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[1] The power law dependencies between channel morphology and river flows, known
as at-station hydraulic geometry (HG), have been recently shown to have exponents
that systematically vary with scale (contributing area). To explain these empirical
trends, a generalized HG model whose parameters are explicit functions of scale was
derived by Dodov and Foufoula-Georgiou [2004], based on a statistical multiscaling
formalism. In this paper we attempt to provide a physical explanation for this scale
dependence. The hypothesis we pose is that it arises from the scale dependence of
fluvial instability, which induces systematic variation in river planform geometry (e.g.,
sinuosity, meander wavelength, and radius of curvature) and consequent variations in
channel cross-sectional shape with scale. In other words, we postulate that the scale-
dependent HG is a direct consequence of the systematic increase of channel cross-
sectional asymmetry over reaches of increasing scale. To test this hypothesis, we
employ both a direct analysis of observations and also a physical model of meandering
rivers, which is based on linearization of the fully coupled equations of mass and
momentum balance for water and sediment. We show that the HG emerging from this
physical model is scale-dependent and agrees with the empirical observations and the
statistical multiscaling model. INDEX TERMS: 1824 Hydrology: Geomorphology (1625); 1860

Hydrology: Runoff and streamflow; 1821 Hydrology: Floods; KEYWORDS: channel asymmetry, floods,

fluvial instability, hydraulic geometry, scaling
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1. Introduction

[2] Hydraulic geometry (HG) refers to the power laws
relating stream width W, average depth D, and mean
velocity V to discharge Q: W = aQb, D = cQf, V = kQm

[Leopold and Maddock, 1953]. These relationships have
been observed to hold either for different discharges at an
individual cross section (referred to as at-station HG), or for
different downstream locations related through some char-
acteristic discharge, e.g., mean annual discharge (referred to
as downstream HG). This paper is concerned with the at-
station HG.
[3] In a recent paper, Dodov and Foufoula-Georgiou

[2004] presented empirical evidence that the exponents of
at-station HG systematically depend on scale, i.e., drainage
area upstream (A), and showed that this empirical trend can
be captured by a multiscaling formalism of hydraulic
geometry factors. Specifically, they postulated and con-
firmed via analysis of observations that the probability
distributions of discharge Q and cross-sectional area CA

remain statistically invariant under proper rescaling with a
random function which depends on scale only (notion of
multiscaling). As a result, lognormal multiscaling models
were fitted to Q and CA and revised at-station HG relation-

ships (i.e., relationships between CA and Q and V and Q)
whose coefficients were explicit functions of scale, were
derived. These relationships were called generalized HG
and were tested on 85 stations in Oklahoma and Kansas
with good agreement to observations.
[4] In this paper, we attempt to provide a physical

explanation of the empirically observed and statistically
described scale dependence of at-station HG in terms of
downstream variations in fluvial instability. First, we
briefly review the multiscaling formalism of HG that gives
rise to generalized at-station HG relationships. Then, we
present an analysis of fluvial instability [Parker, 1976] as a
function of contributing area to show that channel plan-
form geometry (e.g., sinuosity, curvature and wavelength)
and, particularly, the transition between straight and
meandering channels, are scale-dependent. To relate chan-
nel planform geometry and channel shape, we use the
model of Johannesson and Parker [1987, 1989] to calcu-
late the bed topography of representative meander bends
of a given Strahler order, and then, the HG of these bends.
This model is based on a small perturbation approach
which linearizes the governing equations maintaining full
coupling between the flow field, bed load transport and
bed topography. We show that the at-station HG that
emerges from this physical model is scale-dependent and
agrees with the empirical trends and the proposed statis-
tical model. We also show by direct analysis of observa-
tions that the velocity HG exponent depends inversely on
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channel sinuosity and that sinuosity increases as a function
of scale. These results together with findings from the
physical model are interpreted as evidence that the phys-
ical origin of the scale-dependent HG is the systematic
increase of channel asymmetry downstream induced by
scale-dependent fluvial instability.

2. Data Sets

[5] The data used in this study consist of the following
sets.

2.1. Data Set A

[6] Ninety-six stations in Nebraska, Kansas, Missouri
and Oklahoma (see Figure 1) consisting of: (a) indepen-
dent measurements of width, mean depth, cross-sectional
area, mean velocity and discharge under different flow
conditions (up to several hundred measurements per
station) allowing computation of at-station HG as well
as determination of channel bank-full discharge and
geometry (Qbf, Wbf, Dbf and Vbf) for 92 of the stations,
(b) channel slopes for 64 of the stations and (c) time
series of at least 3 years of unregulated daily discharges
for 74 of the stations. Gages were chosen such that they
are located in a similar elevation band. Also, the climatic
conditions and underlying geology of the considered
drainage basins are similar such that pronounced hetero-
geneities due to external factors are avoided. The up-
stream and downstream channel properties of more than
two hundred stations were carefully examined through

analysis of satellite images, aerial photographs and topo-
graphic maps 1:24,000 to choose the 96 stations that do
not have channel corrections upstream from the station.
Consequently, this data set is a bit different than the one
used by Dodov and Foufoula-Georgiou [2004].

2.2. Data Set B

[7] High-resolution hydrography data (U.S. Geological
Survey National Hydrography Data Set (NHDS)) for Neo-
sho and Osage river basins in Kansas and Missouri (see
Figure 2). These data are available in a vector format
(polylines consisting of sequences of [X, Y] pairs of
practically infinite resolution) allowing representation of
curvatures with radius of order O(1 to 10 m) which is
impossible to derive from elevation raster data (usually
available at resolution of 30 m). 21 out of the 96 stations
of data set A are located in Neosho and Osage river basins.
[8] It is noted that regulations do not affect the analysis

based on data set A and B (i.e., computation of at-station
HG and extraction of channel cross-sectional and planform
geometries) since changes in channel geometry due to
regulations have been found insignificant except immedi-
ately downstream of a dam [e.g., see Juracek, 1999, 2000].

2.3. Data Set C

[9] Data from 92 stations in Nebraska, Iowa, Kansas,
Missouri consisting of independent measurements of sus-
pended sediment load and suspended sediment concentra-
tion under different flow conditions (up to several hundred
measurements per station) with at least 3 years of unregu-

Figure 1. Locations of the 96 stations of data set A and the 92 stations of data set C. The shaded basins
are shown in more detail in Figure 2.
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lated record. 32 of the stations are common for data sets A
and C (see Figure 1).

3. Review of Generalized At-Station HG

[10] Evidence was presented by Dodov and Foufoula-
Georgiou [2004], based on 85 stations located in a
geologically and climatologically homogeneous region in
Oklahoma and Kansas, that the parameters (exponents
and preexponents) of at-station HG have a systematic
dependence on scale. For example, the at-station HG for
velocity V = kQm was empirically fitted to the 85 stations
and estimates of the parameters k and m were plotted as a
function of scale A (see points in Figure 3). In the same
figure estimates of the parameter m for Sangamon river
basin (approximately 500 km east-northeast from Osage
river basin) as given by Stall and Fok [1968] are also
shown. A trend of decrease of the exponent m with scale
is apparent, indicating an increase in the ‘‘linearity’’ of
catchment response as the contributing area increases (i.e.,
less dependence of velocity on discharge as m tends to
zero). At the same time, it was observed that the
exponents of downstream HG depend on the frequency
of discharge [see Dodov and Foufoula-Georgiou, 2004,
Figure 7].
[11] To explain these empirical findings, a multiscaling

framework was proposed within which processes whose
spatial variability changes as a function of scale and
frequency can be concisely and parsimoniously described.
Specifically, it was postulated that the discharge Q and
channel cross-sectional area CA obey multiscaling lognor-
mal (MSL) models whose pth quantiles are of the form

lnCAp Að Þ ¼ aCA
þ bCA

lnA
� �

þ gCA
þ dCA

lnA
� �1=2

zp ð1aÞ

lnQp Að Þ ¼ aQ þ bQ lnA
� �

þ gQ þ dQ lnA
� �1=2

zp;

for A0
l < A < A1

l ; ð1bÞ

where a(.), b(.), g(.) and d(.) are parameters, zp is a standard
normal quantile, A is the contributing area, and Al

0 and Al
1

represent some limiting contributing areas within which the
scaling behavior holds (see Dodov and Foufoula-Georgiou
[2004] and also the original papers of Gupta and Waymire
[1990] and Gupta et al. [1994] for more details on the
multiscaling theory). The above multiscaling models were
fitted to the 85 stations in Oklahoma and Kansas (see Dodov
and Foufoula-Georgiou [2004] for the details of fitting;
10 quantiles of the PDFs of Q and CA of all 85 stations were
fitted simultaneously through least squares) and the
parameters of the multiscaling models of (1a)–(1b) were
estimated and are shown in Table 1.
[12] Since power law relationships on lognormal random

variables result in preservation of quantiles, equations (1a)–
(1b) can be combined in order to determine scale-dependent
at-station relationships between CA, V and Q similar to the
Leopold and Maddock [1953] power laws:

CAp ¼ FCA
Að Þ QYCA

Að Þ
p ð2aÞ

V ¼ FV Að Þ QYV Að Þ; ð2bÞ
where

YCA
Að Þ ¼

gCA
þ dCA

lnA

gQ þ dQ lnA

 !1=2

; ð3aÞ

FCA
Að Þ ¼ exp aCA

þ bCA
lnA

� ��
� aQ þ bQ lnA
� �

YCA

�
; ð3bÞ

YV Að Þ ¼ 1�YCA
Að Þ; ð3cÞ

FV Að Þ ¼ 1=FCA
Að Þ ð3dÞ

(see Dodov and Foufoula-Georgiou [2004] for details).

Figure 2. River network represented by high-resolution hydrography of data set B and the 21 stations of
data set A located in the Neosho and Osage river basins.
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[13] In Figure 3 the theoretical curves FV(A) and YV(A)
computed from equations (3a)–(3d) using the multiscaling
parameters of Table 1 are plotted. We see that these
theoretical curves are in good agreement with the observa-
tions validating thus the proposed multiscaling model for
HG.

4. Systematic Downstream Variation in Channel
Planform Geometry and Cross-Sectional
Asymmetry: The Effect of Scale-Dependent
Fluvial Instability

[14] Channel cross-sectional shape can be easily shown
to have a significant effect on the HG of an idealized
channel. For example, consider two channels: one with
wide rectangular and the other with triangular (asymmetric
or symmetric) cross section. Using Manning’s relation for
velocity V � CA

2/3P�2/3, (for the same Manning’s n and
channel slope, where CA is the cross-sectional area and P
is the wetted perimeter) it can be shown that the HG
exponent for velocity is 0.4 for the wide rectangular
channel and 0.25 for the triangular channel. Considering
that the transition from a straight to a meandering channel
consists of a combination of almost rectangular to trape-
zoidal to asymmetric triangular cross sections (e.g., see
Johannesson and Parker [1987, 1989] for details), and the
observation that meandering induces asymmetry in the
cross sections of natural rivers (as evidenced by Leopold
and Wolman [1960], who site that approximately 90% of
meandering channels have asymmetric cross sections), a
possible connection seems to emerge as to whether the
scale dependence of HG is due to the systematic increase
of channel asymmetry downstream induced by scale
dependence in river planform geometry. In particular, we
pose and answer the following two questions: (1) how and
why does the sinuosity of meandering rivers change with
scale, and (2) how does the degree of sinuosity affect the
channel cross section asymmetry and in general the HG?

The first question is addressed in this section and the
second question in section 5.
[15] The transition between the three characteristic fluvial

morphologies of channels (meandering, braiding, and
straight) has been considered by Parker [1976] based on
stability analysis of a two-dimensional alluvial river model
previously proposed by Hansen [1967] and Callander
[1969]. The approach is based on a perturbation technique,
involving a small parameter representing the ratio of sedi-
ment transport to water transport. Parker [1976] derived an
instability criterion e*

e* ¼ SW=pFrD; ð4Þ

where S is the along-channel slope and W, Fr and D are
respectively the width, the Froude number and the mean
depth at formative discharges (usually assumed bank-full
ones), which can be used to differentiate between the three
regimes. The theory indicates that if the depth to width ratio
D/W � 1 and sediment transport is present (conditions
which are usually satisfied in natural rivers) a tendency
toward either meandering or braiding exists. Meandering
occurs for S/Fr � D/W, braiding occurs for S/Fr � D/W
and transition between the two regimes occurs if S/Fr 	
D/W. Thus if e* � 1 meandering occurs, if e* � 1

Figure 3. Points indicating the (left) at-station exponents and (right) preexponents for velocity
hydraulic geometry (HG) (i.e., parameters of the fitted Leopold and Maddock [1953] power law V = kQm)
for the 85 stations in Oklahoma and Kansas analyzed by Dodov and Foufoula-Georgiou [2004] versus
their contributing area. Lines indicate the theoretical curves FV(A) and YV(A) derived from the
multiscaling model (equations(3a)–(3d)). The results of Stall and Fok [1968] for the Sangamon River are
also given for comparison (reproduced from the values of Table 8 of their report) (adapted from Dodov
and Foufoula-Georgiou [2004, Figure 15]).

Table 1. Parameters of the Fitted Lognormal Multiscaling Models

for Cross-Sectional Area and Dischargea

Hydraulic Geometry Factors

Estimated Model Parameters

a b g d

D&FG, 85 Stations
Cross-sectional area, CA �3.18 0.61 0.84 0.1130
Discharge, Q �5.54 0.81 2.61 0.0012

This Study, 80 Stations
Cross-sectional area, CA �3.44 0.69 1.11 0.0581
Discharge, Q �6.00 0.90 3.00 �0.0721

aSee equations (1a) and (1b).
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braiding occurs (with a number of braids nbr � e* ) and if
e* = O(1) transition between meandering and braiding is
present. The condition for the maintenance of straight
channels is assumed to be D/W > 0.1.
[16] In the work of Parker [1976] no consideration of

scale was made and inferences, about flow instabilities and
transition from one regime to another, were made irrespec-
tively of whether channels drained a small or a large
upstream area. In our work, we use the available data (data
sets A and B) to perform a stability analysis as a function of
scale.
[17] In order to apply stability analysis, we first need to

determine the bank-full discharge Qbf, width Wbf, average
depth Dbf and mean velocity Vbf for all available stations
based on the empirical stage-discharge and width-discharge
relationships. Bank-full conditions were considered to occur
when a break in slope was observed in both stage-discharge
and width-discharge relationships (a transition to a very slow
increase in stage and very rapid increase in width after bank-
full discharge is reached). An example of determination of
bank-full discharge is given in Figure 4. The width, mean
velocity, mean depth and cross-sectional area at bank-full
were obtained from the nearest measurement below the
break. In some cases, where Qbf was determined using only
stage and discharge data (i.e., no data for W, V, etc. were
available at around bank-full discharges), Wbf, Vbf and Dbf

were obtained by eye from the corresponding log-log plots
versus discharge Q. The bank-full channel geometries and
discharge for the 92 stations of data set A (for which these
properties were determined) are presented in Figure 5 as a
function of contributing area (scale). In the same figure, the
at-station local channel slopes S and the ratio Dbf/Wbf needed
for stability analysis are also given as a function of scale.
[18] The observations (points) in Figure 5 suggest some

trends in the bank-full properties with scale. Specifically, it
is noted that Wbf, Dbf and Qbf versus scale can be well
described by double log-log linear relationships which
exhibit a break at a scale of approximately 700 km2. The
solid lines shown for these variables in Figure 5 were fitted
by eye keeping the scale of transition from one log-log
linear relationship to the other equal to 700 km2 as clearly
dictated by the Wbf, Dbf and Qbf relationships. The dashed
lines in the Vbf and Dbf/Wbf versus area plots were derived
from the fitted lines ofWbf, Dbf and Qbf. The solid line in the

relationship of along-channel slope S versus contributing
area was fitted by eye with no assumed break using the
available at-station local slopes and the information
extracted from the Digital Elevation Models (DEM) of
Neosho and Osage river basins.
[19] Once we have obtained the channel morphometry

parameters at bank-full as a function of scale we can
proceed with the stability analysis described above. In
Figure 6a we plot the e* criterion at bank-full computed
from (4) versus scale for the 64 stations of data set A for
which the at-station along-channel slopes were available.
The fact that e* is almost constant for scales up to�700 km2

suggests that sinuosity should be almost constant for
streams that drain areas up to that scale. However, the
plot of S/Frbf versus Dbf /Wbf in Figure 6b shows that
for medium to small scales (�700 km2 to 10 km2) the ratio
Dbf /Wbf approaches values greater than 0.1 (from below)
implying transition from moderate meandering to straight
channels as the contributing area decreases. In contrast, for
scales larger than �700 km2, e* decreases with contributing
area which suggests increase in fluvial instability with scale.
At the same time, the plots of Dbf /Wbf versus contributing
area and S/Frbf versus Dbf /Wbf show that the ratio Dbf /Wbf is
almost constant with scale implying suppressed instability
for scales of order larger than O(1000 km2). It is noted that
the broken line in Figure 6a and the arrows in Figure 6b are
computed from the log-linear approximations in Figure 5.
[20] Considering the fact that the sinuosity can be used as

a descriptor of fluvial instability for e* � 1, the overall
inference from the above analysis is that moderate sinuosity
should be observed at scales of order O(1000 km2), a trend
for slight decrease of sinuosity with increase in contributing
area should be present at larger scales, and almost straight
channels (sinuosity converging to 1) should dominate at
scales less than approximately 100 km2.
[21] To independently check the above conclusion, we

performed an analysis of the high-resolution hydrography
data set for the Neosho and Osage river basins (data set B).
The data set was first carefully examined to clean all loops
and artificial channels (where possible) in order to assign a
particular Strahler stream order to every channel in the river
network. Then the sinuosity, meander wavelength and
channel slope were computed separately for every bend
using simultaneous analysis of vector and elevation raster

Figure 4. An example of determination of bank-full discharge.
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data. (Technical details about the definition of the meander
bend and the estimation of sinuosity, meander wavelength,
minimum radius of curvature for a given channel bend are
given in Appendix A).
[22] The analysis of planform geometry showed that the

distributions of the above parameters for a given stream
order are nonsymmetric (e.g., approximately lognormal for
meander wavelength and power law distribution for sinu-
osity, e.g., see an example in Figure 7). This is why, in our
analysis it was considered more appropriate to use medians
rather than means as representative estimates of these
parameters:

Median meander wavelength

lmed
w ¼ Med li

w

� �
ð5aÞ

Median sinuosity

smedw ¼ Med siw
� �

; ð5bÞ

where lw
i and sw

i are respectively the wavelength and
sinuosity of an individual meander bend of order w.
[23] If a meander bend is assumed to follow a sine-

generated curve (a common assumption in fluvial geomor-
phology), approximate estimates of other descriptors of
meander planform geometry can be derived. These param-
eters (used in our analysis later on) are the minimum radius
of curvature of the bend Rmin 	 l [(s � 1)/s]�1/2/4.4p and
its angle amplitude QO 	 2.2[(s � 1)/s]1/2 (see Langbein
and Leopold [1966] and Johannesson and Parker [1989]
for details). As could be expected, for bends of a given

Figure 5. Dependence of the parameters of bank-full morphometry and at-station channel slope on
scale (contributing area). Crosses represent data set A and circles represent the stations of data set A
located in Neosho and Osage river basins. At-station along-channel slopes were available for data set B
and for 64 stations from data set A. Solid lines correspond to relationships fitted directly to the
observations, and dashed lines correspond to derived relationships.
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order the minimum radius of curvature and the angle
amplitude also followed nonsymmetric distributions and,
respectively, their median values were considered represen-
tative values of these parameters:

Median angle amplitude

Qw;med
O 	 2:2Med siw � 1

� �
=siw

� �1=2n o
ð6aÞ

Median of the minimum radius of curvature

R
w;med
min 	 Med li

w siw � 1
� �

=siw
� ��1=2

n o
=4:4p: ð6bÞ

[24] The estimated values of the parameters in (5a)–(5b)
and (6a)–(6b) are given in Table 2 grouped according to
channel’s stream order and are also plotted in Figure 8. Note
that channel stream order relates monotonically to contrib-
uting area as shown in Figure 8d and therefore, area and
stream order are used interchangeably in the rest of the
paper.
[25] The results clearly support the prediction from sta-

bility analysis, i.e., maximum (but moderate, 1.30) median
sinuosity is observed at streams of order 6 (�1000 km2),
decreasing median sinuosity with an increase of scale to
streams of order 8 (	10,000 km2) and approach to almost

Figure 6. (a) Channel stability criterion as a function of scale. (b) Transition from meandering to
straight channels with contributing area (see text for explanation).

Figure 7. (left) Sample probability density functions (PDFs) of meander wavelength and (right)
cumulative probability functions of sinuosity for streams of order 1 and 5 from data set B. The
nonsymmetric nature of the PDFs is noted with approximately lognormal for the meander wavelength
and power law for sinuosity. Similar PDFs were found for other-order streams.
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straight channels (median sinuosity 1.09) at streams of order
1 (	1 km2). This agreement between empirical observations
and physical theory is satisfying and provides insight
into the physical origin of the empirically observed scale-
dependent sinuosity in natural rivers (Figure 8c) in terms of
fluvial instability (Figure 6).
[26] Although the analysis of fluvial instability (based on

the variation of channel properties with scale) supports the
increase of channel sinuosity in the downstream direction,
there is another factor that strongly affects channel cross-
sectional shape and planform geometry, namely, the sedi-

ment supply regime (see Leopold and Wolman [1957],
Schumm and Khan [1972], and Ikeda [1989], among
others). Particularly, in their paper Schumm and Khan
[1972] reported results from flume experiments in which
they observed that a change in the suspended sediment load
rapidly increased sinuosity and transverse slope of the
experimental channel. This observation suggests that if
there is a trend of increase in channel sinuosity with scale,
such a trend might be related to a change in sediment supply
regime in the downstream direction, the existence of which
would be an additional support to our conclusions. To check

Table 2. Median Parameters of Channel Cross-Sectional and Planform Geometry for Meander Bends of Order w Used as an Input to the

Model of Johannesson and Parker [1987, 1989]a

Order w
Area
A, km2

Mean
Velocity
Vbf, m s�1

Mean
Depth Dbf, m

Channel
Slope S

Half-width
bbf, m

Wavelength
l, m

Perturbation
Parameter y0 Sinuosity s

Angle
Amplitude
Q0, rad

Minimum
Radius of
Curvature
Rmin, m

Number of
Bends

1 0.4 0.95 0.61 0.01286 1.00 112.5 0.034 1.09 0.62 24.7 161,219
2 2.8 0.93 0.95 0.00690 2.41 129.7 0.090 1.15 0.80 24.0 44,618
3 11.6 0.92 1.31 0.00436 4.58 175.0 0.136 1.19 0.89 31.2 16,769
4 52.9 0.90 1.84 0.00266 9.15 258.9 0.193 1.22 0.94 45.3 5562
5 220.9 0.89 2.55 0.00167 17.54 442.0 0.226 1.26 1.00 74.2 1007
6 989.4 0.90 3.44 0.00103 30.69 604.7 0.306 1.30 1.05 97.4 983
7 7087.2 1.06 4.27 0.00054 37.30 1018.5 0.208 1.25 0.98 168.7 692
8 14,581.2 1.13 4.62 0.00043 40.06 1848.0 0.116 1.26 1.00 305.2 31

aStream orders, median contributing areas, and parameters describing meander planform geometry are prototyped based on the Neosho and Osage river
basins (data set B). The channel slope and morphometry parameters at bank-full are obtained from the relationships in Figure 5 (data set A) for the
appropriate contributing areas Aw.

Figure 8. Parameters of meandering derived from the high-resolution hydrography data of the Neosho
and Osage river basins (data set B) as a function of Strahler order or scale (see the relation of the two at
the bottom right plot). The sinuosity plot shows the median sinuosity and the 5%, 25%, 75%, and 95%
quantiles. An increase not only in the median but also in the variability of sinuosity with scale is observed
from that plot.
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if the sediment supply regime does change with contributing
area we analyzed the suspended sediment concentration at
different flow conditions for the 92 stations of data set C. In
Figure 9 we plot the suspended sediment concentration
corresponding to frequency of exceedance of daily dis-
charges 50% and 5% in order to consider two quantiles
below bank-full conditions. It is seen that both quantiles
follow approximately straight lines with slopes respectively
0.29 and 0.36 in log-log space. This overall trend of an
increase in suspended sediment concentration with scale
for below bank-full conditions is, according to Schumm
and Khan [1972], another physically based motivation to
assume that the sinuosity increases in the downstream
direction.
[27] Having established the dependence of channel plan-

form geometry on scale, in the next section we continue
with the next important step in our analysis, namely, to
provide a connection between the increasing sinuosity and
the parameters of at-station hydraulic geometry. It is noted
that establishing a direct (observation-based) connection
between channel sinuosity and channel cross section asym-
metry is practically infeasible as channel cross section data
over many reaches with different contributing areas do not
exist. Such a connection can only be inferred using a
physical model of water and sediment transport, and this
is the approach we followed as described in the next section.

5. Connection Between Meandering Channel
Morphometry and At-Station Hydraulic Geometry

[28] To study the possible connection between channel
planform geometry and at-site HG exponents, we first need
to define ‘‘representative reaches’’ upstream of each station.
It is noted that the length of the representative reach
assigned to each station will depend on the Strahler order
of the stream (or the area draining to each station) with
stations of, say, order 3 being assigned a smaller represen-
tative reach than stations of order 5, and so forth. It is
desirable that, on the average, the number of meanders
encountered in each representative reach is the same. To
accomplish this we used the median planform properties of

streams of different orders as presented in Table 2 (e.g.,
median sinuosity sw and median wavelength lw of stream of
order w) and computed for each order w the along-valley
length of a ‘‘median meander bend’’ as lw/sw. The along-
valley length of the representative reaches was chosen to be
approximately 3 times the along-valley length of the median
meander bends, i.e., a length of approximately 3lw/sw for a
stream of order w, measured upstream from each station
along the valley slope. Since the spatial extent of data set A
is much larger than the high-resolution hydrography data of
data set B (which was used for the extraction of planform
properties of Table 2) additional work was performed to
extract planform properties in the regions lacking high-
resolution hydrography data. Namely, the channel center
line in the vicinity of every station (except the ones in
Neosho and Osage river basins – data set B) were digitized
from 1:24,000 topographic maps over lengths of approxi-
mately 3lw/sw according to the order of the channel. Then,
the at-station channel sinuosity and average curvature were
computed from the digitized lines.
[29] In Figure 10, we plot the at-station HG exponents for

velocity versus the at-station sinuosity and normalized
channel curvature (Wbf

i �Ci, where Wbf
i is the bank-full width

and �Ci the average curvature of the representative reach of
station i) for the 96 stations of data set A. Clearly, both plots
show a dependence of HG on channel planform geometry
expressed in terms of a decrease of the exponent m with an
increase in sinuosity and normalized curvature. As we have
already shown that the sinuosity increases in the down-
stream direction, the immediate conclusion is that the
overall trend in the region of interest is toward a decrease
of velocity exponents with an increase in contributing area.
[30] To show that the dependence between HG expo-

nents and sinuosity is due to the increasing channel
asymmetry downstream we employed the linear model of
meandering rivers of Johannesson and Parker [1987, 1989]
(see Appendix B for a brief description of the model).
Johannesson and Parker [1987, 1989] proposed a two-
dimensional (longitudinal and transverse coordinates)
model for river meandering based on momentum balance,
continuity and sediment conservation equations under the

Figure 9. Suspended sediment concentrations corresponding to two quantiles of water discharge
(probability of exceedance 50% and 5%) as a function of scale. Water discharge quantiles and the
corresponding suspended sediment concentrations are extracted from at least 3 years of unregulated flows
at the daily scale.
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assumption of steady slender flow. This model calculates
the flow field and bed topography in curved channels with
an erodible bed. The coupling between flow field, bed load
transport and bed topography was shown in that work to
cause significant increase of the lateral bed slope which was
not reproduced by previous studies neglecting the convec-
tive transport of primary flow momentum by secondary
flows in the transverse direction. The governing equations
of the model are summarized in Appendix B.
[31] The model of Johannesson and Parker [1987] was

adopted in our analysis by using it on representative
meander bends of various orders w. By supplying channel
bank-full properties for a channel of order w, i.e., width Wbf

w,
average depth Dbf

w , average velocity Vbf
w, channel slope Sw,

meander wavelength lw, angle amplitude QO
w and a pertur-

bation parameter YO defined as YO = pQO
wWbf

w/lw, we can
compute, using the model, the bed topography at several
cross sections of that meander bend. By using properties of
meandering channels of different orders w (extracted from
the region of Neosho-Osage river basins in Oklahoma and
Kansas), regional HG relationships can be derived as a
function of scale and compared with the empirical ones.
[32] The representative meander bends were chosen to

have cross-sectional geometry represented by the power law
approximations in Figure 5 (data set A) and median plan-
form geometry extracted from the high-resolution hydrog-
raphy of Neosho and Osage river basins (data set B). In
analogy to (6a)–(6b), the perturbation parameter YOw

was
computed as

Median perturbation parameter

Ymed
Ow

¼ 2:2pWw
bfMed siw � 1

� �
=siw

� �1=2
=li

w

n o
: ð7Þ

[33] A summary of all the needed parameters for con-
structing representative meander bends of different orders is
given in Table 2 (except the median size of bed material
D50, which was assumed to be 1.5 mm, the average for the
region of interest, since no trend of downstream fining was
observed). Using these parameters in the governing equa-
tions of the physical model, the steady state bed topography
of representative meander bends was computed for different
order streams.

[34] In Figure 11, example cross sections of synthetic
bends of streams of order 2 and 7 are shown. Clearly, the
trend is toward an increase in transversal slope, and respec-
tively increase in cross section asymmetry with an increase
in stream order. Furthermore, the percentage of the along-
channel length (or the number of cross sections) signifi-
cantly affected by asymmetry increases considerably with
the stream order. The cross sections with a break in
transversal slope (e.g., see Figure 11 for bends of order 7)
are those at which the perturbation in channel depth exceeds
the mean depth of the channel. In such cases we assume that
the secondary currents scour additionally the outer bank,
depositing sediment at the inner 2/3 of the channel width,
while at the same time preserving the width, mean depth
and mean transversal slope of the channel as predicted by
the theory (see also Appendix B).
[35] Having the channel cross sections of each synthetic

meander bend, a conditional HG was extracted based on the
assumption of normal flow at any cross section in the bend
and using the Manning-Strickler’s power relation for resis-
tance U/u* = 8.1(H/kS)

1/6, where u* =
ffiffiffiffiffiffiffiffiffi
gHS

p
is the shear

velocity and kS the effective roughness (estimates of effective
roughness were computed for every channel order using this
relation and bank-full channel properties given in Table 2,
i.e., substituting H = Dbf

w , and U = Wbf
w , and solving for kS

w).
The HG is called conditional since it represents the expected
velocity through the bend, conditional on a given discharge
at every cross section as the discharge increases.
[36] Examples of conditional hydraulic geometry for

velocity are given in Figure 12 for synthetic meander bends
of order 1, 3, 5 and 7. Note that the theoretical HG
relationships are slightly nonlinear in the log-log domain
as was pointed out by Ferguson [1986]. The purpose of
their approximation by power laws (the straight lines in
Figure 12) in this study is to facilitate the comparison with
empirical data in terms of a few parameters, i.e., the
preexponents k and the exponents m in these relationships.
[37] In Figure 13 we plot the coefficients k and the

exponents m of the predicted (from linear theory) and the
empirical at-station HG for velocity as a function of scale
(for data set A). For comparison, the predictions of HG
based on the multiscaling models of discharge and cross-
sectional area proposed by Dodov and Foufoula-Georgiou
[2004] and reviewed in section 2 are also given (i.e., as

Figure 10. Plots of at-station exponents for velocity (m) as a function of sinuosity and normalized
curvature.
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computed from relationships (3c) and (3d) using the param-
eters of Table 1 fitted to data set A). What is evident from
these figures is that independently of the functional type of
the decay of HG exponents with scale, the trend of decreas-
ing magnitude of these parameters with scale is well
reproduced by both the multiscaling model and the linear
theory.
[38] To test the statistical significance of the trend we

apply a hypothesis testing with the null hypothesis that the
slope of the least squares fit to the relationship m versus
ln(A) is equal to zero. The statistic for this test (under the
premise of Gaussian error model [e.g., see Devore and
Peck, 1996]) is given by the expression

t ¼ b
Xn

i¼1
mi � m̂ið Þ2= n� 2ð Þ

h Xn

i¼1
lnAi � lnA
� �2i�1=2

; ð8Þ

where b is the slope of the linear model fit, m̂i is the
estimate of the linear model fit for a given ln Ai and n is
the number of samples. The computed test statistics is t =
�5.06 and for 94 degrees of freedom (96 stations – 2),
the probability P(t < �5.06) and P(t > 5.06) is 2.04 �
10�4% (double sided test to check if b 6¼ 0). Since this
percent is much less than any reasonable confidence
threshold the hypothesis is rejected, i.e., the trend of
decrease of exponent m with scale is statistically
significant. Although visually minor, this trend has been
shown to play an important role when considered in the
context of hydrologic response [see Dodov and Foufoula-
Georgiou, 2004] since it significantly affects the shape of

the hydrograph and implies different degrees of non-
linearity in catchment response at different scales.

6. Insights From Contrasting the Statistical and
Physical Theories: The Role of Thresholds

[39] A closer examination of Figure 13 suggests some
differences in the trends of the exponent m with contrib-
uting area predicted from the statistical and physical
theories, i.e., for the linear theory a steep decay up to
approximately 700 km2 and almost constant exponents
after that, and for the multiscaling theory exponents
following almost a straight line with log-area. To explain
this difference, let us consider the plots in Figure 14. In
these plots we compare the scaling of bank-full dis-
charges Qbf and cross-sectional areas CAbf

= WbfDbf of
data set A with the scaling of the empirical quantiles of Q
and CA corresponding to frequencies of exceedance 50%
and 5%. The quantiles of Q and CA were computed
directly from observations and nonparametrically, i.e.,
without assuming any particular distribution for daily
discharges and any particular relationship (e.g., power
laws) between discharge and cross-sectional area.
[40] It is evident from Figure 14 that the below bank-full

empirical log-quantiles of Q and CA (points) follow almost
straight lines with log-area, and are in good agreement with
the quantiles predicted by the multiscaling theory (solid
lines). This observation supports once again the multiscal-
ing formalism for below bank-full discharges introduced by
Dodov and Foufoula-Georgiou [2004]. In that study only

Figure 11. Examples of ‘‘synthetic’’ meandering bends of a given stream order generated from the
linear meandering model of Johannesson and Parker [1987] using the representative meander bend
parameters of Table 2. Examples of second- and seventh-order bends are shown above.
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quantiles corresponding to frequencies of nonexceedance of
Q and CA of up to 99.4% were explicitly considered in the
multiscaling model fitting (specifically, ten frequencies of
nonexceedance p = {0.006, 0.026, 0.082, 0.202, 0.391,
0.609, 0.798, 0.918, 0.974, 0.994}), thus neglecting the
effect of near-bank and overbank flows whose frequency of
nonexceedance is typically larger than 99%. In contrast,
hydraulic geometry derived from the linear theory is based
on the double power law approximations of channel bank-
full morphometry shown in Figure 5 and thus explicitly
incorporates a physical threshold of the system and its
dependence on scale (i.e., the transition from below to

above bank-full conditions and how this transition changes
with scale). This physical threshold is not accounted for in
the multiscaling theory of HG. Despite the above explained
disagreement between the multiscaling theory and physical
theory predicted HG, one could argue that both predictions
are acceptable within the scatter of empirical observations,
which is considerable especially for large contributing areas
(see Figure 13).
[41] It is worth commenting here that the scaling and

scaling break of above bank-full flows seen in Figure 14
(left) is expected to be reflected in the scaling of (maximum
annual) floods. For river reaches with contributing areas less

Figure 12. Examples of conditional hydraulic geometry for velocity as computed for synthetic meander
bends of different order. Expectation was taken over 20 cross sections of the synthetic meander bends.
The straight lines represent the fitted power law approximation of the theoretical relationships.

Figure 13. Comparison of theoretical (as predicted from linear meandering theory (solid circles and
interpolated solid line) and multiscaling theory (dashed line)) and empirical hydraulic geometry for
velocity. The coefficient k and the exponent m in the relationship V = kQm are shown, respectively.
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then 700 km2, the frequency of occurrence of overbank
flows is almost constant (i.e., parallel lines of Qbf, Q50% and
Q95%, and CAbf

, CA50%
and CA95%

in Figure 14), while for
larger rivers this frequency seems to depend on contributing
area (i.e., different slopes of Qbf compared to Q50% and
Q95%, and CAbf

compared to CA50%
and CA95%

). In other
words, river reaches that drain large areas will be more
frequently flooded than smaller ones. Considering the
retardation effects of overbank storages on peak flows,
one could easily guess that the peak flow statistics will be
affected in a different way at different scales with a trend of
decreasing variability downstream. This observation is
revealing and is analyzed in detail in a subsequent publi-
cation (B. Dodov and E. Foufoula-Georgiou, Fluvial
processes and streamflow variability: Interplay in the
scale-frequency continuum and implications for scaling,
submitted to Water Resources Research, 2004, hereinafter
referred to as Dodov and Foufoula-Georgiou, submitted
manuscript, 2004) in the context of the so-called multi-
scaling theory of flood peaks [see Gupta and Waymire,
1990; Gupta et al., 1994; Gupta and Dawdy, 1995].

7. Summary and Conclusions

[42] The relations between channel morphology and
discharge (known as hydraulic geometry: HG) are widely
used by geomorphologists and hydrologists since their
introduction by Leopold and Maddock [1953]. Recently,
Dodov and Foufoula-Georgiou [2004] showed that these
relationships might deviate from simple power laws with
constant exponents as initially proposed. More specifically,
they showed that the exponents of the at-site HG system-
atically depend on upstream contributing area. The authors
provided empirical evidence for this scale dependence and
proposed a statistical framework (based on a multiscaling
formalism) within which these empirical trends could be
interpreted and quantified.
[43] In the present paper, we offer a physical explanation

of the scale dependence of HG. Using a physically based

theory which connects channel planform geometry (e.g.,
sinuosity, curvature and meander wavelength) and channel
cross-sectional shape under preservation of the momentum,
water and sediment [Johannesson and Parker, 1987, 1989],
we predict HG and show that the physically derived HG
agrees with the empirical trends and to a degree with the
statistically predicted HG based on the multiscaling theory.
This agreement, together with a parallel analysis of the
dependence of channel planform geometry on scale and
dependence of at-station HG exponents on sinuosity, is
interpreted as evidence that the physical origin of the
scale-dependent HG is the systematic increase of channel
asymmetry downstream induced by scale-dependent fluvial
instability.
[44] It is noted that the systematic change of HG expo-

nents with scale reported herein has been extracted from
thousands of streams in a region with overall homogeneous
geologic, topographic and hydroclimatic conditions, and
thus, for every scale of interest, it reflects the spatially
variable planform and channel geometry characteristics
present in that region (e.g., see PDFs of sinuosity for a
particular scale in Figure 7). In this sense, it is noted that the
notion of scaling of at-site HG is to be interpreted in
statistical terms (i.e., akin to the scaling and regionalization
of floods) and not as the change of HG as one goes
downstream along individual reaches of the river.
[45] An interesting observation, namely the dependence

of the frequency of occurrence of overbank flow on con-
tributing area, suggests that river reaches that drain large
areas are more frequently flooded than smaller ones. This
observation also sheds light into the decreasing variability
of flood peaks for large areas (considering the retardation
effect of overbank storages on peak flows) and is explored
in its own right in a subsequent paper (Dodov and Foufoula-
Georgiou, submitted manuscript, 2004) in the context of the
multiscaling theory of flood peaks [see Gupta and Waymire,
1990; Gupta et al., 1994; Gupta and Dawdy, 1995].
[46] The development of synthetic HG (used in this paper

to physically explain the systematic variations of at-station

Figure 14. Scaling of discharge and cross-sectional area: comparison of bank-full discharge Qbf and
cross-sectional area at bank-full CAbf

of data set A (top curves) with the Q and CA empirical quantiles of
frequency of exceedance 50% and 5% based on at least 3 years of unregulated discharge. The predictions
of the multiscaling model (solid lines) are also given for the 50% and 5% quantiles and show good
agreement with the observations. The crosses for the bank-full properties correspond to the observations,
and the dashed lines are least squares fitted (same as the lines of bank-full properties shown in Figure 5).
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HG with scale) can be itself a valuable practical tool for
runoff-routing applications in ungauged basins. A method-
ology based on the linear theory of river meandering can be
used for computing synthetic HG of individual channels
(based on supplied representative values or PDFs of the
parameters describing channel planform geometry and
cross-sectional morphometry), which can then be applied
for distributed probabilistic routing in ungauged catch-
ments. Such an approach would provide realistic bank-full
discharges and timely transition to overbank regime, which
is very important from both hydrologic and geomorphologic
point of view.

Appendix A: Derivation of Meander Bend
Properties (Sinuosity, Meander Wavelength,
and Radius of Curvature) From High-Resolution
Hydrography Data

[47] The available hydrography data is in the form of GIS
Arc/Info line coverages. From these data, derivation of
meander bend properties is performed at three stages.
[48] 1. At the first stage, the data is first carefully

examined to clean all loops and artificial canals and Strahler
stream order is assigned to every channel in the river
network.
[49] 2. At the second stage, a radius of curvature is

assigned to every tree successive points of every polyline
representing a channel. The median radius of curvature is
then calculated for all triplets of points belonging to a given
Strahler order.
[50] 3. At the third stage, for every point (Xi, Yi) in a

polyline Pw of order w, another point (�X i, �Y i) is calculated

such that �X i =
Xm
j¼1

Xj, �Y i =
Xm
j¼1

Yj, (Xj, Yj) 2 RwjXi ,Yi

where RwjXi,Yi
is a ball of radius Rw (the median radius of

curvature of a channel of order w computed at the second
stage) centered at (Xi, Yi). Thus for every polyline Pw
another polyline Pw

0 is computed, consisting of all points
(�X i, �Y i). The even crossings of the two polylines is then
assumed to represent the boundaries of the meander
bends as shown in Figure A1. Once the boundaries of

all meander bends are defined, their parameters (sinuosity,
meander wavelength and radius of curvature) are easily
calculated and statistics over all meander bends of a
given order performed.

Appendix B: Implementation of Linear Theory of
River Meandering for Derivation of ‘‘Synthetic’’
Hydraulic Geometry

[51] The theory is based on the two dimensional (longi-
tudinal and transversal coordinates) momentum balance,
continuity and sediment conservation equations under the
assumption of steady slender flow [see Johannesson and
Parker, 1987]:

Longitudinal momentum balance

T 2
1

1þ ~n~C
�u
@�u

@~s
þ �v

@�u

@~n
þ

~C

1þ ~n~C
�u�v


 �
¼ �g

1

1þ ~n~C

@~x
@~s

� ~ts
r~h

� 1

~h

� @

@~n
�u~h

Z1
0

T~vdV

2
4

3
5þ 2~C

1þ ~n~C
�u~h

Z1
0

T~vdV

8<
:

9=
;; ðB1Þ

Transversal momentum balance

1

1þ ~n~C
�uT

@

@~s
�vT þ ~vð Þ þ �vT þ ~vð Þ @

@~n
�vT þ ~vð Þ �

~C

1þ ~n~C
�u2T 2

¼ �g
@~x
@~n

þ ut
@2

@~z2
�vT þ ~vð Þ; ðB2Þ

Continuity equation

@�u~h

@~s
þ @

@~n
1þ ~n~C
� �

�v ~h
� �

¼ 0; ðB3Þ

Sediment conservation

1� pð Þ @~h
@~t

þ 1

1þ ~n~C

@~qs
@~s

þ @

@~n
1þ ~n~C
� �

~qn
� �� �

¼ 0; ðB4Þ

where
�u, �v longitudinal and transverse depth-averaged velo-

cities;
~v transverse velocity;

~s, ~n, ~z longitudinal and transverse coordinates and dis-
tance upward normal from the bed;

T dimensionless velocity shape function;
~C curvature of center line;

~h, ~h, ~x upward normal depth, bed elevation, and water
surface elevation, V = ~z/~h;

g, r, ut acceleration due to gravity, fluid density, and eddy
viscosity;

~qs, ~qn volumetric sediment transport per unit width in the
~s, ~n directions;

~ts bed stress in the ~s direction;
p sediment porosity.

[52] After conversion of the above equations to a dimen-
sionless form, they are linearized by expansion for small
curvature C in the form

u; v; uð Þ ¼ 1; 0; 0ð Þ þY0 u1; v1; u1ð Þ þ . . . ; ðB5Þ

h; x; hð Þ ¼ 1; xr � bS=D; hr � bS=Dð Þ þY0 h1; x1; h1ð Þ þ . . . ;

ðB6Þ

qs; qnð Þ ¼ qs0 1; 0ð Þ þY0 qs1; qn1ð Þ þ . . .½ �; ðB7Þ

Figure A1. Schematic to illustrate the determination of
boundaries of meander bends for the analysis of high-
resolution hydrography data. The solid line shows the actual
river meander, and the dashed line shows the line of average
points.
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where u, v, u, h, x, h, qs and qn are dimensionless
equivalents of �u, �v, ~v, ~h, ~x, ~h, ~qs and ~qn, b is the channel half-
width, S is the along-channel slope, D the channel mean
depth and xr and hr are the reference elevations for which
D = xr � hr. The perturbation parameter Y0 is usually of
order O(10�1 to 10�2) and for sinuous channel is defined
as Y0 = b/~l, where ~l is the meander wavelength (see
Figure B1 for a schematic of a meander bend following a
sine-generated curve and a definition of the coordinate
system and some of the variables).
[53] For the perturbations x1 and h1 the solutions for a

sine-generated curve [see Langbein and Leopold, 1966] at
n = 1 are given as

x1 ¼ Fr2X20 sin 2ps=~l
� �

ðB8Þ

and

h1 ¼� A cos sSL sin 2ps=~l� sSL
� �

þ ~AF cos 2ps=~l
� �

þ ~BF sin 2ps=~l
� �

; ðB9Þ

where
Fr Froude number at bank-full;

X20, ~AF, ~BF parameters;
A bed score factor;

sSL phase shift of secondary flow.

[54] Given the linearity of the solution, the bed topogra-
phy is uniquely defined once x1(n = 1) and h1(n = 1) are
computed. Technical details about the assumptions made,
parameter estimation and implementation of the model can
be found by Johannesson and Parker [1987, 1989].
[55] Some additional assumptions are made in our

implementation.
[56] 1. Meander bends are represented by sine-generated

curves with minimum radius of curvature computed by
means of (6b);
[57] 2. The critical Shield stress for all stream orders is

assumed tc* = 0.047;
[58] 3. In the case when the perturbation in channel depth

exceeds the mean depth (a problem that is considered by the
authors of the theory as a drawback (G. Parker, personal

communication, 2003) we assume that the secondary cur-
rents scour additionally the outer bank, depositing sediment
at the inner 2/3 of the channel width, while at the same time
preserving the width, mean depth and mean transversal
slope of the channel predicted by the theory.
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Figure B1. Schematic of a meander bend following a
sine-generated curve and definition of variables and
coordinate system for the governing equations of the
physical model of meandering rivers [from Johannesson
and Parker, 1989, Figure 1].
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