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Abstract

We propose a systematic two-step framework to assess the presence of nonlinearity and chaoticity in time series. Although
the basic components of this framework are from the well-known paradigm of surrogate data and the concept of short-term
predictability, the newly proposed discriminating statistic, thetransportation distance function offers several advantages (e.g.,
robustness against noise and outliers, fewer data requirements) over traditional measures of nonlinearity. The power of this
framework is tested on several numerically generated series and the Santa Fe Institute competition series.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Given an observed time series, the usual proce-
dure to discriminate whether this series comes from
a deterministic chaotic system versus a random (sto-
chastic) process is to estimate the attractor dimension
following the Grassberger–Procaccia (GP) correlation
dimension algorithm [8] and to infer the underlying
process based on that dimension. However, there are
several problems associated with this algorithm, for
example, large data requirements, stationarity, pres-
ence of noise, lacunarity and edge effects [2]. More-
over, given a strange attractor, a finite correlation di-
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mension follows, but there exists no converse theo-
rem [18,26]. Like dimensions, a number of other mea-
sures (e.g., entropies, Lyapunov exponents) have been
developed based on concepts from nonlinear dynam-
ics and theory of deterministic chaos, which possess
similar problems [16].

Instead of relying on the dimension estimates of
the underlying attractor, several authors advocated the
concept of short-term predictability to distinguish ran-
domness from chaos [12,22]. The basic idea is that,
chaotic systems follow definite rules, and accurate
short-term predictions are possible although the pre-
dictability decreases exponentially with time due to
the extreme sensitivity on initial conditions [3]. Sug-
ihara and May [22] proposed a short-term prediction
method based on a library of patterns in time series.
A flat distribution of the correlation coefficient be-
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tween the predicted and original series versus predic-
tion horizon indicates uncorrelated noise, whereas in
the case of chaos such a plot would display a gradual
fall off [2,22]. However, this method may fail on cor-
related noise, as even in this case, the correlation coef-
ficient can be higher for short times than for long [12].
Kennel and Isabelle [12] also used short-term pre-
dictability as a tool to discriminate deterministic chaos
from randomness. They compared the prediction error
of a given time series to the prediction errors of an
ensemble of random time series which have the same
average power spectral density as the original data se-
ries. Casdagli [4] suggested the Deterministic versus
Stochastic (DVS) algorithm based on local linear mod-
els [5]. He computed average forecast error as a func-
tion of the neighborhood size. A small value of neigh-
bors corresponds to a deterministic nonlinear system,
whereas, a larger value of neighbors corresponds to a
stochastic process or a deterministic process with high
dimension [4,5].

Since nonlinearity is a necessary condition for
chaoticity [6], several researchers attempted mere de-
tection of nonlinearity, instead of positive identifica-
tion of chaotic dynamics. As mentioned by Paluš [16],
the detection of nonlinearity itself is not a trivial task
and there are various sources of possible errors in non-
linearity testing. One of the most popular nonlinear-
ity detection methods is based on “surrogate data”
[23]. This method provides a rigorous statistical test
for the null hypothesis that the data have been gen-
erated by a linear stochastic process [19]. Deviations
from the null hypothesis can be detected by compar-
ing some measure of nonlinearity computed from the
data with that computed from a number of Monte
Carlo realizations of a linear stochastic process (the
surrogates). The original time series and the surro-
gates must have the same autocorrelation function or,
equivalently, the same power spectrum. In the case
of nonlinearity testing of linear stochastic dynamics
distorted by simple nonlinear rescaling (static nonlin-
earity), the single time probability distribution also
must be conserved [11,19]. Schreiber and Schmitz
[20] compared the performance of a number of differ-
ent measures of nonlinearity (a maximum likelihood
estimator of the GP correlation dimension, modified
Brock–Dechert–Scheinkman statistic, nonlinear pre-
diction error with respect to a locally constant predic-
tor, higher-order autocovariance and time reversibil-

ity). They found that the root-mean-squared error of
the locally constant predictor gave consistent good dis-
criminatory power. Other nonlinearity measures gave
better performances in some cases, but failed in oth-
ers.

Diks et al. [6] used “reversibility” as a criterion
to discriminate between time series. A time series
is said to be reversible if its probabilistic properties
are invariant with respect to time reversal. If the
null hypothesis of reversibility can be rejected, a
linear Gaussian random process can be excluded as
the generating mechanism [6]. However, as Schreiber
and Schmitz [20] mentioned, asymmetry under time
reversal is a sufficient and powerful indicator of
nonlinearity, but not a necessary condition.

Paluš [15,16] presented a method for testing non-
linearity based on information-theoretic functional re-
dundancies. In a later work, Paluš [17] introduced
the concept of coarse-grained entropy rates (CERs),
also computed from information-theoretic functionals-
redundancies. The CERs are relative measures of reg-
ularity and predictability, and for data generated by
dynamical systems they are related to Kolmogorov–
Sinai entropy. If one dataset gives higher CER than the
other, the former is more irregular and less predictable
than the latter [17].

Recently, Bhattacharya and Kanjilal [2] proposed
a new determinism detection method based on the
Singular Value Decomposition. Chaoticity manifests
in the relatively decreasing strengths of the weaker
modes with increasing dimension of the orthogonal
spaces mapping the process. They used surrogates
to discriminate between chaoticity and stochasticity.
However, Bhattacharya and Kanjilal [2] commented,
“In spite of these available approaches, a clear dif-
ferentiation between chaotic and stochastic process
seems to be rather problematic”.

In this Letter, we propose a two-step framework to
detect first nonlinearity and then chaoticity based on
the ideas of transportation distance function [14], sur-
rogate data and short-term predictability. The trans-
portation distance function, the workhorse of our
framework, is based on both the geometric and proba-
bilistic aspects of point distributions and can provide a
measure of long term qualitative differences between
any two time series. From this point of view, it is su-
perior to simple correlation coefficient or root-mean-
squared error. Apart from the inherent abilities of the
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transportation distance function, the framework has
several other merits that will be discussed in Section 3.

To enhance the readability of the Letter, we have
briefly summarized the ideas of the transportation dis-
tance in Section 2. Section 3 delineates the nonlin-
earity and chaoticity detection framework. To demon-
strate its potential we have applied this framework to
a wide variety of time series and Section 4 describes
the results for several numerically generated time se-
ries. In Section 5 the method is applied to the Santa Fe
Institute competition series [7].

2. Transportation distance function

Moeckel and Murray [14] used the transportation
distance functiond(x, y) to measure the “distance”
between time series (x andy), where distance reflects
the difference in the long-term behavior. The idea was
to develop a distance function, that would give small
values when the systems generatingx and y have
similar attractors or nearby probability distributions in
the phase space.

In practice, the scalar time seriesx andy are trans-
formed into vector time seriesX andY respectively
by phase space reconstruction with an integer delay
(τ ) and embedding dimension(e). This results in an
e-dimensional embedding spaceR

e in which the dy-
namics of thex and y systems’ attractors are cap-
tured. Then, a box inRe containing both embedded
time series (X and Y ) is divided into finitely many
sub-boxesBi, i = 1, . . . , b. Let,pi = P(Bi) andqi =
Q(Bi). The probability vectorsp = (p1, . . . , pb) and
q = (q1, . . . , qb) represent the discretized probabil-
ity measures. A transportation plan would specify the
amount of material to ship between each pair of boxes.
Let,µij � 0 be the amount shipped from boxBi to box
Bj according to a transportation plan,µ. To preserve
the initial and final distributions, we require that:

(1)
b∑

j=1

µij = pi, i = 1, . . . , b,

(2)
b∑

i=1

µij = qj , j = 1, . . . , b.

Let M(p,q) be the set of all transportation plans
satisfying these constraints. Then the transportation

distance is obtained by minimizing the transportation
cost:

(3)d(p,q)= infµ∈M(p,q)

b∑

i,j=1

µij δij ,

where δij is the taxi cab metric normalized to the
embedding dimension between the centres ofBi and
Bj .

Moeckel and Murray [14] replaced this transporta-
tion problem by an equivalent transshipment prob-
lem and computed the transportation distance(d) effi-
ciently by the network simplex algorithm.

This distance function has several advantages. It
is based on both geometrical and probabilistic factors
(thus superior to the total variation distance) and less
sensitive to outliers, noise and discretization errors
(thus better than the Hausdorff distance). Moreover, it
can be used in any embedding dimension and systems
with similar attractors should produce small values
of d in every dimension. However, it is possible
for systems to appear similar in one dimension and
dissimilar in a higher dimension.

3. Nonlinearity and chaoticity detection
framework

The proposed framework consists of two logical
steps. The first step is to detect nonlinearity based
on the method of surrogate data using the transporta-
tion distance function. The surrogates are generated
following any available methodology, e.g., by imple-
menting the iterative Fourier based scheme introduced
by Schreiber and Schmitz [19]. The transportation dis-
tances are first computed between the original data set
{xon} and all the surrogate data sets{xin}, i = 1, . . . ,Ns :

(4)doi
(
xon, x

i
n

)
, i = 1, . . . ,Ns.

In a similar way, the mutual distances between the
surrogates are computed:

(5)dij
(
xin, x

j
n

)
, i, j = 1, . . . ,Ns and i �= j.

It is ideal to perform all the transportation distance
computations for the optimal embedding dimension
(the dimension computed by the false nearest neigh-
bors algorithm [1,11]). When this is not computation-
ally feasible, smaller embedding dimensions have to
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be used as a compromise. Throughout this Letter em-
bedding dimensionse = 1,2 and 3 have been used.
But, since in the case of surrogate generation the sin-
gle time probability distribution is conserved,e = 1 in
step one will always yield zero distance, as expected.
We propose that, if for all the embeddings, the two dis-
tributions(doi anddij ) are roughly non-overlapping,
the null hypothesis of linear stochasticity can be re-
jected, and the original data can be considered to be
nonlinear at this significance level.

The second step is to detect chaoticity based on the
concept of short-term predictability. Given the original
scalar data, a suitable delay time and an embedding
dimension are chosen following the ideas of mutual
information [1,11] and false nearest neighbors [1,11],
respectively. In this delay embedding space,k-step
ahead prediction is simply the average over the futures
of the neighbors [11]:

(6)x̂n+k = 1

Nun

∑

xj∈un
xj+k,

where Nun denotes the number of elements in the
neighborhoodun.

We apply this simple locally constant (zeroth order)
predictor on every vector of the original series{xon}
to obtain ak-step ahead predicted series{xkn} (no
iterated predictions). The transportation distances are
calculated between the original series andk-step ahead
predicted series for different embeddings as follows:

(7)dok
(
xon, x

k
n

)
, k = 1, . . . ,K,

We would like to emphasize that, the lags and embed-
ding dimensions used in this framework for the short-
term prediction should not be confused with the lags
(always equal to 1) and embedding dimensions (al-
ways e = 1,2 and 3) used for the transportation dis-
tance computations. The quality of short-term predic-
tions highly depends on the proper selection of lag
and embedding dimension, but as mentioned in Sec-
tion 2, the characteristic behavior of the transportation
distance is independent of embedding dimensions.

We conjecture that for all embedding dimensions
the distance between the original and predicted series
increases with prediction horizon in the case of deter-
ministic chaos, whereas in the case of nonlinear sto-
chastic processes there exists no such monotonic in-
creasing behavior. It is appropriate at this point to elab-
orate on some subtleties arising in the definition of

nonlinear stochastic processes and specifically on the
transition spectrum between deterministic and nonlin-
ear stochastic systems. Theoretically, any determin-
istic (chaotic or non-chaotic) system with a small
amount of dynamical noise is infinite-dimensional
(nonlinear stochastic). However, in practical sense if
the noise is weak, its influence on the deterministic
dynamics will be weak too so that the system will be
close to the deterministic end of the spectrum. Such a
system is frequently referred to in the literature as “ap-
proximately deterministic” [5]. It will be shown later
(see Example 8 in Section 5) that such a system (de-
terministic chaotic with small amount of dynamical
noise) will be correctly identified as chaotic by our
framework. On the other hand, when noise is more
dominant than its deterministic counterpart, the sys-
tem can be termed as “nonlinear stochastic” and this
is the definition used in this Letter. For such systems,
our framework is shown (see Example 5 in Section 4)
to correctly infer the absence of deterministic dynam-
ics.

It is noted that, the monotonic profile of the trans-
portation distance with lead-time is not a unique dis-
criminant of chaotic processes and that long memory
nonlinear stochastic processes can show a similar be-
havior. Also, in the case of certain noisy limit cycles
it is possible to get a monotonically increasing pro-
file up to the dominant oscillation zone (see Exam-
ple 6 in Section 4) with a non-monotonic profile af-
terwards. On the other hand, some chaotic processes
may not show any monotonic profile at all. For ex-
ample, recently Bhattacharya and Kanjilal [3] showed
that correlation coefficient versus prediction horizon
profile might result in incorrect inferences for cyclical
chaotic processes because of its non-monotonic be-
havior. One of the advantages of the proposed two-
stage framework is that, the first step can eliminate the
linear correlated processes which otherwise can “fool”
the short-term predictability tests because of their long
memories. Moreover, from our perspective, compar-
ing two distributions (between the original series and
the surrogate series (OS) and the mutual distances be-
tween the surrogates (MS)) is more rigorous than com-
paring one single value (statistic computed from the
original time series) with a whole distribution (proba-
bility distribution calculated from surrogates).

Although, the second step of the proposed frame-
work is very similar to that of Sugihara and May [23]
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and is widely used in the literature, we acknowl-
edge that it is not as robust (or foolproof) as the
first step of our framework. This step allows one to
separate nonlinear stochastic processes from nonlin-
ear deterministic-chaotic processes, which is generally
difficult in frameworks based only on the method of
surrogate data. Conceptually, one can only use the first
step of our framework to directly discriminate between
non-chaotic processes and chaotic processes with the
help of “tailor-made” surrogates (properly termed as
constrained randomized surrogates [21]) constructed
to test the presence of specific non-chaotic stochastic
structures in a process.

Last but not least, the use of the transportation
distance function is very general because it is defined
not only for deterministic processes but for stochastic
processes as well. In the next section, the robustness
and potential of the proposed method is demonstrated
on numerically generated series of known structure.

4. Numerically generated time series

All the numerically generated series are 10 000
points long, starting after 1000 points to avoid tran-
sient behavior. The number of boxes used for dis-
cretization of the phase space wasb = 100 for embed-
ding dimensione = 1, b = 502 = 2500 fore = 2 and
b = 203 = 8000 fore = 3. The tests were carried out
with nine surrogate series (90% level of significance
for one-sided test) to reduce the computational bur-
den. The implementation of the following algorithms:
the mutual information, the false nearest neighbors ap-
proach, surrogate data generations andk-step predic-

Table 1
Characteristics of the generated time series

Example Length Lag Embedding Neighborhood size
dimension (fraction of the

standard deviation)

1 10 000 – – –
2 10 000 10 3 0.3
3 10 000 14 8 0.4
4 10 000 10 9 0.3
5 10 000 3 7 0.3
6 10 000 40 3 0.3
7 9 000 2 4 0.3
8 10 000 8 6 0.3

tions were done using the TISEAN package [9]. Ta-
ble 1 gives a summary of all the parameters (fork-step
predictions) of the time series.

Example 1. Autoregressive model

First we consider a simple linear stochastic process
(Fig. 1(a)):

(8)xn = 0.99xn−1 + ηn,

whereηn is independent Gaussian random noise with
zero mean and unit variance. Fig. 1(a) depicts a
realization of the time series. Fig. 1(b) and (c) show
the two transportation distance distributions (OS and
MS) for e = 2 and e = 3, respectively. Evidently,
the distributions are highly overlapping, leading to
the right conclusion of the non-rejection of the null
hypothesis of linear stochasticity.

Example 2. Lorenz series

The Lorenz series forx(velocity of the fluid) results
from the numerical solution of the Lorenz system of
equations:

dx

dt
= σ(y − x),

dy

dt
= −xz+ rx − y,

(9)
dz

dt
= xy − bz.

Here an explicit Runge–Kutta(4,5) formula, the
Dormand–Prince pair [13] was used to solve the
above equations (at each 0.01 time interval) forσ =
16, b = 4 and r = 45.92 [1]. Fig. 2(b) (top row)
depicts the transportation distance distributions OS
and MS. Clear separation of the distributions implies
the presence of strong nonlinearity in the Lorenz
series. After detecting the nonlinearity, the second
step of the framework is applied: the short-term
predictability test. The parametersτ = 10 ande = 3
are chosen for the locally constant prediction. Fig. 2(c)
(top row) shows the transportation distance versus
prediction horizon profile. The monotonic increase of
the distance between the original data series and the
k-step predicted series attests to the chaoticity known
to exist in the Lorenz series.



418 S. Basu, E. Foufoula-Georgiou / Physics Letters A 301 (2002) 413–423

Fig. 1. Autoregressive process: (a) time series, (b) transportation dis-
tance function distributions (e = 2) and (c) transportation distance
function distributions (e = 3).

Example 3. Noisy Lorenz series

Next we consider the same Lorenz series but
with 30% (of standard deviation) additive Gaussian
noise (Fig. 2(a), bottom row). Results of the step

one procedure are shown in Fig. 2(b) (bottom row).
Approximate separation of the distributions shows
the robustness of this nonlinearity detection method
against noise. Finally, Fig. 2(c) (bottom row) clearly
captures the underlying chaoticity of the noisy Lorenz
series.

Example 4. Nonlinearly distorted autoregressive
process

In this example we consider the same linear sto-
chastic AR-1 series (Example 1) but we distort the
original series by a nonlinear measurement function
(static nonlinearity):

(10)yn = x3
n, xn = 0.99xn−1 + ηn.

The series (Fig. 3(a)) looks very “spiky” and quite
complicated [11,21]. Step one of our framework de-
tects nonlinearity (Fig. 3(b)). Step two leads correctly
to the rejection of any claim of chaoticity in the dy-
namics (Fig. 3(c) does not show any monotonic in-
creasing behavior). In this case, the selection of lag
time was arbitrary since the result from the mutual
information algorithm was not conclusive. It is seen
that the proposed framework fails to differentiate be-
tween distorted (by static nonlinearity) linear stochas-
tic processes and nonlinear stochastic processes, be-
cause it is actually designed to detect chaoticity in the
data, which it does correctly.

Example 5. Noisy sine limit cycle

The time series (Fig. 4(a)) is generated by adding
50% uniform noise from the interval[−0.5,0.5] in-
dependently at each step to a sine wave of unit am-
plitude (xt = sin(0.5t)) [22]. Fig. 4(b) depicts inher-
ent nonlinearity and Fig. 4(c) strongly suggests non-
chaotic behavior of the series. This is an example of a
noisy limit cycle in which noise dominates and masks
any characteristic signature of the deterministic com-
ponent.

Example 6. Stochastic Van der Pol oscillator

This example deals with the Van der Pol oscillator
(Fig. 5(a)):

(11)
dx1

dt
= x2,

dx2

dt
= µ

(
1− x2

1

) − x1 + ε,
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Fig. 2. Lorenz series (top row) and noisy Lorenz series (bottom row): (a) time series, (b) transportation distance function distributions (e = 3) and (c)k-step prediction profile.
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Fig. 3. Nonlinearly distorted autoregressive process: (a) time se-
ries, (b) transportation distance function distributions (e = 3) and
(c) k-step prediction profile.

wherex1 denotes location andx2 velocity [25]. The
parameter and noise combination ofµ = 1 andε =
N(0,1), respectively, makes the series weakly nonlin-
ear [25]. The weak nonlinearity is captured by the first

Fig. 4. Noisy sine limit cycle: (a) time series, (b) transportation
distance function distributions (e = 2) and (c) k-step prediction
profile.

step of our framework as expected (Fig. 5(b)). The
second step of our method does not provide conclu-
sive answer on the stochastic nature of the process,
although the transportation distance versus predic-
tion horizon profile is certainly non-monotonic over
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Fig. 5. Stochastic Van der Pol oscillator: (a) time series, (b) trans-
portation distance function distributions (e = 3) and (c)k-step pre-
diction profile.

the whole prediction horizon. It is argued that the
monotonic behavior up to lag 40 (which could be mis-
leading) is probably related to the dominant zone of
oscillation of this system (interestingly, the first min-

imum of the mutual information also occurs at lag=
40).

5. Santa Fe Institute competition series

To further demonstrate the robustness and potential
of the proposed two-step framework, we applied our
method on the Data sets A and D1 of the Santa
Fe Institute Competition series, which have been
extensively analyzed in the literature with different
algorithms [7].

Example 7. Data set A

This univariate time series (Fig. 6(a), top row) con-
sists of observations from a far-infrared laser experi-
ment, approximately described by three coupled non-
linear differential equations with Lorenz-like dynam-
ics [10]. The OS and MS distributions remain separate
(Fig. 6(b), top row) demonstrating the inherent non-
linearity in the series. Fig. 6(c) (top row) confirms the
chaotic deterministic behavior of the underlying dy-
namics. The conclusions agree with the results of Cas-
dagli and Weigend [5] and Paluš [15].

Example 8. Data set D1

This series (Fig. 6(a), bottom row) was numerically
generated by driving a particle in a four-dimensional
nonlinear multiple-well potential (nine degrees of
freedom) with a small nonstationary drift in the well
depths [7]. Due to a small Gaussian drift in one of
the parameters, the system is referred in the litera-
ture as an “approximately deterministic” chaotic sys-
tem [5]. The original series consists of 50 000 points.
To limit our computational burden in this work we
used only 10 000 points. Before proceeding to our re-
sults, we would like to mention some of the earlier
researchers’ experience on this data set. Casdagli and
Weigend [5] mentions: “Distinguishing (dimensional-
ity of) nine (deterministic chaos) from infinity (chaos)
is beyond the reach of a DVS algorithm that employs
simple local linear model.” Similarly, Paluš [15] was
able to detect only nonlinearity but could not reject any
of the following hypotheses: nonlinear stochasticity,
nonlinear determinism and chaoticity. Fig. 6(b) (bot-
tom row) conspicuously depicts the presence of non-
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Fig. 6. Santa Fe competition data Series A (top row) and Series D1 (bottom row): (a) time series, (b) transportation distance function distributions (e = 3) and (c)k-step prediction
profile.
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linearity in the series. Fig. 6(c) (bottom row) showing
the short-term prediction profile, clearly depicts the in-
herent chaotic nature of the data. This example demon-
strates the power of our framework to differentiate be-
tween high-dimensional chaos and stochastic underly-
ing dynamics. Since many natural processes are ex-
pected to exhibit high-dimensional determinism such
an attribute of a detection methodology is very impor-
tant for practical applications.

6. Conclusions

Motivated by the transportation distance function,
in this Letter we proposed a robust framework to de-
tect nonlinearity and chaoticity in a time series. Ap-
plication of this framework to known examples sug-
gests that it is able to detect nonlinearity and chaotic-
ity not only in the presence of noise but also in the
case of high-dimensional deterministic systems. It is
also unlikely that this framework can be fooled by cor-
related noise or distorted linear stochastic processes
(static nonlinearity). Theiler [24] comments that “It is,
of course, impossible to provide an absolutely defin-
itive resolution of whether or not a given finite data
set is chaotic”. Although this is true, we believe that
proper application of the proposed framework can at
least eliminate any possibility of spurious dimension
or Lyapunov exponent computation.
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