EPA/600/9-83/015 d States Environmen tal Researc h EPA-600/9-83-015
September 1983

>nmental Protection Laboratory
oy Athens GA 30613

arch and Development

JEPA Proceedings of
Stormwater and
Water Quality Model
Users Group Meeting

January 27-28, 1983

D> D



ESTIMATION OF MISSING VALUES
IN MONTHLY RAINFALL SERIES

by
Efi Foufoula—Georgioul

ABSTRACT

Infilling of missing values is often necessary prior to the practical
use of hydrological time series. In this paper, three different types of
infilling methods are considered reflecting the following basic ideas:

(1) the use of regional-statistical information in four simple techniques:

- mean value method (MV),

- reciprocal distance method (RD),

- normal ratio method (NR),

- modified weighted average method (MWA);

(2) the use of a univariate stochastic (ARMA) model which describes the

time correlation of the series;

(3) the use of a multivariate stochastic (ARMA) model which describes the

time and space correlation of the series.

An algorithm for the recursive estimation of the missing values by a
parallel updating of the univariate or multivariate ARMA model is proposed
and demonstrated. All methods are illustrated in a case study using 55 years
of monthly rainfall data from four south Florida stations.

INTRODUCTION

Many different kinds of statistical analyses may be performed on a given
data set, e.g., determination of elementary statistical parameters, auto-
and cross-correlation analysis, spectral analysis, frequency analysis, fitting
time series models. For routine statistics (e.g., calculation of mean,
variance and skewness) missing values are seldom a problem. But for
techniques as common as autocorrelation and spectrual analysis missing values
can cause difficulties. In multivariate analysis missing values result in
"wasted information' when only the overlapping period-of the time series is
used in the analysis, and in numerical inconsistencies (Valencia and Schaake,
1973; Fiering, 1968; Slack, 1973) when the incomplete series are used. The
evaluation of the estimation methods analyzed has utilized monthly rainfall
records from the South Florida Water Management District (SFWMD), and has
been based upon: a) the statistical comparison of the methods to each other
at a fixed level of percent of missing values, and b) the performance of each
individual method at different levels of percent of missing values. Gaps
(missing values) have been artificially created in the complete record of the
interpolation station (station whose missing values are to be estimated) with
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the following procedure: First, the lengths of the gaps have been generated
from a discrete exponential distribution with mean k months. Then, for a
given percent of missing values, m, the mean interevent length (missing
values between two successive gaps), T, has been calculated as T= k (100-m)/m
and the interevent lengths have been generated randomly from an exponential
distribution with mean T. The values used for k and m are based on a
frequency analysis of missing values_in SFWMD monthly rainfall records
(Foufoula-Georgiou, 1982) and are: k = 2.4 months and m = 2, 5, 10, 15 and
20%. Overlapping and concurrént periods of 55 years of monthly rainfall data
of the four SFWMD stations shown in Fig., 1 have been used in the analysis.

TRADITIONAL ESTIMATION TECHNIQUES

Mathematical Representation

In all the following equations y will be used for the interpolation
station and X, for index station j, j =1, 2, ..., n. An estimated value at
time t is Yé.

Mean Value Method (MV) --

The simplest method simply replaces the missing values with the sample mean:
A
ye =Y (1)

This method results in a reduced variance and a spurious correlation
coefficient especially at a high percent of missing values.

Reciprocal Distance Method (RD)

A missing value Yt is estimated as:

n
L.
Ve =k A e @
j=1
The weighting coefficients aj are calculated from:
P, o P
ay = (l/dj) /L /4 (3)

j=1
where d. is the distance between index station j and the interpolation
station, and n is the number of index stations used for the estimation. It
has been concluded (Shearman and Salter, 1975; Wei and McGuinness, 1975;
Dean and Snyder, 1977) that P=2 better approximates the isohyetal map drawn
by conventional methods.

Normal Ratio Method (NR) -~—

A missing value Ve is estimated as:
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Fig. 1. The four south Florida rainfall stations used in the
analysis.

A:

1:
2:
3:

6038,
6013,
6093,
6042,

Moore Haven Lock 1
Avon Park

Fort Myers WSO AP.
Canal Point USDA
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where R and R, are the normal annual or monthly rainfall at the interpolation
and index station j respectively. This method is recommended (Paulhus and
Kohler, 1952) when the normal rainfall at any of the index stations differs
from that of the interpolation station by more than 10 percent.

Modified Weighted Average Method (MWA)

The RD and NR methods may be both written in the general form of a
weighted average scheme:
yé = A X (5)

where A is a row vector (1 x n) andXy is a columm vector (n x 1). To
preserve the mean, y, and variance, s%, estimated from the available data, a
modified scheme may be used:

_ (6)
' = —
yi=BX + (G -3BX
where
°y
B=A -
= (7
y
and s , is obtained from:
y n n
2 T
s7, =Acov[X] A" = I T a; a; ¢ (8)
y i=1 j=1 3o

where c;: is the covariance between elements X; and ¥j of the rainfall
series oI the index stations i and j (Kottegoda and Elgy, 1977; Foufoula-
Georgiou, 1982).

Comparison of the Methods

Evaluation of the methods is based on the statistical comparison of the
estimated series (mixture of existing and estimated values) to the incomplete
series (what is really available in practice) and to the actual series
(unknown in practice but known in this artificial case).

The following notation is introduced:

Vo3 Sg» Tg = mean, standard deviation and serial correlation coefficient of
_ the estimated series;
yi» Si» ri = game as above but for the incomplete series, where
i=1, 2, 3, 4 and 5 for the five different percentages of
N missing values;
Ya» S, I, = parameters of the actual series;
'§¥ = mean of the residuals (estimated - actual values);
s%, Si e = variance of the residuals over the whole series and over only
3

the estimated values respectively,
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The criteria used for the comparison of the methods are:
(1) the_Eias in the mean as measured by

(@) y, - y; and (b) vy - Y,
(2) the bias in the standard deviation as measured by

(a) s./s; and (b) se/sa;

(3) the bias in the serial correlation coefficient as measured by ro - r,;

(4) the bias of the estimation model as given by the mean of the residua%s,
vy (this is also a way to detect a consistent over- or under-estimation
by a method);

(5) the accuracy as determined by the variance of the residuals s2 and s2 ;

(6) the significance of the biases in the mean, standard deviatiog and the
correlation coefficient as determined by the appropriate test statistic
for each.

Regarding comparison of the means the following can be concluded from

Table 1:

(1) the bias in the mean in all cases is not significant at the 5%
significance level-as shown by the appropriate t-test;

(2) the bias in the mean of the incomplete series is relatively small but
becomes larger the higher the percent of missing values;

(3) at high percents of missing values the NR method gives the less biased
mean;

(4) except for the RD method which consistently overestimates the mean (the
bias being larger the higher the percent of missing values), the other
methods do not show a consistent over or underestimation.

Regarding comparison of the variances the following can be concluded

from Table 2:

(1) although slight, the bias in the standard deviation is always significant,
but this is so because the ratio of variances would have to equal 1.0
exactly to satisfy the F-test (i.e., be unbiased) with as large a number
of degrees of freedom as in this study;

(2) the MV method always gives a reduced variance as compared to the variance
of the incomplete series and of the actual series, the bias being larger
the higher the percent of missing values;

(3) the bias in the standard deviation of the incomplete series is small;

(4) there is no consistent over or under-estimation of the variance by any
of the methods (except the MV method);

(5) the MWA method does not give less biased variance even at the higher
percent of missing values tested, as compared to the RD and NR methods.

Regarding comparison of the correlation coefficient the following can be

concluded from Table 3:

(1) the bias in the correlation coefficient is in all cases not significant
at the 5% significance level as shown by the appropriate z—test;

(2) the MV method gives the largest bias in the correlation coefficients, the
bias increasing the higher the percent of missing values;

(3) all methods (except the MWA method) consistently overestimate the serial
correlation coefficient of the incomplete series but not the serial
correlation of the actual series,and therefore this is not considered

181



Table 1. Bias tn the Mean.
INC MV RD NR MWA
(Ye - yi) Yy
2% 0. 0.009 0.008 0.002 0.003 4,116
5% 0. -0.012 0.014 -0.008 0.003 4.113
10% 0. -0.010 0.006 -0.024 -0.017 4,144
15% 0. -0.089 0.042 0.000 -0.001 4.135
20% 0. 0.042 0.149 0.043 0.086 4.082
(v, = va) Y,
2% -0.010 -0.001 -0.002 -0.012 -0.013 4,126
5% -0.013 -0.025 0.001 -0.021 ~-0.010
10% 0.018 0.008 0.024 -0.006 0.001
15% 0.009 -0.020 0.051 0.009 0.008
20% -0.044 -0.002 0.105 ~-0.001 0.042
Table 2. Bias in the Standard Deviation.
INC MV RD NR MWA
Se/si sy
2% 1. 0.995 0.998 0.996 0.998 3.680
5% 1. 0.983 1.007 1.001 1.013 3.671
10% 1. 0.972 0.996 0.986 1.005 3.705
15% 1. 0.957 0.988 0.978 0.994 3.671
207 1. 0.944 1.006 0.973 1.011 3.701
se/sa s,
2% 1.002 0.997 1.000 0.998 1.000 3.673
5% 0.999 0.983 1.006 1.000 1.013
10% 1.009 0.981 1.004 0.994 1.014
15% 0.999 0.956 0.988 0.978 0.994
207 1.008 0.952 1.014 0.980 1.019
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Table 3. Bias in the serial correlation coefficient.

INC MV RD NR MWA
(r1,6 7 71,4 T1,a
2% — 0.005 0.001 0.002 ~0.003  0.366
5% - 0.006 0.003 0.001 ~0.002
10% - 0.013 0.014 0.011 0.010
15% - 0.033 0.006 0.013 ~0.009
20% - 0.042 0.004 0.011 ~0.012

Table 4. Accuracy--Mean and Variance of the Residuals.
N = total number of values = 660
NO = number of missing values

INC MV RD NR MWA
r o (ye - ya)/No No
2% -— -0.043 -0.061 -0.570 -0.589 13
5% - -0.440 0.034 -0.380 -0.176 33
10% ~— 0.007 0.156 -0.113 -0.046 62
15% - -0.175 0.338 0.074 0.105 98
20% - 0.037 0.502 0.038 0.200 130
2 2
Sre = (yo ~v,) /(NO—Z)
27 - 5.037 2.874 3.149 4.585
5% - 8.610 3.656 3.411 5.340
10% - 7.892 4,239 3.484 5.187
15% - 7.620 4.630 3.958 5.816
20% - 5.224 4,891 3.681 4,898
2 2
s, = (ye ~ ya) /(N-2)
2% - 0.084 0.048 0.053 0.077
5% - 0.406 0.172 0.161 0.252
107 - 0.720 0.387 0.318 0.473
15% - 1.112 0.675 0.577 0.849
20% - 1.016 0.951 0.716 0.953
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a problem;
(4) the RD method seems to give the less biased correlation coefficient even
at the higher percentage of missing values.

Regarding accuracy of the methods the following can be concluded from

Table 4:

(1) no method seems to consistently over or underestimate the missing values
at all percent levels, but at high percent levels the missing values are
overestimated by all methods;

(2) the NR method is the most accurate method especially at high percents of
missing values (i.e., it gives the smallest mean and variance of the
residuals).

ESTIMATION BY A UNIVARIATE STOCHASTIC MODEL

Introduction

The observed monthly rainfall series, y, is normalized using the square
root transformation (Roesner and Yevjevich, 1966; Stidd, 1970; Delleur and
Kavvas, 1978) and the periodicity is removed by subtracting the monthly
means and dividing by the standard deviations (Kavvas and Delleur, 1975).

The reduced series, z, approximately normal and stationary is then modeled
by an ARMA(1,1) model:

z, = ¢ Z._q - 3] Y + oL (9)
where ¢, 0 are the autoregressive and moving average parameters respectively,
and 0t is a sequence of independent random variables from a normal
distribution with zero mean and unit variance (white noise).

For an ARMA(1,1) model the minimum mean square error forecasts zé(l) of
Zt+2’ where £ is the lead time are:

20(8) = ¢z, -8 2, , 2=1 (10)

zé(l) ¢ z[(2-1) s 222, ...y k
as developed by Box and Jenkins (1976).

Proposed Estimation Algorithm

The estimation of the missing values in the series is performed
recursively by the following procedure:

Step 1: The incomplete series §0 ig filled-in with any initial estimates of
the missing values giving the complete series, Sj.

Step 2: An ARMA(l,1) model is fitted to the series S; and the maximum
likelihood estimates (MLE) of the parameters ¢ and 6 are found.

Step 3: New estimates of the missing values are calculated as forecasts of
the modelﬂl = (¢,0); (made at the appropriate origin for each gap
and using equation 10). The new estimates replace the old ones and
the series becomes §,.

Steps 2 and 3 are repeated as many times as needed until convergence is

obtained in the sense that no significant change occurs in the estimates of the
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missing values as well as in the parameters of the model.

The above algorithm will be addressed as RAEMV-U (Recursive Algorithm
for the Estimation of Missing Values - Univariate model) and is schematically
shown in Fig. 2. A FORTRAN program has been developed for the above algorithm
(Foufoula-Georgiou, 1982). Input is the incomplete rainfall series and the
positions of the gaps. Output is the final estimated complete series as well
as the final parameters of the fitted ARMA model.

Results of the Method

Little influence of the method used to determine initial estimates of
missing values was found on the final values of parameters ¢ and 6 and on
the final estimates of missing values computed by the recursive scheme. All
methods that were tried yielded identical estimates of missing values and
model parameters after five iterations at 10 percent missing values (¢ =0.5095,
8 = 0.4333) and eight iterations at 20 percent missing values (¢ = 0.0776,
0 = ~0.0293). Moreover, by using zeroes as initial estimates the same
results were obtained, suggesting the latter as a convenient choice.

The RAEMV-U method was assessed using the same statistical measures as
used for the four traditional techniques described previously. Table 5 shows
the bias in the mean, standard deviation and serial correlation coefficient
for the final series (at 10% and 20% missing values). The bias in the mean
and correlation coefficient is not significant at the 5% significance level;
however, the bias in the standard deviation does not pass the stringent
F-test (requiring exact equality of standard deviations) and thus is
significant.

Table 5. Bias in the Mean, Standard Deviation and Serial Correlation
Coefficient-Univariate Model.

e  Ya se/sa rl,e - rl,a
10% -0.021 0.983 0.018
20% -0.083 0.951 0.044

The forward mean square error forecasting procedure that was used worked
satisfactorily in the sense that rapid convergence to a statistically
acceptable series occurred. Damsleth (1980) introduced the optimal between-
forecasts as that linear combination of forecasts and backforecasts which
gives the minimum mean square error. For the case of monthly rainfall data
the use of more sophisticated forecasts seems not to be justified. The
parameters ¢ and © of the fitted ARMA(l,l) model are very close to each
other and the value of ¢ is small as compared to one, thus making the large
white noise variance the predominant term in the calculation of the mean
square forecast error (Box and Jenkins, 1976, p. 154).
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So =~ S, - S }—"- '—'_.

Fig. 2. Recursive Algorithm for the Estimation of Missing Values--
Univariate model (RAEMV-U). S denotes the series, and
M; the model, (¢,0)i, at the ith iteration.
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Fig. 3. Recursive Algorithm for the Estimation of Missing Values—-
Bivariate model (RAEMV-B). S denotes the series, and
M; the model, (P,Q)i, at the ith iteration.
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ESTIMATION BY A MULTIVARIATE STOCHASTIC MODEL

Introduction

When the concurrent rainfall series of nearby stations are available,
their correlation with the series of interest may be incorporated in the
model for an improved estimation of the missing values. The lag-one
multivariate autoregressive model (Matalas, 1967) is expressed as:

Z. =P Z _;+QH, (12)

where Z, and Z_ . are n-length vectors of the normalized and standardized
variables at time t and t-1, H is an n-length vector of random components

and n is the number of stations used. The above model preserves the lag-zero
(M) and lag-one (M1) correlation matrices when the coefficient matrices P
and Q are estimated by:

P=M M (13)

T -1 T

QQ =M -M M "M (14)
Equation (1l4) may be solved for Q using a principal component analysis
(Fiering, 1964) or much easier by an upper triangularization technique
(Young, 1968; Young and Pisano, 1968). Missing values in any of the records
may result in no solution at all or a solution that contains complex numbers
since Q QT may not be a positive semidefinite matrix as required for a real
solution to occur (Valencia and Schaake, 1973; Slack, 1973).

The special case considered here is that of a bivariate AR(1l) model
between the interpolation station A and the index station 2 (Fig. 1). This
model is written as:

1,t P11 P12 Z1,t-1 411
= + (15)
2.t Po1 P22 22, t~1 d21 922 {N2,¢

Following the Box~Jenkins forecasting procedure, the mean square error

1 -
forecasts zl,t(l) of 21, t44 are:
1] _ —
21,68 = P11%1 e Y P1a%a e » 2=1
(16)
T — ] - . =
zl’t(l) = pllzl,t(g 1) + plzzz’t(z 1) , 2 =2,3, ..., k

where k is the number of values missing in each gap.

Proposed Estimation Algorithm

An algorithm analogous to the one for the univariate case is also
proposed for the bivariate case. The procedure is exactly the same, eXcept
that now the parameters of the model, M = (P, Q), are matrices calculated
from equations (13) and (14), and the forecasts are calculated from eqn. (16)
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The algorithm will be addressed as RAEMV-B (B stands for Bivariate
model) and is shown schematically in Fig. 3. A FORTRAN program is also
available (Foufoula-Georgiou, 1982). Input data are: the incomplete series
of the interpolation station, the position of its gaps, and the complete
series of the index station. Output results are: the final estimated
complete series of the interpolation station, the parameters P and Q of the
fitted bivariate model and the correlation matrices My and Mj.

Results of the Method

Again, -the scheme converges rapidly and independently of the method used
to obtain initial estimates of missing values, thus suggesting their
convenient replacement by zeroes to start the algorithm. Also, the conver-
gence of the bivariate scheme seems to be less sensitive to the percentage
of missing values as compared to the univariate one (three to four iterations
were needed in both the 10%Z and 207% missing values).

Table 6 shows the bias in the mean, standard deviation and serial
correlation coefficient for the final series (at 10% and 20% missing values).
Again, the bias in the mean and correlation coefficient is not significant
at the 5% significance level, but the bias in the standard deviation is.

Table 6. Bias in the Mean, Standard Deviation and Serial Correlation
Coefficient—-Bivariate Model.

Ve T Va Se/sa rl,e - rl,a
10% -0.030 0.983 0.016
20% ~0.049 0.959 0.050

CONCLUSIONS

On the basis of the monthly rainfall data from the four south Florida
stations used in the analysis, the following conclusions can be drawn:

(1) All the traditional estimation techniques give unbiased (overall and
monthly) means and correlation coefficients at the 57 significance level
even for as high as 20% missing values.

(2) At high percentages of missing values (greater than 10%) the MV method
gives the more biased (although not significantly so) correlation
coefficients.

(3) All methods give a slightly biased overall variance but unbiased monthly
variance at the 5% significance level, and the MV method gives the most
biased variances for all percentages of missing values.

(4) The NR method gives the most and the MV the least accurate estimates,
at almost all levels of percent missing values. '

(5) The proposed recursive algorithm works satisfactorily in both the
univariate and bivariate case. It converges rapidly and independently
of the initial estimates and gives unbiased means and correlation
coefficients at the 5% significance level.
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(6) The use of a bivariate model as compared to a univariate one did not
improve the estimates except for a slight improvement at 207 missing
values. However, the use of a multivariate model based on three or four
nearby stations is expected to give much better estimates. The use of
three adjacent stations is the main reason for the better performance of
the NR method over the more sophisticated univariate and bivariate ARMA
models which use only zero and one additional stations.

If the purpose of estimation is to calculate the historical statistics
of the series (e.g., mean, standard deviation, and autocorrelations) the
selection of the method matters little, and the simplest one may be chosen.
However, if it is desired to fit an ARMA model to the incomplete series, to
be used, say, to construct forecasts, the estimation of the missing values
and the parameters of the model by the proposed recursive algorithm is
recommended. In this case the equilibrium state (i.e., final series and
parameters of the model) achieved upon convergence is unique, depending only
on the existing information in the system (available data) and not on any
external information added to the system (by the replacement of the missing
values with some estimates derived by an arbitrary chosen method).
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