the self-affinity of braided rivers, observed 
up to the rivers' width, starts at the scales of the width of the 
smallest channels. 

In our analysis the coordinate system was oriented such that 
the x axis is directed along the line connecting the endpoints of 
the analyzed section of the river. However, because this coor- 
dinate system depends on the analyzed segment of the river, 
the sensitivity of the obtained estimates to the orientation of 
the coordinates system was tested. For that we rotated the 
coordinate system in the Brahmaputra River by 8 ø counter- 
clockwise. This value corresponds to deviation of the x axis 
from one of the endpoints of the analyzed section by approx- 
imately two widths of the river. This rotation changed the 

0.9 

0.6 0.7 0.8 0.9 1.0 

Oz/Ox 
Figure 7. Estimation of the fractal exponents u x and uy for 
the (a) Brahmaputra, (b) Aichilik, and (c) Hulahula Rivers 
from the truncated parts of the z(x, y) surfaces (see Figures 6 
and 8). Advantage is taken of (7). The estimated values are 
Ux = 0.74, Uy = 0.51 for Figure 7a, Ux = 0.72, Uy = 0.51 
for Figure 7b, and u x = 0.74, Uy = 0.52 for Figure 7c. 

y. 

% 

Figure 8. Truncated logarithmic correlation integral surface 
z(x, y) of the Brahmaputra River viewed from the direction of 
the cylinder generating line (see (23) and (24)). 
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Figure 9. Scaling in the projections of the islands on the x 
and y axes. The slopes are different from 1, indicating scaling 
anisotropy. The estimated values of the slopes are (a) 1.2 for 
the Brahmaputra, (b) 1.3 for the Aichilik, and (c) 1.2 for the 
Hulahula. 

Table 3. Average Fractal Characteristics of Single-Channel 
Rivers, River Networks, and Braided Rivers 

Objects Vx Vy Vx/Vy Do, (18) 

Single-channel rivers* ---1 ---0.5 
River networks? 0.62 0.47 1.32 1.83 
Braided rivers:• 0.73 0.51 1.43 1.52 

*Reaches of the Dniester and Pruth Rivers in Moldova [Nikora et 
al., 1993]. 

?Sixty river networks [Nikora and Sapozhnikov, 1993; Nikora, 1994]. 
:•This study. 

values of the fractal exponents only slightly from v x = 0.74, 
vy = 0.51 to v x = 0.73, vy = 0.54. Naturally, since we 
artificially deviated from the real direction of the river, the 
anisotropy in spatial scaling decreased somewhat (from 
Vx/Vy = 1.45 for the initial picture to Vx/Vy = 1.35 for the 
rotated one). 

Another element of subjectivity comes from choosing the 
portion of the logarithmic correlation integral surface z(x, y) 
for estimating the self-affine characteristics of the object. This 
problem is similar to that of choosing the portion of the log-log 
M(R) plot for straight-line fit in a traditional fractal analysis 
(see Figures 3a, 3b, and 3c). The choice of the portion of the 
z(x, y) surface affects the estimated values of the fractal ex- 
ponents. We tested our method by selecting different portions 
of the z(x, y) surface for analysis (see Figures 6 and 8) and 
then calculating the fractal exponents for each. The test gave 
the following small ranges of the fractal exponents: for the 
Brahmaputra River, Vx = 0.73-0.75 and vy = 0.51-0.55; 
for the Aichilik River, v x = 0.71-0.74 and vy = 0.50-0.52; for the 
Hulahula River, Vx = 0.71-0.75 and Vy = 0.50-0.54. 

The results of these tests indicate that our method for ana- 

lyzing and estimating scaling in self-affine natural objects is 
reasonably robust. However, one cannot expect it to be as 
robust as traditional fractal analysis because it reveals subtler 
features of spatial scaling of the objects. 

6. Scaling in the Sizes of Islands 
As another indicator of scaling anisotropy we also studied 

sizes of islands (here we did not distinguish between islands 
and exposed bars surrounded by water). The log-log plots of 
the projections of the islands on the x and y axes, AX and AY, 
respectively, displayed in Figures 9a, 9b, and 9c, reveal scaling. 
The slopes are different from 1, indicating anisotropy in scaling 
of the islands in X and Y directions. The slopes of these plots 
are 1.2 for the Brahmaputra, 1.3 for the Aichilik, and 1.2 for 
the Hulahula. They are lower than the obtained values of the 
scaling anisotropy parameters for the rivers, Vx/vy, which were 
equal to 1.45, 1.41, and 1.42, respectively. In our opinion this 
difference implies that the scaling anisotropy of a braided river 
is only partially reflected by the anisotropy of islands; part of 
the anisotropy in a braided river stems from the anisotropy in 
tortuosity of the river (same as anisotropy in tortuosity of 
single-channel rivers causing their scaling anisotropy). These 
two factors exist on scales which overlap and therefore cannot 
be separated. The relations between scaling anisotropy in size 
distribution of islands and fractal structure of a braided river 

need further study, which is outside the scope of the present 
article. 
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7. Concluding Remarks 
Within the scales of their width the three studied rivers (the 

Brahmaputra in Bangladesh and the Aichilik and Hulahula in 
Alaska) are self-affine, with fractal exponents vx = 0.72-0.74 
and vy = 0.51-0.52. Table 3 enables one to compare these 
fractal exponents with the fractal exponents of other self-affine 
hydrologic objects. In Table 3 the average fractal characteris- 
tics of the analyzed braided rivers are listed together with the 
average fractal characteristics (in the self-affinity regions) of 
single-channel rivers Dniester and Pruth [Nikora et al., 1993] 
and of 60 river networks [Nikora and Sapozhnikov, 1993; Ni- 
kora, 1994]. Comparison of the fractal characteristics of the 
hydrologic objects summarized in Table 3 suggests a conclu- 
sion that braided rivers form a class of fractal objects which lies 
between the classes of single-channel rivers and river networks. 
Indeed, the scaling anisotropy of braided rivers (characterized 
by the vx/vy value) is lower than that of single-channel rivers 
but higher than that of river networks; the global fractal di- 
mension D G shows that braided rivers fill the surface more 
densely than single-channel rivers but not as densely as river 
networks. It should be noticed that in contrast to the single- 
channel rivers, no self-similarity range of scales was revealed in 
the studied braided rivers. In our opinion the absence of the 
self-similarity region in braided rivers is related to the lower 
sinuosity of their channels [see Friend and Sinha, 1993, p. 110]. 

The fact that despite big difference in scales, slopes, and 
types of bed material (see Table 1) the analyzed braided rivers 
show similar spatial scaling is worthy of notice. It might indi- 
cate that the spatial structure of braided rivers is determined 
by universal physical mechanisms. However, more braided riv- 
ers need to be studied to validate this hypothesis. 

The study of the fractal geometry of braided rivers and 
scaling in their hydrologic characteristics can eventually help to 
relate their geometry to the hydrologic characteristics and dy- 
namics of the rivers, as it was partially done for individual 
streams and river networks. This is a challenging area of re- 
search which we are currently pursuing with the help of exper- 
imentally produced braided rivers in our laboratory. 
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