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Abstract. Wavelet transforms originated in geophysics 
in the early 1980s for the analysis of seismic signals. 
Since then, significant mathematical advances in wavelet 
theory have enabled a suite of applications in diverse 
fields. In geophysics the power of wavelets for analysis of 
nonstationary processes that contain multiscale features, 
detection of singularities, analysis of transient phenom- 
ena, fractal and multifractal processes, and signal com- 
pression is now being exploited for the study of several 
processes including space-time precipitation, remotely 

sensed hydrologic fluxes, atmospheric turbulence, can- 
opy cover, land surface topography, seafloor bathymetry, 
and ocean wind waves. It is anticipated that in the near 
future, significant further advances in understanding and 
modeling geophysical processes will result from the use 
of wavelet analysis. In this paper we review the basic 
properties of wavelets that make them such an attractive 
and powerful tool for geophysical applications. We dis- 
cuss continuous, discrete, orthogonal wavelets and wavelet 
packets and present applications to geophysical processes. 
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1. INTRODUCTION 

Wavelet transforms are relatively recent develop- 
ments that have fascinated the scientific, engineering, 

and mathematics community with their versatile appli- 
cability. The following editorial quote from Daubechies 
et al. [1992, p. 529] gives us insight into the extent to 
which wavelets have become pervasive in various scien- 
tific and engineering research: 

Wavelet transform has provided not only a wealth of new 
mathematical results, but also a common language and rallying 
call for researchers in a remarkably wide variety of fields: 
mathematicians working in harmonic analysis because of the 
special properties of wavelet bases; mathematical physicists 
because of the implications for time-frequency or phase-space 
analysis and relationships to concepts of renormalization; dig- 
ital signal processors because of connections with multirate 
filtering, quadrature mirror filters, and subband coding; image 
processors because of applications in pyramidal image repre- 
sentation and compression; researchers in computer vision who 
have used "scale-space" for some time; researchers in stochastic 
processes interested in self-similar processes, 1If noise, and 
fractals; speech processors interested in efficient representa- 
tion, event extraction and mimicking the human auditory sys- 
tem. And the list goes on. 

Within geophysics, there have been numerous applica- 
tions already, such as in atmospheric turbulence for the 
detection of energy cascades and coherent structures; 
space-time rainfall for identification of scale-invariant 
symmetries; remotely sensed hydrometeorological and 
geological variables for data compression, noise reduc- 
tion, and feature extraction; ocean wind waves for de- 
tection of wave breaking characteristics and phase rela- 
tions during wind wave growth; and seafloor bathymetry 
for identification of the location of ridge-parallel fault- 
ing, among others (see Foufoula-Georgiou and Kumar 
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[1994] for a collection of papers on wavelet application 
in geophysics). The reason behind the versatility and 
attractiveness of wavelets for such diverse applications 
lies in their unique properties, and it is these properties 
that we seek to understand in this paper. 

The wavelet transform originated in geophysics in the 
early 1980s for the analysis of seismic signals [Morlet et 
al., 1982a, b] and was later formalized by Grossmattn and 
Morlet [1984] and Goupillaud et al. [1984]. Wavelets 
found a nurturing atmosphere and the initial impetus in 
the signal processing and mathematics community, and 
within it, significant theoretical and application-oriented 
developments took place during the last 10 years or so. 
Important advances were made by Meyer [1992, and 
references therein], Mallat [1989a, b], Daubechies [1988, 
1992], Chui [1992a], Wornell [1995], and Holschneider 
[1995], among others. These advances then impacted 
other areas of study and particularly applications in 
geophysics for process understanding. The developments 
and applications still continue at a very rapid pace. 

Wavelets are essentially used in two ways when study- 
ing geophysical processes or signals: (1) as an integration 
kernel for analysis to extract information about the 
process and (2) as a basis for representation or charac- 
terization of the process. Evidently, in any analysis or 
representation the choice of the kernel or basis function 
determines the nature of information that can be ex- 

tracted or represented about the process. This leads us 
to the following questions: (1) What kind of information 
can we extract using wavelets, and (2) how can we obtain a 
representation or description of a process using wavelets? 

The answer to the first question lies in the important 
property of wavelets called time-frequency localization. 
The advantage of analyzing a signal, with wavelets as the 
analyzing kernels, is that it enables one to study features 
of the signal locally with a detail matched to their scale, 
i.e., broad features on a large scale and fine features on 
small scales. This property is especially useful for signals 
that are nonstationary, have short-lived transient com- 
ponents, have features at different scales, or have singu- 
larities. Therefore wavelets are apt to time-frequency 
and time-scale analysis. 

The answer to the second question is based on seeing 
wavelets as elementary building blocks in a decomposi- 
tion or series expansion akin to the familiar Fourier 
series. Thus a representation of the process using wave- 
lets is provided by an infinite series expansion of dilated 
(or contracted) and translated versions of a mother 
wavelet, each multiplied by an appropriate coefficient. 

The decision as to which representation (expansion) 
to use for a signal, for example, wavelet expansion versus 
Fourier or spline expansion, depends on the purpose of 
the analysis. Marr [1982, p. 21] remarks that 

any particular representation makes certain information ex- 
plicit at the expense of information that is pushed into the 
background and may be quite hard to recover. This issue is 
important, because how information is represented can greatly 
affect the ease with which one can do different things with it. 

Therefore the purpose of the analysis is usually a guide 
to the selection of a particular representation. For a 
particular geophysical application one has to determine 
whether wavelet representation is needed in the first 
place and then to select the best wavelet representation 
for the problem at hand. This requires a good under- 
standing of the properties of wavelets and how each 
property could be used for extracting certain informa- 
tion from a process. 

For example, Fourier transforms provide a powerful 
tool for the analysis of stationary processes because for 
such processes the Fourier components are uncorre- 
lated. Wavelet transforms provide us with a similar at- 
tractive property for a rich class of signals, namely, 
fractal or statistically self-similar signals. For instance, 
although fractional Brownian motion is a nonstationary 
and infinitely correlated process, its wavelet coefficients 
are stationary and practically uncorrelated. 

One of the most important properties of wavelets, as 
remarked earlier, is time-frequency localization. This 
property is extensively discussed in section 2. We then 
describe the discrete and orthogonal wavelet transform 
in section 3. We discuss several example applications of 
wavelet transforms in section 4. Wavelet packets which 
offer a more flexible data-adaptive decomposition of a 
signal are discussed in section 5. Since several natural 
phenomena exhibit considerable spatial variability, two- 
dimensional wavelet transforms are important for the 
analysis of geophysical fields and are studied separately 
in section 6. Finally, we discuss some implementation 
issues related to the choice of wavelets and their impact 
on analysis and inference in section 7. We conclude with 
some recommendations for and speculations about fur- 
ther applications of wavelets for the study of geophysical 
processes. 

There are several good introductory articles on dif- 
ferent aspects of wavelets, for example, those by Mallat 
[1989a, b] and Rioul and Vetterli [1991], and the articles 
on turbulence, for example, by Farg• [1992a] and Farg• et 
al. [1996]. Also, considerable insight can be gained from 
the book reviews by Meyer [1993a] and Daubechies 
[1993]. Several works on wavelets have recently been 
published such as those by Meyer [1993b], Daubechies 
[1992], Benedetto and Frazier [1993], Chui [1992a, b], 
Ruskai et al. [1992], Farg• et al. [1993], Beylkin et al. 
[1991], and Meyer and Roques [1993]. Also, two special 
journal issues on wavelets (IEEE Transactions on Signal 
Processing, 41(12), 402 pp., 1993, and Proceedings of the 
IEEE, 84(4), 182 pp., 1996) include insightful exposi- 
tions on the history and theory of wavelets and their 
applications to a variety of mathematical, engineering, 
biomedical, and turbulence problems, as well as future 
directions in wavelet research and applications. Fou- 
foula-Georgiou and Kumar [1994] present a collection of 
papers which use wavelet transforms exclusively for the 
analysis of geophysical processes. An excellent nonmath- 
ematical overview on the various seed ideas in the devel- 

opment of wavelet transforms is given by Hubbard [1996]. 



35, 4 / REVIEWS OF GEOPHYSICS Kumar and Foufoula-Georgiou: WAVELET ANALYSIS ß 387 

2. TIME-FREQUENCY AND TIME-SCALE 
ANALYSIS 

2.1. Concept of Frequency and Scale 
The Fourier transform of a function f(t) is given by 

[Papoulis, 1962] 

•(co) = f•o•f(t)e-i'øt dt. (1) 
The original function can be recovered from the trans- 
form using 

f(t) = ffoo.•(to)e"øt dto. (2) 
The parameter to is the angular frequency of the periodic 
function e -itøt, and therefore •(to) is said to represent 
the frequency content of the functionf(t). In the form of 
(2), f(t) is understood to be represented as the "weight- 
ed sum" of the simple waveforms e itøt, where the weight 
at a particular frequency to is given by •(to). 

Frequency is a physical attribute of a process or 
signal. For example, the propagation characteristics of a 
medium depend on the frequency of the traveling wave: 
Whereas light is unable to pass through aluminum, X 
rays can. Unlike frequency, which is a well-defined phys- 
ical quantity and measured in cycles per second (or 
equivalent), different notions of scale exist depending 
upon the context. As explained by Bloschl and Sivapalan 
[1995], in the context of geophysical applications, scale 
can be viewed from two perspectives, namely, "process 
scale" and "observation scale". Process scale is the scale 

that natural phenomena exhibit and is beyond our con- 
trol. Typically, this is characterized in terms of (1) the 
lifetime or duration, (2) the period, or (3) the correla- 
tion length of the process. On the other hand, the 
observation scale depends upon how we choose to mea- 
sure the phenomena. Typically, this is characterized in 
terms of (1) the spatial or temporal extent or coverage, 
(2) the spacing between samples, or (3) the integration 
volume of a sample. In this paper, depending on the 
context, the term scale refers to either process scale, 
describing the lifetime or duration, or observation scale, 
describing the sampling interval. 

For both continuous and discretely sampled processes 
the "resolution" refers to the smallest size of a feature 

that can be resolved, which means that resolution is 
related to the frequency content of a function or, more 
precisely, to the bandwidth of its spectrum [see Rioul, 
1993; Vetterli and Herley, 1992]• If a continuous function 
f(t) has a bandwidth to c (i.e., f(co) = 0 for > 
then the smallest size feature that exists is of wavelength 
T = 2•T/CO c. If this function is sampled at a critical 
(Nyquist) rate, then all information about the continu- 
ous function is available in the discrete function. Sam- 

pling at a higher rate does not increase the resolution; 

that is, an oversampled version of a function does not 
have more resolution than a critically sampled version. 
Note that a continuous function may have infinite reso- 
lution, as is the case with fractals, but for a discrete 
function its maximum resolution is determined by its 
sampling rate. 

Scale and frequency (or wavelength) are independent 
attributes and are related to each other only through the 
fact that scale provides an upper bound to the wave- 
length, i.e., wavelength is less than or equal to scale. 
That is, a specific scale, for example, duration of a 
process, may contain frequencies from the smallest up to 
those dictated by the duration of the process. 

2.2. Time-Frequency Analysis 
Although the Fourier transform provides useful in- 

formation about a signal, it is often not enough to 
characterize signals whose frequency content changes in 
time such as precipitation and many other geophysical 
processes. Figures la-ld illustrate the inapplicability of 
Fourier transforms for the characterization of time-vary- 
ing signals. Although Fourier analysis tells us that there 
are two frequencies present in the signal, it is unable to 
distinguish between the two signals: one with two fre- 
quencies superimposed over its entire domain and the 
other with one frequency present in the first half of its 
domain and the other frequency present over the second 
half of its domain. To study such processes, we seek 
transforms that will enable us to obtain the frequency 
content of a process as a function of time, Such an 
analysis is called time-frequency analysis. The goal of 
time-frequency analysis is to expand a signal into wave- 
forms whose time-frequency properties are adapted to 
the signal's local structure. The waveforms that are used 
as building blocks in the expansion are called time- 
frequency atoms. 

Wavelet transforms enable us to obtain orthonormal 

basis expansions of a signal using time-frequency atoms 
called wavelets that have good properties of localization 
in time and frequency domains. The basic idea can be 
understood using a time-frequency plane that indicates 
the frequency content of a signal at every time (see 
Figure 2). In any such decomposition the time-frequency 
plane is layered with cells, called Heisenberg cells, 
whose minimum area is determined by the uncertainty 
principle. Heisenberg's uncertainty principle dictates 
that one cannot measure with arbitrarily high resolution 
in both time and frequency. When we use the standard 
basis in the time domain, that is, Dirac delta functions, 
we can very well localize the process in the time domain 
but not at all in the frequency domain. This is schemat- 
ically depicted by tall thin boxes in Figure 2a. In the case 
of Fourier bases we get exact localization in frequency 
but none in time, which is depicted by long horizontal 
cells in Figure 2b. If we were to apply a moving window 
to the signal and to take the Fourier transform at every 
location in an attempt to localize the presence of a 
feature, we get a short time or windowed Fourier trans- 



388 ß Kumar and Foufoula-Georgiou: WAVELET ANALYSIS 35 4 / REVIEWS OF GEOPHYSICS 

(a) 
i ! • ...... 

0 

-2 
-2 0 2 

time 

(c) 

10 0 

10 -5 , 
0 50 

angular frequency 
(e) 

1oo 

-1 

(b) 

-2 0 2 
time 

(d) 

10 0 ,••}1 i,, 

10 -5 
0 50 

angular frequency 
100 

-2 0 2 -2 
time 

-2 0 2 -2 
time 

o 
time 

(h) 
•.::/'" . •?::: *•: .':•ii::::i; •- 

•$ .-.• •!' •:i• • •;- Xi•. -"• 

o 

time 

Figure 1. Spectral and wavelet analysis 
of two signals. The first signal (Figure 
la) consists of superposition of two fre- 
quencies (sin 10t and sin 20t), and the 
second (Figure 2b) consists of the same 
two frequencies, each applied separately 
over half of the signal duration. Figures 
lc and ld show the Fourier spectra of 
the signals (i.e., [f(to)[ 2 versus to) for 
Figures la and lb, respectively. Figures 
l e and If show the magnitude of their 
wavelet transforms, and Figures l g and 
lh show the phase of their wavelet trans- 
forms (using Morlet wavelet). Notice the 
instability in calculation of phase at small 
scales where the modulus of wavelet 

transforms is very small. 

form. This partitions the entire time-frequency plane 
with rectangular cells of the same size and aspect ratio 
(Figure 2c). The wavelet transform is based on an octave 
band decomposition of the time-frequency plane (Figure 
2d). In this scheme, higher frequencies can be well 
localized in time, but the uncertainty in frequency local- 
ization increases as the frequency increases, which is 
reflected as taller, thinner cells with increase in fre- 
quency. Consequently, the frequency axis is partitioned 
finely only near low frequencies. The implication of this 
is that the larger-scale features get well resolved in the 
frequency domain, but there is a large uncertainty asso- 
ciated with their location. On the other hand, the small- 
scale features, such as sharp discontinuities, get well 

resolved in the time (physical) domain, but there is a 
large uncertainty associated with their frequency con- 
tent. This trade-off is an inherent limitation due to the 

Heisenberg's uncertainty principle (see section 2.4). 
in all the above cases the decomposition pattern of 

the time-frequency plane, that is, layering of cells, is 
predetermined by the choice of the basis function. Note 
that the Heisenberg uncertainty principle dictates the 
minimum area of the cell and not its shape. So to further 
improve time-frequency analysis, we will want to layer 
the time-frequency plane using rectangular cells of arbi- 
trary aspect ratios, with area greater than the minimum 
dictated by the uncertainty principle (see Figure 3). This 
can be achieved using wavelet packets by decoupling the 
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Figure 2. Schematic of time-frequency plane decomposition 
using different bases: (a) standard basis, (b) Fourier basis, (c) 
windowed Fourier basis, and (d) wavelet basis. 

scale parameter from the frequency parameter (see sec- 
tion 5 for further discussions on wavelet packets). 

2.3. Wavelet Transforms and Time-Scale Analysis 
The wavelet transform of a function f(t) is defined as 

the integral transform 

Wf(•., t) = f(u)½h,t(u ) du X>0, (3) 

where 

(4) 

represents a family of functions called wavelets. Here X 
is a scale parameter, t is a location parameter, and 
q•x,t(u) is the complex conjugate of q•x,t(u). Changing 
the value of X has the effect of dilating (X > 1) or 
contracting (X < 1) the function q•(t) (see Figure 4), and 
changing t has the effect of analyzing the function f(t) 
around different points t. When the scale X increases, 
the wavelet becomes more spread out and takes only 
long time behavior of f(t) into account and vice versa. 
Therefore the wavelet transform provides a flexible 
time-scale window that narrows when focusing on small- 
scale features and widens on large-scale features, anal- 
ogous to a zoom lens. It is important to note that q•x,u(t) 

has the same shape for all values of X. One may also 
interpret the wavelet transform as a mathematical mi- 
croscope, where the magnification is given by 1/X and the 
optics are given by the choice of wavelet q•(t). 

The wavelet transform as defined by (3) is called the 
continuous wavelet transform (abbreviated CWT) be- 
cause the scale and time parameters X and t assume 
continuous values. It provides a redundant representa- 
tion of a signal; that is, the CWT of a function at scale h 
and location t can be obtained from the continuous 

wavelet transform of the same function at other scales 

and locations. The wavelet transforms is a linear trans- 

form; that is, the wavelet transform of the sum of two 
signals is the sum of the wavelet transforms of each 
individual signal. Also, the wavelet transform of a vector 
function is a vector whose elements are the wavelet 

transforms of the vector components. 
The inverse wavelet transform is given by [Dau- 

bechies, 1992, equation 2.4.4] 

f(t) = • h-2Wf(h, u)qJx.u(t) dh du, (s) 

where C, is constant, depending on the choice of the 
wavelet. Equation (5) can be looked at as a way of 
reconstructingf(t) once its wavelet transform Wf(X, t) is 
known as well as a way to write f(t) as a superposition of 
wavelets 

The choice of the wavelet q•(t) is neither unique nor 
arbitrary. The function q•(t) is a function with unit en- 
ergy (i.e., l½(t)l 2 at - 1) chosen so that it has (1) 

Time 

Signal 

Figure 3. Schematic of time-frequency plane decomposition 
using wavelet packets. 
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Figure 4. Real and imaginary parts of the Morlet wavelet (to o = 5) and its Fourier spectrum for different 
scales: X < 1 (dashed lines), X = 1 (solid lines), and X > 1 (dash-dotted lines). Notice the effect of dilation 
on the wavelet and the corresponding change in its Fourier spectrum. When the wavelet dilates, its Fourier 
transform contracts, and vice versa. Also notice that the Fourier transform of the Morlet wavelet is supported 
entirely on the positive-frequency axis. 

compact support, or sufficiently fast decay, to obtain 
localization in space and (2) zero mean (i.e., f•-oo q•(t) 
dt = 0), although higher-order moments may also be 
zero, that is, 

••tkOd(t) dt- 0 k - 0,..., N- 1. (6) 
The requirement of zero mean is called the admissi- 

bility condition of the wavelet. It is because of the above 
two properties that the function q•(t) is called a wavelet. 
The second property ensures that q•(t) has a wiggle (i.e., 
is wave-like), and the first ensures that it is not a sus- 
taining wave. The normalizing constant 1/•/-• is chosen 
so that q•x,t(u) has the same energy for all scales X. 

As is evident, the two conditions described above 
leave open the possibility of using several different func- 
tions as wavelets. However, the choice is usually guided 
by various considerations and is discussed in some depth 
in section 7. Two popular wavelets for CWT are the 
Mexican hat and Morlet wavelet [see Daubechies, 1992]. 
The Mexican hat wavelet is the second derivative of the 

Gaussian function, given as 
2 

__ •-1/4(1 -- t2)e -t2/2 q•(t) -• . (7) 
The Morlet wavelet is given by 

q•(t) - •-l/4e-iø•øte-t2/2 co o •> 5. (8) 
This wavelet is complex valued (see Figure 4), enabling 
one to extract information about the amplitude and 
phase of the process being analyzed (see Figures le-lh 
and Figure 5). Its Fourier transform, given by 

t•(CO) -- q'r -1/4 exp [-(co - co0)2/2] coo --> 5, (9) 
is approximately zero for co < 0. This is particularly 
attractive for certain analyses where one needs to elim- 
inate the interference of positive and negative frequen- 
cies for the interpretation of results. 

The wavelet transform is an energy-preserving trans- 
formation, that is 

[f(t)l • dt = • [wf(x, t)l • x-• dX dt. (10) 
In general, for two functions f(t) and #(t) [see Dau- 
bechies, 1992, equation 2.4.2], 

f(t) •O(t) dt 
C, •-• Wf(X, t)Wg(X, t) dt dX. (1]) 
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Figure 5. Analysis of temporal rainfall using the 
Morlet wavelet. The data were collected every 10 s 
on May 3, 1990, over Iowa City, Iowa, using an 
optical rain gage. (a) Square of the modulus or 
scalogram, that is, Iwf(x, t)l 2, and (b) phase of 
Wf(X, t). The rainfall intensity is shown at the 
bottom of each figure. The scalogram clearly 
shows the presence of multiscale features and also 
some embedding of small-scale features within 
large-scale features. The phase plot shows the 
convergence of lines of constant phase to singu- 
larities (see discussion in text). (Reprinted by per- 
mission of Academic Press.) 

Flandrin [1988] proposed calling the function ] Wf(X, t)] 2 
a scalogram. In analogy, the product Wf(X, t)W#(X, t) 
can be called a cross scalogram. 

A scalogram provides an unfolding of the character- 
istics of a process in the scale-space plane. A cross 
scalogram provides the same unfolding of the interac- 
tion of two processes. This can be quite revealing about 
the structure of a particular process or about the inter- 
action between processes. Figure 5a shows the scalo- 
gram of high-resolution temporal rainfall measured at a 
point every 10 s (for details on the data set and its 
measurement, see Georgakakos et al. [1994]). The pres- 
ence of multiscale structures and their temporal loca- 
tions are easily identified. Also, one can see embedding 
of some small-scale features within large-scale features. 
Figure 5b shows the phase plot of the wavelet transform. 
This figure illustrates that the constant-phase lines con- 
verge to a particular singularity as we go from large to 
small scales (although the computation of phase is un- 
stable when the modulus of the wavelet transform is very 

small). This enables us to identify the locations of sin- 
gularities for further study, such as by fractal or multi- 
fractal analysis (for more extensive treatment of this 
idea, see Arn•odo et al. [1988]). 

Liu [1994] defined a wavelet coherency function as 

wf(x, t) wg(x, t) 
F= 

Iwf(x, t)llwg(x, t)l' 

and using the Morlet wavelet, he studied the interaction 
between wind and ocean waves. He concluded that dur- 

ing wave growth the frequency components for peak 
wave energy between wind and waves are inherently in 
phase; that is, waves respond to wind speeds instantly. 
This result is in contrast to the belief that it is the 

"average" wind speed that is correlated to wave growth 
(see also Gambis [1992] for a similar application). 

2.4. lime-Frequency localization Using Wavelets 
In order to understand the behavior of the wavelet 

transform in the frequency domain as well, it is useful to 
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Figure 6. The phase-space representation using the wavelet transform. 

recognize that the wavelet transform Wf(h, t), using 
Parseval's theorem, can be equivalently written as 

Wf(h, t) = • )(to)t•x,t(to) dto. (•2) 

Therefore, to gain insight about the time-frequency lo- 
calization properties of wavelet transforms, we consider 
the behavior of the following three parameters as a 
function of scale: (1) The standard deviation •rx of Iq, x,t[ 2 
satisfies •rx = Mrs. (2) The standard deviation &x of 

12 satisfies & = &•/X (3) The center of passing 
band toøx, which is defined as the mode of [•x,t[ 2 for 
either the positive or the negative frequency axis, satis- 
fies toøx = toø•/X. 

From the above relationships one can easily see that 
as h increases, that is, as the function dilates, both toøx 
and &x decrease, indicating that the center of the passing 
band shifts toward low-frequency components and the 
uncertainty also decreases, and vice versa (see also Fig- 
ure 4). In the time-frequency plane (or phase space), the 
resolution cell for the wavelet transform around the 

point (t o, toøx) is given by [to +- ktr• x (to•ø/h) ___ ((•/k)], 
which has variable dimensions depending on the scale 
parameter h (see Figure 6 and also Figure 2). However, 
the area of the resolution cell [(•x x (•x] remains inde- 

pendent of the scale or location parameter. In other 
words, the phase space is layered with resolution cells of 
varying dimensions which are functions of scale such 
that they have a constant area. Therefore, owing to the 
uncertainty principle, which states that both time and 
frequency cannot be measured with arbitrarily high pre- 
cision, an increased resolution in the time domain for 
the time localization of high-frequency components 
comes at a cost: an increased uncertainty in the fre- 
quency localization as measured by 6x. The localization 
properties of wavelets are discussed in further depth by 
Daubechies [1990] and Holschneider [ 1993]. 

3. DISCRETE AND ORTHOGONAL 

WAVELET TRANSFORMS 

3.1. Discrete Wavelet Transform 

In order to implement the wavelet transform on sam- 
pled signals we need to discretize the scale and location 
parameters. Wavelet transforms implemented on dis- 
crete values of scale and location are called discrete 

wavelet transforms. One can obtain both redundant and 

nonredundant representations using appropriate choices 
of wavelets and discretization schemes. 

In discretizing the scale and location parameters (h, 
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t) one can choose X = X•, where m is an integer and 2t o 
is a fixed dilation step greater than 1. Since •rx = 2t•r•, 
we can choose t - nt02t •, where t o > 0 depends upon 
q•(t) and n is an integer. The essential idea of this 
discretization can be understood by an analogy with a 
microscope. We choose a magnification (i.e., 2t•-m) and 
study the process at a particular location and then move 
to another location. If the magnification is large (i.e., 
small scale), we move in small steps and vice versa. This 
is accomplished by choosing the incremental step in- 
versely proportional to the magnification (i.e., propor- 
tional to the scale 2t•), which the above method of 
discretization of t accomplishes. We then define 

1 (t - nto2tt _ 2t•m/20d(2t•_m t _ nto)' Odm,n(t ) -- Od / 
(13) 

The wavelet transform obtained using t•m,n(t ) given as 

Wf(m, n) - 2t•-m/2 f f(t)Od(2t•mt_ nto) dt (14) 
is called the discrete wavelet transform. 

In the case of the continuous wavelet transform, 

Wf(2t, t) completely characterizes the function f(t). In 
fact, one could reconstruct f(t) using (5). Using the 
discrete wavelet q•m,n and appropriate choices of 2t o and 
to, we can also completely characterize f(t). In fact, we 
can write f(t) as a series expansion under certain broad 
conditions on the mother wavelet q•(t) and the discreti- 
zation increments t o and 2t 0. These discrete wavelets 
which provide complete representation of the function 
f(t) are called wavelet frames. The necessary and suffi- 
cient condition for this is that the wavelet coefficients 

Wf(m, n) satisfy 

[lql -< 5; 5; IWf(m, n)l <- Bllq[ 
m n 

Here J•l 2 denotes the energy (or 5• 2 norm) of the 
function f(t), and A > 0 and B < •c are constants 
characteristic of the wavelet and the choices of 2t o and to, 
which can be determined numerically [Daubechies, 
1992]. Given this condition, we can obtain a series ex- 
pansion as 

2 

f(t) -A + B • • Wf(m, •t)Odm,n + 'y (15) 
m n 

ifA • B. The error term '7 is of the order of œ/(2 + œ) 
IIl, where œ = (B/A) - 1 << 1. 

In general, a frame is not an orthonormal basis (only 
the condition A = B = 1 gives an orthonormal basis). It 
provides a redundant representation of the functionf(t). 
This is analogous, for example, to representing a vector 
in the Euclidean plane using more than two basis vec- 
tors. The ratio A/B is called the redundancy ratio or 
redundancy factor. When a frame is redundant, the 

wavelet coefficients in a neighborhood are correlated to 
each other, resulting in improved resolution of the sharp 
features of the signal being transformed. Thus, for ex- 
ample, for detecting a sharp change in a signal a redun- 
dant representation is useful. However, the oversam- 
pling also increases the computational complexity, 
resulting in slower transform and inverse transform al- 
gorithms. 

Wavelets that provide a frame can be constructed for 
certain choices of 2t o and to. The conditions for the 
choice of 2t o and t o are described by Daubechies [1992, 
chapter 3]. Here it suffices to say that these conditions 
are fairly broad and admit a very flexible range. For 
example, for the Mexican hat wavelet, for 2t o - 2 and t o 
= 1, the frame bounds are A - 3.223 and B - 3.596, 
giving B/A - 1.116. One can obtain B/A closer to 1 by 
choosing 2t o < 2. Grossmann et al. [1989] suggested 
decomposing each octave into several voices (as in mu- 
sic) by choosing 2t o - 2 •/M, where M indicates the 
number of voices per octave. With this decomposition 
we get 

M __ 2-m/2Mql -m/M t __ Odm,n(t ) (2 nto). (16) 

For the Mexican hat wavelet, by choosing M - 4 and t o 
= 1 we can obtainA- 13.586 and B- 13.690, giving 
B/A - 1.007. Such a decomposition using a multivoice 
frame enables us to cover the range of scales in smaller 
steps, giving a more "continuous" picture. For example, 
with M = 4 we get discrete scales at {2t .... , 1, 2 TM, 
2 •/2, 2 TM, 2, 2 5/4, 2 3/2, 2 TM, 4, ... } as against {2t - 
ß .., 1, 2, 4,... } for the usual octave band decompo- 
sition, that is, M - 1. As an illustration, Figure 5 is 
obtained using the Morlet wavelet and four voices per 
octave. Multivoice frames are discussed extensively by 
Daubechies 1992, chapter 3], who gives more details on 
the values of A and B for different choices of M and to 
for the Mexican hat and the Morlet wavelet. It should be 

noted that the discrete Morlet wavelet, which is not 
orthogonal, gives a good reconstruction under the 
framework of (15). 

Redundant representations are more robust to noise 
as compared with orthogonal representations and there- 
fore useful when noise reduction is an issue. Teti and 

Kritikos [1992] used only dominant coefficients from the 
entire set of { Wf(m, n)}, using the Morlet wavelet to 
obtain stable high-quality reconstruction of synthetic 
aperture radar (SAR) ocean image features (one-dimen- 
sional azimuth cross sections). With the reconstruction 
limited to dominant coefficients, filtering automatically 
takes place that gracefully reduces high-frequency infor- 
mation while still preserving image features. The filter- 
ing was successful in removing speckle while successfully 
preserving the scattering envelope of the ship and wake 
features. 

3.2. Orthogonal Wavelet Transform 
As was discussed in the Introduction and also in 

section 2, we often seek to decompose a function (or 
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Figure 7. (left) The Haar wavelet and (right) the corresponding scaling function. 

process) into components using basis functions (such as 
sines and cosines in the Fourier series expansions) in the 
hope that this decomposition will enable us to see some- 
thing different about the process or enable us to perform 
certain operations on the process with greater ease. 
Usually, the choice of the basis set for decomposition is 
governed by the property that we wish to be revealed by 
the decomposition. The Fourier basis is a complete basis 
for the decomposition of the energy or variance. An- 
other basis called the empirical orthogonal function 
(EOF) is also an appropriate basis for the decomposi- 
tion of variance. In fact, EOFs are the most efficient 
bases for the decomposition of variance in that they 
capture the maximum variance with the least number Of 
coefficients (or modes). However, both these basis sets 
(i.e., Fourier and EOFs) are "global" in the sense that 
they span the entire domain. Another disadvantage of 
EOFs is that they are "specific" in nature; that is, an 
optimal basis set for one data set will not necessarily be 
an optimal representation for another data set. In con- 
trast, Fourier basis is a "universal" basis; that is, it can be 
used for efficient decomposition of any data set. Both 
the Fourier basis set and EOFs are orthogonal in that 
each "mode" of the decomposition carries information 
that is independent of the other modes. 

For many signals that are nonstationary or whose 
frequency content changes over time, often the most 
desirable basis for decomposition of a signal is one that 
is orthogonal, local, and universal. Wavelet bases em- 
body all these characteristics (see Gamage and Blumen 
[1993] for a comparative study of Fourier, EOF, and 
wavelet basis application in turbulence). We can find 
discrete wavelets t•m,n(t ) for X0 = 2 and t o = 1, that is, 

t•m,n(t ) = 2-m/2t•(2-mt- n) = • t• 2m , 
such that the set of functions {qlm,n} for all m and n 
form an orthonormal basis. The most remarkable prop- 
erty of this basis is that the functions are orthogonal to 
their translates and their dilates [see Mallat, 1989a]. All 
square integrable functions fit) can be approximated, up 
to arbitrary high precision, by a linear combination of 
the wavelets t•m,n(t), that is, 

f(t) = • • Dm,nOm,n(t), (18) 
m : -o• 

where the first summation is over scales (from small to 
large) and at each scale we sum over all translates. From 
(18) it is easy to see how wavelets provide a time-scale 
representation of the process, where time location and 
scale are given by indices n and m, respectively. The 
coefficients Dm, n are obtained as Dm, n = f f(t)t•m,n(t ) 
dt. Therefore the coefficient Dm, n measures the contri- 
bution of scale 2 TM at location n2 TM to the function. The 

total energy of the function can be obtained as • [f(t)l 2 
dt - E•=_• En:-• Dm,n 

The above series expansion is akin to a Fourier series 
with the following differences: (!) The series is double 
indexed, with the indices indicating scale and location, 
and (2) the basis functions have the time-scale (time- 
frequency) localization property. 

The Haar wavelet (see Figure 7) is the simplest of all 
orthogonal wavelets and is given as 

1 

1 0_<t<• 
•(t)= -1 l<t<l 

2• 

0 otherwise. 

(19) 

For practical applications, often a smoother basis is 
desired. Bases with compact support and an arbitrary 
high order of smoothness have been developed, and a 
complete description is given by Daubechies [1988, 
1992], Daubechies and Lagarias [1991, 1992], Meyer 
[1992], and Chui [1992a]. An example of a wavelet 
developed by Daubechies [1988] called D8 is shown in 
Figure 8. It satisfies (6) for N = 4. As can be seen, it is 
a fairly smooth basis with very good localization prop- 
erties in the Fourier domain. 

Time-scale analysis, analogous to the continuous 
wavelet transform case, can be performed using orthog- 
onal wavelets. For example, Figures 9a and 9c show the 
phase-space plot of the May 3, 1990, Iowa City, Iowa, 
temporal rainfall data (displayed in Figure 5) using the 
Haar (Figure 9a) and D8 (Figure 9c) wavelets. As is 
seen, most of the variability is concentrated in the large- 
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40 Figure 8. (top) Daubechies D8 wavelet 
[Daubechies, 1988] and its Fourier trans- 
form magnitude, and (bottom) the corre- 
sponding scaling function and its Fourier 
transform magnitude. 

40 

scale features, with small-scale features accounting for a 
relatively small fraction of the variability. Figures 9b and 
9d show that relatively few wavelet coefficients can cap- 
ture a significant portion of the variability (energy). 

Also, it is noted that there is not a significant difference 
due to the choice of wavelets. Comparison of Figure 9 
with Figure 5 shows that the phase-space plots using 
orthogonal wavelets and Morlet wavelet frames pick up 
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Figure 9. (left) Time-scale plot of the 10-s May 3, 1990, Iowa rainfall time series (see Figure 5) using (a) the 
orthogonal Haar wavelet and (c) the D8 wavelet. (b and d) The cumulative proportion of energy captured by 
the wavelet coefficients (solid line) and the data (dotted line) obtained by ordering the wavelet coefficients and 
data-sequence values from the largest to the smallest in absolute value. 
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Figure 10. Illustration of multiresolution analysis. (b and d) The 10-s Iowa rainfall time series (see Figure 
5) at decreasing resolutions, and (a and c) the detail that needs to be added to go from one resolution to the 
next. The general scheme of progression is Sx-1 = Sx + Dx. Analysis using (top) the Haar and (bottom) D8 
wavelets. 

similar information subject to the constraints of resolu- 
tion of Heisenberg cells. 

3.3. Multiresolution Analysis 
One of the most profound applications of orthogonal 

wavelet transforms has been in multiresolution analysis. 
In some sense we can say that an entire class of orthog- 
onal wavelets was developed [Daubechies, 1988] from 
the theory of wavelet-based multiresolution analysis of 
Mallat [1989a]. Multiresolution analysis is concerned 
with the study of signals or processes represented at 
different resolutions and developing an efficient mech- 

anism for going from one resolution to another. To 
understand this, imagine that you are looking at a se- 
quence of continuous functions such that the first func- 
tion describes only broad features of a process (coarse 
resolution). Each subsequent function progressively 
adds more and more detail (higher resolution) such that 
smaller- and smaller-scale features start appearing as the 
resolution increases. For example, Figure 10b, repre- 
sents the May 3, 1990, Iowa City rainfall data at decreas- 
ing resolutions (increasing scales )t = 1, 2,'", 6), and 
Figure 10a represents the corresponding wavelet trans- 
form obtained using the Haar wavelet. At the coarse 
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resolution level, all features larger than a particular scale 
are present. Let us represent this as fro(t) (i.e., function 
approximated by 2 -m samples per unit length in our 
notation so that as m decreases, i.e., scale decreases, the 
resolution increases). To get the function at the next 
higher resolution, we add some detail f•(t), that is, 

fm-•(t) = fro(t) + f•(t), (20) 

which is the basic recursive equation of multiresolution 
theory (in Figure 10 this is indicated as Sx_•(t) - Sx(t) + 
Dx(t), that is, Sx =fro(t), Sx_• = fm--•(t), and Dx = f•(t)). 
In the wavelet multiresolution framework, fro(t) is ap- 
proximated as 

fro(t)= •, Cm,n(•m,n(t), (21) 

where q>m,n(t) = 2-m/20)(2-mt -- n) is a smoothing 
function. The coefficients Cm,• = f O)m,n(t) f(t) dt give 
the discrete sampled values of f(t) at resolution m and 
location index n; that is, the function •(t), called the 
"scaling function," acts as a sampling function. The 
detail fro(0 is appro•ated us•g o•hogonal wavelets as 

f•(t) = • Dm,n,m,n(t), (22) 

where the coefficients D•,• are defined as in (18). The 
scaling function •(t) and wavelets •(t) are related to 
each other, and one determines the other. For the Haar 
wavelet the scaling function is the characteristic function 
of the inte•al [0, 1) (see Figure 7) given as 

1 0 • t < 1 (23) •(t)= 0 othe•ise. 
Figure 8 illustrates another example of a pair of scaling 
functions and wavelets. The scaling •nctions and wave- 
lets play a profound role in the analysis of processes 
using orthogonal wavelets, as discussed in section 4. 

4. DATA ANALYSIS USING WAVELET 

TRANSFORMS 

4.1. Exploratory Data Analysis 
Through exploratory data analysis (EDA) [Tukey, 

1977], we aim to get a preliminary indication about the 
characteristics of the data and the nature of further 

analysis it calls for. Wavelet transforms offer a powerful 
tool for EDA where we can get an idea about the 
nonstationarity and the dominant scales of variation 
present in the series. As an example, consider Figure 11, 
which shows an exploratory data analysis of a W' T' time 
series where W' and T' represent fluctuations in the 
vertical wind velocity and temperature, respectively. The 
data were obtained with a sampling frequency of 56 Hz 
over a dry lake bed in Owens Valley, California, on June 
27, 1993 (see Katul et al. [1994] for a detailed description 

of the data). The data were further subsampled by a 
factor of 2 to make the computation manageable. Figure 
11a shows the time-frequency plot. The presence of 
intermittency in the sensible heat flux (cpW' T' where Cp 
is the specific heat capacity of air), characterized by 
sharp transitions which are manifested as high-frequency 
components, is clearly evident. Also evident is a slow 
increase in recurrence of these events. Figure 11b shows 
the distribution of energy at different scales. There 
seems to be some evidence of dominant scales of varia- 

tions associated with scale indices X = 6 and X = 8, 
which correspond to timescales of 1.143 and 4.57 s, 
respectively. Figure 11c shows a summary of the distri- 
butions of wavelet coefficients at different scales using a 
box plot. The box indicates the interquartile range. The 
middle white strip indicates the median. The dynamic 
range is maximum for X = 8, indicating significant activity 
at this scale. Figure lid shows the energy concentration 
function (ecf), which for any sequence {a n} is defined as 

k-1 /N-•I ecfa(k): a ] an, 
n =0 n=0 

(24) 

where a[n I is the nth largest absolute value in {an}. 
Essentially, if eCfa(k) > ecfo(k), then the first k-largest 
coefficients of the sequence {a n } contain more energy 
than those of {bn}. The energy concentration function 
shows the disbalance in energy [Goel and Vidakovic, 
1994] in the wavelet coefficients as compared with the 
data. This also indicates that relatively few wavelet co- 
efficients describe the dominant characteristics of the 

data. This information can be used to characterize the 

dominant scales of variation in the data, as discussed next. 

4.2. Identification of Scales of Variation 

The need to identify significant structures from a 
passive or noisy component of a signal is an ubiquitous 
problem. In turbulence studies it arises often in the 
isolation of coherent structures. In signal processing, we 
are faced with the need to separate signal from noise. 
The wavelet spectrum defined as [see Meneveau, 1991a; 
Yamada and Ohkitani, 1991a; Hudgins et al., 1993a, b] 

E(X) = f•• Wf(X, t) dt, (25) 

which for the orthogonal transform is given by 

E(m) = Y• IDm,nl 
n 

(26) 

has been quite useful for detecting the dominant scales 
or modes of variation. Notice that the wavelet spectrum 
condenses the scalogram (or phase plane) into a single 
function of scale. Gainage and Hagelberg [1993] explain 
that the wavelet spectrum can be compared with the 
Fourier spectrum (where the variance of the signal is 
decomposed as a function of wavelength). The main 
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Figure 11. Exploratory data analysis of a W' T' time series where W' and T' represent fluctuations in the 
vertical wind velocity and temperature, respectively. (a) Time-frequency plot. (b) Distribution of energy of 
wavelet coefficients at different scales X identified through the labels dX. The label s X indicates the 
information remaining in the data that is not captured by the wavelet coefficients. (c) Box plot of wavelet 
coefficients. The box indicates the interquartile range, and the middle white strip indicates the median. (d) 
Energy concentration function for the data and wavelet coefficients. 

difference between the wavelet and Fourier decomposi- 
tion is in the support of the respective basis functions. 
The wavelet transform coefficients are influenced by 
local events, while the Fourier coefficients are influ- 
enced by the function on its entire domain. This makes 
the wavelet spectrum a better measure of variance at- 
tributed to localized events. 

Local maxima in the wavelet spectrum provide infor- 
mation about the scales at which important features or 
coherent events provide a significant contribution. This 
can happen in one of two ways: It can be due either to 
one feature with a large contribution or several small 
features with lesser contributions. Either or both situa- 

tions might be present in a signal. 
Variants of two techniques called "scale threshold 

partitioning" and "phase-plane threshold partitioning" 
[Hagelberg and Gamage, 1994] have been commonly 
employed to isolate the dominant modes of variation. 

Scale threshold partitioning consists of reconstructing 
the signal using wavelet coefficients that contribute to 
the local maxima in the wavelet spectrum if there are. 
clear scale gaps. Otherwise, one can just use all the 
wavelet coefficients for the scales that one perceives as 
dominant. In phase-plane partitioning, one performs 
reconstruction of the signal using wavelet coefficients 
whose amplitudes are above a certain threshold. In this 
case, a separation of signal and noise is achieved. This 
happens because in the case of wavelet transforms the 
presence of white noise in the signal gets smeared at all 
scales, thereby providing only small contributions at 
each scale, and is easily eliminated with an appropriate 
choice of threshold. There are various different rules for 

choosing a threshold, as discussed in detail by Donoho 
and Johnston [1994]. Often combination of scale and 
phase-plane thresholding provides an appropriate 
means for segregating signal characteristics. 
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Hagelberg and Gamage [1994] used the maxima of the 
wavelet variance as a means for identification of impor- 
tant scales in heat flux data measured using aircraft in 
the First International Satellite Land Surface Climatol- 

ogy Project (ISLSCP) Field Experiments (FIFE) [Sellers 
et al., 1992]. They used scale threshold partitioning to 
separate the process into components with different 
dominant scales. Howell and Mahrt [1994] used wavelet- 
based mode separation techniques using the Haar wave- 
let to study turbulence data, each mode defined locally 
in terms of upper and lower cutoff scale. They parti- 
tioned the velocity field, measured 45 m above a flat 
terrain in near-neutral conditions, into four modes of 
variation and analyzed the coherent structure associated 
with each particular mode. Figure 12 shows these four 
modes of variation of a longitudinal wind component, 

14 

12 

,,,,I,,,,I,,,, 

198 199 200 201 202 

km-, 

which correspond to mesoscale (c = 1), large eddy (c = 
2), transporting eddy (c = 3), and fine scale (c = 4). 

Collineau and Brunet [1993a, b] showed that when a 
wavelet variance graph E(X) exhibits a single peak at a 

scale )t o, a characteristic duration scale D can be defined as 

D - XoD,, (27) 
where D, is a duration constant which is an intrinsic 

property of the wavelet .(t). D, can be compared as the solution of a simple first-order differential equation. 
Calculations for some common wavelets such as Mexi- 

can hat are given by Collineau and Brunet [1993a]. They 
demonstrated that D can be interpreted as the mean 
duration of the elementary events contributing most of 
the signal energy. For a sine function of period -r, D = 
,/2. Brunet and Collineau [1994] used these parameters 
to characterize the length scales of eddies above a maize 
crop, and after normalizing D with friction velocity (u.) 
and canopy height (h), that is, using Du./h, they pos- 
tulated that transfer processes over plant canopies are 
dominated by a population of canopy-scale eddies with 
universal characteristics. Gao and Li [1993], in a similar 
study over a deciduous forest, using a Mexican hat 
wavelet, observed that changes in wavelet variance with 
scales are characterized by local maxima. These local 
maxima can provide an objective method for determin- 
ing the principal timescale of the coherent structures 
present in a signal. In time series of wind velocity these 
structures are observed as periodic patterns which are a 
manifestation of an ejection-sweep mechanism, corre- 
sponding to a slow upward movement of air followed by 
a strong downward motion associated with an accelera- 
tion of horizontal velocity. A similar technique was also 
used by Turner et al. [1994] in their study of turbulence 
over a forest canopy. 

Meneveau [1991a, b] was the first to apply orthogonal 
wavelet transform expansion to the solution of Navier- 
Stokes equations. In comparing this approach with tra- 
ditional Fourier-based approaches he argued that the 
wavelet approach allows more meaningful analysis of 

198 199 200 201 202 

km-, 

Figure 12. (top) The four orthogonal modes (mesoscale, c - 
1; large eddy, c -- 2; transporting eddy, c -- 3; and fine scale, 
c - 4) of the longitudinal wind velocity component u mea- 
sured 45 m above a flat terrain in near neutral conditions. 

(bottom) The sum of the four different modes which equals the 
original data. (Adapted from Howell and Mahrt [1994].) (Re- 
printed by permission of Academic Press.) 

spatial properties at every scale, which is of great impor- 
tance in the study of turbulence. He observed that the 
(orthogonal) wavelet-transformed Navier-Stokes equa- 
tions were rather complicated but the appropriate con- 
traction relevant to the energetics of turbulence was 
more transparent. He developed several statistical mea- 
sures to study the spatial variability of the velocity field. 
Of significance is the concept of "dual spectra," which 
gives information both about the contributions of vari- 
ous scales and about the spatial variability associated 
with each scale, which can be used to quantify the 
intermittency of the kinetic energy. He observed that the 
local kinetic energy can be described as a multifractal 
field. Similar studies in atmospheric turbulence have 
been performed by Yamada and Ohkitani [1990, 1991a, 
b], Hagelberg and Gamage [1994], Katul et al. [1994], 
Howell and Mahrt [1994], and Benzi and Vergassola 
[1991], among others. 
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4.3. Self-Similar and Fractal Processes 

Orthogonal wavelet transforms are extremely useful 
for the analysis of self-similar (or simple scaling) pro- 
cesses, that is, processes that satisfy 

{X(Xt)} • {x"(t)} x > 0 (28) 

because of their ability to provide elegant multiscale 
transforms. Here ___a indicates equality in (probability) 
distribution, and H is the scaling parameter. A typical 
example of a self-similar process is the fractional Brown- 
ian motion [Mandelbrot and Van Ness, 1968]. This pro- 
cess has a power law spectrum (i.e., S(to) • 1/co2n+l). 
Mallat [1989b, equation (55)] has shown that for pro- 
cesses whose spectrum satisfies a power law the energy 
E(m) of the detail signal (wavelet coefficients) satisfies 
the relationship 

E(m) = 22nE(m + 1). (29) 

That is, the energies of the detail function at different 
resolutions (and hence at different scales) have a linear 
relationship on the logarithmic scale. 

Wornell [1990] has described a method to construct 
self-similar processes from a set of uncorrelated random 
variables using orthonormal wavelet bases in the same 
spirit as Karhunen-Lo6ve expansion. He showed that if 
we construct 

X(t) : • dm,nt•mn(t) (30) 
m,n 

such that the sequences {d,n,,, } are uncorrelated for any 
distinct pairs m and m' and have a power law variance, 
that is, Var(d,n,,,) = (2-'n)2nE(m), then X(t) is nearly 
self-similar, provided the wavelets satisfy a certain con- 
dition. The class of wavelets that satisfy this condition 
includes the Haar wavelet and the compactly supported 
wavelets constructed by Daubechies [1988]. The pro- 
cesses constructed this way retain the basic macroscopic 
spectral structure usually associated with self-similar 
processes. Construction of more complex self-similar 
processes, such as multifractal and multiaffine fields, 
based on wavelets has been presented by Benzi et al. 
[1993]. 

From the above results we see that wavelet trans- 

forms are very attractive for the study of self-similar 
processes. For instance, we obtain particularly simple 
expressions for the estimation of the scaling exponent H 
for a scaling process (see equation (29)) and an attrac- 
tive recipe for the synthesis of second-order scaling 
processes (see equation (30)) using wavelets. 

Flandrin [1988, 1992] has shown that for a fixed scale 
the wavelet transform of the fractional Brownian motion 

(FBM) is stationary. This result can be extended to 
conclude that the wavelet transform of any finite vari- 
ance zero-mean process with self-similar stationary in- 
crements, at any fixed scale, when restricted to its sec- 
ond-order properties, behaves as a zero-mean 
covariance stationary process. Kumar and Foufoula- 

Georgiou [1993a, Appendix B] further showed that the 
wavelet transform of a process with stationary incre- 
ments of order N, using wavelets with N vanishing 
moments (see equation (6)), is a stationary process. 
Tewfik and Kim [1992] showed that although for a fixed 
scale the orthogonal wavelet coefficients of a FBM are 
stationary, these coefficients at different scales are cor- 
related but the correlation function decays hyperboli- 
cally fast. This rate of decay increases with increase in 
the number of vanishing moments of the wavelets (see 
equation (6)) [see also Ramanathan and Zeitouni, 1991]. 

Percival and Guttorp [1994] argued that the usual 
variance is not an appropriate measure for studying long 
memory processes such as fractional Brownian motion. 
As an alternative they proposed using the Allan variance 
[Allan, 1966] because it can be estimated without bias 
and with good efficiency for such processes, and they 
showed that this variance can be interpreted as the Haar 
wavelet coefficient variance. They generalized this to 
other wavelets and illustrated their methodology with an 
application to time series of vertical ocean shear mea- 
surements. 

4.4. Nonstationary Processes 
One reason for the remarkable success of the Fourier 

transform in the study of stationary stochastic processes 
is the relationship between the autocorrelation function 
and the spectrum, as illustrated by the following dia- 
gram: 

x(t) 

R(,) = •[X(t)X(t- -r)] • S(to) = I•(co)l 2 

where R(-r) and S(to) are the autocovariance function 
and the power spectrum of the stochastic process X(t), 
respectively, • indicates the expectation operator, and • 
indicates the Fourier transform. If an analogous rela- 
tionship could be developed for nonstationary processes 
using the wavelet transform, then the properties of the 
wavelet transform could be harnessed in a more useful 

way. It turns out that, indeed, such a relationship can be 
developed. 

The wavelet variance E(X), although interesting in its 
own right, takes us away from the nonstationarity of the 
process since it is obtained by integrating over t. We 
therefore need something else. This is provided by the 
Wigner-Ville spectrum. Let us define a general (nonsta- 
tionary) covariance function R (t, s) as 

R(t, s): •[X(t)X(s)]. 

Then the Wigner-Ville spectrum (WVS) is defined as 
[see Claasen and Mecklenbrauker, 1980] 

WVSx(t, to) = R t + •, t - e -iø'* d•'. (31) 
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The WVSx(t, to) is an energy density function like the 
spectrogram. The relationship of interest to us is given 
by the relation between the scalogram and the WVS: 

t WX(A, t)l 2= 

WVSx(u, to) WVS, X ' kto du dto; (32) 

that is, the scalogram can be obtained by affine smooth. 
ing (i,e., smoothing at diff.erent scales in t and to direc- 
tions) of the WVS of X with the WVS of the wavelet. 
This relationship has been developed by Flandrin [1988]. 
As of this writing, we are unaware of any inverse relation 
to obtain the WVSx from the scalogram. We can put the 
key result of this discussion in the following diagram- 
matic form: 

x(t) w wx(x, t) 

WVSx(t, to) equati__•on (32 Iwx(x, t)l 2 

This illustrates that there is an inherent link between the 

study of nonstationary processes and wavelet transforms 
akin to the link between stationary processes and Fou- 
rier transforms. Although we are not aware of any direct 
existing application of this property in geophysics, we 
anticipate that it will play a significant role in future 
studies since many geophysical processes are nonstation- 
ary. 

4.5. Numerical Solution of Partial 

Differential Equations 
Perrier [1990] argued that the spatial localization of 

wavelets allows precise approximation of discontinuities 
without producing spurious fluctuations all over the do- 
main. Also, the asymptotic decrease of wavelet coeffi- 
cients, at small scales, depends upon the local regularity 
of the analyzed function. Thus the largest coefficients 
will concentrate near discontinuities. He demonstrated 

the advantage of these properties by using orthogonal 
wavelet bases for the solution of the transport equation. 
Qian and Weiss [1993] compared a wavelet-Galerkin 
method with standard numerical methods for the nu- 
merical solution of the biharmonic Helmholtz equation 
and the reduced wave equation in nonseparable, two- 
dimensional geometry. They developed a method that is 
stable and spectrally accurate. They obtained accurate 
results for problems where, for instance, finite difference 
methods do not converge, or converge slowly, and where 
Fourier spectral methods do not apply. They used the 
wavelet multiresolution framework of Mallat [1989a] to 
formulate the problem and its solution scheme [see also 
Glowinski et al., 1990; Schultz and WyM, 1992; Xu and 
Shann, 1992]. 

5. WAVELET PACKETS AND TIME- 
FREQUE•Y-SCALE ANALYSIS 

We have seen that the conceptual key to understand- 
ing the success of the wavelet transform in addressing a 
wide range of problems is its pro•rty of time-frequency 
localization. However, the decomposition pattern of the 
time-frequency plane, that is, the layering of the cells, is 
predetermined by the choice of the basis function. Note 
that the Heisenberg uncertainty principle dictates the 
minimum area of the cell but not its shape. As was 
mentioned earlier, to Mrther improve time-frequency 
analysis, we will want to layer the time-frequency plane 
with rectangular cells of arbitrary aspect ratios. These 
cells have an area greater than the minimum as dictated 
by Heisenberg's uncertainty principle, but the shape of 
the box, that is, the aspect ratio, is determined by the 
signal (or function) under study (see Figure 3). 

Wavelet packets developed by Coifman et al. [1992a, 
b] accomplish this in an adaptive fashion by decoupling 
the scale and frequency parameter. They introduced a 
library of functions, called wavelet packets, from which a 
countably infinite number of orthogonal bases can be 
built. The infinitely many bases of wavelet. packets con- 
sist of a set of localized oscillating functions •(t) of 
zero mean parameterized by position t, frequency to, and 
scale X. The index •/is defined as (t, to, X). A wavelet 
packet family (a set of basis functions) is thus generated 
by translation, dilation, and modulation of a "mother 
wavelet" •(t). The scale X, position t, and frequency to 
are the characteristic width of the spatial support, the 
position of the center, and the characteristic frequency 
of the basis function, respectively. It is noted here that 
wavelet packets can be constructed using any orthogonal 
wavelet (see Wickerhauser [1994] for details). 

The entire collection of time-frequency atoms for all 
possible choices of the index set {(t, to, X)} provides a 
highly redundant set D = {q•(t)} called a dictionary 
[Mallat and Zhang, 1993]. Figure 13 shows some basis 
elements generated using the Haar wavelet for different 
scale and frequency parameters. To efficiently represent 
any function f(t), we must select an appropriate count- 
able subset of atoms {•n(t)} where % = (t n, co n, Xn) 
so that f(t) can be written as 

f(t) = • anq•n(t), (33) 
nGF 

where F is the subset of indices over which the series 

expansion is achieved. Depending upon the choice of the 
time-frequency atoms qI•/n(t), the coefficients an give 
explicit information on certain properties of f(t). One 
needs to develop a procedure that chooses the atoms 
qi%,(t) that are best adapted for decomposing the signal 
structures among all the time-frequency atoms of the 
large dictionary D. Compact expansions highlight the 
dominant features off(t) and allow f(t) to be character- 
ized by a few salient characteristics [Mallat and Zhang, 
1993]. 
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Figure 13. Wavelet packets generated 
from the Haar wavelet for three scales: 

(a) smallest scale, (b) intermediate scale, 
and (c) largest scale. 

The objective then is to compute a linear expansion of 
f(t) over a set of time-frequency-scale atoms selected 
from the dictionary D = { qs•(t)} in order to best match 
its inner structure. We discuss two algorithms, namely, 
entropy minimization and matching pursuits, to choose 
the coefficients that achieve the desired optimality in the 
representation (33). Both attempt to exploit the "disbal- 
ance" in the distribution of energy in the transformed 
domain, that is, fewer coefficients of the transform cap- 
turing significantly more energy than an equal number of 
data points when arranged in the order of decreasing 
energy [Goel and Vidakovic, 1994]. The more the energy 
is disbalanced, the better the performance of the algo- 
rithm. 

The entropy minimization of the sequence {an} is 
defined as 

lanl 2 
H(a) = - • Pn 1Ogpn, Pn : • [an[2 (34) n n 

with Pn log Pn = 0 if Pn = 0. The coefficients an, and 
consequently the basis functions ql•/n(t), are chosen so as 
to minimize H(a). In entropy minimization, exp{H(a)} 
is proportional to the number of coefficients needed to 
represent the signal to a fixed mean square error. Thus 
minimizing entropy results in an orthonormal basis, 
termed "best basis," which describes a function with the 
smallest possible number of coefficients with respect to 
the entropy cost function. 

In the matching pursuit algorithm (developed by Mal- 
lat and Zhang [1993]), optimality is achieved through 
successive approximations of f(t) with orthogonal pro- 
jection on elements of the dictionary D. Let qs•0(t ) •D. 
The function f(t) can be decomposed into 

f(t) = (f, qs•0)qs•0(t ) + Rf(t), (35) 

where Rf(t) is the residual vector after approximating 
f(t) along qs•0(t ) and angle brackets represent an inner 
product. The functions q•0(t) are chosen such that the 
norm of the residual IIgl is minimum. This decomposi- 
tion can be carried out recursively using I•J.yn C D to 
obtain 

p 

f(t) = • (g% •'Yn).ql_ gP+lf(t). (36) 
n=0 

The energy is partitioned as 

p 

IIf(t)l I<g% qS•n)l 2 q-IIg"+•f(t)11 (37) 
n=0 

The algorithm guarantees the convergence of the series 
as p -• •. The most important feature of this decom- 
position is that it is a greedy algorithm and in each 
recursion, optimization is carried out locally, in contrast 
to the global optimization in the entropy minimization. 

A method using the matching pursuits algorithm to 
identify coherent structures was developed by Kumar 
[1996]. This method was able to reveal the essential 
dynamics of precipitation using the time-frequency-scale 
decompositions obtained from wavelet packets. It was 
argued that when the original function correlates well 
with a few dictionary elements, these correlated compo- 
nents represent "coherent structures" [Davis, 1994], and 
the remaining portion was called residue or noise with 
respect to the chosen dictionary. It is noted that al- 
though the term "coherent structure" as used here is not 
strictly in accordance with that used in the turbulence 
literature, it is not inconsistent with that notion. In 
turbulence the term is used to describe a region of flow 
over which at least one fundamental flow variable (ve- 
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Figure 14. (top) Rainfall time series observed at a point in Iowa City on December 2, 1990. The data are 
available at 10-s sampling intervals and consist of 8192 points. (middle) Energy at different scales obtained 
using a wavelet packet decomposition with matching pursuits algorithm. Notice the two distinct scales of 
variation identified as convective and synoptic by Kurnar [1996]. (bottom) Reconstruction of the fluctuations 
at the two dominant scales of variation. 

locity, density, temperature, etc.) exhibits significant cor- 
relation with itself or with another variable [Robinson, 
1991]. Here we use the term coherent structure to de- 
scribe regions where the variable under study is signifi- 
cantly correlated with the basis elements, and these 
regions will have meaningful characteristics, provided 
the basis elements have meaningful properties. The 
choice of wavelet packets as basis elements enables us to 
identify fluctuations that persist or have a lifetime 
greater than their characteristic wavelength. We will also 
see that this does not exclude the possibility of identify- 
ing singularities as coherent structures, provided they 
have significant contribution to the variability of the 
process. The study applied the method to several tem- 
poral precipitation data sequences and was able to find 
the dominant scales of variation in the observed rainfall. 

Figure 14 illustrates the dominant scales of variation in 
a temporal rainfall sequence observed in Iowa City. 
Notice the large-scale high-frequency component and 
the reconstruction of the precipitation variability on 

convective and synoptic scales using this method. This 
study showed that there exist distinct scales of variation, 
identifiable with rain cells and synoptic-scale activity, which 
is in contradistinction to the scale invariance hypothesis. 

Venugopal and Foufoula-Georgiou [1996] used wave- 
let packets to study the energy distribution of rainfall 
over time, frequency, and scale in an effort to gain more 
insight into the rainfall-generating mechanism. Using 
high-resolution (5- and 10-s sampling interval) temporal 
rainfall series, they looked for the existence of persistent 
and short-lived structures and their associated frequen- 
cies and timescales, as well as the energy they carry. 
They then conjectured that the high-energy (high-fre- 
quency) short,lived structures may be associated with 
the convective portion of the rainfall event and that the 
low-energy (high- or low-frequency) persistent struc- 
tures may be associated with the stratiform portion. 

Farg• et al. [1992] applied wavelet packets for com- 
pressing two-dimensional turbulent flows. They defined 
their best basis as the one that minimized the enstrophy. 
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Figure 15. Frequency support of the two-dimensional Morlet wavelet [Kumar and Foufoula-Georgiou, 1994]. 
(Reprinted by permission from Academic Press.) 

They found that the most significant wavelet packet 
coefficients in the best basis correspond to coherent 
structures and that the weak coefficients correspond to 
vorticity filaments. They were thus able to distinguish 
between a low-dimensional dynamically active part and a 
high-dimensional passive component. 

Saito [1994] used wavelet packets for noise suppres- 
sion and compression of geophysical signals containing 
transient features such as a migrated seismic section. 
The basic idea behind his scheme is that the signal 
component in the data may be represented by one or 
more of the bases in the library, whereas the noise 
component cannot be represented efficiently by any ba- 
sis in the library [see also Wickerhauser, 1992]. 

6. TWO-DIMENSIONAL APPLICATIONS 

The continuous two-dimensional wavelet transform is 

obtained by treating u - (u l, u2) and t - (t•, t2) as 
vectors in (3). Thus, for the two-dimensional case, 

Wf(k,t)-f•oof•f(u)qlx,t(u)du X>0 

Wf(X, t) - f(u) • tp X dtl. 

(38) 

An analogous inversion formula also holds, that is, 

f(t) - •** X-zWf(X, u)q•x,.(t) dX du. (39) 
0 

The condition of admissibility of a two-dimensional 
wavelet remains the same, that is, (1) compact support 
or sufficiently fast decay and (2) ff q•(t) dt= 0. 

As an example of the two-dimensional wavelet, we 
discuss the extension of the Morlet wavelet to two di- 

mensions. Define the vector t = (tl, t2) on the two- 
dimensional plane with Itl - x/t + Then the two- 
dimensional Morlet wavelet is defined as 

1 

q•ø(t) = -• exp (-il• ø. t) exp (Itl=/2) (40) 
Iø1 5 

with Fourier transform (see Figure 15) 

1 

•0(•) _ • e-In-n01=/2, (41) 
where 1• - (tot, 002) is an arbitrary point on the two- 
dimensional frequency plane and fl ø = (toø•, 002 ø) is a 
constant. The superscript 0 indicates the direction of the 
wavelet, that is, 

0 - tan -• (toø2/to•ø). (42) 
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The properties of this wavelet are best understood from 
its spectrum. Figure 15 shows the spectrum of the two- 
dimensional (2-D) Morlet wavelet for 0 = 0 and X = 1. 
This wavelet is no longer progressive as in the one- 
dimensional case; that is, its spectrum is not entirely 
supported on the positive quadrant (although we still 
have a single lobe). Manipulating II ø by changing 0 
allows us to change the directional selectivity of the 
wavelet. For example, by choosing II ø - (to•0, to20) = 
toO(cos 0, sin 0), too _> 5, 0 -< 0 -< 2•r, we get the 
wavelet transform 

Wøf(X, t)= j•(to•, to2) 

ß exp{-X2I(to• •)2+(to2 •)2]/2} 
ß exp [i(to•t• + to2t2)] dto• dto2. (43) 

That is, the wavelet transform Wøf(X, t) extracts the 
frequency contents of the function f(t) around the fre- 
quency coordinates (to•0/X, to20/X) __ (too cos 0/X, too sin 
0/X) with a radial uncertainty of cr½•,t = l/X, at the 
location t. Therefore, by fixing X and traversing along 0, 
directional information at a fixed scale X can be ex- 

tracted, and by •xing 0 and traversing along X, scale 
information in a fixed direction can be obtained. Some 

extensive work has been done in the area of image 
processing using directionally selective wavelets, such as 
the two-dimensional Morlet wavelet, in the context of 
image processing [see Antoine et al., 1992, 1993, and 
references therein]. This can be potentially applied to 
the study of geophysical processes. Kumar [1995] used a 
2-D Morlet wavelet to characterize anisotropy in radar- 
depicted spatial rainfall by studying the fraction of en- 
ergy in different directions at different scales. It was 
found that the methodology revealed even the subtle 
presence of scale-space anisotropy in random fields. It 
was concluded that rainfall fields might show anisotropic 
structure that might not be obvious from a typical spec- 
tral analysis and that this information might be impor- 
tant in sampling and modeling. 

Often the directional selectivity offered by the Morlet 
wavelet is not desired, and one wishes to pick frequen- 
cies with no preferential direction. Dallard and Spedding 
[1993] defined a wavelet by modifying the Morlet wave- 
let and called it the halo wavelet because of its shape in 
the Fourier space. The wavelet itself is defined through 
its Fourier transform 

•(II) = • exp (44) 

where K is a normalizing constant. As can be seen from 
the above expression, this wavelet has no directional 
specificity. 

Two-dimensional wavelets have found numerous ap- 
plications in the study of turbulence. The basic idea 

behind using wavelet transforms for the study of turbu- 
lence is to decouple the dynamics of coherent structures 
from the residual flow. As is argued by Farg• et al. [1996], 
if one is able to identify the dynamically active structures 
constituting turbulent flows and classify their elementary 
interactions, then one can define appropriate condi- 
tional averaging procedures by which statistical observ- 
ables can be constructed. Describing and following the 
evolution of these observables will then point out what 
type of nonlinear averaging is needed to go from the 
Navier-Stokes equations to the fully developed turbu- 
lence equations, a problem which still remains open. A 
detailed discussion of open problems in turbulence ad- 
dressed using the wavelets as well as a historical survey 
of applications is given by Farg• [1992a] (see also Farg• 
[1992b, c], Farg• et al. [1990, 1996], Everson et al. [1990], 
and Berkooz et al. [1992]). 

Two-dimensional orthogonal wavelets have been de- 
veloped under the two-dimensional multiresolution 
framework [Mallat, 1989a, b; Daubechies, 1988, 1992; 
Meyer, 1992, 1993b]. The mathematical details are be- 
yond the scope of this review, and the reader is referred 
to the above cited publications for a full account or to 
Kumar and Foufoula-Georgiou [1993a] for a brief de- 
scription. Here we will concentrate on a few geophysical 
applications. Kumar and Foufoula-Georgiou [1993a, b, c] 
applied a two-dimensional orthogonal wavelet transform 
to segregate spatial rainfall into multiscale local aver- 
ages and multiscale local fluctuations. By analyzing sev- 
eral radar-observed mesoscale convective systems in 
Oklahoma they concluded that the (so-defined) rainfall 
fluctuations exhibit scale invariance (simple scaling) and 
can be modeled through a class of stable distributions. 
The statistical parameterization of these fluctuations was 
further studied by Perica and Foufoula-Georgiou [1996a], 
who found that (1) the standardized rainfall fluctuations, 
that is, the rainfall fluctuations divided by the corre- 
sponding-scale average rainfall intensities, exhibited 
normality and simple scaling between the scales of 4 x 4 
and 64 x 64 km 2 and (2) the statistical parameterization 
of these fluctuations was strongly related to a measure of 
the convective instability of the prestorm environment, 
namely, the convective available potential energy 
(CAPE). On the basis of these relationships a multiscale 
disaggregation model of spatial rainfall was proposed 
[Perica and Foufoula-Georgiou, 1996b]. The model uses 
an inverse wavelet transform (IWT) to obtain rainfall 
intensities at any scale smaller than an initial scale (e.g., 
from 64 x 64 down to 4 x 4 km 2 rainfall averages), given 
the large-scale rainfall average and the value of CAPE 
(which is used to predict the self-similar parameteriza- 
tions of rainfall fluctuations). Evaluation of the model in 
midlatitude mesoscale convective systems showed that it 
is capable of reconstructing the small-scale statistical 
variability of rainfall as well as the fraction of area 
covered by rain. Plate 1 shows one example where the 
IWT model was used to disaggregate (downscale) rain- 
fall from 64 x 64 km 2 averages down to 4 x 4 km 2 
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Plate 1. The June 27, 1985, storm over Kansas-Oklahoma at 
0300 UTC. The bottom figure in the left column shows the 
original radar data at 4 x 4 km 2 resolution. From these data, 
rainfall fields at lower and lower resolutions (up to 64 x 64 
km 2 averages) were obtained by averaging, and these fields are 
shown in the left column (upscaling). Then, using the 64 x 64 
km 2 field and the downscaling scheme of Perica and Foufoula- 
Georgiou [1996b], rainfall fields at higher resolutions were 
reconstructed down to the resolution of 4 x 4 km 2. A good 
agreement is seen between the rain patterns and the areas 
covered by rain of the simulated and original fields at all 
resolutions. A more rigorous quantitative comparison of sev- 
eral statistical measures of the original and simulated fields is 
given by Perica and Foufoula-Georgiou [1996b]. (Adapted from 
Perica and Foufoula-Georgiou [1996b].) 

averages. It is seen that the disaggregated fields at all 
intermediate scales compare well with actual fields. 
More details and a formal statistical comparison are 
given by Perica and Foufoula-Georgiou [1996b]. 

A problem of significant interest in the study of pre- 
cipitation fields is the segregation of small-scale convec- 
tive activity from the larger-scale stratiform precipita- 
tion. This is of considerable interest in studying the 
diurnal effect of heating on precipitation, as convective 

activity tends to be affected by the diurnal cycle of 
heating more strongly than the larger-scale stratiform 
precipitation [Bell and Suhasini, 1994]. One of the Trop- 
ical Rainfall Measuring Mission (TRMM) objectives is 
to separate the observed precipitation into its convective 
and stratiform components, and several methods of 
achieving this have been proposed [e.g., see Tokay and 
Short, 1996; Steiner et al., 1995]. Some preliminary results 
using a cosine packet transform, which is a variant of the 
wavelet packet transform [Coifman and Meyer, 1991], 
show the potential of addressing this problem using a 
wavelet-based method. Figure 16 shows a 5-min aggre- 
gated squall line rainfall observed in Norman, Okla- 
homa, on May 27, 1987 (see Kumar and Foufoula-Geor- 
giou [1993a] for details about the data set). 
Superimposed on it is a grid which shows the scales of 
the basis functions found to optimally represent the 
image. As is clearly seen, small-scale convective activity 
is identified through layering of small boxes, and the 
regions bounded by larger boxes correspond to strati- 
form activity. Research is currently underway to identify 
the optimal criteria to demarcate the convective and 
stratiform regions. 

7. ON THE CHOICE OF WAVELETS 

Different categories of wavelets, such as continuous, 
discrete, orthogonal, etc., and various types of wavelets 

Figure 16. Identification of different scales of activity in a 
squall line storm. In the background is a 5-min averaged 
rainfall intensity (in millimeters per hour) of a squall line 
rainfall observed in Norman, Oklahoma, on May 27, 1987. A 
radial coverage of 230 km from the radar site is depicted. 
Superimposed on it is a grid of cells called Heisenberg boxes 
that shows the scales of the cosine packet basis functions found 
to optimally characterize the image. The smaller-scale convec- 
tive activity is identified through layering by small boxes, and 
the region bounded by larger boxes corresponds to stratiform 
activity. 
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quadratic spline wavelet I 
..... cubic spline wavelet iiii 

_ 

Time (s) 

Figure 17. (top) Antisymmetric quadratic spline 
(solid line) and symmetric cubic spline (dashed 
lines) wavelets. (bottom) Antisymmetric (long- 
dashed lines) and symmetric (short-dashed lines) 
wavelet transforms of a simulated signal (solid 
line) at the scale 2 3. (Adapted from Hagelberg and 
Gamage [1994].) (Reprinted by permission of Ac- 
ademic Press.) 

within each category provide a multitude of options for 
us to choose from when analyzing a process of interest. 
There are several considerations we may use in making 
our choice, for example, symmetric versus antisymmetric 
wavelets; continuous wavelets or discrete wavelet frames 
versus orthogonal wavelets; irregular versus smooth 
wavelets; physical domain (time or space) versus Fourier 
domain considerations; and choice of an appropriate 
wavelet once a given class is chosen. 

Hagelberg and Gamage [1994] have illustrated that the 
magnitude of the wavelet transform using a symmetric 
wavelet is large at the boundaries of the transition while 
that using antisymmetric wavelets is large at the center 
of the transition (see Figure 17). This shows that we can 
emphasize a region either of sharp transition or of 
stationary activity by appropriate choice of the wavelet. 

The choice between continuous wavelets or discrete 

wavelet frames and orthogonal wavelets is guided by 
considerations of the role of redundancy. When we need 
quantitative information about the process, often or- 
thogonal wavelets provide the best choice. However, in 
applications such as noise suppression, redundant rep- 
resentation of wavelet frames is an appropriate choice. 

Wavelet frames also have attractive sampling properties 
[Benedetto, 1993] and are useful when qualitative or 
exploratory analysis is required at small increments of 
scale due to the ability to perform analysis at scales that 
are finer than dyadic increments. 

An irregular or even discontinuous wavelet such as 
the Haar wavelet often provides a good and simple 
choice for applications where the process has sharp 
variations. More sophisticated smoother wavelets some- 
times do not provide a better alternative. For example, 
Figures 9c and 9d illustrate the time-scale analysis of the 
rainfall time series using the D8 wavelet. In comparison 
to the Haar wavelet (Figures 9a and 9b) the number of 
coefficients required to describe the data is comparable 
(Figures 9b and 9d), showing that at least for these data, 
smoother wavelets offer no significant advantage due to 
the irregular nature of the time series. 

When strong localization properties in the Fourier 
domain are desired for applications in filtering, the 
choice should be guided by considering the spectral 
properties of the wavelets. For example, although the 
Haar wavelet is conceptually simple to understand and 
algorithmically easy to implement, its spectrum is not 
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well localized, thereby making it inappropriate for filter- 
ing applications. 

Given a particular class of wavelets, such as Dau- 
bechies' [1988] orthogonal wavelets, it is often difficult to 
decide which specific wavelet to use within that class. To 
address this problem, Goel and Vidakovic [1994] ob- 
served that our choice should be the wavelet that most 

"disbalances" the energy of the signal, that is, the wave- 
let that provides the description of the process in the 
least number of coefficients (see also Figure 9). They 
have developed a thresholding scheme called Lorentz 
thresholding to identify the most significant coefficients 
and the optimal wavelet for the analysis [see also Katul 
and Vidakovic, 1996]. 

Clearly, our choice of the analyzing wavelet is deter- 
mined by a combination of the above considerations, 
and the appropriate choice should be made and justified 
on a case by case basis. 

8. SUMMARY AND CONCLUSIONS 

The purpose of many geophysical studies is to under- 
stand the physics and underlying structure of natural 
processes and to build models that capture some aspects 
of these processes. Often this is achieved by analyzing 
observations of the process, extracting important fea- 
tures regarding its morphological and statistical struc- 
ture, and using this information for model building. On 
some occasions, physical considerations directly guide 
model formulation, and in such cases, observations are 
used to validate or further refine the postulated model. 

Most scientists that have been involved with data 

analysis and model building will attest to the fact that it 
is as much art as science to model a complex natural 
process. Certain assumptions have to be always made, 
and certain aspects of the process variability must often 
be ignored, depending on the purpose of modeling. 
Mathematically rigorous tools of analysis that can point 
to important features of a process and reveal structure 
not apparent from direct observation are a key compo- 
nent of process understanding. For geophysical pro- 
cesses, in particular, tools that offer the ability to exam- 
ine the variability of a process at different scales are 
especially important. The wavelet transform offers such 
a tool and has already proven useful in the study of many 
processes in diverse areas of science and engineering. 

In this paper we have focused on presenting the most 
important properties of wavelet transforms that make 
them attractive for geophysical applications. The key 
reason for the widespread application of wavelet trans- 
forms is the property of time-frequency localization and 
its ramifications. It is interesting to note that by changing 
our perspective we can use the same formulation for 
different applications. On the one hand, wavelet trans- 
forms provide a tool for time-frequency localization, and 

on the other hand, they provide a tool for time-scale 
unfolding of the characteristics of the process. We dis- 
cussed several properties and applications of continu- 
ous, discrete, and orthogonal wavelet transforms, the 
three main classifications of wavelet transforms. We 

pointed out a major limitation of wavelet transforms, 
that is, the lack of decoupling between the scale and 
frequency parameters. Wavelet packets were developed 
to provide this decoupling, and they thus provide a more 
refined tool for the study of processes. We discussed this 
decoupling and some applications of wavelet packets. 
Along with the mathematical results that are potentially 
useful for geophysics, our emphasis has been on review- 
ing the results and insights developed through applica- 
tions to geophysical processes. We have discussed appli- 
cations of wavelets in fractal, multifractal, and self- 
similar stochastic processes, detection of singularities, 
analysis of nonstationary processes, data compression 
and filtering, and solution of partial differential equa- 
tions. Geophysical applications discussed related to tur- 
bulence, canopy cover, spatial and temporal rainfall, 
seafloor bathymetry, ocean wind waves, and remote 
sensing imaging, among others. It is anticipated that in 
the near future we will see an explosion of the use of 
wavelets for the study, analysis, and modeling of geo- 
physical processes. Judiciously used, this higher level of 
sophistication in our methods of analysis will bring new 
insights and understanding of many complex phenom- 
ena around us. 

The detailed discussion of numerical algorithms for 
implementation of wavelet and wavelet packet trans- 
forms was outside the scope of this paper. A basic 
algorithm for the orthogonal wavelet transform is dis- 
cussed in the appendix. Here we only give the reader 
some key references. A fast algorithm for implementa- 
tion of the orthogonal wavelet transform was developed 
by Mallat [1989a, b] (see also a brief summary of the 
algorithm in Appendix C of Kumar and Foufoula-Geor- 
giou [1994]). An implementation algorithm for the dis- 
crete nonorthogonal wavelet transform is given by 
Shensa [1993]. Algorithms and programs for wavelet and 
wavelet packet applications are given by Wickerhauser 
[1994] [see also Press et al., 1992]. Also, a wavelet trans- 
form module is available through a commercial package 
called Splus (available from StatSci Division of Math- 
Soft, Inc., Seattle, Washington) for exploratory and ad- 
vanced data analysis. The wavelet transform has also 
been recently incorporated into signal processing pack- 
ages such as MATLAB (an older version is available by 
anonymous ftp from simplicity.stanford.edu). Other 
wavelet-related software is often available from anony- 
mous ftp sites (e.g., see Kumar and Foufoula-Georgiou 
[1994] for a list). The reader is encouraged to experi- 
ment with these packages for hands-on understanding of 
the wavelet analysis capabilities and their usefulness in 
studying geophysical processes. 
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APPENDIX: COMPUTATIONAL ASPECTS OF 

ORTHOGONAL WAVELET TRANSFORMS 

The algorithm for implementation of the multireso- 
lution wavelet transform is simple. From a data se- 
quence {c• ø} (say, at resolution level m = 0) corre- 
sponding to a function f(t) we construct 

Pof(t) - • c,ød2(t- n) (45) 
n 

0 _ 
for a chosen q>(t), that is, assume 
The data sequence at lower resolution can be obtained 
using a discrete filter {h(n)} (obtained from q>0•(t)) as 

c; •= • h(n - 2k)c, ø. (46) 

The detail sequence {d•l}kez - {(f, q•-lk)}aez is 
obtained as 

d[ 1= • #(n - 2k)c, ø, (47) 

where {#(n)} is a discrete filter. See Daubechies [1992] 
for the values of h(n) and #(n) for different choices of 
q>(t) and q•(t). Equivalently, equations (46) and (47) can 
be written in the matrix notation: 

{C -I} -- H{c ø} {d -1} = G{cø}. (48) 

The matrices H and G are such that 

HH* - I GG* - I (49) 

and H*H and G* G are mutually orthogonal projections 
with 

H*H + G*G = I, (50) 

where H* and G* are adjoints of H and G, respectively, 
and I is the identity matrix. Also, 

GH* : 0 HG* : 0. (Sl) 

The algorithm given in (46) and (47) can be recursively 
implemented, and the data and detail sequence at lower 
and lower resolutions can be obtained. The inverse 

transformation, from the lower to higher resolution, can 
be obtained using 

c, m = 2 • h(n - 2k)c• -1 + 2 • #(n - 2k)d• -• (52) 
k k 

and it gives an exact reconstruction. 
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