
INTELLIGENCE 2025 
to improve life on Earth

Efi Foufoula-Georgiou
University of California Irvine (UCI) 

TAU-UCI
Nov 13, 2018



THE STATE OF PLAY IN SPACE TODAY
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Understanding Earth from Space 

Courtesy of Michael Freilich, NASA 
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Courtesy of Michael Freilich, NASA 
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NASA’s Water and Energy Cycle Missions

Planned (not Approved)
-SWOT (Streamflow)
- SCLP (Snowpack)

(SMAP)

Courtesy of Michael Freilich, NASA 



Exploding Volume of Climate Data from Space

Overpeck et al, 
Science, 2011



3 Themes @ UCI 

1. Precipitation estimation from space 

2. Climate dynamics for prediction 

3. Landforms supporting life (rivers, deltas) 



1.  PRECIPITATION 

Water cycle dynamics at global to regional scales 
Monitoring extremes (hurricanes, tropical storms)
Improving weather and climate models 
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TRMM GPM

From TRMM to GPM

Covering 35S to 35N 
Microwave Imager (TMI) 
-- 9 channels 
-- frequencies 10.7-to-85.5 GHz 
-- swath width 878 km  
Precipitation radar (PR) 
-- single-frequency Ku band (13 GHz) 
-- swath width 247 km  

Covering 68S to 68N 
GPM Microwave Imager (GMI) 
-- 13 dual-polarized channels 
-- frequencies 10.65-183.3 GHz 
-- swath width 885 km  
Dual Polarization radar (DPR) 
-- dual-frequency Ku & Ka (13 and 35 GHz)  
-- swath width 120, 245 km  
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GPM Core Satellite 



12

GPM Constellation 



13

Accurately resolved by numerical 
(physical) radiative transfer models

Underdetermined 

Passive Microwave Retrieval:
An underdetermined Inverse problem



Learn patterns from data for retrieval

Rainfall Profiles

x1 x2 xM

Spectral BT

Database

Spectral BT Rainfall Profiles Machine Learning 
and Regularized 
Estimation in High 
Dimensional Spaces “Manifold learning”

13-dim space 
(each point is a

BT vector)
Manifold of BT

n-dim space 
(each point is a Z,

surf R vector)
Manifold of R 
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Passive Microwave Retrieval: an Inverse Problem
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ShARP: Locally linear embedding for rainfall retrieval

• Inversion Algorithm based on Regularization:
– Concept of the locally linear embedding (supervised manifold learning):

– Search for the K-nearest neighbors to detect raining signatures

– Estimate the representation coefficients and thus the rainfall profile
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15Foufoula-Georgiou et al., Survey in Geophysics, 2015; Ebtehaj, Foufoula-Georgiou, Lerman, Bras, GRL, 2015
Ebtehaj, Bras, Foufoula-Georgiou, IEES, 2015; & J. Hydrometeorology, 2016;  Takbiri, Ebtehaj, Foufoula-Georgiou, HESS, 2017 



– Detection step:

• K-nearest neighborhood search + a probabilistic voting rule for rain/no-rain

• Rainfall estimates

– Estimation Step:

• Estimation of the representation coefficients 

kb

ic

L1-L2 regularization for stability and reduced estimation error 
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ShARP: Locally linear embedding for rainfall retrieval



Effective Resolution (ER) of NASA’s GPROF v7 (GMI vs KuPR)

(k
m

)

• Local values computed from all observations in 3°×3° boxes.
• March 2014 to February 2017: 16,500 GPM orbits

longitude

Guilloteau, Foufoula-Georgiou, Kummerow, J. Hydrometeorology, 2017. 
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Yet, lacking performance in several places of the world
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Learn from the spatial structure in the TB space

1) Sensor Geometry: with 
different channels responding to 
different altitude levels, the 
multi-spectral signature 
characterizing a given vertical 
column may be split across 
several pixels.

2) Specific spatial patterns of 
TBs are the signatures of 
specific atmospheric features 

11 GHz

New Direction:  Retrieve patterns (not a pixel at a time)

QU: HOW TO IDENTIFY THE NEIGHBOROOD AND HOW TO LEARN FROM IT?
It becomes a very high dimensional problem!  Need to learn features!
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11 GHz

Lower 37V =>
Lower emission signal =>
Lower precipitation? 

NO!  It is an ice 
Scattering signal=>
Very active convective
Cell 

1) Sensor Geometry: with 
different channels responding to 
different altitude levels, the 
multi-spectral signature 
characterizing a given vertical 
column may be split across 
several pixels.

2) Specific spatial patterns of 
TBs are the signatures of 
specific atmospheric features 

Learn from the spatial structure in the TB space

New Direction:  Retrieve patterns not a pixel at a time



2.  SEASONAL PREDICTION 
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How to best combine climate observations 
and models to improve predictions? 



Bridging the gap: weather and climate

36-hr and 72-hr ahead 
weather forecasts are 
getting better and better…

NAS (2016) Next Generation Earth System Prediction: Strategies 
for Subseasonal to Seasonal Forecasts

36 hrs 72 hrs



Bridging the gap: weather and climate

36-hr and 72-hr ahead 
weather forecasts are 
getting better and better…

Our prediction skill on 
subseasonal (week timescales) 
to seasonal (S2S) timescales is 
still very limited 

NAS (2016) Next Generation Earth System Prediction: Strategies 
for Subseasonal to Seasonal Forecasts

Mariotti et al (2018) Climate and Atmospheric 
Science, doi:10.1038/s41612-018-0014-z 

Mariotti et al (2018) Climate and Atmospheric 
Science, doi:10.1038/s41612-018-0014-z 

2 weeks 2 months 
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The Great El Niño in 2016

• Climate models show limited skill in predicting seasonal 
precipitation months ahead

• Best approach to predict is combining our physical 
understanding with statistical tools:  

𝑌𝑌 = 𝑓𝑓 𝑿𝑿 + 𝑒𝑒
Regional hydroclimate 
(e.g. precipitation, 
temperature in California) 

Large-scale climate modes 
(e.g. ENSO see below)

anomaly

Combining physics and statistics



Example: Precipitation in southwestern US

• What are the best sources of predictability 
for a specific region?  Are they changing?

• ML and Network analysis can extract
much relevant information from the data 
to improve prediction 

annual 
precipitation  

(mm/yr)

500-700

100-300

~ 900
~ 1250

300-500

• New climate mode discovered, 
different than ENSO

• Dry and variable hydroclimate

(Mamalakis et al., 2018, Nature Communications)

Learning from Big Data
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• This new mechanism has been more dominant in 
modulating SWUS precipitation in the last 3 to 4 
decades:

 Vector X may not include important/new  
modes if based only on our prior knowledge

 Function f is not constant through time

(Mamalakis et al., 2018, Nature Communications)

• In our new project (funded by        ), we use 
machine learning to address this problem:  

TRIPODS+CLIMATE program (NSF grant DMS-1839336)  

E 𝑦𝑦𝑡𝑡 = ⟨𝑥𝑥𝑡𝑡 , ⟩𝛽𝛽
• Where the relative contribution of each feature in X

is represented by β and is calculated by 
minimizing:

linear model

Fit observations
Sparsity

Spatial dependence

Learning from Big Data



 Preliminary results are promising.  We can explain more that 40% of 
precipitation variability in the out-of-sample period.

 The patterns of  β can be used to verify and reveal new mechanisms 
in the large-scale climate system

 Such approaches can also be used for climate model diagnostics.  Do 
climate models capture the observed interrelations and how are these 
projected to change under climate change?

TRIPODS+CLIMATE program (NSF grant DMS-1839336)  

Fit observations
Sparsity

Spatial dependenceE 𝑦𝑦𝑡𝑡 = ⟨𝑥𝑥𝑡𝑡 , ⟩𝛽𝛽 linear model

Learning from Big Data



3.  LANDSCAPES

What can they tell us about process 
and how are they changing? 



Remotely-sensed global imagery is paving the way for a Global Geomorphology
The two most critical problems:

Automatic extraction of dynamic objects Automatic extraction of critical information

Robust extraction of rivers from multispectral imagery is a 
very nuanced  problem that must consider: water level at 

time of image, exposed point bars, mixed pixels at 
boundaries, and clouds, shadows, snow cover, etc.

Following object identification (mask generation), robust
algorithms must be capable of objectively distilling relevant 
metrics and insights without excessive manual intervention.



Ucayali River, Peru






Robust extraction of rivers from multispectral must consider: 
water level at time of image, exposed point bars, mixed 

pixels at boundaries, and clouds, shadows, snow cover, etc.

Following object identification (mask generation), robust
algorithms must be capable of objectively distilling relevant 
metrics and insights without excessive manual intervention.

Landsat

1984-2015

Automatic extraction of dynamic objects Automatic extraction of critical information

Two critical problems



Tools for large-scale mask analysis (single rivers)

J Schwenk, A Khandelwal, M Fratkin, V Kumar, E Foufoula-Georgiou. (2017) Earth and Space Science
J Schwenk, E Foufoula-Georgiou. (2017) Geophysical Research Letters

Ucayali River 
1,300 km long

Can predict cutoffs!!



RivGraph: 
a Python toolbox for 
analysis of deltaic 
and braided river 
channel networks

Yenisei Delta,
Russia

extracting channel
network topology

flow 
directionality

upstream

downstream

morphological properties and topologic metrics

J Schwenk, A Tejedor, A 
Piliourais, J Rowland, E 
Foufoula-Georgiou. (2018) In 
preparation.

Coming soon to a Conda
Repository near you…

Tools for large-scale mask analysis (river networks)



Arctic Deltas (ADs)
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The Arctic: North of 66° 33’N

– Climate change affects poles with
greater intensity i.e. Polar
Amplification (Serreze et al. 2009)

– ADs have on the order of 91 39
Pg-Carbon (Schuur et al., 2015)

– Lakes and ponds are significant
sources of methane (i.e. further
warming) (Wik, 2016)

– ADs are uniquely characterized by
strong spring flooding, permafrost
presence, and lake abundance
(Walker, 1999)Mackenzie Delta, Source: Sam B Cornish
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Can we infer subsurface hydrologic connectivity from
the observed (surface) topology and connectivity of
lakes and channels in ADs?

Approach:
We interrogate lake shrinkage rates and show that distance
from the delta channel network controls lake shrinkage and
thus subsurface connectivity.

Nearest Edge Distance [m]

P(WaterJune LandJuly) 
100%

80%

60%

40%

20%

0%

RivGraph for 
CN extraction

Changes in arctic deltas under climate change



What are we really studying?

INTELLIGENCE 2025 
to improve life on Earth
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efi@uci.edu
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