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ABSTRACT The actual maximum depth of a storm is seldom measured 
but is usually approximated by the maximum recorded depth. These 
depths can be quite different depending on the raingage density and 
the spatial rainfall pattern. This paper presents a simplified 
analysis of the accuracy of the maximum recorded depth in extreme 
rainstorms. 

INTRODUCTION 

The peak rainfall depth occurring within a storm is a useful factor 
in the statistical analysis and classification of storms for 
hydrologie applications. It has been traditionally used in the 
area reduction formulae that convert storm center point rainfall to 
mean areal rainfall, usually assuming radial symmetry around the 
storm center (e.g., Woolhiser & Schwalen, 1959; Eagleson, 1967; 
Fogel & Duckstein, 1969; Boyer, 1957). The true peak of the storm, 
however, may be underestimated, depending on the gage density and 
the actual rainfall isohyetal pattern. 

In a recent study, Richards et al. (1988) presented an 
investigation of an extreme but unusually well documented storm 
near Smethport, Pennsylvania in July, 1942. They showed that 
analysis of the storm based on the standard observation network 
underestimated the actual rainfall depths (measured from bucket-
surveys) by as much as 200%. For example, the maximum depth 
measured by the standard network was found to be 18 inches while 
bucket surveys indicated that the actual maximum depth was close to 
34 inches. Although this might be an unusual storm, other studies 
have found that underestimation, of up to 60%, of maximum depths is 
not unusual. For example, Huff et al. (1958) have reported that 
the ratio of field survey to climatological network maximum point 
depths for extreme storms in Illinois during the period of 1948-
1957 had an average value of 1.28 and a maximum value of 1.62. As 
the averaging area around the storm center increases, the error of 
mean rainfall depth decreases as is shown in Figure 1, plotted from 
data given in Huff et al. (1958). In that figure, da(A) denotes the 
"actual" average depth over an area A centered around the storm 
center, and dm(A) denotes the "measured" (or actually, the estimated 
from measured data) average depth over the same area. da(A) was 
estimated from a very dense network of field survey data and dm(A) 
from the standard National Weather Service (NWS) rainfall network. 

Ideally, one would like to know the distribution, or at least 
the first few statistical moments, of the error of the maximum 
value of the rainfall field as a function of the raingage density 
and the spatial distribution of rainfall. (Error is defined as the 
difference between the actual maximum and the measured maximum 
depths of the storm.) This is a difficult problem, however, for 
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which analytical solutions cannot easily be obtained (e.g., 
Vanmarcke, 1983, Ch. 4). Here, we approach the problem in a 
simplified framework, in the sense that we consider the rainfall 
field as being described by a deterministic spread function of a 
known functional form and parameters, but with center occurring 
randomly within the raingage network. The results of this 
oversimplified theoretical error analysis are in good agreement 
with the experimental results of Huff et al. (1958). This suggests 
that for all practical purposes, such an approach may be adequate 
since, after all, the spatial distribution of the rainfall field at 
the vicinity of the maximum seems to be well approximated with a 
spread function of circular or elliptical, geometrically similar 
contours. 

This study was motivated by the need to quantify the 
inconsistencies among storms measured from raingage networks of 
varying density, and develop methods of adjustments. Such 
adjustments may be appropriate in storm regionalization and storm 
transposition studies (e.g., Foufoula-Georgiou, 1988) where it is 
known that the raingage networks have changed considerably over the 
period of record and also differ in density from region to region. 

STATISTICAL MOMENTS OF THE ERROR IN THE MAXIMUM RECORDED RAINFALL 

Let d0 denote the actual maximum depth at the storm center and d̂  
the maximum measured rainfall depth at a station close to the storm 
center. Our interest is in deriving the moments of the normalized 
error 

e = (d0 dJ /d 0 (1) 
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Fig. 1. Ratio of actual_average depth (da(A)) versus measured 
average depth (dm(A)) as a function of storm area A (mi

2). 
[Plotted from data given in Huff et al. . 1958]. 
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Assuming that the storm isohyetal pattern is circular and that the 
raingages are evenly distributed at the vicinity of the storm 
center (Fig. 2) , dm is the depth at the station closest to the 
actual storm center. Let (2h) denote the distance between any two 
raingages, and rcg the distance between the actual storm center anc 
the raingage closest to this center. Under the hypothesis of a 
uniform spatial distribution of the storm center within the 
triangle formed by the three nearby raingage stations, the m-th 
moment of rcg is given by 

E(rc
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where At is equal to one sixth of the area of the triangle formed by 
the raingages (Fig. 2). 

Evaluation of the above integral results in the following 
expressions for the first four moments 
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Higher moments can be computed but the procedure is tedious. Of 
course, the use of the first four moments only, limits the range of 
applicability of the analytical results as will be discussed in the 
sequel. 

® raingages ^v 

• actual storm center >̂ 

Fig. 2. Illustration of the raingage network and the area covered 
by each raingage. 
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Having derived the moments of the distance between the actual 
peak and the maximum recorded depth, one has to specify the spread 
function describing the storm in order to derive the moments of the 
normalized error e. Although it is recognized that, in general, 
the spatial distribution of rainfall depths within the storm is 
fairly complex, the distribution of rainfall depths within the core 
(or eye) of the storm is more well behaved and approaches an 
unimodal decay spread function with approximately circular or 
elliptical geometrically similar contours around the maximum storm 
depth. Based on this argument, we concentrate here, as a first 
approximation, on a deterministic simple spread function of the 
form (Horton, 1924) 

d(A) = d0 exp (-kA
n) (4) 

where d0 is the actual depth (inches) at the storm center, d(A) is 
the average depth over a storm area A (mi2) , and k and n are fitted 
parameters. From this equation, one can derive the relationship 
for the depth along an isohyet enclosing an area A as 

-kAn 

d(A) = d0 e (1 - knAn) (5) 

Assuming a circular storm, the depth along an isohyet at distance r 
from the center is 

d(r) = d0 [1 - tawr" r
2n] exp (-kw11 r2n) (6) 

Horton (1924) gives a nice meteorological explanation supporting 
the multiplicative form of the above empirical relationship. Court 
(1961), Boyer (1957) and Horton (1924) give ranges of the parameter 
values k and n for several types of storms reported in the 
literature. For example, Horton (1924) has found that for small 
duration intense storms in Boston over 20 mi2 n varied between 0.53 
and 0.61. For one-day storms in the eastern half of U.S. over 
areas of 20,000 mi2, n varied between 0.33 and 0.56 with an average 
value of 0.45. A recent study of 77 extreme midwestern storms 
(Foufoula-Georgiou & Wilson, 1988) found that the parameter n had a 
mean value of 0.48 and a standard deviation of 0.12. (These 
estimates were obtained from a weighted least squares fit of (4) to 
the maximum 24-hour depth-area data for storm areas enclosed within 
contours of depth greater than or equal to 3 inches.) 

To simplify the computations while illustrating the order of 
magnitude of the relative error e for some realistic spread 
functions, we assume here a fixed value of n close to its expected 
value, n = 0.5. This assumption simplifies (6) to 

d(r) = d0 (1 - 0.5Ar)e"
Ar (7) 

where A = kw0'5. 
Note that the depth of interest d̂, is the depth at distance rcg, 

i.e., d,,, = d(rcg) . By expanding (7) in Taylor series and ignoring 
the effects of fifth or higher order terms we obtain 

E(dB) « d0 [l-1.5AE(rcg) + A
2 E(r2cg) - (5/12)A

3 E(r3cg) 

+ (1/8) X" E(r*cg)] (8) 



45 Accuracy of the maximum recorded depth in extreme rainstorms 

and 

E(d2m) - d
2
0 [1 - 3A E(rcg) + (17/4) A

2 E(r2cg) 

- (23/6) A3 E(r3cg) + (15/6) A
4 E(r4cg)] (9) 

If we let G denote the ralngage density (i.e., 1 station per G mi2), 
then 

G = 273 h2 (10) 

I n t r o d u c i n g ( 3 a - d ) i n t o (8) and (9) and u s i n g (1) and (10) one 
o b t a i n s 

E(e) ~ m1 k JÔ - m2k
2G + m3k3G3/2 - m4k

4G2 (11) 

where 

m1 = 1.5 Jp c1 (12a) 

% = P c 2 (12b) 

m3 = ( 5 / 1 2 ) / 3 3 / 2 c 3 (12c) 

m4 = ( 1 / 8 ) /32 c4 (12d) 

ci> c2> c 3 . ch have b e e n d e f i n e d i n (3) and ft = n/(2j3). S i m i l a r l y , 
t h e v a r i a n c e of e i s computed a s 

v a r ( e ) ~ (ms - mx
2) k2G - (m6 - 2mim2) k3G3 / 2 

+ (m7 - m2
2 - 2m1m3) k4G2 + (2m1m4 + 2m2m3)k5Gs/2 

- (m3
2 + 2m2mA) k6G3 + 2m3m4 k7G7 / 2 - m4k

8G4 (13) 

where m1, m2, m3, mA h a v e b e e n d e f i n e d p r e v i o u s l y and 

m5 = ( 9 / 4 ) fi c 2 (14a) 

m6 = 3 03'2 c 3 (14b) 

m7 - ( 2 7 / 1 2 ) /32 c4 (14c) 

Observe that equations (11) and (13) are both of the form 

S c^G1'2 (15) 
i=l 

Because the derivation has considered only up to fourth moments not 
all coefficients ci in (13) are complete. Also, the range of 
applicability of these equations is limited by the rate of decay of 
the term (kG1/2)1 as i increases. In other words, kG1/2 must be much 
less than one so that the omitted higher order terms in the 
summation of (15) are negligible. Fortunately, the value of k for 
most extreme storms is of the order of 0.01 to 0.05 and G is of the 
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order of 20 to 50 mi2 since supplemental data (i.e., bucket surveys) 
are usually available for extreme storms. 

In the above derivation, it was assumed that the raingage 
network is fixed and has the triangular configuration of Fig. 2. 
Actual networks are more irregular and the above results would only 
hold approximately. However, they should provide fairly close 
approximations, if one observes, for example, that whereas the mean 
distance between a randomly chosen point within a triangle of unit 
area and the vertex of the triangle closest to that point is 0.5272 
(as computed from (3a) for h2=l//3) , the mean distance between two 
randomly chosen points in an equilateral triangle of unit area is 
0.5544 (Matern, 1986). 

APPROXIMATION OF THE ERROR OF THE MAXIMUM DEPTH IN EXTREME 
RAINSTORMS 

It is important to note that the above analysis considered the 
storm as being a single-center storm with radial symmetry. This is 
not the case, however, for all extreme storms as often more than 
one "cells" or centers exist. The effect of the single center 
(which is implicit in the use of the Depth-Area-Duration curves for 
the estimation of the parameters n and k), is that the fitted 
spread function exhibits a much more slowly decaying pattern as 
compared to the actual spread function of the individual cells. It 
is interesting to observe, however, that studies of the spatial 
pattern of raincells (e.g., Konrad, 1978; Bonser, 1986) have found 
that similar relationships also apply at this smaller scale of 
spatial rainfall distribution. For example, Bonser (1986) analyzed 
a total of 705 raincells from 24 radar maps representing twelve 
hours of storm data within 120 km of the radar site. The 
resolution of the data was a 2x2 km grid. Drawing a comparison 
between our spread function and that used by Bonser, the average n 
value of the raincells was 0.513, suggesting as before that a 
relationship of the form of d(r) °c e~kr seems adequate. Of course, 
differences between the k values of the total storm and the k value 
of the cells are expected. To get an idea of how these k values 
compare with each other, the following simple, illustrative example 
is considered. Suppose that a storm is composed of two Identical 
cells of center depth equal to d0 and parameter values (k', n') in 
the relationship of equation (4). The total average depth-area 
relationship for this storm will consider these two cells lumped 
together to one cell with the same center depth d0 and with 
parameter values (k,n). If we assume that n'=n, as empirical 
evidence suggests, it is easy to show that k=k'/2n- For the value 
of n=0.5 one obtains k'=1.41 k, and for n=0.3 k'=1.23k. 

The implication of the above analysis is that the errors in the 
maximum recorded rainfall derived using the published depth-area 
data will in general be more conservative than the actual errors, 
simply because the lumping of the raincells together slows down the 
decay of the total spread function. Thus, for example, the average 
value of k=0.04 found for the extreme midwest storms (Foufoula-
Georgiou & Wilson, 1988) may correspond to a larger k value for the 
individual raincells. 

To get an idea of the order of magnitude of the mean error, 
note, for example, that if the raingage network had density of 1 
station per 50 mi2, the maximum actual depth of a storm with spread 
function with n=0.5 and k=0.01 would be underestimated by 
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approximately 7%, while the peak of a storm having n=0.5 and k=0.05 
would be underestimated by an average of 30% (Fig. 3). For a frame 
of comparison with experimental results, it is interesting to note 
that Huff et al.(1958) found an average underestimation of the peak 
storm depth of up to 19% when the maximum recorded values by the 
standard NWS networks were compared with those of a more dense 
experimental network. 

Due to the limit of applicability of the analytical results to 
n=0.5 and small values of k and G, the first three moments of the 
normalized error have been computed via simulation for other values 
of n and larger values of k (Fig. 4). Figure 4 also compares the 
first three moments of e for a circular and an elliptical storm of 
major to minor axis ratio equal to 2, when both storms have the 
same average depth-area relationship. The elliptical shape with 
ratio 2:1 was found to be the most frequent shape of midwestern 
storms by Huff (1968) and also Foufoula-Georgiou & Wilson (1988). 
It is observed that the error is slightly larger and much more 
variable when the raincell has an elliptical shape as compared to 
one with a circular shape. 

CONCLUSIONS 

The difference between the actual maximum depth of a storm (d0) and 
the maximum recorded depth (d^) may be appreciable depending on the 
storm's spatial pattern and the raingage density. In this paper, 
we have presented a simplified error analysis of d0 and have 
estimated the first three moments of the normalized error e = (d0 -
dm)/d0 as a function of the raingage density. Such results may be 
useful in devising storm depth adjustment procedures when storms of 
different spatial patterns and variable density recording networks 
are combined in storm regionalization or storm transposition 
studies. 
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Fig. 3. Mean normalized error (derived analytically) as a function 
of the raingage density. 
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Fig. 4. Mean, standard deviation, and skewness coefficient of the 
normalized error as function of the raingage density. 
Comparison of circular and elliptical storms with the same 
depth-area relationship. Results derived via simulation. 

ACKNOWLEDGMENTS 

This material is based upon research supported by the National 
Science Foundation under Grant CES-8708825. Computer funds were 
provided in part by the Iowa State University Computation Center. 
Larry Wilson assisted ably with the computer work. 

REFERENCES 

Boyer, M. C. (1957) A correlation of the characteristics of great 
storms. Trans. Amer. Geophys. Union, 38(2), 233-238. 

Bonser, J.D. (1986) A probabilistic spatial-temporal model of storm 



49 Accuracy of the maximum recorded depth in extreme rainstorms 

rainfall. Ph.D Thesis, Systems Design Engr. Dept., Univ. of 
Waterloo, Waterloo, Ontario. 

Court, A. (1961) Area-depth rainfall formulas, J. of Geophys. Res., 
66(6), 1823-1831. 

Eagleson, P. S. (1967) Optimum density of rainfall networks. Water 
Resour. Res., 3(4), 1021-1033. 

Fogel, M. M. & Duckstein, L. (1969) Point rainfall frequencies in 
convective storms. Water Resour. Res., 5(6), 1229-1237. 

Foufoula-Georgiou, E. (1988) A probabilistic approach to storm 
transposition for frequency analysis of rare precipitation 
depths. Preprint, submitted for publication, 50 pgs. 

Foufoula-Georgiou, E. & Wilson, L. L. (1988) In search of 
regularities in extreme rainstorms. Paper presented at the 
Conference on Mesoscale Precipitation: Modeling, Analysis and 
Forecasting, MIT, Boston, Sept., 1988, preprint, 40 pgs. 

Horton, R. E. (1924) Discussion of "The distribution of intense 
rainfall and some other factors in the design of storm-water 
drains,", by F.A. Marston. Proc. ASCE, 50, 660-667. 

Huff, F. A., Semonin, R. G., Changnon, S. A. Jr., & Jones, D. M. A. 
(1958) Hydrometeorological analysis of severe rainstorms in 
Illinois: 1956-1957 with summary of previous storms. Rep. of 
Invest No. 35, 111. State Water Survey, Urbana. 

Huff, F.A. (1968) Spatial distribution of heavy storm rainfalls in 
Illinois, Water Resour. Res., 4(1), 47-54. 

Konrad, T.G. (1978) Statistical models of summer rainstorms derived 
from fine scale radar observations, J. of Appl. Meteorology, 17, 
171-188. 

Matern, B. (1986) Spatial Variation, Lecture Notes in Statistics, 
No. 36, Springer-Verlag, 144 pp. 

Richards, F., Hansen, E. M. & Woodward, D. (1988) Estimation 
precipitation distribution and amount in extreme events, paper 
presented at the 1988 Spring AGU Meeting, Baltimore, EOS 69(16), 
p. 351. 

Vanmarcke, E. (1983) Random Fields: Analysis and Synthesis, MIT 
Press, Cambridge, Massachusetts. 

Woolhiser, D. A., & Schwalen, H. C. (1959) Area-depth-frequency 
relations for thunderstorm rainfall in southern Arizona, Tech. 
Paper No. 527, Exper. Stat., Univ. of Arizona. 




