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Fractal interpolation has been proposed in the literature as an efficient way to construct closure models for
the numerical solution of coarse-grained Navier-Stokes equations. It is based on synthetically generating a
scale-invariant subgrid-scale field and analytically evaluating its effects on large resolved scales. In this paper,
we propose an extension of previous work by developing a multiaffine fractal interpolation scheme and
demonstrate that it preserves not only the fractal dimension but also the higher-order structure functions and
the non-Gaussian probability density function of the velocity increments. Extemsipgori analyses of
atmospheric boundary layer measurements further reveal that this multiaffine closure model has the potential
for satisfactory performance in large-eddy simulations. The pertinence of this newly proposed methodology in
the case of passive scalars is also discussed.

DOI: 10.1103/PhysRevE.70.026310 PACS nuni®erd7.27.Ak, 47.27.Eq, 47.53n

[. INTRODUCTION LES througha priori analysis(an LES-SGS model evalua-
tion framework. We will also demonstrate the competence
of our scheme in the emulation of passive-scalar fields for
which the non-Gaussian PDF and multiaffinity are signifi-
&antly pronounced and cannot be ignored.

Generation of turbulence-like fieldalso known assyn-
thetic turbulencg has received considerable attention in re-
cent years. Several schemes have been progdség with
different degrees of success in reproducing various chara
teristics of turbulence. Recently, Scotti and MenevEa]
further broadened the scope of synthetic turbulence research Il BASICS OF ERACTAL INTERPOLATION
by demonstrating its potential in computational modeling. '

Their innovative turbulence emulation scheme based on the The fractal interpolation technique is an iterative affine
fractal interpolation technique&FIT) [8,9] was found to be manning procedure to construct a synthetic deterministic
particularly amenable for a specific type of turbulence mody5)scale fieldin general fractal provided certain condi-

eling, known as large-eddy simulatighES, at present the 4,5 are met, see belgugiven a few large-scale interpolat-

most ?ff'c'er?‘ tech_nlque_ available for high Reynolds _numbering points (anchor points For an excellent treatise on this
flow simulations, in which the larger scales of motion are

resolved explicitly and the smaller ones are modgldthe subject, the reader is referred to the book by Barnf3yin

underlying idea was to explicitly reconstruct the subgrid- th|s|.tpaperi wte le limit ourfdtlrs]cusslc)t(VV|thlc>t:F Ioss ?f gef?'t )
resolved scales from given resolved scale valgassuming erality) only to the case of three interpolating data points:

computation grid-size falls in thaertial range of turbu- {(x,0;),i=0,1,3. For this case, the fractal interpolation it-

lence using FIT and subsequently estimate the relevan€rative function systemlIFS) is _Of the_ form {Rz;wn,q
subgrid-scalgSGS tensors necessary for LES. Simplicity, =1,2}, where,w, have the following affine transformation
straightforward extensibility for multidimensional cases, andStructure:

low computational complexityappropriate use ofractal

calculuscan even eliminate the computationally expensive (X> _ |:an 0 ](X> + (en> n=12
explicit reconstruction step, see Sec. IV for dejaileakes "u/ ™~ ¢, d,]\u ) Bt
this FIT-based approach an attractive candidate for SGS

modeling in LES. . _ To ensure continuity, the transformations are constrained by
Although the gpproach a6,7] is better_swted for L!ES the given data points as fonowwn(fo):(fn-l) and Wn(fz)
than any other similar schenfe.g.,[1-5)), it falls short in X, Uo”  “Un-a Uz
preserving the essential small-scale properties of turbulence_f,(u”)' for n=1,2. Theparametersa,,c,,€, andf, can be
such as multiaffinitywhich will be defined shortlyand non- ~ €asily determined in terms of,, (known as the vertical
Gaussian characteristics of the probability density functiortretching factorsand the given anchor points,t;) by
(PDF) of velocity increments. It is the purpose of this solving a linear system of equations. The attractor of the
work to extend the approach ¢6,7] in terms of realistic above IFS, G, is the graph of a continuous function
turbulence-like signal generation with all the aforementioned!:[X, %] — R, which interpolates the data poir(tg,t;), pro-
desirable characteristics and demonstrate its potential forided the vertical stretching factod obey O<|d,|<1. In
other words,

1)
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u(xi):ﬁi,i:0,1,2. 2 T
(a)
Moreover, if|d,|+|d,|>1 and(x;,T;) are not collinear, then 15k
the fractal(box-counting dimension ofG is the unique real 1 R
solution D of |d;|aP*+|d,JaS~*=1 (for rigorous proof see L UM

[8]). In the special case of three equally spaced points cov- 1 W
ering the unit interval0,1], i.e.,X,=0,X;=0.5 andx,=1, the ‘ ‘
parameters of the affine transformation kernel becane
:0-5;Cn:(an_un—l)_dn(UZ_UO);en:Xn—l;fn:un—l_dnuo;n L A

=1, 2. Inthis case, the solution for the fractal dimensi@) WY ‘ ‘
becomes W M K

D=1 +log(|dy| + |dy]). ()

Notice that the scalingd,; and d, are free parameters and
cannot be determined using only E@®); at least one more o L .
constraint is necessary. For examgi,7] chose to use the "7 0o o1 0z 03 04 05 06 07 08 09 1
additional condition|d,|=|d,]. X

-1}

IIl. SYNTHETIC TURBULENCE GENERATION

Not long ago, it was found that turbulent velocity signals
at high Reynolds numbers have a fractal dimensiorDof 10°f
=1.7%0.05, very close to the value Bf=5/3 expected for
Gaussian processes with a —5/3 spectral sldgg For D c
=5/3, theassumption ofd,|=|d,| along with Eq.(3) yields D404}
|d,|=]d,|=27236,7]. One contribution of this paper is a ro-
bust way of estimating the stretching parameters without any
ad hoc prescription; the resulting synthetic field will not only 4
preserve the fractal dimensig®) but also other fundamen-

tal properties of real turbulence. 1oy
As an exploratory example, using the fractal interpolation s , . X .
IFS[Eq. (1)], we construct a ¥ points long synthetic fractal 10° 10° 10 107 10 107! 1’

series, u(x), with given coarse-grained points ,
(0.0,1.2,(0.5,-0.3,and(1.0,0.7 and the stretching pa- 10
rameters used if6,7): d;=-2"3,d,=2"13, Clearly, Fig.
1(a) depicts that the synthetic series has fluctuations at all
scales and it passes through all three interpolating points.
Next, from this synthetic series we compute higher-order &
structure functiongsee Fig. 1b) for orders 2, 4, and 6
where theqgth-order structure function§,(r), is defined as
follows:

(c)

107t

J<(Bu >’

I

S(r) =(Julx+r1) = u(x)|% ~ réa, (4)

where the angular bracket denotes spatial averaging &nd

a separation distance that varies in an appropriate scaling
region (known as the inertial range in turbulencéf the
scaling exponend; is a nonlinear function of, then follow-

ing the convention of1-5], the field is calledmultiaffing L e e B R m—
otherwise it is termed asnonoaffine In this context, we Bu /<(du )% "2
would like to mention that Kolmogorov's celebrated 1941

hypothesis(K41) based on the assumption of global scale g, 1. (@) A synthetic turbulence series of fractal dimension
invariance in the inertial range predicts that the structurgy=s5;3. Theblack dots denote initial interpolating points) Struc-
functions of ordel scale with an exponemnf/3 over inertial  tyre functions of order 2, 4, and @s labelegi computed from the
range separationfl1,12. Deviations from{,=q/3 would  series in Fig. ta). The slopeg{,) corresponding to this particular
suggest inertial range intermittency and invalidate the K4lealization are 0.62, 1.25, and 1.89, respectivédy.PDFs of the
hypothesis. Inertial range intermittency is still an unresolvechormalized increments of the series (@. The plus signs corre-
issue, although experimental evidence for its existence ispond tor=2"14 while the circles refer to a distance=27%. The
overwhelming[11,13. To interpret the curvilinear behavior solid curve designates the Gaussian distribution for reference.

»
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wavelet coefficient at scalen and locationi, spacing in
physical space and length of the spatial series, respectively.
The power spectrum displays the inertial range slope of
-5/3, as anticipated.

At this point, we would like to invoke an interesting
mathematical result regarding the scaling exponent spectrum,
o of the fractal interpolation IF$16],

EK)

N
{y=1-logy> |dy9, (6)
n=1

whereN is the number of anchor points <in our caseN
=2). The original formulation of16] was in terms of a more
general scaling exponent spectrurig), rather than the
° structure-function-based spectrufp The 7(q) spectrum is
10" an exact Legendre tranform of the singularity spectrum in the
K sense that it is valid for any order of momergiscluding
negative and any singularitie§l7,18. 7(q) can be reliably
FIG. 2. Wavelet power spectruieirlces of the series in Fig. estimated from data by the wavelet-transform modulus-
1(a). The -5/3 power law is also shown for comparison. maxima method17,18§. To derive Eq(6) from the original
formulation, we made use of the equalityq) ={,—1, which
of the £, function observed in experimental measurementdiolds for positiveq and for positive singularities of Holder
(e.g.,[13]), Parisi and Friscii12,14 proposed thenultifrac- ~ exponents less than unif17,18. In turbulence, the most
tal model, by replacing the global scale invariance with theprobable Holder exponent is 0.38orresponding to the K41
assumption of local scale invariance. They conjectured thatalue) and for all practical purposes the values of Hélder
at very high Reynolds number, turbulent flows have singu€xponents lie between 0 and(dee[19,20). Hence the use
larities (almosy everywhere and showed that the singularity of the above equality is well justified.
spectrum is related to the structure function-based scaling Equation(6) could be used to validate our previous claim
exponents{,, by the Legendre transformation. that the parameters ¢6,7] give rise to a monoaffine field
Our numerical experiment with the stretching parametergi.e., , is a linear function ofg). If we consider|dy|=|d,|
of [6,7], i.e.,|d;| =|dy| =273, revealed that the scaling expo- =d=2"13,  then  ;=1-log(|d;|9+|d;|%)=1~log,(2d7)
nents follow the K41 predictiongafter ensemble averaging =-q log,(d)=—q log,(27®=q/3 (QED). Equation (6)
over 100 realizations corresponding to different initial inter-could also be used to derive the classic result of Barnsley
polating points, i.e., {;=q/3 (not shown herg a signature of  regarding the fractal dimension of IFS. It is well known
monoaffine fields. Later on, we will give analytical proof that [21,223 that the graph dimensiofor box-counting dimen-
indeed this is the case féd,|=|d,|=2"%3. Also, in this case, sion) is related taZ; as follows:D=2-¢;. Now, using Eq(6)
the PDFs of the velocity incrementéy,(x)=u(x+r)—u(x),  we getD=2-¢;=1+logy E§:1|dn|. ForN=2, we recover Eq.
always portray near-Gaussigslightly platykurtio behavior  (3).
irrespective ofr [see Fig. 1c)]. This is contrary to the ob- Intuitively, by prescribing several scaling exponends,
servations[11,13, where typically the PDFs of increments (which are knowna priori from observational dajait is
are found to ber-dependent and become more and morepossible to solve fod, from the overdetermined system of
non-Gaussian as decreases. Theoretically, non-GaussianequationgEq. (6)]. These solved paramete;, along with
characteristics of PDFs correspond to the presence of intepther easily derivabléfrom the given anchor points art)
mittency in the velocity increments and gradiethence in  parameterga,,c,,€,, andf,) in turn can be used to construct
the energy dissipatiorf2,5,11,12. multiaffine signals. For example, solving for the values
In Fig. 2, we plot the wavelet spectrum of this syntheticquoted by  Frisch [12]—({,=0.70,3=1,{,=1.28 (s
series. Due to the dyadic nature of the fractal interpolatiorr1.53 {s=1.77 {;=2.01, and{g=2.23, along with{;=0.33
technique, the Fourier spectrum will exhibit periodic modu-(corresponding toD=5/3)—yields the stretching factors
lation (see Figs. 7 and 8 df7]). To circumvent this issue we |d,|=0.887,0.676. There are altogether eight possible sign
make use of thédyadio discrete Haar wavelet transform. combinations for the above stretching parameter magnitudes
Following [15], the wavelet power spectral density function and all of them can potentially produce multiaffine fields

-5
10

10

E(K,y is defined as with the aforementioned scaling exponents. However, all of
them might not be the “right” candidate from the LES-
E(K,) = (W™ (i) 13 dx 5) performance perspective. Rigoroagriori anda posteriori
27 In2) ' testing of these multiaffine SGS models is needed to eluci-

date this issug¢see Sec. V.
where wave numbeK(=27/(2"dx)) corresponds to scale  We repeated our previous numerical experiment with the
Rn(=2Mdx). The scale indexn runs from 1(finest scalgto  stretching parameterd=—0.887 andd,=0.676. Figure &)
log,(N) (coarsest scaleW™(i), dx, andN denote the Haar shows the measured valu@nsemble averaged over 100 re-
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IV. FRACTAL CALCULUS AND SUBGRID-SCALE
(a) MODELING

In the case of an incompressible fluid, the spatially filtered
] Navier-Stokes equations are

U, _
9 Xm

0, (7a)

4 aam ~ (?I]m d f’ 2
— +U0,—=——| =6t T + VU, 7b
It n&Xn (9Xn|:p mn mn m ( )

mn=1,2,3,

‘ ‘ . . . , wheret is time, x, is the spatial coordinate in thredirection,
() 2 4 6 8 10 12 14 u, is the velocity component in tha direction, p is the

q dynamic pressurep is the density, and’ is the molecular
viscosity of the fluid. The tilde denotes the filtering opera-
tion, using a filter of characteristic width [24]. These fil-
tered equations are now amenable to numerical solution
(LES) on a grid with mesh size of ordek, considerably
larger than the smallest scale of motighe Kolmogorov
scalg. However, the SGS stress tensqy, in Eq. (7b), de-
fined as

e
]

-
ol

/<(8ul)z>

r

Tonn = UmUn = UrUn, (8)

[

Pdf {8u
°|

is not known. It essentially represents the contribution of
unresolved scaleésmaller thanA) to the total momentum
transport and must be parametrizath a SGS modglas a
function of the resolved velocity field. Due to the strong
influence of the SGS parametrizations on the dynamics of the
54 3 2 o o v 2z 3 s+ s resolved turbulence, considerable research efforts have been
8u J<(Bu 2,12 made during the past decades and several SGS models have
been propose@see[26,27] for reviews. The eddy-viscosity
FIG. 3. () The scaling exponent functiog,. The continuous, ~Model[28] and its variantge.g., the dynamic mod¢29] and
dashed, and dotted lines denote the K41, Ej, and the She- the scale-dependent dynamic modaD]) are perhaps the
Lévéque model predictions, respectively. The circles with error bargnost widely used SGS models. They parametrize the SGS
(one standard deviatiprare estimated values over 100 realizations stresses as being proportional to the resolved velocity gradi-
usingd;=-0.887 andd,=0.676. Experimental data of Anselmett ~ ents. These SGS models and other standard maédeis,
al.’s [5] is also shown for referencgtar signg (b) PDFs of the  similarity, nonlinear, mixed modelpostulate the form of the
normalized increments of the multiaffine series. The plus signs deSGS stress tensors rather than the structure of the SGS fields
noter=2"14 while the circles refer to a distance276. The solid ([31)). Philosophically a very different approach would be to
curve designates the Gaussian distribution for reference. explicitly reconstruct the subgrid scales from given resolved
scale valuegby exploiting the statistical structures of the
alizationg of the scaling exponentg, up to 12th order. For unresolved turbulent fieldsusing a specific mathematical
comparison we have also shown the theoretical values conteol (e.g., the fractal interpolation techniquand subse-
puted directly from Eq(6) (dashed ling A model proposed quently estimate the relevant SGS tensors necessary for LES.
by She and Lévéqug3] based on a hierarchy of fluctuation The fractal model of[6,7] and our proposed multiaffine
structures associated with the vortex filaments is also showmodel basically represent this new class of SGS modeling,
for comparisondotted ling. We chose this particular model also known as the “direct modeling of SGS turbulence”
because of its remarkable agreement with experimental dat§26,27,32.
The She and Lévéque model predigis=q/9+2-22)%°. In Sec. Ill, we have demonstrated that FIT could be ef-
Figure 3b) shows the PDFs of the increments, which arefectively used to generate synthetic turbulence fields with
quite similar to what is observed in real turbulence—fordesirable statistical properties. In addition, Barnsley’s rigor-
larger the PDF is near Gaussian while for smalteit be-  ous fractal calculus offers the ability to analytically evaluate
comes more and more peaked at the core with highfiséle  any statistical moment of these synthetically generated fields,
also Fig. 7b) for the variation of flatness factors of the PDFs which in turn could be used for SGS modeling. Detailed
of increments with distance]. discussion of the fractal calculus is beyond the scope of this

10
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paper. Below, we briefly summarize the equations most rel- r=uu-"uu (9a)
evant to the present work. Let us first consider the moment

integral: U|Vm:féxm[u(x)]'dx. In the present contextxg

=0,x,=0.5,andx,=1), this moment integral could be

viewed as 2 filtering (A=0.5 with the top-hat filter =Uz0=UpUs0 (9b)
[i.e.,FA(X)=1/Aif |x| <A/2,andF,(x)=0 otherwisg. For Barnsley[8] proved that for the fractal interpolation IFS
instance, the 1D component of the SGS stress tensor readfEq. (1)], the moment integral becomes

m-1 m 2 1-1 I+m-p
[2 U|'j< J )E a1Jq+ldnenm_] + 2 E K(l,m, pi])Up,J:|
j=0 n=1

p=0 j=0

Ul,m: 2 f (103)
(1 - an”“dL)

1

where |ag| > || and|as| >|ay|. This means that the SGS stress at
any nodex; would have more weight from the resolved ve-
ay e 4 locity at nodex,_; than nodex;.;. One would expect that
n%( >an(CnX+ f)' Pdf(anx+ )" = % K(,m,p,j)x’. such an asymmetry could have serious implication in terms
: = of SGS model performance.
(10b) In the following section, we will attempt to address this

After some algebraic manipulations, the SGS stress equatio'ﬁSue among others by evaluating several SGS models via the

a priori [ .
at nodex; becomes priori analysis approach

_ 2 ~2 .~ ~ = ~ ~ =
7i = agUi_y t aqUi + aoling + agli—gU + aglilig + asliyqUi-g. V. EVALUATION OF SGS MODELS:

(11) A PRIORI ANALYSIS APPROACH

We would like to point out that the coefficientg are sole The SGS models and their underlying hypotheses can be
functions of the stretching factod. In other words, if one evaluated by two approaches:priori testing anda poste-
can specify the values af, in advance, the SGS streés riori testing(terms coined by35]). In a posterioritesting,
could be explicitly written in terms of the coarse-grainedLES computations are actually performed with proposed
(resolved velocity field (T;) weighted according to weights SGS models and validated against reference solutions
o, uniquely determined by,.. In Table I, we have listed the terms of mean velocity, scalar and stress distributions, spec-
o, values corresponding to eight stretching factor combinatra, etc). However, owing to the multitude of factors in-
tions, |d,|=0.887,0.676. It is evident that any two combina- volved in any numerical simulatiofe.g., numerical discreti-
tions(d;,d,) and(d,,d,) are simply “mirror” images of each zations, time integrations, averaging, and filtejing
other in terms ofy,. Thus, only four distinct multiaffine SGS posterioritests in general do not provide much insight about
models(M1, M2, M3, and M4 could be formed from the the detailed physics of the newly implemented SGS models
aforementioned eightl,| combinations and in each case the [26,27. A complementary and perhaps more fundamental
orderings could be chosen at random with equal probabiliapproachi26] would be to use high-resolution modelirect
ties. In this table, we have also included the fractal model ohumerical simulatiofDNS)], experimental or field observa-
[6,7] and the similarity model of33] in expanded form simi- tional data to compute the “real” and modeled SGS tensors
lar to the multiaffine modelgsee the Appendix for more directly from their definitions and compare them subse-
information on standard SGS model$he multiaffine mod-  quently. This approach, widely known as thegriori analy-
els and the fractal model differ slightly in terms of filtering sis, does not require any actual LES modeling and is theo-
operation. Scotti and Meneve§f, 7] performed filtering at a retically more tractable. In this work we focused on
scaleA [see Eq(A4a)], whereas in the case of the similarity comparing the performance of SGS models via dhgriori
model, Liu et al. [34] found that it is more appropriate to analysis. We strictly followed the 1@ priori analysis ap-
filter at 2A. For the multiaffine models, we also chose to proach of[36—38. To highlight the caveats of the proposed
employ the A filtering scale. and several existing SGS models, we performed an extensive
One noticable feature in Table | is that some combinationsntermodel comparison study. This exercise also helped to
of d, result in strongly asymmetric weighig,. As an ex-  select the “right” combination of stretching factors for the
ample, in the case of M4 with;=+0.676 andd,=+0.887, multiaffine SGS models.
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TABLE I. The multiaffine, fractal, and similarity SGS models in expanded form and their corresponding
coefficients for the computation of SGS stresses according18y.

Model (dq,dy) Filter width  a a a as ay as
Multiaffine (M1) (-0.887,+0.67% 2A 0.218 0.204 0.050 -0.372 -0.036 -0.065
(+0.676,-0.88Y 2A 0.050 0.204 0.218 -0.036 -0.372 -0.065
Multiaffine (M2)  (+0.887,-0.67% 2A 0.030 0.248 0.261 -0.018 -0.479 -0.043
(-0.676, +0.88Y 2A 0.261 0.248 0.030 -0.479 -0.018 -0.043
Multiaffine (M3)  (-0.887,-0.67% 2A 0.144 0.220 0.133 -0.230 -0.209 -0.057
(-0.676,-0.88y 2A 0.133 0.220 0.144 -0.209 -0.230 -0.057
Multiaffine (M4)  (+0.887,+0.67% 2A 0.064 0.319 0.262 -0.121 -0.517 -0.007
(+0.676, +0.88Y 2A 0.262 0.319 0.064 -0.517 -0.121 -0.007
Fractal (=0.794,+0.794 A 0.127 0.221 0.026 -0.322 -0.120 +0.069
(+0.794,-0.79% A 0.026 0.221 0.127 -0.120 -0.322 +0.069
Similarity NA 2A 0.188 0.250 0.188 -0.250 -0.250 -0.125

In general, the correlation between ré¢a®?) and mod- 20—30 min;(iv) sensor heightz): 0.5—-20 m; andv) atmo-
eled(7M°%) SGS stresses is considered to be a good indicaspheric stability(z/L, L is the local Obukhov lengih0 (neu-
tor of the expected performance of a proposed SGS modefral) to 10 (very stable.
Another crucial indicator is the so-called SGS energy dissi- ABL field measurements are seldom free from mesoscale
pation rate(II), disturbances, wave activities, nonstationarities, etc. The situ-
ation could be further aggravated by several kinds of sensor
errors(e.g., random spikes, amplitude resolution error, drop
outs, discontinuities, etc.Thus, stringent quality control and
preprocessing of field data is of the utmost importance for

In the inertial range, the SGS energy dissipation rate is th@ny rigorous statistical analysis. Our quality control and pre-
most influential factor affecting the dynamical evolution of Processing strategies are qualitatively similar to the sugges-
the resolved kinetic energi26]. On averagell is positive, ~ tions of [41]. Specifically, we follow these steps.
representing a net drain of resolved kinetic energy into unre- (i) Visual inspection of individual data series for detec-
solved motion. Intermittent negative valuesIdf known as  tion of spikes, amplitude resolution error, drop outs, and dis-
“backscatter,” imply energy transfer from SGS to resolvedcontinuities. Discard suspected data series from further
scales. Unfortunately, a high correlation between real an@nalyses.

~ 15 U
I=-7;§=- ETﬁ(lD approximation.  (12)

modeled SGS stregser SGS energy dissipation rats not a (if) Adjust for changes in wind direction by aligning
sufficient condition for the success of a proposed LES SGSONic anemometer data using 60 s local averages of the lon-
model, although it is a highly desirable featygy,34,36. gitudinal and transverse component of velocity.

We primarily made use of an extensive atmospheric (iii) Partitioning of turbulent-mesoscale moti.on using dis-
boundary layefABL ) turbulence datasetomprised of fast- crete wavelet transforniSymmlet-8 wavelgt with a gap
response sonic anemometer datallected by various re- Scale[42] of 100 s. S _
searchers from the Johns Hopkins University, the University (iv) Finally, to check for nonstationarities of the parti-
of California—Davis, and the University of lowa during tioned series, we performed the following step: we subdi-
Davis 1994, 1995, 1996, 1999, and lowa 1998 field studiesvided each series in six equal intervals and computed the
Comprehensive description of these field experimgatg., ~ standard deviation of each subserids;,i=1:6). If
surface cover, fetch, instrumentation, and sampling fremaxo;)/min(o;)>2, the series was discarded.
quency can be found in[39]. We further augmented this  After all these quality control and preprocessing steps, we
dataset with nocturnal ABL turbulence data from CASES-99were left with only 358 “reliable” series foa priori analy-
(Cooperative Atmosphere-Surface Exchange Study 1999 ses. These streamwise velocity series were filtered with a
cooperative field campaign conducted near Leon, Kansa®p-hat filter(A= 1, 2, 4, or 8 m and downsampled on the
during October 199940]. For our analyses, four leve{s.5,  scale of the LES gridA) to obtain the resolved velocity field
5, 10, and 20 mof sonic anemometer data from the 60 mU; [43]. In a similar way, the streamwise SGS streg&?
tower and the adjacent minitower collected during two inten-was computed from its definitiofEq. (98)]. Filtering opera-
sive observational periodsn the nights of October 17th and tions were always performed in time and interpreted as 1D
19th) were consideredthe sonic anemometer at 1.5 m was spatial filtering in the streamwise direction by means of Tay-
moved to the 0.5 m level on October 19tBriefly, the col-  lor’s frozen flow hypothesis. The spatial derivatives were
lective attributes of the field dataset explored in this studyalso computed from the time derivatives by invoking Tay-
are as follows{i) surface cover: bare soil, grass and beans|or’s hypothesisd/ 9x=-1/(u)(d/ ), where(u) is the mean
(i) sampling frequency: 18-60 HZjii) sampling period: streamwise velocity.
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TABLE Il. Average correlation between observed and modeled
SGS stresses and energy dissipation ratesl m). The results are
based on 358 ABL turbulent velocity series measured during several
field campaigns. The quantities in the parentheses represent stan-
dard deviation.

COI’F( 7Jeall 7.r'nodeb Corr (HreaI’ Hmodeb

Smagorinsky 0.2®.09 0.41(0.17
Similarity 0.490.10 0.760.15
SGS-KE 0.280.08 0.420.17
Fractal 0.380.05 0.61(0.09
Multiaffine (M1) 0.440.05 0.71(0.05
Multiaffine (M2) 0.40(0.05 0.680.06
Multiaffine (M3) 0.490.05 0.770.05
Multiaffine (M4) 0.420.05 0.7000.05

FIG. 4. A comparison of the real and modeled SGS stresses,

computed from atmospheric boundary layer measurements, usi
1D filtering and Taylor’s hypothesis. The filter widthis 2 m. (a)
Real,(b) Smagorinsky modelc) similarity model,(d) SGS kinetic-
energy-based mode{g) fractal model, andf) multiaffine model

(M3).

In Fig. 4, representative realizations of the real and sev-
eral modeled SGS stresses are presented. The modeled S
stresses7™%! were computed from the definitions given in
the Appendix. Along the same lines, the real and modele

SGS energy dissipation ratésig. 5 were calculated accord-
J[model—

ing

-15/27™°%{ i/ 9x), respectively. The SGS model constants
like Cg of the Smagorinsky model o€, of the similarity

model (see the Appendixwere obtained by matching the
mean real and modeled SGS energy dissipation rat
[36—39. For consistency, the same procedure was followe
for the SGS-kinetic-energy-based model, fractal model, an

@ o o

h o no =« wi

(X3

n (m%s®)

to II*¥=-15/27°f/ox) and

' ' ' ' ' ‘ ' ' (@)
(b}

L I I I ' I ' ' ]

- I I I I I I I(d) -

e

0 500 1000 1500 2000 2500 3000 3500 4000

x (m)

"Rultiaffine models. In other words, we always ensured that

(=L 7ea fiif gx)) =(-2 7mo%e( i/ 9x)). Note that this proce-
dure has no effect on the correlation results presented below.
In actual simulations, these model coefficients could be ob-
tained dynamically following the approach [#9,44.

From Fig. 4 and 5 it is visually evident that both similarity
multiaffine models capture the variability of the SGS
stress and energy dissipation rates reasonably well. On the
ther hand, the performances of the Smagorinsky and SGS-
inetic-energy-based models are very poor. Note that the
Smagorinsky model assumes that the trace of the SGS tensor

is subtracted from the tensor, which is not feasible indD
priori analysig36]. Thus, direct magnitude-wise comparison
between the real-and the Smagorinsky-model-based SGS
stress or dissipation energy is not possible. However, this
oes not prevent us from quantifying the performance by the
orrelation coefficient. Moreover, the Smagorinsky model is
y construction fully dissipative. Hence, this model is unable
to reproduce the backscatter effefgse Fig. )], which do
occur in the real SGS dissipation ser[€sg. 5a)].

In Table II, forA=1 m, we show the correlation between
the real and modeled SGS stress and energy dissipation rates.
The standard deviations are given in parentheses. The model
M3 is significantly better than any other multiaffine model
and this could only be attributed to its near-symmetric stencil
structure(see Table ). This resolves our previous dilemma
regarding the selection of one multiaffine SGS model from a
class of four. From here on, we will only report results for
M3 and will identify it as the multiaffine model.

Next, in Fig. 6, we plot the mean correlation between real
and modeled SGS stress and energy dissipation rates for
=1,2,4, and 8 m. Asanticipated, for all the models, the
correlation decreases with increasing filtering scale. Also, the
correlation of real versus model SGS energy dissipation rates
is usually higher compared to the SGS stress scenario, as

FIG. 5. A comparison of the real and modeled SGS energyhoticed by other researchers. .
dissipation rates, computed from atmospheric boundary layer mea- It is expected that in the ABL the scaling exponent values
surements, using 1D filtering and Taylor's hypothesis. The filter({g) would deviate from the values reported [ib2] due to

width A is 2 m. (a) Real, (b) Smagorinsky model(c) similarity
model,(d) SGS kinetic-energy-based moded) fractal model, and

(f) multiaffine model(M3).

the near-wall effect. This means that the stretching faatprs
based on the, values we used in this work are possibly in
error. Nevertheless, the overall performance of the multi-
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(| 6(x+1)=6(x)|% ~r¥2 in the inertial range. Experimental

I Smagorinsky (@) . .
oot B Sy | o_bservatlons reveal tha_t analogous to turbulent velocity, pas-
Fractal sive scalars also exhibit anomalous scal{dgparture from
Ger: ELWtiation i) 1 the KOC scaling Observational data also suggest that
o7} 1 passive-scalar fields are much more intermittent than veloc-

ity fields and result in stronger anomgi5,44.

To generate synthetic passive-scalar fields, we need to de-
termine the stretching parametersandd, from prescribed
scaling exponents,. Unlike the velocity scaling exponents,
the published valueghased on experimental observatipob
higher-order passive-scalar scaling exponents display signifi-
cant scatter. Thus for our purpose, we used the predictions of
a newly proposed passive-scalar modér): §q=2+(§)2
—2(%)‘]/6—(3)2(1—76)(4/2. This model based on the hierarchical
structure theory of23] shows reasonable agreement with the
observed data. Moreover, unlike other models, this model

06

Corr(tﬁeal'tModel)

' B sracsihy " ’ i manages to predict that the scaling expongnis a nonde-
0.9.= Soierty , ] creasir!g function of]. Theoretically, this is c_rucial beca_use,
. za&f:ﬁm(m) otherwise, if {;——= as q— +=, the passive-scalar field
.8} ul 4

cannot be boundefll2,47.

Employing Eq.(6) and the scaling exponensp to eighth
orden predicted by the above model, we get the following
stretching factors}d,|=0.964,0.606. We again repeated the
numerical experiment of Sec. Ill and selected the stretching
parameter combinatiord; =-0.964 andd,=0.606. Like be-
fore, we compared the estimatfasing Eq.(4)] scaling ex-
ponents from 100 realizations with the theoretical values
[from Eg. (6)] and the agreement was found to be highly
satisfactory. To check whether a generated passive-scalar
field (d;=-0.964,d,=0.606 possesses more non-Gaussian

4 characteristics than its velocity counterpéi{=-0.887,d,
A (m) =0.676, we performed a simple numerical experiment. We
, _generated both the velocity and passive-scalar fields from
FIG. 6. (a) Correlation betyveen observed and modeled subgridiyentical anchor points and also computed the corresponding
scale_stresses an®) cc_nrrt_alatl_on between o_bserve_d and modeledgoinass factors, as a function of distance[see Fig. {b)].
subgrid-scale energy dissipations as a function gf fllter_WMt}ﬁhe omparing Fig. 7) with Fig. b) and also from Fig. @),
(rjesylts are bas?d on 358 ABL turbulent velocity series me""Suregne could conclude that the passive-scalar field exhibits
uring several field campaigns. . . o .
stronger non-Gaussian behavior than the velocity field, in

, . , ) accord with the literature.
affine model is beyond our expectations. It remains to be

seen how the proposed SGS scheme will performa pos-
teriori analysis, and such work is currently in progress.

COfr(nReal,ﬂMOdel)

VII. CONCLUDING REMARKS

V. PASSIVE SCALAR In this paper, we propose a simplg yet efficient s_cheme to
generate synthetic turbulent velocity and passive-scalar
Our scheme could be easily extended to synthetic passivédields. This method is competitive with most of the other
scalar(any diffusive component in a fluid flow that has no synthetic turbulence emulator schenteg.,[1-5]) in terms
dynamical effect on the fluid motion itself, e.g., a pollutant in of capturing small-scale properties of turbulence and scalars
air, temperature in a weakly heated flow, a dye mixed in ge.g., multiaffinity and non-Gaussian characteristics of the
turbulent jet, or moisture mixing in aj@5,46) field genera- PDF of velocity and scalar incremept#loreover, extensive
tion. The statistical and dynamical characteristiesiiso- a priori analyses of field measurements unveil the fact that
tropy, intermittency, PDFs, efcof passive scalars are sur- this scheme could be effectively used as a SGS model in
prisingly different from the underlying turbulent velocity LES. Potentially, the proposed multiaffine SGS model can
field [45,46. For example, it is even possible for the passive-address two of the unresolved issues in LES: it can system-
scalar field to exhibit intermittency in a purely Gaussian ve-atically account for the near-wall and atmospheric stability
locity field [45,46. Similar to the K41, neglecting intermit- effects on the SGS dynamics. Of course, this would require
tency, the Kolmogorov-Obukhov-CorrsifOC) hypothesis some kind of universal dependence of the scaling exponents
predicts that at high Reynolds and Peclet numbers, then both wall-normal distance and stability. The quest for this
gth-order passive-scalar structure function will behave akind of universality began only recent[$#8,49.
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10’ y . . . . r . . APPENDIX

The standard Smagorinsky eddy-viscosity model is of the
form

7%= - 2(CsA)SS;, (Ala)

172
-
°—

where

./<(89r)2>

SEx
Xj 8Xi

Pdf [56
o& )

is the resolved strain rate tensor and

EE (ZSij)llz
. S is the magnitude of the resolved strain rate ten€agris the
104 . i L I " L " £
4

s 4 3 =2 4 o 1 5 so-called Smagorinsky coefficient.
86 /<(38))>"2 For 1D surrogate SGS stress,

* ' ®) COAY
14} »* JX
Further, by assuming that the smallest scales of the resolved

motion are isotropic, the following equality hol¢iS0]:

-
[
T
*
1

-
=]
Y
2

-~ 15 ~
* (S8 =2 (Sh-

«
T
It

Employing this assumption for the instantaneous fields, we
can write

Flatness (K)

~ ~ ~ — | oT
— 12 _ |
°o ° 4 - | S =(25;)"*= V15 ™

_ ° o Hence, the Smagorinsky SGS stress equation becomes
10°° 10" ~
Ju

i
dX

' 75M30= — 2(CsA)A15
FIG. 7. (a) PDFs of the normalized increments of the passive

scalar multiaffine series. The plus signs refer to distare2 4, ~ The second model we considered is the similarity model

while the circles to a distanae=27. The solid curve designates the [33,34,

Gaussian distribution for referencga) The flatness factors of the siml — ==

PDFs of the increments of the velocitgircle and passive-scalar Tj = CLUT; - T; Ty). (A2a)

field (starg as a function of distance. Note that both the fields The overbar denotes explicit filtering with a filter of width
approach the Gaussian value of 3 only at large separation distancesA (usually y=2). C, is the similarity model coefficient

EE?;%;ZE passive-scalar field is more non-Gaussian than the ve- The 1D surrogate SGS stress could be simply written as

[

d
dX
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o
e - 2cRanell =, (A3)

where
g°=3(u-1)°.

Here,Cy is the SGS model coefficient.
In the case of the fractal model ¢6,7], the unknown

subgrid stresér) produced by a synthetic fractal field around where  6T= (Ui~ Tj_1)/2, 820=Tj41 — 20;+Tj_y,
=428

any grid pointx; can be written as
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3/4 3/4 2
7_ifraczf [u(x)]de—<f u(x)dx) (Ada)

1/4 1/4

1 . d@®-3P ,.
=00+ o ST
1+ 15d° - 24d* + 12d°
oL G0 (AdD)
|
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