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By 
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Chairman: Wayne C. Huber 
Cochairman: James P. Heaney 
Major Department: Environmental Engineering Sciences 

This study compares and evaluates different methods for 

the estimation of missing observations in monthly rainfall 

series. The estimation methods studied reflect three basic 

ideas: 

(1) the use of regional-statistical information in four 

simple techniques: 

- mean value method (MV), 

- reciprocal distance method (RD), 

- normal ratio method (NR) , 

- modified weighted average method (MWA)i 

(2) the use of a univariate autoregressive moving 

average (ARMA) model which describes the time 

correlation of the series; 
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(3) the use of a multivariate ARMA model which 

describes the time and space correlation of 

the series. 

An algorithm for the recursive estimation of the missing 

values in a series by a parallel updating of the univariate 

or multivariate ARMA model is proposed and demonstrated. 

All methods are illustrated in a case study using 55 years 

of monthly rainfall data from four south Florida stations. 
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CHAPTER 1 

INTRODUCTION 

Rainfall Records 

Rainfall is the source component of the hydrologic 

cycle. As such it regulates water availability and thus 

land use, agricultural and urban expansion, maintenance of 

environmental quality and even population growth and human 

habitation. As Hamrick (1972) points out, water may be 

transported for considerable distances from where it fell as 

rain and may be stored for long periods of time, but with 

very few exceptions it originates as rainfall. 

Consequently, the measurement and study of rainfall is in 

actuality the measurement and study of our potential water 

supply. 

Rainfall studies attempt to derive models, both 

probabilistic and physical, to describe and forecast the 

rainfall process. Since the quality of every study is 

immediately related to the quality of the data used, the 

need for "good quality" rainfall data has been expressed by 

all hydrologists. By "good quality" is meant accurate, long 

and uninterrupted series of rainfall measurements at a range 

of different time intervals (e.g., hourly, daily, monthly, 

and yearly data) and for a dense raingage network. Missing 
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values in the series (due, for example, to failure of the 

recording instruments or to deletion of a station) is a real 

handicap to the hydrologic data users; The estimation of 

these missing values is often desirable prior to the use of 

the data. 

For instance, the South Florida Water Management 

District prepared a magnetic tape with monthly rainfall data 

for all rainfall stations in south Florida for use in this 

study (T. MacVicar, SFWMD, personal communication, May, 

1982). The data included values for the period of record at 

each station, ranging from over 100 years (at Key West) to 

only a few months at several temporary stations. 

Approximately one month was required to preprocess these 

data prior to performing routine statistical and time series 

analyses. The preprocessing included tasks such as 

manipulations of the magnetic tape, selection of stations 

with desirable characteristics (e.g., long period of record, 

proximity to other stations of interest, few missing values) 

and a major effort at replacement of missing values that did 

exist. This effort, in fact, was the motivation for this 

thesis. 

Many different kinds of statistical analyses may be 

performed on a given data set, e.g., determination of 

elementary statistical parameters, auto- and cross­

correlation analysis, spectral analysis, frequency analysis, 

fitting time series models. For routine statistics (e.g., 

calculation of mean, variance and skewness) missing values 
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are seldom a problem. But for techniques as common as 

autocorrelation and spectral analysis missing values can 

cause difficulties. In multivariate analysis missing values 

result in "wasted information" when only the overlapping 

period of the series can be used in the analysis, and in 

inconsistencies (Fiering, 1968, and Chapter 4 of this 

thesis) when the incomplete series are used. 

In general, two approaches to the problem of missing 

observations exist. The first consists of developing 

methods of analysis that use only the available data, the 

second in developing methods of estimation of the ~issing 

observations followed by application of classical methods of 

analysis. 

Monthly rainfall totals are usually calculated as the 

sum of daily recorded values. Thus, if one or more daily 

observations are missing the monthly total is not reported 

for that month. An investigation conducted by the Weather 

Bureau in 1950 (Paulhus and Kohler, 1952), showed that 

almost one third of the stations for which monthly and 

yearly totals were not published had only a few (less than 

five) days missing. Furthermore, for some of these missing 

days there was apparently no rainfall in the area as 

concluded by the rainfall observations at nearby stations. 

Therefore, in many cases estimation of a few missing daily 

rainfall values can provide a means for the estimation of 

the monthly totals. 
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Statisticians have been most concerned with the problem 

of handling short record multivariate data with missing 

observations in some or all of the variables, but no 

explicit and simple solutions have been given, apart from a 

few special cases in which the missing data follow certain 

patterns. A review of these methods is given by Afifi and 

Elashoff (1956). In the time domain, "the analysis of time 

series, when missing observations occur has not received a 

great deal of attention" as Marshall (1980, p. 567) 

comments, and he proposes a method for the estimation of the 

autocorrelations using only the observed values. Jones 

(1980) attempts to fit an ARMA model to a stationary time 

series which has missing observations using Akaike's 

Markovian representation and Kalman's recursive algorithm. 

In the frequency domain, spectral analysis with randomly 

missing observations has been examined by Jones (1962), 

Parzen (1963), Scheinok (1965), Neave (1970) and Bloomfield 

(1970) • 

In hydrology, the problem of missing observations has 

not been studied much as Salas et al. (1980) state: 

The filling-in or extension of a data series is a 
topic which has not received a great deal of 
attention either in this book or elsewhere. 
Because of its importance, the subject is expected 
to be paid more attention in the future. (Salas 
et al., 1980, p. 464) 

Simple and "practicable" methods for the estimation of 

missing rainfall values for large scale application were 

proposed by Paulhus and Kohler (1952), for the completion of 

the rainfall data published by the Weather Bureau. The 
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study was initiated after numerous requests of the 

climatological data users. Beard (1973) adopted a multisite 

stochastic generation technique to fill-in missing 

streamflow data, and Kottegoda and Elgy (1977) compared a 

weighted average scheme and a multivariate method for the 

estimation of missing data in monthly flow series. Hashino 

(1977) introduced the "concept of similar storm" for the 

estimation of missing rainfall sequences. Although the same 

methods of estimation can be applied to both rainfall and 

runoff series, a specific method is not expected to perform 

equally well when applied to the two different series due 

mainly to the different underlying processes. This is true 

even for rainfall series from different geographical 

regions, since their distributions may vary greatly as shown 

in Fig. 1.1. 

This analysis will use monthly rainfall data from four 

south Florida stations. First, a frequency analysis of the 

missing observations has been performed and their typical 

pattern has been identified. In this work the term "missing 

observations" is used for a sequence of missing monthly 

values restricted to less than twelve, so that unusual cases· 

of lengthy gaps (a year or more of missing values) is 

avoided since they do not reflect the general situation. 

Frequency Analysis of Missing Observations in the 
.. South Florida Monthly Rainfall Records 

An analysis of the monthly rain~all series of 

213 stations of the South Florida Water Management District 
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(SF\vMD) gave the results shown on Table 1.1. Figure 1. 2 

shows the probability density function (pdf) plot of the 

percent m of missing values, f(m), which is defined as the 

ratio of the probability of occurrence over an interval to 

the length of that interval (column 4 of Table 1.1). The 

shape of the pdf f(m) suggests the fit by an exponential 

distribution 

7 

f (m) = 
-Am Ae (1. 1) 

where A is the parameter of the distribution calculated as 

the inverse of the expected value of m, E(m)i 

E(m) = L:p (m.) m. 
1 1 

(1. 2) 

where p(m.) is the probability of having m. percent of 
1 1 

missing values. The mean value of the percentage of missing 

values is m = E(m) = 13.663, and therefore the fitted 

exponential pdf is 

f(m) = 0.073 -0.073m e 

which gives an interesting and unexpectedly good fit as 

shown by Fig. 1.2 and column 5 of Table 1.1 

The question now arises as to whether the missing 

values within a record follow a certain pattern. In 

(1. 3) 
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Fig. 1.2. Probability density function, fern), 
of the percentage of missing values. 
Based on 213 stations, m = 13.663%. 
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Table 1.1. Frequency Distribution of the Percent of Missing 
Values in 213 South Florida Monthly Rainfall 
Records. 

1 2 3 4 5 
% of % of Cumulative Empirical Fitted 
Missing Stations % of Stations pdf Exponential 
Values pdf 

0-5 30.52 30.52 0.061 0.061 

5-10 21.12 51. 64 0.042 0.042 

10-15 14.55 66.19 0.029 0.029 

15-20 13.61 79.80 0.027 0.020 

20-25 6.10 85.90 0.012 0.014 

25-30 3.29 89.10 0.007 0.010 

30-35 1.88 91. 70 0.004 0.007 

35-40 0.94 92.01 0.002 0.005 

40-45 2.35 94.36 0.005 0.003 

45-50 2.82 97.18 0.006 0.002 

50-55 0.47 97.65 0.001 0.002 

55-60 0.47 98.12 0.001 0.001 

60-65 1. 41 99.53 0.003 0.001 

65-70 0.47 100.00 0.001 0.001 
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particular, if the occurrence of a gap is viewed as an 

"event" then the distribution of the interevent times (sizes 

of the interevents) and of the durations of the events 

(sizes of the gaps) may be examined. 

The probability distribution of the size of the 

interevents (number of values between two successive gaps) 

has been studied for four "typical" stations of the SFWMD, 

as far as length of the record, distribution and percent of 

missing values is concerned. These four stations are: 

MRF 6018, Titusville 2W, 1901-1981, 7.5% missing 
MRF 6021, Fellsmere 4W, 1911-1979, 9.3% missing 
MRF 6029, Ocala, 1900-1981, 4.4% missing 
MRF 6005, Plant City, 1892-1981, 8.6% missing 

A derived pdf for the four stations combined and the fitted 

exponential pdf are shown in Fig. 1.3. The mean size of the 

inter event , T, is 19.03 months; therefore, the fitted 

exponential distribution is 

f(T) = 0.053 -0.053T e (1. 4) 

Also, the probability distribution of the size of the gaps 

(number of values missing in each gap) has also been studied 

for the same four stations. These have been treated as 

discrete distributions since the size of the gap (k = 1, 2, 

., 11) is small as compared to the interevent times. A 

probability distribution for the four stations combined is 

then derived, which is also the discrete probability mass 

function (pmf). This plot is shown in Fig. 1.4 and suggests 

either a Poisson distribution or a discretized exponential. 
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Fig. 1.3. Probability density function, f(T), of the 
interevent size. Based on four stations. 
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p(k), of the gap size. Based on four stations. 
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The mean value k is 2.237, which is also the parameter A of 

the Poisson distribution. The Poisson distribution 

e->" >..k 
f(k) = (1.5) 

k! 

is nonzero at k = 0 and does not fit the peak of the 

empirical point very well at k = 1 (it gives a value of 0.24 

instead of the actual 0.53). The fitted continuous 

exponential pdf shown in Fig. 1.4 gives a better fit in 

general but also implies a nonzero probability for a gap 

size near zero. To overcome this problem and to discretize 

the continuous exponential pdf, the area (probability) under 

the exponential curve between zero and 1.5 is assigned to 

k = 1, ensuring a zero probability at k = O. Areas 

(probabilities) assigned to values of k > 1 are centered 

around those points. The fitted discretized exponential and 

the Poisson are also shown in Fig. 1.4. 

The distributions of the size of the gaps (k) and of 

the size of interevents (T) will be used to generate 

randomly distributed gaps in a complete record. Suppose 

that we have a complete record and desire to remove randomly 

m percent missing values. If the mean size of the gap (k) 

is assumed constant, the mean size of interevent (T) must 

vary, decreasing as the percent of missing values increases. 

Let N denote the total number of values in the record, m the 



where 

(3.8 ) 

is called the multiple coefficient of determination and 

represents the fraction of the variance of the series that 

has been explained through the regression. 

If we denote by ¢kj the jth coefficient in an auto­

regressive process of order k, then the last coefficient 

¢kk of the model is called the partial autocorrelation 

coefficient. Estimates of the partial autocorrelation 

38 

coefficients ¢ll' ¢22' ••• , ¢pp may be obtained by fitting 

to the series autoregressive processes of successively 

higher order, and solving the corresponding Yule-Walker 

equations. The partial autocorrelation function ¢kk' k = 1, 

2, •.• , p may also be obtained recursively by means of 

Durbin's relations (Durbin, 1960) 

k k 

¢k+l,k+l = [rk +l - L ¢k,J' rk+l_J,]/[l - L ¢k' r,] 
j=l j=l ,J J 

(3.9) 

¢k+l,j = ¢k,j - ¢k+l,k+l ¢k,k-j+l j = 1, 2, .•. , k 

It can be shown (Box and Jenkins, 1976, p. 55) that the 

autocorrelation function of a stationary AR(p) process is a 

mixture of damped exponential and damped sine waves, 



infinite in extent. On the other hand, the partial auto-

correlation function ¢kk is nonzero for k < P and zero for 

k > p. The plot of autocorrelation and partial autocorre-

lation functions of the series may be used to identify the 

kind and the order of the model that may have generated 

it (identification of the model). 

Moving Average Models 

In a moving average model the deviation of the current 

value of the process from the mean is expressed as a finite 

sum of weighted previous shocks als. Thus a moving average 

process of order q can be written as: 

39 

(3.10) 

or 

(3.11) 

where 

6 (B) ~ 1 - 8 B - 6 B2 -1 2 (3.l2} 

is the moving average operator of order q. An MA(q} model 

contains (q+2) parameters, ll, 61 , 6 2 , ••• , 8q , 0; to be esti­

mated from the data. 
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From the definition of stationarity (see Appendix A) 

it follows that an MA(q) process is always stationary since 

8(B) is finite and thus converges for IBI<l. But for an 

MA(q) process to be invertible the q moving average 

coefficients 81 , 82 , . .. , 8q must be chosen so that 8- 1 (B) 

converges on or within the unit circle, in other words the 

characteristic equation 8(B) = 0 must have its roots out-

side the unit circle. 

rv 
By multiplying equation (3.10) by Zt-k and taking 

expected values on both sides we define the autocovariance 

at lag k: 

which gives 

- •.• - 8 at k )] q --q 

y = (1 + 8 2 + 82 + + 82 ) 0 2 
o 1 2 . . . q a 

k = 1,2, ... , q 

= 0 

k = 0 

8 k 8 } 0 2 
q- q a 

k > q 

(3.13) 

(3.14) 

(3.15) 

(3. 16) 

By substituting in equation (3.15) the value of 0 2 from a 

equation (3.14) we obtain a set of q nonlinear equations for 
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+ •.. -8 + 
k 

1 + 8i + ••• + 

+ 8 8 q-k q k=l, 2, ... , q 

(3.17) 

These equations are analogous to the Yule-Walker equa-

tions for an autoregressive process, but they are not linear 

and so must be solved iteratively for the estimation of the 

moving average parameters 8, resulting in estimates that 

may not have high statistical efficiency. Again it was 

shown by Wold (1938) that these parameters may need correc-

tions (e.g., to fit better the correlogram as a whole and not 

only the first q correlation coefficients), and that there 

may exist several, at most 2q solutions, for the parameters 

of the moving average scheme corresponding to an assigned 

correlogram PI' P2 , ..• , Pq . However, only those 8's are 

acceptable which satisfy the invertibility conditions. 

From equation (3.14) an estimate for the white noise 

variance a~ may be obtained 

... + 82 
q 

(3.18) 

According to the duality principle (see Appendix A) an 

invertible MA(q) process can be represented as an AR process 

of infinite order. This implies that the partial autocorre-

lation function ¢kk of an MA(q) process is infinite in extent. 

It can be estimated after tedious algebraic manipulations 



from the Yule-Walker equations by substituting Pk as 

functions of 8's for k < q and Pk = 0 for k > q. So, in 

contrast to a stationary AR(p) process, the autocorrelation 

function of an invertible MA(q) process is finite and cuts 
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off after lag q, and the partial autocorrelation function is 

infinite in extent, dominated by damped exponentials and 

damped sine waves (Box and Jenkins, 1976). 

Mixed Autoregressive-Moving Average Models 

In practice, to obtain a parsimonious parameterization, 

it will sometimes be necessary to include both autoregressive 

and moving average terms in the model. A mixed autoregres-

sive-moving average process of order (p,q), ARMA(p,q), can 

be written as 

~ ~ ~ 
Zt = ¢lZt-l + •.• + ¢pZt_p + at - 8l a t _ l - ••• - 8q a t _q 

(3.19) 

or 

¢ CB) (3.20) 

with Cp+q+2) parameters, ll, 81 , ..• , 8q , ¢l' •.• , ¢p' a~ to 

be estimated from the data. 

An ARMA(p,q) process will be stationary provided that 

the characteristic equation ¢(B) = 0 has all its roots out-

side the unit circle. Similarly, the roots of 8(B) = 0 must 

lie outside the unit circle for the process to be invertible. 
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'" By multiplying equation (3.19) by Zt-k and taking 

expectations we obtain 

Yk = ¢l Yk- l + ••• + ¢p Yk- p + Yza(k) - 81Yza (k-l) -

- 8q Yza(k-q) (3.21) 

where Y (k) is the cross covariance function between z and za 

'" a, defined by Yza(k) = E[Zt_kat]. Since Zt-k depends only 

on shocks which have occurred up to time t-k, it follows 

that 

Yza(k) = 0 

Yza(k) "I 0 

and (3.21) implies 

or 

k > 0 
(3.22) 

k < 0 

k > q + 1 (3.23) 

k > q + 1 (3.24) 

Thus, for the ARMA(p,q) process the first q autocorre-

lations PI' P2 , . .• , Pq depend directly on the choice of 

the q moving average paramaters 8, as well as on the p auto-

regressive parameters ¢ through (3.21). The autocorrela-

tions of higher lags Pk , k ~ q + 1 are determined through the 

difference equation (3.24) after providing the p starting 



44 

values p +1' .•. , p • q-p q So, the autocorrelation function 

of an ARMA(p,q) model is infinite in extent, with the 

first q-p values PI' •.. , P irregular and the others q-p 

consisting of damped exponentials and/or damped sine waves 

(Box and Jenkins, 1976; Salas et al., 1980). 

Autoregressive Integrated Moving Average Models 

An ARMA(p,q) process is stationary if the roots of 

~(B) = 0 lie outside the unit circle and "explosive non-

stationary" if they lie inside. For example, an explosive 

nonstationary AR(l) model is Zt = 2z t _ l + at (the plot 

of Zt vs. t is an exponential growth) in which ~(B) = 1 - 2B 

has its root B = 0.5 inside the unit circle. The special 

case of homogeneous nonstationarity is when one or more of 

the roots lie on the unit circle. By introducing a general-

ized autoregressive operator ~O(B), which has d of its roots 

on the unit circle, the general model can be written as 

(3.25) 

that is 

(3.26) 

where 

= n d Z v t (3.27) 
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and V = 1 - B is the difference operator. This model corre-

sponds to assuming that the dth difference of the series 

can be represented by a stationary, invertible ARMA process. 

By inverting (3.27) 

(3.28) 

where S is the infinite summation operator 

1 B2 -_ (.l_B)-l -_ 0-1 S = + B + + .•. v (3.29) 

Equation (3.28) implies that the nonstationary process Zt 

can be obtained by surruning or "integrating" the stationary 

process wt ' d times. Therefore, this process is called a 

simple autoregressive integrated moving average process, 

ARIMA (p , d , q) • 

It is also possible to take periodic or seasonal dif-

ferences at lag's of the series, e.g., the 12th difference 

of monthly series, introducing the differencing operator 

VD with the meaning that seasonal differencing V is applied s s 

D times on the series. This periodic ARIMA(P,D,Q) model s 

can be written as 

(3.30) 
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The combination of nonperiodic and periodic models leads to 

the mUltiplicative ARlMA(p,d,q) x ARlMA(P,D,Q)s model which 

can be written as 

(3.31) 

After the model has been fitted to the differenced 

series an integration should be performed to retrieve the 

original process. But such an integrated serie~ would lack 

a mean value since a constant of integration has been lost 

through the differencing. This is the reason that the ARlMA 

models cannot be used for synthetic generation of time 

series, although they are useful in forecasting the devia­

tions of a process (Box and Jenkins, 1976; Salas et al., 1980). 

Transformation of the Original Series 

Transformation to Normality 

Most probability theory and statistical techniques have 

been developed for normally distributed variables. Hydro­

logic variables are usually assymetrically distributed or 

bounded by zero (positive variables), and so a transforma­

tion to normality is often applied before modeling. Another 

approach would be to model the original skewed series and 

then find the probability distribution of the uncorrelated 

residuals. Care must then be taken to assess the errors of 

applying methods developed for normal variables to skewed 
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variables, especially when the series are highly skewed, 

e.g., hourly or daily series. On the other hand, when trans­

forming the original series into normal, biases in the mean 

and standard deviation of the generated series may occur. 

In other words, the statistical properties of the trans­

formed series may be reproduced in the generated but not 

in the original series. An alternative for avoiding biases 

in the moments of the generated series would be to estimate 

the moments of the transformed series through the derived 

relationships between the moments of the skewed and normal 

series. Matalas (1967) and Fiering and Jackson (1971) 

describe how to estimate the first two moments of the log­

transformed series so as to reproduce the ones of the 

original series. Mejia et al. (1974) present another 

approach in order to pre~erve the correlation structure of 

the original series. 

However, the most widely used approach is to transform 

the original skewed series to normal and then model the 

normal series. Several transformations may be applied to 

the original series, and the transformed series then 

tested for normality, e.g. the graph of their cumulative 

distribution should appear as a straight line when it is 

plotted on normal probability paper. The transformation 

will be finally chosen that gives the best approximation to 

normality, e.g., the best fit to a straight line. 

Another advantage of transforming the series to normal 

is that the maximum likelihood estimates of the model 
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parameters are essentially the same as the least squares 

estimates, provided that the residuals are normally dis-

tributed (Box and Jenkins, 1976, Ch. 7). This facilitates 

the calculation of the final estimates since they are those 

values that minimize the sum of squares of the residuals. 

Box and Cox (1964) showed how a maximum likelihood and 

a parallel Bayesian analysis can be applied to any type of 

transformation family to obtain the "best" choice of trans-

formation from that family. They illustrated those methods 

for the popular power families in which the observation x is 

replaced by y, where 

xA-l 

Y = {-A 
log x , A=O 

(3.32) 

The fundamental assumption was that for some A the trans-

formed observations y can be treated as independently 

normally distributed with constant variance 0 2 and with 

expectations defined by a linear model 

E[y] = A L (3.33) 

where A is a known constant matrix and L is a vector of 

unknown parameters associated with the transformed observa-

tions (Box and Cox, 1964). 

This transformation has the advantage over the simple 

power transformation proposed by Tukey (1957) 
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y = { 
x A ,A;;iO 

log x , A=O 
(3.34) 

of being continuous at A=O. Otherwise the two transforma­

tions are identical provided, as has been shown by 

Schlesselman (1971), that the linear model of (3.33) con­

tains a constant term. 

Further, Draper and Cox (1969), showed that the value 

of A obtained from this family of transformations can be 

useful even in cases where no power transformation can 

produce normality exactly. Also, John and Draper (1980) 

suggested an alternative one-parameter family of transfor­

mations when the power transformation fails to produce 

satisfactory distributional properties as in the case of 

a symmetric distribution with long tails. 

The selection of the exact transformation to normality 

(zero skewness) is not an easy task, and over-transforma­

tion, i.e., transformation of the original data with a 

large positive (negative) skewness to data with a small 

negative (positive) skewness, or under-transformation, i.e., 

transformation of the original data with a large positive 

(negative) skewness to data with a small positive (negative) 

skewness, may result in unsatisfactory modeling of the series 

or in forecasts that are in error. This was the case for 

the data used by Chatfield and Prothero CI973a), who applied 

the Box-Jenkins forecasting approach and were dissatisfied 

with the results, concluding that the Box-Jenkins forecast­

ing procedure is less efficient than other forecasting 
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methods. They applied a log transform to the data which 

evidently over-transformed the data, as shown by Box and 

Jenkins (1973) who finally suggested the approximate trans-

f t ' 0.25 th h h I' db' orma lon y = x ,even oug t e comp lcate ut preclse 

Box-Cox procedure gave an estimate of A = 0.37 [Wilson 

(1973)]. 

Thus, the selection of the normality transformation 

greatly affects the forecasts, as Chatfield and Prothero 

(1973b) experienced with their data. They concluded 

that 

.• We have seen that a "small" change in A 
from 0 to 0.25 has a substantial effect on the 
resulting forecasts from model A [ARlMA(l,l,l} x 
ARlMA(1,1,1}12 J even though the goodness of fit 
does not seem to be much affected. This reminds 
us that a model which fits well does not neces­
sarily forecast well. Since small changes in A 
close to zero produce marked changes in forecasts, 
it is obviously advisable to avoid "low" values 
of A, since a procedure which depends critically 
on distinguishing between fourth-root and 
logarithmic transformation is fraught with peril. 
On the other hand a "large" change in A from 0.25 
to 1 appears to have relatively little effect on 
forecasts. So we conjecture that Box-Jenkins 
forecasts are robust to changes in the transfor­
mation parameter away from zero ••.. [Chatfield 
and Prothero (1973b) p. 347] 

Stationarity 

Most time series occurring in practice exhibit non-

stationarity in the form of trends or periodicities. The 

physical knowledge of the phenomenon being studied and a 

visual inspection of the plot of the original data may give 

the first insight into the problem. Usually the length 

of the series is not long enough, and the detection of 
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trends or cycles only through the plot of the series is 

ambiguous. Useful tools for the detection of periodicities 

are the autocorrelation function and the spectral density 

function of the series (which is the Fourier transform of 

the autocorrelation function). If a seasonal pattern is 

present in the series then the correlogram (plot of the 

autocorrelation function) will exhibit a sinusoidal appear­

ance and the periodogram (plot of the spectral density 

function) will show peaks. The period of the sinusoidal 

function of the correlogram, or the frequency where the 

peaks occur in the periodogram, can determine the periodic 

component exactly (Jenkins and Watts, 1968). Another device 

for the detection of trends and periodicities is to fit 

some definite mathematical function, such as exponentials, 

Fourier series or polynomials to the series and then model 

the residual series, which is assumed to be stationary. 

More details on the treatment of nonstationary data as well 

as on the interpretation of the correlogram and periodogram 

of a time series can be found in textbooks such as Bendat 

and Piersol (1958}, Jenkins and Watts (1968), Wastler (1969), 

Yevjevich (1972), and Chatfield (1980). 

Apart from the approach of removing the nonstationarity 

of the original series and modeling the residual series 

with a stationary ARMA(p,q) model, the original nonsta­

tionary series can be modeled directly with a simple or 

seasonally integrated ARIMA model. Actually, the second 

approach can be viewed as an extension of the first one, 



e.g., the nonstationarity is removed through the simple (V) 

or seasonal (V ) differencing. However, the integrated 
s 
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model cannot be used for generation of data, as has already 

been discussed. 

For many hydrologic applications, one is satisfied 

with second order or weak stationarity, e.g., stationarity 

in the mean and variance. Furthermore, weak stationarity 

and the assumption of normality imply strict stationarity 

(see Appendix A) . 

Monthly Rainfall Series 

Normalization and Stationarization 

Stidd (1953, 1968) suggested that rainfall data have 

a cube root normal distribution because they are product 

functions of three variables: vertical motion in the 

atmosphere, moisture, and duration time. Synthetic rainfall 

data generated using processes analogous to those operating 

in nature showed that the exponent required to normalize 

the distribution is between 0.5 (square root) and 0.33 

(cubic root) for different types of rainfall (Stidd, 1970). 

The square root transformation has been extensively 

used for the approximate normalization of monthly rainfall 

series (see Table C12 of Appendix C) with satisfactory 

results: Delleur and Kavvas (1978), Salas et al. (1980), 

Ch. 5, Roesner and Yevjevich (1966). However, Hinkley (1977) 

used the exact Box-Cox transformation for monthly rainfall 



53 

series. Although, Asley et ale (1977) have developed an 

efficient algorithm for the estimation of A along with other 

parameters in an ARlMA model, it seems that the exact value 

of A is not more reliable than the approximate one A = 0.5 

(Chatfield and Prothero, 1973b). The reasons for this 

follow. 

First, Chatfield and Prothero (1973b) used the Box-Cox 

procedure to evaluate the exact transformation of their 
A 

data. They obtained estimates A = 0.24 using all the data 

(77 observations), A = 0.34 using the first 60 observations 
A 

and A = 0.16 excluding the first year's data. Therefore, 

it is logical to infer that even if the complicated Box-Cox 

procedure for the incomplete rainfall record is used, the 

missing values may be enough to give a spurious A, which is 

not "more exact" than the value of 0.5 used in practice. 

Second, we may also notice that the use of either 

A = 0.33 (cubic root) or A = 0.5 (square root) is not 

expected to greatly affect the forecasts since, according to 

Chatfield and Prothero (1973b), the Box-Jenkins forecasts 

are not too sensitive to changes of A for A > 0.25. 

Monthly rainfall series are nonstationary. The 

variation in the mean is obvious since generally the 

expected monthly rainfall value for January is not the same 

as that of July. Although the variation of the standard 

deviation is not so easy to visualize, calculations show 

that months with higher mean usually have higher standard 

deviation. Thus, each month has its own probability 
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distribution and its own statistical parameters resulting in 

monthly series that are nonstationary. 

By introducing the concept of circular stationarity 

as developed by Hannan (1960) and others (see Appendix A 

for definition), the periodic monthly rainfall series can 

be considered not as nonstationary but circular stationary, 

since circular stationarity suggests that the probability 

distribution of rainfall in a particular month is the same 

for the different years. Then, the monthly rainfall series 

is composed of a circularly stationary lperiodic) component 

and a stationary random component. 

The time-series models currently used in hydrology are 

fitted to the stationary random component, so the circularly 

stationary component must be removed before modeling. This 

last component appears as a sinusoidal component in the 

autocorrelation function (with a 12-month period) or as a 

discrete spectral component in the spectrum (peak at the 

frequency 1/12 cycle per month). Usually several subhar­

monics of the fundamental 12-month period are needed to 

describe all the irregularities present in the autocorre­

lation function and spectral density function, since in 

nature the periodicity does not follow an ideal cosine 

function with a 12-month period. The use of a Fourier 

series approach for the approximation of the periodic 

component of monthly rainfall and monthly runoff series has 

been illustrated by Roesner and Yevjevich (1966). 
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Kavvas and Delleur (1975) investigated three methods 

of removal of periodicities in the monthly rainfall series: 

nonseasonal (first-lag) differencing, seasonal differencing 

(12-month difference), and removal of monthly means. They 

worked both analytically and empirically using the rescaled 

(divided by the monthly standard deviation) monthly rainfall 

square roots for fifteen Indiana watersheds. They concluded 

that "all the above transformations yield hydrologic series 

which satisfy the classical second-order weak stationarity 

conditions. Both seasonal and nonseasonal differencing 

reduce the periodicity in the covariance function but 

distort the original spectrum, thus making it impractical 

or impossible to fit an ARMA model for generation of 

synthetic monthly series. The subtraction of monthly 

means removes the periodicity in the covariance and the 

amount of nonstationarity introduced is negligible for 

practical purposes." (Kavvas and Delleur, 1975, p. 349.) In 

other words, they concluded that the best way for modeling 

monthly rainfall series is to remove the seasonality (by sub­

tracting the monthly means and dividing by the standard 

deviations of the normalized series) and then use a station­

ary ARMA(p,q} model to model the stationary normal residuals. 

Modeling of Normalized Series 

It is assumed that the nonstationarities due to long­

term trends are removed before any operation. Then the 

appropriate transformation is applied to the data in 
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order to obtain an approximately normal distribution. For 

monthly rainfall series experience has shown that the best 

practical transformation is the square root transformation, 

as has already been discussed. What remains is the modeling 

of the normalized series with one of the following models: 

stationary ARMA(p,q), simple nonstationary ARIMA(p,d,q), 

seasonal nonstationary ARIMA(P,O,Q)s' or mUltiplicative 

ARIMA(p,d,q)x(P,O,Q)s model. 

Delleur and Kavvas (1978) fitted different models to 

the monthly rainfall series of 15 basins in Indiana and 

compared the results. They studied the models: ARIMA 

( ° , ° , 0), ARIMA (1 , ° , 1), ARIMA ( 1, 1, 1), ARIMA (1 , 1 , 1) 12 ' 

and ARIMA(1,0,0)x(1,1,1)12 on the square-root trans-

formed series. They concluded that from the nonseasonal 

ARIMA models, ARMA(l,l) "emerged as the most suitable for 

the generation and forecasting of monthly rainfall series." 

The goodness-of-fit tests applied on the residuals were 

the portemanteau lack of fit test (see Appendix A) of Box 

and Pierce (1970) and the cumulative periodogram test (Box 

and Jenkins, 1976, p. 294). The ARMA(l,l) model passed both 

tests in all cases studied. From the nonseasonal models, 

ARIMA(1,0,0}x(1,1,1)12 also passed the goodness-of-fit tests 

in all cases, but they stress that this model "has only 

limited use in the forecasting of monthly rainfall series 

since it does not preserve the monthly standard deviations." 

As far as forecasts are concerned, they showed that "the 

forecasts by the several models follow each other very 
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closely and the forecasts rapidly tend to the mean of the 

observed rainfall square roots (which is the forecast of the 

white noise model)." 



CHAPTER 4 

MULTIVARIATE STOCHASTIC MODELS 

Introduction 

For univariate stochastic models the sequence of 

observations under study is assumed independent of other 

sequences of observations and so is studied by itself 

(single or univariate time series). However, in practice 

there is always an interdependence among such sequences of 

observations, and their simultaneous study leads to the 

concept of multivariate statistical analysis. For example, 

a rainfall series of one station may be better modeled if 

its correlation with concurrent rainfall series at other 

nearby stations is incorporated into the model. Multiple 

time series can be divided into two groups: (1) multiple 

time series at several points (e.g., rainfall series at 

different stations, streamflow series at various points of 

a river), and (2) multiple series of different kinds at one 

point (e.g., rainfall and runoff series at the same station). 

In general, both kinds of multiple time series are studied 

simultaneously, and their correlation and cross-correlation 

structure is used for the construction of a model that 

better describes all these series. The parameters of this 

so called multivariate stochastic model are calculated such 

58 
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that the correlation and cross-correlation structure of the 

multiple measured series are preserved in the multiple 

series generated by the model. 

The multivariate models that will be presented in this 

chapter have been developed and extensively used for the 

generation of synthetic series. How these models can be 

adapted and used for filling in missing values will be 

discussed in chapter 5. 

General Multivariate Regression Model 

The general form of a multivariate regression model is 

Y = A X + B H (4. 1) 

where Y is the vector of dependent variables, X the vector 

of independent variables, A and B matrices of regression 

coefficients, and H a vector of random components. The 

vectors Y and X may consist of either the same variable at 

different points tor at different times) or different 

variables at the same or different points (or at different 

times) . 

For convenience and without loss of generality all the 

variables are assumed second order stationary and normally 

distributed with zero mean and unit variance. Transforma­

tions to accomplish normality have been discussed in Chapter 

3. A random component is superimposed on the model to 

account for the nondeterministic fluctuations. 

In the above model, the dependent and independent 

variables must be selected carefully so that the most 
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information is extracted from the existing data. A good 

summary of the methods for the selection of independent 

variables for use in the model is given in Draper and Smith 

(1966}. Most popular is the stepwise regression procedure 

in which the independent variables are ranked as a function 

of their partial correlation coefficients with the dependent 

variable and are added to the model, in that order, if they 

pass a sequential F test. 

The parameter matrices A and B are calculated from 

the existing data in such a way that important statistical 

characteristics of the historical series are preserved in 

the generated series. This estimation procedure becomes 

cumbersome when too many dependent and independent variables 

are involved in the model, and several simplifications are 

often made in practice. On the other hand, restrictions 

have to be imposed on the form of the data, as we shall see 

later, to ensure the existence of real solutions for the 

matrices A and B. 

Multivariate Lag-One Autoregressive Model 

If only one variable (e.g., rainfall at different 

stations} is used in the analysis then the model of equa­

tion (4.11 becomes a multivariate autoregressive model. 

Since in the rest of this chapter we will be dealing only 

with one variable (rainfall} which has been transformed to 

normal and second order stationary, the vectors Y and X are 

replaced by the vector Z for a notation consistent with the 
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univariate models. Matalas (1967) suggested the multivari-

ate lag-one autoregressive model 

(4. 3) 

where Zt is an (mxl) vector whose ith element Zit is the 

observed rainfall value at station i and at time t, and the 

other variables have been described previously. 

Such a model can be used for the simultaneous genera-

tion of rainfall series at m different stations. The 

correlation and cross-correlation of the series is incor-

porated in the model through the parameters A and B. 

The matrices A and B are estimated from the historical 

series so that the means, standard deviations and auto-

correlation coefficients of lag-one for all the series, as 

well as the cross-correlations of lag-zero and lag-one 

between pairs of series are maintained. 

Let MO denote the lag-zero correlation matrix which 

is defined as 

(4. 4) 

Then a diagonal element of MO is E[z. t z. t] = p .. (0) = 1 
1, 1, 11 

(since Zt is standardized) and an off diagonal element (i,j) 

is E[z. t z. t] = p .. (0) which is the lag-zero cross corre-
1, J , lJ 

lation between series {zi} and {Zj}. The matrix MO is 

symmetric since p .. (0) = p .. (0) for every i, j. 
lJ Jl 



62 

Let Ml denote the lag-one correlation matrix defined 

as 

(4. 5) 

A diagonal element of Ml is E [z. t z. t lJ = p .. (1) which 
1, 1, - 11 

is the lag-one serial correlation coefficient of the 

series {z. } , and an off-diagonal element (i, j ) is 
1 

E(z. t Zj,t-l) = p .. (1) which is the lag-one cross-corre-
1, lJ 

lation between the {z. } and {z.} series, the latter lagged 
1 J 

behind the former. Since in general p .. (1) t- p .. (1) for 
lJ J 1 

i t- j the matrix Ml is not symmetric. 

After some algebraic manipulations (see Appendix B) the 

coefficient matrices A and B are obtained as solutions to 

the equations 

(4. 6) 

(4.7) 

where M~l is the inverse of MO' and Mi the transpose of Ml . 

The correlation matrices MO and Ml are calculated from the 

data. Then an estimate of the matrix A is given directly 

by equation (4.6), and an estimate for B is found by solving 

equation (4.7) by using a technique of principal component 

analysis (Fiering, 1964) or upper triangularization (Young, 

1968). For more details on the solution of equation (4.7) 

see Appendix B. 
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Comments on Multivariate AR{l) Model 

Assumption of Normality and Stationarity 

We have assumed that all random variables involved in 

the model are normal. The assumption of a multivariate 

normal distribution is convenient but not necessary. It has 

been shown (Valencia and Schaake, 1973) that the multivari­

ate ARCl) model preserves first and second order statistics 

regardless of the underlying probability distributions. 

Several studies have been done using directly the 

original skewed series. Matalas (1967) worked with log­

normal series and constructed the generation model so that 

it preserves the historical statistics of the log-normal 

process. Mejia et al. (1974) showed a procedure for multi­

variate generation of mixtures of normal and log-normal 

variables. Moran (1970) indicated how a multivariate gamma 

process may be applied, and Kahan (1974) presented a method 

for the preservation of skewness in a linear bivariate 

regression model. But in general, the normalization of the 

series prior to modeling is more convenient, especially when 

the series have different underlying probability distribu­

tions. In such cases different transformations are applied 

on the series, and that combination of transformations is 

kept which yields minimum average skewness. Average skew­

ness is the sum of the skewness of each series divided by 

the number of series or number of stations used. This 

operation is called finding the MST (Minimum Skewness 
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Transformation) and results in an approximately multivariate 

normal distribution (Young and Pisano, 1968). 

We have also assumed that all variables are standard­

ized, e.g., have zero mean and unit variance. This assump­

tion is made without loss of generality since the linear 

transformations are preserved through the model. On the 

other hand this transformation becomes necessary when 

modeling periodic series since by subtracting the periodic 

means and dividing by the standard deviations we remove 

almost all of the periodicity. 

If the data are not standardized, MO and Ml represent 

the lag-zero and lag-one covariance matrices (instead of 

correlation matrices), respectively. If S denotes the 

diagonal matrix of the standard deviations and RO' Rl the 

lag-zero and lag-one correlation matrices then 

(4. 8) 

and 

(4.9) 

When we standardize the data the matrix S is an identity 

matrix and MO' Ml become the correlation matrices RO and Rl 

respectively. Thus, one other advantage of standardization 

is that we work with correlation matrices whose elements are 

less than unity and the computations are likely to be more 

stable (Pegram and James, 1972). 
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Cross-Correlation Matrix Ml 

Notice that the lag-one correlation matrix Ml has been 

T 
defined as Ml = E[Zt Zt-l] which contains the lag-one 

cross-correlations between pairs of series but having the 

second series lagged behind the first one. Following this 

definition the lag-minus-one correlation matrix will be 

(4.10) 

and it will contain the lag-one correlations having now the 

second series lagged ahead of the first one. It is easy to 

show that M_l is actually the transpose of Ml : 

E[(Z ZT )T] 
t t-l 

Care then must be taken so that there is a consistency 

(4.11) 

between the equation used to calculate matrix A and the way 

that the cross-correlation coefficients have been calculated. 

Such an inconsistency was present in the numerical multisite 

package (~MP) developed by Young and Pisano (1968) and was 

first corrected by O'Connell (1973) and completely corrected 

and improved by Finzi et al. (1974, 1975). 

Incomplete Data Sets 

In practice, hydrologic series at different stations 

are unlikely to be concurrent and of equal length. With 

lag-zero auto- and cross-correlation coefficients calculated 



from the incomplete data sets, the lag-zero correlation 

matrix MO obtained may 

.. M- l d d 1tS 1nverse 0 nee e 

not be positive semidefinite, and, 

for the calculation of matrix A 

thus may have elements that are complex numbers. Also, a 

necessary and sufficient condition for a real solution of 

-1 T. 
matrix B is that C = MO - Ml MO Ml 1S a positive semi-

definite matrix (see Appendix B) • 

When all of the series are concurrent and complete 
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then MO and C are both semidefinite matrices [Valencia and 

Schaake, 1973], and the generated synthetic series are real 

numbers. When the series are incomplete there is no 

guarantee that real solutions for the matrices A and B exist 

causing the model of Matalas (1967) to be conditional on MO 

and C being positive semidefinite [Slack, 1973]. 

Several techniques have been proposed which use the 

incomplete data sets but guarantee the posite semidefinite-

ness of the correlation matrices. Fiering (1968) suggested 

a technique that can be used to produce a positive semi-

definite correlation matrix MO. If MO is not positive 

semidefinite then negative eigenvalues may occur and hence 

negative variables, since the eigenvalues are variances in 

the principal component system. In this technique, the 

eigenvalues of the original correlation matrix are calcu-

lated. If negative eigenvalues are encountered, an adjust-

ment procedure is used to eliminate them (thereby altering 

the correlation matrix, MO [Fiering, 1968]). 



A correlation matrix is called consistent if all its 

eigenvalues are positive. But consistent estimates of the 

correlation matrices MO and Ml do not guarantee that C will 

also be consistent. 

Crosby and Maddock (1970) proposed a technique that 

is suitable only for monotone data (data continuous in 

collection to the present but having different starting 

times). This technique produces a consistent estimate of 

the matrix MO as well as of the matrix C, and is based on 

the maximum likelihood technique developed by Anderson 

(1957) . 

Valencia and Schaake (1973) developed another tech-

nique. They estimate matrices A and B from the equations 
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(4.12 ) 

(4.13 ) 

where MOl is the lag-zero correlation matrix MO computed 

from the first (N-l) vectors of the data, and M02 is com­

puted from the last (N-l) vectors, where N is the number of 

data points (number of times sampled) in each of the n 

series. 

Further Simplification 

Sometimes in practice, the preservation of the lag-

zero and lag-one autocorrelations and the lag-zero 
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cross-correlations is enough. In such cases, i.e., when the 

lag-one cross-correlations are of no interest, a nice 

simplification can be made due to Matalas (1967, 1974). He 

defined matrix A as a diagonal matrix whose diagonal ele-

ments are the lag-one auto-correlation coefficients. With 

A defined as above, the lag-one cross-correlation of the 
, 

generated series (p .. (1)) can be shown to be the product 
lJ 

of the lag-zero cross-correlation (p .. (0)) and the lag-one 
lJ 

auto-correlation of the series (p .. (I), but of course dif­
II 

ferent than the actual lag-one cross-correlation (p .. (1)). 
lJ 

, 
p .. (1) = p .. (0) p .. (1) 
lJ lJ . II 

(4.14} 

, 
By using p .. (1) of equation (4.14) in place of the actual 

lJ 
Pij (ll, thus avoiding the actual computation of Pij (1) from 

the data, the desired statistical properties of the series 

are still preserved. 

Higher Order Multivariate Models 

The order p of a multivariate autoregressive model 

could be estimated from the plots of the autocorrelation 

and partial autocorrelation functions of the series (Salas 

et al., 1980) as an extension of the univariate model 

identification, which is already a difficult and ambiguous 

task. However, in practice first and second order models 

are usually adequate and higher order models should be 

avoided (Box and Jenkins, 1976). 
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In any case, the multivariate multilag autoregressive 

model of order p takes the form 

(4.15) 

and the matrices AI' A2 , •.. Ap' B are the solutions of the 

equations 

M. = 
1 

P 
E Ak M. k 

k=l 1-

M -o 

i = 1, 2, .•. , P (4.16) 

(4.17) 

where M£ is the lag-£ correlation matrix. Equation (4.16) is 

a set of p matrix equations to be solved for the matrices 

AI' A2 , ..• , Ap' and matrix B is obtained from (4.17) using 

techniques already discussed. Here, the assumption of diag-

onal A matrices becomes even more attractive. For a multi-

variate second-order AR process the above simplification is 

illustrated in Salas and Pegram (1977) where the case of 

periodic (not constant) matrix parameters is also considered. 

O'Connell (1974) studied the multivariate ARMA(l,l) 

model 

(4.18) 

where A, B, and C are coefficient matrices to be determined 
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from the data. Specifically they are solutions of the 

system of matrix equations 

(4. 19) 
= T 

where Sand T are functions of the correlation matrices 

MO' Ml and M2 . Methods for solving this system are proposed 

by O'Connell (1974). 

Explicit solutions for higher order multivariate ARMA 

models are not available and Salas et al. (1980) propose an 

approximate multivariate ARMA(p,q) model. 



CHAPTER 5 

ESTIMATION OF MISSING MONTHLY RAINFALL VALUES-­
A CASE STUDY 

Introduction 

This section compares and evaluates different methods 

for the estimation of missing values in hydrological time 

series. A case study is presented in which four of the 

simplified methods presented in Chapter 2 have been applied 

to a set of four concurrent 55 year monthly rainfall series 

from south Florida and the results compared. Also a 

recursive method for the estimation of missing values by the 

use of a univariate or multivariate stochastic model has 

been proposed and demonstrated. The theory already 

presented in Chapters 2, 3 and 4 is supplemented whenever 

needed. 

Set Up of the Problem 

The monthly rainfall series of four stations in the 

South Florida Water Management District (SFWMD) have been 

used in the analysis. These stations are: 

Station A 
Station 1 
Station 2 
Station 3 

MRF6038, Moore Haven Lock 1 
MRF6013, Avon Park 
MRF6093, Fort Myers WSO Ap. 
MRF6042, Canal point USDA. 
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For convenience the four stations will sometimes be 

addressed as A, 1, 2, 3 instead of their SFWMD 

identification numbers 6038, 6013, 6093 and 6042, 

respectively. Their locations are shown in the map of 
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Fig. 5.1. Station A in the center is considered as the 

interpolation station (whose missing values are to be 

estimated) and the other three stations 1, 2 and 3 as the 

index stations. Care has been taken so that the three index 

stations are as close and as evenly distributed around the 

interpolation station as possible. 

This particular set of four stations was selected 

because it exhibits many desired and convenient properties: 

(1) the stations have an overlapping period of 55 years 

(1927-1981) , 

(2) for this 55 year period the record of the 

interpolation station (station A) is complete (no 

missing values) , 

(3) the three index stations have a small percent of 

missing values for the overlapping period (sta­

tion 1: 2.7% missing, station 2: complete, and 

station 3: 1.2% missing values). 

The 55 year length of the records is considered long 

enough to establish the historical statistics (e.g., monthly 

mean, standard deviation and skewness) and provides a 

monthly series of a satisfactory length (660 values) for 

fitting a univariate or multivariate ARMA model. 
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Fig. 5.1. The four south Florida rainfall stations 
used in the analysis. 

A: 6038, Moore Haven Lock 1 
1: 6013, Avon Park 
2: 6093, Fort Myers WSO AP. 
3: 6042, Canal Point USDA 
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The completeness of the series of the interpolation 

station permits the random generation of gaps in the series, 

corresponding to different percentages of missing values, 

with the method described in Chapter 1. After the missing 

values have been estimated by the applied models, the gaps 

are in-filled with the estimated values and the statistics 

of the new (estimated) series are compared with the 

statistics of the incomplete series and the statistics of 

the historical (actual) series. Also the statistical 

closeness of the in-filled (estimated) values to the hidden 

(actual) values provides a means for the evaluation and 

comparison of the methods. 

When, for the estimation of a missing value of the 

interpolation station, the corresponding value of one or 

more index stations is also missing the latter is eliminated 

from the analysis, e.g., only the remaining one or two index 

stations are used for the estimation. Frequent occurrence 

of such concurrent gaps in both the interpolation and the 

index stations would alter the results of the applied method 

in a way that cannot be easily evaluated (e.g., another 

parameter such as the probability of having concurrent gaps 

should be included in the analysis). A small number of 

missing values in the selected index stations eliminates the 

possibility of such simultaneous gaps, and thus the 

effectiveness of the applied estimation procedures can be 

judged more efficiently. 
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The statistical properties (e.g., monthly mean, 

standard deviation, skewness and coefficient of variation) 

of the truncated (to the 1927-1981 period) original monthly 

rainfall series for the four stations are shown on 

Tables C.l, C.2, C.3 and C.4 of Appendix C. Figure 5.2 

shows the plot of the monthly means and standard deviations 

for station A. From these plots we observe that: (1) the 

plot of monthly means is in agreement with the typical plot 

for Florida shown in Fig. 1.1, and (2) months with a high 

mean usually have a high standard deviation. The only 

exception seems to be the month of January which in spite of 

its low mean exhibits a high standard deviation and 

therefore a very high coefficient of variation and an 

unusually high skewness. A closer look at the January 

rainfall values of station A shows that the unusual 

properties for that month are due to an extreme value of 

21.4 inches of rainfall for January 1979, the other values 

being between 0.05 and 6.04 inches. 

The three index stations 1, 2 and 3 are at distances 

59 miles, 51 miles and 29 miles respectively from the 

interpolation station A. 

Simplified Estimation Techniques 

Techniques Utilized 

From the simplified techniques presented in Chapter 2, 

the following four are applied for the estimation of missing 
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(b) monthly standard deviations 

Fig. 5.2. Plot of the monthly means and standard deviations-­
station 6038 (1927 - 1981) 



monthly rainfall values: 

(1) the mean value method (MV) 

(2) the reciprocal distances method (RD) 

(3) the normal ratio method (NR) , and 

(4) the modified weighted average method (MWA). 
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These methods are all deterministic and are applied directly 

on the available data permitting thus a uniform and 

objective comparison of the results. The mean value plus 

random component method has not been included-in this 

thesis. 

The above four methods will be applied for five 

different percentages of missing values: 2%, 5%, 10%, 15% 

and 20%. These percentages cover almost 80% of all cases 

encountered in practice as has been shown in Table 1.1 

(e.g., 80% of the stations have below 20% missing values). 

From the same table it can also be seen that almost 30% of 

the stations have below 5% missing values. Therefore, it 

would be of interest and practical use if we could 

generalize the results for the region of below 5% missing 

values since a large fraction of the cases in practice fall 

in this region. 

The application of the first three methods (MV, RD, NR 

methods) is straightforward and no further comments need be 

made. However, some comments on the least squares (LS) 

method and the modified weighted average (mvA) method are 

necessary. 



Least Squares Method (LS) 

The least squares method although simple in principle 

involves an enormous amount of calculations, and for that 

reason it has been excluded from this study. For example, 

consider the case in which the interpolation station A is 

regressed on the three index stations 1, 2 and 3. The 

estimated values will be given by: 
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(5.1) 

where a, b 1 , b 2 , b 3 are the regression coefficients 

calculated from the available concurrent values of all the 

four variables. There are 12 such regression equations, one 

for each month. But if it happens that an index station 

(say, station 3) has a missing value simultaneously with the 

interpolation station, a new set of 12 regression equations 

is needed for the estimation, e.g., 

Y' = a 1 + b ' x + b' x + E 1 1 2 2 (5.2) 

Unless this coincidence of simultaneously missing values is 

investigated manually so that only the needed least squares 

regressions are performed (Buck, 1960), all the possible 

combinations of regressions must otherwise be performed. 

This involves regressions among all the four variables 

(Yi xl' x 2 ' x 3 ), among the three of them (Yi xl' x 2 ), 

(Yi xl' x 3 ), (Yi x 2 ' x 3 ) and between pairs of them (Yi xl)' 



(Yi x 2 ), (Yi x 3), giving overall 7 sets of 12 regression 

equations. Because the regression coefficients are 
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different for each percentage of missing values (since their 

calculation is based only on the existing concurrent values) 

the 84 (7 x 12) regressions must be repeated for each level 

of missing values (420 regressions overall for this study). 

It could be argued that the same 12 regression 

equations (Yi xl' x 2 ' x 3 ) could be kept and a missing values 

x. replaced by its mean x. or by another estimate x!. In 
111 

that case equation 5.1 would become 

(5.3) 

the coefficients of regression a, b 1 , b 2 , b 3 remaining 

unchanged. This in fact can be done, but then the method 

tested will not be the "pure" least squares method since the 

results will depend on the secondary method used for the 

estimation of the missing x. values. 
1 

The coefficients a, b 1 , b 2 and b 3 (equation 5.1) of the 

regression of the {y} series (of station A with 2% missing 

values) on the series {xl}' {x2 } and {x3 } (of stations 1, 2 

and 3 respectively) are shown in Table 5.1. In the same 

table the values of the squared multiple regression 

coefficient R2 and the standard deviation of the {y} series 

are also shown. The numbers in parenthesis show the 

significance level a at which the parameters are significant 

(the percent probability of being nonzero is (1-a»100. For 
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Table 5.1. Least Squares Regression Coefficients for 
Equation (5.1) and Their Significant Levels. 
The standard deviation, s, for each month is 
also given. 

JAN 

FEB 

MAR 

APR 

MAY 

JUN 

JUL 

AUG 

SEP 

OCT 

NOV 

DEC 

a 
inches 

0.0059 
(0.9692) 

0.1355 
(0.5260) 

0.0052 
(0.9793) 

0.7388 
(0.0273) 

2.1302 
(0.0070) 

1.8765 
(0.1505) 

2.8601 
(0.0750) 

2.0820 
(0.2065) 

0.0108 
(0.9916) 

-0.6985 
(0.0866) 

0.3167 
(0.1290) 

-0.2623 
(0.1987) 

0.1271 
(0.2790) 

0.2624 
(0.0025) 

0.1617 
(0.0138) 

0.2405 
(0.0458) 

0.4046 
(0.0115) 

0.2192 
(0.1576) 

-0.0345 
(0.7883) 

0.1771 
(0.1666) 

0.5102 
(0.0003) 

0.3960 
(0.0020) 

0.3009 
(0.0030) 

0.2332 
(0.1065) 

0.4994 
(0.0005) 

0.0086 
(0.9431) 

0.3457 
(0.0001) 

0.2813 
(0.0156) 

-0.0591 
(0.7180) 

0.1108 
(0.4034) 

0.3993 
(0.0131) 

0.2078 
(0.0787) 

0.2113 
(0.0893) 

0.2287 
(0.0433) 

0.2473 
(0.0804) 

0.3807 
(0.0084) 

0.3377 
(0.0017) 

0.5345 
(0.0001) 

0.4507 
(0.0001) 

0.1919 
(0.1132) 

0.2186 
(0.1308) 

0.3339 
(0.0133) 

0.1885 
(0.1780) 

0.2660 
(0.0589) 

0.2450 
(0.0190) 

0.4667 
(0.0001) 

0.1063 
(0.0069) 

0.4381 
(0.0001) 

0.8046 
(0.0001) 

0.7033 
(0.0001) 

0.9142 
(0.0001) 

0.4936 
(0.0001) 

0.2752 
(0.0016) 

0.3351 
(0.0002) 

0.2005 
(0.0154) 

0.1789 
(0.0248) 

0.5669 
(0.0001) 

0.7749 
(0.0001) 

0.4575 
(0.0001) 

0.7723 
(0.0001) 

s 
inches 

3.076 

1. 365 

2.464 

1. 818 

2.583 

3.812 

3.399 

2.938 

4.085 

3.073 

1. 228 

1. 585 
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example, for January the coefficient b I is not significant 

at the 5% significance level (a = 0.05) since 0.279 is 

greater than 0.05, but the R2 coefficient is significant 

even at 0.01% significance level (a = 0.0001). The 

significance levels correspond to the nt-test" for the 

regression coefficients and to the "F-test" for the R2 

coefficients. The standard deviation, s, of the {y} series 

is also listed since the random component is given by 

s (5.4) 

as has already been discussed in Chapter 2. 

It is interesting to note, that although the multiple 

regression coefficient R2 varies for each month from as low 

as 0.18 to as high as 0.91 it is always significant at the 

5% significance level. The months of July and August 

exhibit the lowest (although significant) correlation 

coefficients as is expected for Florida. The physical 

reason for these low correlations is that in the summer most 

rainfall is convective, whereas in other months there is 

more cyclonic activity. Rainfall from scattered 

thunderstorms is simply not as correlated with that of 

nearby areas as is rainfall from broad cyclonic activity. 

Thus, on the basis of the regressions shown in Table 5.1, 

the least squares method would be expected to perform least 

well in the summer in Florida, but this point is not 

validated in this thesis. 
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Modified Weighted Average Method (MWA) 

For the modified weighted average method the twelve 

(3x3) covariance matrices of the three index stations have 

been calculated for each month using equation (2.9) and 

(2.10), and are shown in Table C.11 (appendix C). Also the 

monthly standard deviations, s , have been estimated from y 

the known {y} series, and the monthly standard deviations, 

s' have been calculated by equation (2.11) using the y 

calculated covariance matrices. Notice that although the 

twelve s values (as calculated from the actual data and y 

which we want to preserve) are different at different 

percentages of missing values, the twelve s' values (that y 

depend only on the weights a. and the covariance matrix of 
1 

the index stations) are calculated only once. The 

correction coefficients f (f = s Is') for each month and for y y 

each different percentage of missing values which must be 

applied on matrix A (equation 2.21) are shown in Table 5.2. 

From this table it can be seen that if the simple 

weighted average scheme' of equation (2.3) were used for the 

generation, the standard deviation of November would be 

overestimated (by a factor of approximately 2) and the 

standard deviation of all other months would be under-

estimated (e.g., by a factor of approximately 0.5 for the 

month of January). We also observe that due to small 

changes of s for different percentages of missing values, y 

the correction factor f does not vary much either, but tends 
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Table 5.2. Correction Coefficient, f, for Each Month and 
for Each Different Percent of Missing Values 
(f = s Is' y y). 

2% 5% 10% 15% 20% 

JAN 1.777 1. 777 1. 795 1. 897 1. 872 

FEB 1.129 1.142 1.136 1.199 1.188 

MAR 1.178 1. 207 1.177 1. 003 1. 009 

APR 1. 089 0.980 1. 061 1. 051 1. 054 

MAY 1. 269 1.197 1. 212 1. 222 1. 360 

JUN 1. 214 1.173 1.192 1. 228 1. 242 

JUL 1. 338 1. 345 1. 386 1. 390 1. 491 

AUG 1. 424 1. 414 1. 425 1.432 1. 369 

SEP 1. 313 1. 328 1. 325 1. 210 1. 331 

OCT 1. 258 1. 273 1. 218 1. 229 1. 314 

NOV 0.533 0.537 0.509 0.583 0.572 

DEC 1.161 1.140 1.169 1.172 1. 248 



to be slightly greater the greater the percent of missing 

values. 
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The modified weighted average scheme theoretically 

preserves the mean and variance of the series as has been 

shown in Chapter 2. But this is true for a series that has 

been generated by the model and not for a series that is a 

mix of existing values and values generated (estimated) by 

the model. This illustrates the difference between the two 

concepts: "generation of data by a model" and "estimation 

of missing values by a model." A method for generation of 

data which is considered "good" in the sense that it 

preserves first and second order statistics is not 

necessarily "good" for the estimation of missing values. In 

fact, it may give statistics comparable to the ones given 

from a simpler estimation technique which does not preserve 

the statistics, even as a generation scheme. Theoretically, 

for a "large" number of missing values, the estimation model 

operates as a generation model and thus preserves the 

"desired" statistics, but practically, for this large amount 

of missing values the "desired" statistics (calculated from 

the few existing values) are of questionable reliability. 

Only for augmentation of the time series (extension of the 

series before the first or after the last point) will the 

modified weighted average scheme or other schemes that 

preserve the "desired" statistics be expected to work better 

than the simple weighted average schemes. 
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One other disadvantage of the modified weighted average 

scheme as well as of the least squares scheme is that 

negative values may be generated by the model. Since all 

hydrological variables are positive, the negative generated 

values are set equal to zero, thus altering the statistics 

of the series. This is also true for all methods that 

involve a random component and is mainly due to "big" 

negative values taken on by the random deviate. 

The number of negative values, estimated by the MWA 

method, which have been set equal to zero in the example 

that follows were 1, 1, 6, 4, and 9 values for the 2%, 5%, 

10%, 15% and 20% levels of missing values, respectively. 

The effect of the values arbitrarily set to zero cannot 

be evaluated exactly, but what can be intuitively understood 

is that a distortion in the distribution is introduced. A 

transformation that prevents the generation of negative 

values could be performed on the data before the application 

of the generation scheme. Such a transformation is, for 

example, the logarithmic transformation since its inverse 

applied on a negative value exists, and the mapping of the 

transformed to the original data and vice versa is one to 

one (this is not true for the square root transformation). 

Comparison of the MV, RO, NR and MWA Methods 

The performance of each method applied for the 

estimation of the missing values will be evaluated by 

comparing the estimated series (existing plus estimated 
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values) to the incomplete series (really available in 

practice) and to the actual series (unknown in practice, but 

known in this artificial case). The criteria that will be 

used for the comparison of the method will be the following: 

(1) the bias in the mean as measured (a) by the 

difference between the mean of the estimated 

series, y , and the mean of the incomplete series, e 

y. (i = 1, 2, 3, 4, 5 for five different 
1 

percentages of missing values), and (b) by the 

difference between the mean of the estimated 

series, Ye and the mean of the actual series, Ya i 

(2) the bias in the standard deviation as measured (a) 

by the ratio of the standard deviation of the 

estimated series, s , to the standard deviation of e 

the incomplete series, s. and (b) by the ratio of 
1 

the standard deviation of the estimated series, 

to the standard deviation of the actual series, 

(3) the bias in the lag-one and lag-two correlation 

s , e 

s . 
a' 

coefficients as measured by the difference of the 

correlation coefficient of the estimated series, 

r , to the correlation coefficient of the actual e 

series, r i a 

(4) the bias of the estimation model as given by the 

mean of the residuals, y , i.e., the mean of the 
r 

differences between the in-filled (estimated) and 

hidden (actual) values (this is also a check to 
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detect a consistent over- or under-estimation of 

the method); 

(5) the accuracy as determined by the variance of the 

residuals (differences between estimated and actual 

values) of the whole series, s2; 
r 

(6) the accuracy as determined by the variance of the 

residuals of only the estimated values, s2 ; and r,e 

(7) the significance of the biases in the mean, 

standard deviation and correlation coefficients as 

determined by the appropriate test statistic for 

each (see appendix A) . 

Table 5.3 presents the statistics of the actual series 

(ACT), of the incomplete series (INC) and of the estimated 

series by the mean value method (MV) , by the reciprocal 

distances method (RD) , by the normal ratio method (NR) and 

by the modified weighted average method (MWA). The mean 

(y), standard deviation (s), coefficient of variation (c ) v 

coefficient of skewness (c ), lag-one and lag-two s 

correlation coefficients (r 1 , r 2 ) of the above series 

considered as a whole have then been calculated. 

Regarding comparison of the means, the following can be 

concluded from Table 5.4: 

(1) the bias in the mean in all cases is not 

significant at the 5% significance level as shown 

by the appropriate t-test; 
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Table 5.3. Statistics of the Actual (ACT) , Incomplete (INC) 
and Estimated Series (MV, RD, NR, MWA). 

-
Y s c C s r l r 2 v 

ACT 4.126 3.673 89.040 1. 332 0.366 0.134 

2% missing values 

INC 4.116 3.680 89.397 1. 346 

MV 4.125 3.663 88.808 1. 335 0.371 0.130 

RD 4.124 3.674 89.092 1. 336 0.367 0.133 

NR 4.114 3.666 89.104 1. 339 0.368 0.131 

1-1WA 4.113 3.674 89.331 1. 342 0.363 0.131 

5% missing values 

INC 4.113 3.671 89.249 1. 341 

MV 4.101 3.610 88.040 1.352 0.372 0.139 

RD 4.127 3.696 89.550 1. 359 0.369 0.133 

NR 4.105 3.674 89.501 1. 349 0.367 0.131 

NWA 4.116 3.720 90.386 1. 388 0.364 0.126 

10% missing values 

INC 4.144 3.705 89.405 1. 350 

MV 4.134 3.603 87.152 1. 346 0.379 0.159 

continued 
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Table 5.3. Continued. 

y s c c r 1 r 2 v s 

ACT 4.126 3.673 89.040 1. 332 0.366 0.134 

RD 4.150 3.689 88.884 1.301 0.380 0.166 

NR 4.120 3.652 88.633 1.321 0.377 0.155 

MWA 4.127 3.725 90.244 1. 286 0.376 0.162 

15% missing values 

INC 4.135 3.671 88.767 1.268 

MV 4.106 3.513 85.567 1.270 0.399 0.133 

RD 4.177 3.688 86.862 1.224 0.372 0.132 

NR 4.135 3.691 86.854 1. 236 0.379 0.133 

MWA 4.134 3.650 88.291 1.248 0.357 0.123 

20% missing values 

INC 4.082 3.701 90.673 1. 404 

MV 4.124 3.495 84.749 1. 333 0.408 0.160 

RD 4.231 3.723 87.993 1.865 0.370 0.156 

NR 4.125 3.601 87.307 1. 298 0.377 0.152 

MWA 4.168 3.741 89.758 1. 273 0.354 0.153 
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Table 5.4. Bias in the Mean 

INC MV RD NR MWA 

(Ye - y.) -y. 
l. l. 

2% O. 0.009 0.008 0.002 0.003 4.116 

5% O. -0.012 0.014 -0.008 0.003 4.113 

10% O. -0.010 0.006 -0.024 -0.017 4.144 

15% O. -0.089 0.042 0.000 -0.001 4.135 

20% O. 0.042 0.149 0.043 0.086 4.082 

(Ye - Y ) -Ya a 

2% -0.010 -0.001 -0.002 -0.012 -0.013 4.126 

5% -0.013 -0.025 0.001 -0.021 -0.010 

10% 0.018 0.008 0.024 -0.006 0.001 

15% 0.009 -0.020 0.051 0.009 0.008 

20% -0.044 -0.002 0.105 -0.001 0.042 
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(2) the bias in the mean of the incomplete series is 

relatively small but becomes larger the higher the 

percent of missing values; 

(3) at high percents of missing values the NR method 

gives the less biased mean; 

(4) except for the RD method which consistently 

overestimates the mean (the bias being larger the 

higher the percent of missing values), the other 

methods do not show a consistent over or 

underestimation. 

Regarding comparison of the variances the following can 

be concluded from Table 5.5: 

(1) Although slight, the bias in the standard deviation 

is always significant, but this is so because the 

ratio of variances would have to equal 1.0 exactly 

to satisfy the F-test (i.e., be unbiased) with as 

large a number of degrees of freedom as in this 

study; 

(2) the MV method always gives a reduced variance as 

compared to the variance of the incomplete series 

and of the actual series, the bias being larger the 

higher the percent of missing values; 

(3) the bias in the standard deviation of the 

incomplete series is small; 

(4) there is no consistent over or under-estimation of 

the variance by any of the methods (except the MV 

method); 
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Table 5.5. Bias in the Standard Deviation 

INC !1V RD NR MWA 

s Is. s. e 1 1 

2% 1. 0.995 0.998 0.996 0.998 3.680 

5% 1. 0.983 1. 007 1. 001 1. 013 3.671 

10% 1. 0.972 0.996 0.986 1. 005 3.705 

15% 1. 0.957 0.988 0.978 0.994 3.671 

20% 1. 0.944 1. 006 0.973 1. 011 3.701 

s /s s e a a 

2% 1. 002 0.997 1. 000 0.998 1.000 3.673 

5% 0.999 0.983 1. 006 1.000 1.013 

10% 1.009 0.981 1. 004 0.994 1.014 

15% 0.999 0.956 0.988 0.978 0.994 

20% 1. 008 0.952 1. 014 0.980 1.019 



(5) the MWA method does not give less biased variance 

even at the higher percent of missing values 

tested, as compared to the RD and NR methods. 

Regarding comparison of the correlation coefficients 

the following can be concluded from Table 5.6: 
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(1) the bias in the correlation coefficients is in all 

cases not significant at the 5% significance level 

as shown by the appropriate z-testi 

(2) the MV method gives the largest bias in the 

correlation coefficients, the bias increasing the 

higher the percent of missing values, with a 

possible effect on the determination of the order 

of the model; 

(3) all methods (except the MWA method) consistently 

overestimate the serial correlation coefficient of 

the incomplete series but not the serial 

correlation of the actual series and therefore is 

not considered a problem; 

(4) the RD method seems to give a correlogram that 

closely follows the correlogram of the actual 

series. 

Regarding accuracy of the methods the following can be 

concluded from Table 5.7: 

(1) no method seems to consistently over or 

underestimate the missing values at all percent 

levels, but at high percent levels the missing 

values are overestimated by all methods; 



Table 5.6. Bias in the Lag-One and Lag-Two Correlation 
Coefficients. 

INC MV RD NR HWA 

(r 1 - r 1 ) ,e ,a 

2% 0.005 0.001 0.002 -0.003 

5% 0.006 0.003 0.001 -0.002 

10% 0.013 0.014 0.011 0.010 

15% 0.033 0.006 0.013 -0.009 

20% 0.042 0.004 0.011 -0.012 

(r 2 - r ~ ) ,e L,a 

2% -0.004 -0.001 -0.003 -0.003 

5% 0.005 -0.001 -0.003 -0.008 

10% 0.025 0.032 0.021 0.028 

15% -0.001 -0.002 -0.001 -0.011 

20% 0.026 0.022 0.018 0.019 

94 

r 1,a 

0.366 

r 2,a 

0.134 



Table 5.7. Accuracy--Mean and Variance of the Residuals 
N = number of missing values 
NO = total number of values = 660. 

INC MV RD NR MWA 

11 = r L (Ye - Ya ) INo 

2% -0.043 -0.061 -0.570 -0.589 

5% -0.440 0.034 -0.380 -0.176 

10% 0.007 0.156 -0.113 -0.046 

15% -0.175 0.338 0.074 0.105 

N 
0 

13 

33 

62 

98 

20% 0.037 0.502 0.038 0.200 130 

2 
L (Y -

2 s = Y ) I (N -2) r,e e a 0 

2% 5.037 2.874 3.149 4.585 

5% 8.610 3.656 3.411 5.340 

10% 7.892 4.239 3.484 5.187 

15% 7.620 4.630 3.958 5.816 

20% 5.224 4.891 3.681 4.898 

95 
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Table 5.7. Continued. 

INC MV RD NR MWA 

2 L: (y -
2 s = Y ) /(N-2) 

r e a 

2% 0.084 0.048 0.053 0.077 

5% 0.406 0.172 0.161 0.252 

10% 0.720 0.387 0.318 0.473 

15% 1.112 0.675 0.577 0.849 

20% 1. 016 0.951 0.716 0.953 



(2) the NR method is the more accurate method 

especially at high percents of missing values 

(i.e., it gives the smaller mean and variance of 

the residuals). 

Univariate Model 

Model Fitting 

Before considering the problem of missing values the 

problem of fitting an ARMA(p,q) model to the monthly 

rainfall series of the south Florida interpolation station 

will be considered. 
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The observed rainfall series has been normalized using 

the square root transformation and the periodicity has been 

removed by standardization. The reduced series, 

approximately normal and stationary, is then modeled by an 

ARMA(p,q) model. The ACF of the reduced series, as shown in 

Fig. 5.3, implies a white noise process since almost all the 

autocorrelation coefficients (except at lag-3 and lag-12) 

lie inside the 95 percent confidence limits. 

Of course, it is unsatisfying to accept the white noise 

process as the "best" model for our series and an attempt is 

made to fit an ARMA(1,1) model to the series. The selection 

of an ARMA model and not an AR or ~1A model is based on the 

following reasons: 

(1) The observed rainfall series contains important 

observational errors and so it is assumed to be the sum 
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Fig. 5.3. Autocorrelation function of the normalized and 
standardized monthly rainfall series of 
Station A. 
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of two series: the "true" series and the observational 

error series (signal plus noise). Therefore, even if 

the "true" series obeys an AR process, the addition of 

the observational error series is likely to produce an 

ARMA model: 

AR(p) + white noise = ARMA(p,p) 

AR(p) + AR(q) = ARMA(p+q, max (p,q) ) (5.5) 

AR(p) + MA(q) = ARMA(p, p+q) 

The same can be said if the "true" series is an MA 

process and the observational error series an AR 

process but not if the latter is an MA process or a 

white noise process: 

MA(p) + AR(q) = ARMA(q,p+q) 

MA(p) + MA(q) = MA(max(p,q» 

~~(p) + white noise = MA(p) 

(Granger and Morris, 1976; Box and Jenkins, 1976, 

Appendix A4. 4) . 

(5.6) 

It is understood, that the addition of any 

observational series to an ARMA process of the "true" 

series will give again an ARMA process. For example, 

ARMA(p,q) + white noise = ARMA(p,p) if p > q 

= ARMA(p,q) if p < q 

(5.7) 
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from which it can also be seen that the addition of an 

observational error may not always change the order of 

the model of the "true" process. 

(2) One other situation that leads exactly, or 

approximately, to ARMA models is the case of a variable 

which obeys a simple model such as AR(l) if it were 

recorded at an interval of K units of time but which is 

actually observed at an interval of M units (Granger 

and Morris, 1976, p. 251). 

All these results suggest that a number of real data 

situations are all likely to give rise to ARMA models; 

therefore, an ARMA(l,l) model will be fitted to the observed 

monthly rainfall series of the south Florida interpolation 

station. The preliminary estimate of ~1 (equation 3.23) is 

-0.08163, and the preliminary estimate of 81 (equa-

tions 3.21 for k = 0, 1, 2) is the solution of the quadratic 

equation 

0.1656 8i + 1.0204 81 + 0.1656 = 0 (5.8) 

Only the one root 81 = -0.1667 is acceptable, the second 

lying outside the unit circle. These preliminary estimates 

of ~1 and 81 become now the initial values for the 

determination of the maximum likelihood estimates (MLE). In 

general, the choice of the starting values of ~ and 8 does 

not significantly affect the parameter estimates (Box and 

Jenkins, 1976, p. 236), but this was not the case for the 
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of an ARMA (1,1) model fitted to the 
rainfall series of station A. 
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e 



Table 5.8. Initial Estimates and MLE of the Parameters ¢ 
and 8 of an ARMA(l,l) model fitted to the 
rainfall series of station A. 
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Initial Estimates Max. Likelihood Estimates 
Hodel ¢ 8 ¢ e 

A -0.0816 0.0 -0.0088 -0.0989 

B -0.0816 -0.1667 -0.3140 -0.4056 

C 0.1 0.0 0.0537 -0.0278 

D -0.4 -0.5 -0.4064 -0.4939 

south Florida rainfall series under study. In particular 

different initial estimates of ¢1 and 8 1 have been tested 

and the MLE of the parameters are compared in Table 5.8. 

The MLE have been calculated using the IMSL subroutine FTJliXL 

which uses a modified steepest descent algorithm to find the 

values of ¢ and 8 that minimize the sum of squares of the 

residuals (Box and Jenkins, 1976, p. 504). 

The drastic changes in parameter values together with 

the idea that the process may be a white noise process 

suggest a plot of the sum of squares of the residuals for 

the visual detection of anomalies. The sum of squares grids 

and contours are shown in Fig. 5.4. We observe that there 

is not a well defined point where the sum of squares becomes 

a minimum but rather a line (contour of the value 641) on 

which the sum of squares has an almost constant value equal 

to the minimum. In such case combinations of parameter 

values give similar sum of squares of residuals and a change 
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in the AR parameter can be nearly compensated by a suitable 

change in the MA parameter. 

From the comparison of the parameters ¢ and 8 

(Table 5.8) of the four ARMA(l,l) models one cannot say that 

they all correspond to the same process. But this can in 

fact be illustrated by converting the four models to their 

II random shock form" (MA ( 00) processes) or their II invertible 

form" (AR ( 00) processes). 

An ARMA(l,l) process 

(5.9) 

can be also written as 

(5.10) 

which can be expanded in the convergent form 

223 
Zt = [1 + (¢1- 81)B + ¢1 (¢1- 81)B + ¢1 (¢1- 81)B + •.. ] at 

provided that the stationarity condition (1¢1 I < 1) is 

satisfied. Then the four models of Table 5.8 become: 

(5.11) 
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(A) Zt = at + 0.090 a t - 1 - 0.001 a t - 2 + 

(B) Zt = at + 0.092 a t - 1 - 0.029 a t - 2 + (5.12) 

(C) Zt = at + 0.082 a t - 1 + 0.004 a t - 2 + 

(D) Zt = at + 0.088 a t - 1 - 0.036 a t - 2 + 

In the same way the ARMA (1,1) model may be written in the 

"invertible form" 

(5.13) 

which can be expanded as 

2 2 3 
[1 - (¢1- 81)B - 81 (¢1- 81)B - 81 (¢1- 81)B - ... ] Zt = at 

given that the invertibility condition (181 I <1) is 

satisfied. Then the four models become: 

(A) Zt = at + 0.090 Zt-1 - 0.009 Zt-2 + 

(B) Zt = at + 0.092 Zt-1 - 0.037 Zt-2 + 

( C) Zt = at + 0.082 Zt-1 - 0.002 Zt-2 + 

(D) Zt = at + 0.088 Zt-1 - 0.043 Zt-2 + 

From the "random shock" form of the four models 

(equations 5.12) and from their "invertible form" 

(equations 5.15) the following remarks can be made: 

(5.14) 

(5.15) 



(1) Although from the comparison of the ¢ and 8 

coefficients (Table 5.8) of the four ARMA(l,l) models 

one cannot say that they all correspond to the same 

process, the comparison of the MA coefficients 

(8 1 , 82 , 83 , .•. ) of equations (5.12) or the AR 

coefficients (¢l' ¢2' ¢3' ... ) of equations (5.15) 

imply that indeed all four models belong to the same 

process. 

(2) Because the nonzero ¢2 (and 82) coefficients of Zt-2 

(and a t - 2 ) terms while small are of similar magnitude 

to the coefficients ¢l (and 81), one cannot say that 

the "truncated" AR(l) or MA(l) model will fully 

describe the time series, but instead more terms are 

needed. On the other hand, we observe that the ¢1 

coefficient so obtained (different for each model) is 
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in the range of 0.082 to 0.090 and is greater than the 

coefficient ¢1 that would have been obtained by a 

direct fitting of an AR (1) model to the series (the 

latter would be ¢l = r 1 = 0.0068). 

(3) It should also be noted that all the above models 

fitted to the series give residuals that pass the 

portemanteau goodness of fit test. As it can be seen 

from equation (5.12) the impulse response function 

(e.g., the weights W. applied on the a.'s when the 
J J 

model is written in the "random shock form") dies off 

very quickly in all the models, and there is thus no 

doubt as to the application of the portemanteau test 
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(see Appendix A). The values of Q for each model 

(calculated from equation A.l using K = 60) are: QA = 

67.80, QB = 67.26, QC = 67.73 and QD = 67.39, all 

smaller than the X2 value with 58 degrees of freedom at 

5 % • • f . 1 1 2 79 1 It 1 b a s1gn1 1cance eve, X58 ,5% = •. can a so e 

seen that the values of Q for all models are almost 

equal, suggesting an equally good fit of the series by 

all the four models. 

One other interesting question that could be asked is, 

given a specific ARMA(p,q) model whether or not this could 

have arisen from some simpler model. "Simplifications are 

not always possible as conditions on the coefficients of the 

ARMA model need to be specified for a simpler model to be 

realizable" (Granger and Morris, 1976, p. 252). At this 

stage with coefficients that are so instable it is 

meaningless to test the four ARMA models for simplification. 

However, this test will be made after a unique and stable 

model has been obtained through the following proposed 

algorithm. 

Proposed Estimation Algorithm 

The problem of estimation of missing values will be 

combined with the problem of stabilizing the coefficients of 

the AID1A(l,l) model in a recursive algorithm which will have 

solved both problems uniquely upon convergence. 

The incomplete series (SO) is filled-in with some 

initial estimates of the missing values (these initial 
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estimates can be simply the monthly means or even zeroes as 

will be shown). Denote by Sl this initial series. An AR}~ 

(1,1) model is fitted to the series ~l and its coefficients 

¢l and el are used to update the first estimates of the 

missing values. For example, suppose that a gap of size k 

(k missing values) exists in the series SO: 

Series ~O: Zt+k+l Zt+k+2 ... 

Series ~l: 

where Zt+l' ... , Zt+k are the initial estimates of the 

missing values. These values Zt+l' ... , Zt+k are then 

(5.16) 

replaced by the forecasted values zt(l), ... , Zt(k) by the 

model, ~ade at origin t and for lead times 1 = 1, ... , k. 

These forecasts are the minimum mean square error forward 

forecasts as developed by Box and Jenkins (1976). For an 

A~(l,l) model with coefficients ¢l and el , the minimum 

mean square error forecasts Zt(l) of Zt+l' where 1 is the 

lead time, are: 

1 = 1 (5.17) 
A 

Zt(l) = ¢l Zt(l-l) 1 = 2, ..• , k 

from which it can be seen that only the one step ahead 

forecast depends directly on at' and the forecasts at longer 

lead times are influenced indirectly (Box and Jenkins, 1976, 

Ch. 5). The forecasting procedure in repeated for the 
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estimation of all the gaps, and the newly estimated values 

are used in equations (5.17). These forecasts now become 

the new estimates of the missing values and they replace the 

old estimates giving the new series £2. An ARMA(l,l) model 

is then fitted to the new series £2 and the new coefficients 

¢1 and 81 are found (different from the previous ones). 

Then the estimated values (forecasts from the previous 

model) are replaced by the forecasts by the new model, 

giving the new series £3' etc. The procedure is repeated 

until the model and the series stabilize in the sense that 

the parameters ¢1 and 81 of the model as well as the 

estimates of the missing values do not change between 

successive estimates within a specified tolerance. 

Schematically the algorithm is presented in Fig. 5.5 

where So denotes the incomplete series, MO the method used 

for the initial estimation, S. the estimated series at the 
-1 

ith iteration, and M. the model (e.g., the set of 
-1 

parameters ¢1 and 81 , series S .. 
-1 

The notation M. ~ M'+ l and S. ~ S'+l is introduced to 
-1 -1 -1 -1 

denote the stabilization of the model and series 

respectively after i iterations. The above algorithm will 

be addressed as RAEMV-U (a recursive algorithm for the 

estimation of missing values--univariate model) . 

Application of the Algorithm on the Monthly Rainfall Series 

The proposed recursive algorithm (RAEMV-U) has been 

applied for the estimation of missing monthly rainfall 
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So Mo ·1 L-_5_1 ~ ~M· } _I+l 

~ Si+1 

Fig. 5.5. Recursive algorithm for the estimation of 
missing values--univariate model (RAEMV-U). 
S. denotes the series, and M. the model, 
($,8)., at the ith iteration: 

1 
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values in the series of the south Florida interpolation 

station (station 6038). Different levels of percentage of 

missing values have been tested and the results for the 10% 

and 20% levels are presented herein. Tables 5.9 and 5.10 

show the results for the 10% and 20% levels of missing 

values respectively. The starting series So is the 

incomplete series (with 10% or 20% the values missing). 

Four different methods ~O (MV, RD, NR, and zeros) have been 

applied to the incomplete series, SO' providing different 

starting series, ~1' for the algorithm. Thus, its 

dependence on the initial conditions has also been tested. 

Results of the Method 

From Tables 5.9 and 5.10 the following can be 

concluded: 

(1) The algorithm converges very rapidly and independently 

of the initial estimates, thus suggesting the 

convenient replacement of the missing values by zeros 

to start the algorithm. 

(2) The greater the percent of missing values the slower 

the algorithm converges (6 iterations were needed for 

the 10% and 8 for the 20% to obtain accuracy to the 

third decimal place) as was expected since a larger 

part of the series is changing its values at each 

iteration and thus more iterations are needed to 

achieve equilibrium. 
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Table 5.9. Results of the RAEMV-U Applied at the 10% Level 
of Missing Values. Upper Value is <PI' Lower 
Value is 8 1 . 

MO MV RD NR Zeroes 

Ml 0.0255 0.5092 0.5018 0.5059 
-0.0208 0.5292 0.4272 0.2498 

M2 0.4851 0.5010 0.5096 0.4999 
0.4323 0.4166 0.4336 0.4313 

M3 0.5149 0.5110 0.5094 0.5088 
0.4406 0.4355 0.4332 0.4333 

M4 0.5087 0.5093 0.5094 0.5094 
0.4322 0.4329 0.4333 0.4333 

M5 0.5096 0.5095 0.5096 0.5095 
0.4335 0.4334 0.4334 0.4334 

M6 0.5095 0.5095 0.5095 0.5095 
0.4333 0.4333 0.4333 0.4334 
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Table 5.10. Results of the RAEMV-U Applied at the 20% Level 
of Missing Values. Upper Value is ¢1' Lower 
Value is 81 . 

MO MV RD NR Zeroes 

Ml 0.0954 0.5023 0.5021 0.5756 
-0.0069 0.4173 0.4159 0.2587 

M2 0.0738 0.1167 0.1189 0.2926 
-0.0344 -0.0311 -0.0289 0.1187 

M3 0.0789 0.0369 0.0377 0.0762 
-0.0276 -0.0693 -0.0688 -0.0458 

M4 0.0774 0.0910 0.0908 0.0526 
-0.0296 -0.0125 -0.0128 -0.0503 

M5 0.0778 0.0745 0.0746 0.0863 
-0.0291 -0.0334 0.0333 -0.0184 

M6 0.0777 0.0786 0.0786 0.0756 
-0.0292 -0.0281 -0.0281 -0.0319 

M7 0.0777 0.0775 0.0775 0.0783 
-0.0292 -0.0295 -0.0295 -0.0285 

M8 0.0777 0.0778 0.0778 0.0776 
-0.0292 -0.0291 -0.0291 -0.0293 
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(3) For a specific percent of missing values the algorithm 

converges to the same point (e.g., same model and same 

series) independently of the initial estimates of the 

missing values. 

(4) For a different percent of missing values the same 

series converges to a "different" point (e.g., 

"different" model and "different" series). This was 

expected since the constant information in the system 

(existing values) is different in each case, and thus a 

different model describes it better. 

Diagnostic checking on the residuals from the two final 

models is performed using the portemanteau goodness of fit 

test. Denote the two models (at 10% and 20% levels) by 

1 0 d 20 . 1 th U d t . h M-U an M-U respectlve y, e eno lng t at a 

univariate model has been fitted to the series. Then 

¢ = 0.5095 

¢ = 0.0777 

e = 0.4333 

e = 0.0292. 
(5.18) 

The values of Q for each model are Q(M_U10 ) = 26.54 and 

Q(M_U 20 ) = 30.22 (calculated by equation A.1 using K=30) 

which are both smaller than the X2 value with 28 degrees of 

2 
freedom at a 5% significance level: X28,5% = 41.3. Notice 

also that Q(M_U10 ) < Q(M_U 20 ), indicating that the final 

model fitted to the series when 10% of the values were 

missing has a better fit than the model fitted to the series 

when 20% of the values were missing as expected. 
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Also, now that the final ARMA{l,l) model is stable we 

can ask the question "can it be simplified to an AR(l) plus 

white noise?". For an ARMA(l,l) process the simplification 

condition is 

1 PI 
0 > - > (5.19) -

1 + ¢ 2 
1 <PI 

where 

81 
PI = 

2 
(5.20) 

1+8 1 

(Granger and Morris, 1976, p. 252). For the two models 

M_U 10 and M_U 20 of equations (5.18) the condition (5.19) 

gives 

0.794 > 0.716 > 0 
(5.21) 

0.994 > -0.375 f 0 

Although the first model barely satisfied the condition for 

simplification the second model does not, implying that an 

AR(l) process cannot describe the series as well as an ARMA 

(1,1) process. This result justified the selection of the 

ARMA(l,l) model for this rainfall series. 

The statistical properties of the two final series 

(from the 10% and 20% missing values) have also been 

computed and are shown in Table 5.11 together with the ones 
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of the actual series. The monthly statistics are also shown 

in Table C.13 (appendix C). 

Table 5.11. Statistics of the Actual Series (ACT) and the 
Two Estimated Series (UNI0, UN20). 

y s 

ACT 3.673 

UNI0 4.105 3.609 

UN20 4.043 3.492 

c v 

89.04 

87.920 

86.381 

1. 332 

1. 354 

1. 373 

0.366 0.134 

0.384 0.157 

0.410 0.160 

Table 5.12 shows the bias in the mean, standard deviation 

and lag-one correlation coefficient so that the statistical 

closeness of the estimated series to the actual one can be 

evaluated. The bias in the mean and correlation coefficient 

is not significant at 5% significance level; however, the 

bias in the standard deviation does not pass the stringent 

F-test (requiring exact equality of standard deviations) and 

thus is significant. 
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Table 5.12. Bias in the Mean, Standard Deviation and Serial 
Correlation Coefficient-Univariate Model. 

Ye-Ya 

UN10 -0.021 

UN20 -0.083 

s /s e a 

0.983 

0.951 

r -r 1,e 1,a 

0.018 

0.044 

Remarks 

1. The forecasting procedure utilized for the estimation 

is the minimum mean square forward forecasting 

procedure of Box and Jenkins (1976). Damsleth (1980) 

introduced the method of optimal between-forecasts, 

combining the forward forecasts and backforecasts into 

between-forecasts with a minimum mean square error. He 

showed that the gain in forecast error by between-

forecasting as compared to forward forecasting (or 

back-forecasting) an ARMA(l,l) model is proportional to 

1¢l k+1 where k is the size of the gap. Thus the gain 

rapidly becomes small, unless I¢I is very close to one 

and the size of the gap is very small. He also showed 

that the gain from between-forecasting can be 

sUbstantial when e is negative. Finally he concluded 

that "the reduction in forecast error variance by using 

this between-forecasting method is not very great for 

stationary series, but may be substantial when the 
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series is non-stationary" (Damsleth, 1980, p. 39). In 

our case, the use of the more complicated between­

forecasting procedure does not seem to be justified. 

It has been shown that the simple Box-Jenkins forecasts 

work satisfactorily in the sense that rapid convergence 

to a "statistically acceptable" series occurs. 

2. It is interesting to note that when the final estimates 

of the model (parameters of equations 5.18) are 

provided as initial estimates, the maximum likelihood 

estimates (calculated by a steepest descent algorithm) 

are equal to the initial estimates provided. This 

emphasizes the "uniqueness" of the stable model 

achieved by the proposed recursive algorithm. 

3. It will also be interesting to check the threshold 

level of percent of missing values at which the 

algorithm starts to diverge. This is expected to 

happen at some level of percent of missing values 

(probably greater than 50%) when too much information 

in the system is changing at each iteration. At such 

high percents of missing values a more elaborate 

testing of the final model may also be needed. 

Bivariate Model 

Hodel Fitting 

The lag-one multivariate autoregressive model of 

equation (4.3), suggested by Matalas (1967), preserves the 
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lag-zero and lag-one auto- and cross-correlations. When 

applied to two stations the model is reduced to the 

bivariate Markov model: 

(5.22) 

where the matrix B is a lower triangular matrix as suggested 

by Young (1968). The above model has been extensively used 

for the simultaneous generation of hydrologic series at two 

sites. An attempt will be made herein, to show how the 

above model can be used for the estimation of the missing 

values in one or both of the time series. A recursive 

algorithm analogous to the one proposed for the univariate 

case will be presented. 

The special case that will be considered is the 

estimation of the missing values in the series of station 1, 

given the complete, concurrent, equal length series of 

station 2. 

As has been extensively discussed in Chapter 4 

incomplete data sets may result in inconsistent covariance 

matrices resulting in generated rainfall values that contain 

complex numbers. Therefore the incomplete series ~O of 

station 1 is first completed by the use of a simple 

estimation method ~O (e.g., MV, RD, NR or even replacement 

of missing values by zeroes) giving the complete series S1. 

Denote by S the complete and known series of station 2. 



Then a bivariate AR(l) model is fitted to the series ~1 

and S. Actually the model, as in the univariate case, is 

fitted to the residual series e.g., the normalized and 

standardized series. The following procedure is followed 
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for the estimation of the parameters (matrices A and B) of 

the model: The lag-zero and lag-one correlation matrices, 

MO and M1 , of the residual series are computed 

= = [r 11 (1) 

r 21 (1) 
(5.23) 

Then matrix A is given directly by the multiplication of the 

-1 
matrices M1 and MO (equation B.8 of appendix B) and matrix 

C is computed from equation (B.13). Matrix B is given from 

the solution of equation BBT = C, which in the case of B 

being a lower triangular matrix reduces to the direct 

calculation of the elements of B from equations (B.19). 

Proposed Estimation Algorithm 

An algorithm analogous to the one for the univariate 

case is also proposed for the bivariate case. After the 

incomplete series, So has been completed with a simple 

method ~O' a bivariate AR(l) model is fitted to the complete 

series ~1 and ~ as described earlier. The parameter 

matrices A and B of the fitted model M1 = (A,B)l' are then 

used to construct new estimates for the "missing" values in 

the series Sl. From equation (5.22) we can write that: 
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(5.24) 

Z2ft = a 21 Zl,t-1 + a 22 Z2,t-1 + b 21 n1 ,t + b 22 n2 ,t . 

(5.25) 

Since the second series is complete and known, equa-

tion (5.25) is ignored and only equation (5.24) is 

considered. Following the Box-Jenkins forecasting 

procedure, the mean square error forecasts Zl,t(t) of 

Zl,t+t' where t is the lead time, are 

Zl,t + a 12 Z2,t t = 1 

'" (5.26) 
Zl,t (t-1) + a 12 Z 2 , t ( t-1), t = 2, 3, ••• , k 

where k is the number of values missing in each gap. The 

forecasting procedure is repeated for the estimation of all 

the gaps always using the newly estimated values in 

equations (5.26). These estimates then become the new 

estimates of the missing values, and they replace the old 

estimates in the series ~l giving the new series ~2 and S. 

Denote this new model by M2 = (A,B)2' which is used in the 

same way as before to update the estimates. The procedure 

is repeated until convergence occurs in the sense that 

neither the model M. nor the series S. after the ith 
-1 -1 

iteration change between iterations within a specified 

tolerance (M. ~ M. 1 and S. ~ S. +1) . 
-1 -1+ -1 -1 
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Schematically the recursive algorithm for the esti­

mation of missing values--bivariate model--1 station to be 

estimated (RAEMV-B1) is shown in Fig. 5.6. 

The algorithm can be generalized to the case where a 

multivariate model of, say, K stations is used to estimate 

the missing values of L incomplete stations where L < K. 

Such a generalized algorithm can be economically written as 

RAEMV-MK.L. The algorithm for the case of a bivariate model 

with both records incomplete e.g., two series to be 

estimated (RAEMV-B2 or in the general form RAEHV-M2.2) is 

illustrated in Fig. 5.7. The notation is the same as before 

but two subscripts are used now for the series S, the first 

denoting the station (lor 2) and the second denoting the 

iteration i (i=l, ... ). In this case both equations (5.24) 

and (5.25) would be needed for the estimation of missing 

values existing in both series. 

Application of the Algorithm on the Monthly Rainfall Series 

The case study presented herein involves the estimation 

of the missing values of the rainfall series of station 6038 

using a bivariate AR{l) model with the complete rainfall 

series of Station 6038. Thus the RAEMV-B1 illustrated in 

Fig. 5.6 has been used. Again, different levels of 

percentage of missing values have been tested, and the 

results for the 10% and 20% missing values are presented in 

Tables 5.13 and 5.14 respectively. The dependence of the 

algorithm on the starting values has been tested the same 
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way as for the univariate case, e.g., by providing different 

initial series estimated by four different methods MO (MV, 

RD, NR and zeroes). 

Tables 5.13 and 5.14 show the cross-correlation 

matrices MO and M1 at each iteration i and the model 

M. = (A,B) .. It is interesting to follow the changes of the 
-1 1 

cross-correlation coefficients at each time step. Also 

notice that the autocorrelation coefficient (see equa-

tion 5.23) of the first series changes at each iteration 

(since new estimates of the missing values replace the old 

ones) but the autocorrelation coefficient of the second 

series remains unchanged (since the second series is 

complete and known) . 

From Tables 5.13 and 5.14 the following similar 

conclusions to the univariate case can be drawn: 

(1) The algorithm converges rapidly, independently of the 

starting point (initial series). Thus, initial 

estimation of the missing values is not needed, and 

they may as well be replaced by zeroes. 

(2) The convergence seems to be less sensitive to the 

percent of values missing, since in both the 10% and 

20% levels convergence has been achieved in three to 

four iterations. 

(3) For a specific percent of missing values the algorithm 

converges to the same point (e.g., same model, same 

series, and same correlation matrices) independently of 

the initial estimates of the missing values. 
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Table 5.13. Results of the RAEMV-B1 Applied at the 10% 
Level of Missing Values. 

M. 
i MO M1 A 1- B 

M = MV 0 

1. 0.330 0.004 0.137 -0.046 0.152 0.990 O. 
1 

0.330 1. 0.042 0.315 -0.070 0.338 0.286 0.902 

1. -0.005 0.038 0.194 0.039 0.194 0.980 O. 
2 

-0.005 1. 0.065 0.315 0.067 0.316 -0.071 0.944 

1. 0.025 0.049 0.202 0.044 0.201 0.978 O. 
3 

0.025 1. 0.069 0.315 0.061 0.314 -0.043 0.946 

1. 0.025 0.049 0.201 0.044 0.200 0.979 O. 
4 

0.025 1. 0.068 0.315 0.061 0.314 -0.042 0.946 

MO = RD 

1. 0.554 0.124 0.249 -0.021 0.261 0.968 O. 
1 

0.554 1. 0.201 0.315 0.038 0.294 0.492 0.811 

1. 0.026 0.042 0.196 0.037 0.195 0.980 O. 
2 

0.026 1. 0.070 0.315 0.062 0.314 -0.039 0.946 

1. 0.025 0.048 0.201 0.043 0.200 0.979 O. 
3 

0.025 1. 0.069 0.315 0.061 0.314 -0.042 0.946 

1. 0.025 0.049 0.201 0.044 0.200 0.979 O. 
4 

0.025 1. 0.068 0.315 0.061 0.314 -0.042 0.946 

Continued 
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Table 5.13. Continued. 

M = NR -0 

1. 0.543 0.126 0.261 -0.022 0.273 0.965 O. 
1 

0.543 1. 0.187 0.315 0.022 0.303 0.478 0.819 

1. -0.002 0.046 0.199 0.046 0.199 0.979 o . 
2 

-0.002 1. 0.069 0.315 0.070 0.316 -0.070 0.944 

1 . 0.026 0.050 0.203 0.045 0.201 0.978 o. 
3 

0.026 1. 0.069 0.315 0.061 0.314 -0.042 0.946 

1. 0.025 0.049 0.202 0.044 0.200 0.978 o. 
4 

0.025 1. 0.068 0.315 0.061 0.314 -0.042 0.946 

MO - zeroes 

1 . 0.258 0.463 0.172 0.448 0.057 0.885 O. 
1 

0.258 1. 0.048 0.315 -0.036 10.385 0.247 0.915 

1 . 0.042 0.061 0.225 0.059 0.222 0.973 o . 
2 

0.042 1. 0.081 0.315 0.068 0.313 -0.033 0.946 

1 . 0.029 0.048 0.203 0.042 0.201 0.978 O. 
3 

0.029 1. 0.070 0.315 0.061 0.314 -0.038 0.946 

1 . 0.025 0.049 0.201 0.043 0.200 0.979 O. 
4 

0.025 1. 0.068 0.315 0.061 0.314 -0.042 0.946 
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Table 5.14. Results of the RAEMV-B Applied at the 20% 
Level of Missing Values. 

M. 
i MO !-t11 A 

1 B 

No = MV 

1. 0.523 0.342 0.251 0.290 0.100 0.936 O. 
1 

0.523 1. 0.257 0.315 0.126 0.249 0.446 0.831 

1. -0.025 0.369 0.307 0.377 0.316 0.874 O. 
2 

-0.025 1. 0.256 0.315 0.264 0.322 -0.253 0.876 

1. -0.023 0.389 0.333 0.393 0.337 0.857 o . 
3 

-0.012 1. 0.253 0.315 0.257 0.319 -0.255 0.877 

1. -0.012 0.389 0.332 0.393 0.337 0.858 O. 
4 

-0.012 1. 0.253 0.315 0.257 0.319 -0.254 0.877 

MO = RD 

1. 0.588 0.320 0.290 0.228 0.156 0.939 O. 
1 

0.588 1. 0.262 0.315 0.117 0.246 0.510 0.795 

1. -0.012 0.368 0.315 0.375 0.383 0.872 O. 
2 

-0.023 1. 0.257 0.315 0.264 0.321 -0.254 0.875 

1. -0.012 0.388 0.334 0.392 0.338 0.857 O. 
3 

-0.012 1. 0.253 0.315 0.257 0.319 -0.255 0.877 

1. -0.012 0.388 0.333 0.393 0.337 0.858 O. 
4 

-0.012 1. 0.253 0.315 0.257 0.318 -0.254 0.877 

Continued 
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Table 5.14. Continued. 

MO - NR 

l. 0.611 0.324 0.273 0.252 0.119 0.941 O. 
1 

0.611 1. 0.279 0.315 0.137 0.232 0.534 0.777 

l. -0.022 0.372 0.311 0.379 0.320 0.872 O. 
2 

-0.022 1. 0.258 0.315 0.265 0.321 -0.253 0.875 

l. -0.012 0.389 0.333 0.393 0.338 0.857 O. 
3 

-0.012 l. 0.253 0.315 0.257 0.319 -0.255 0.877 

l. -0.012 0.389 0.332 0.393 0.337 0.857 O. 
4 

-0.012 l. 0.253 0.315 0.257 0.318 -0.254 0.877 

MO = zeroes 

l. 0.321 0.601 0.201 0.599 0.009 0.799 O. 
1 

0.321 l. 0.195 0.315 0.104 0.282 0.253 0.909 

l. 0.006 0.423 0.340 0.421 0.337 0.841 O. 
2 

0.006 l. 0.228 0.315 0.226 0.314 -0.233 0.892 

1. -0.012 0.392 0.332 0.397 0.337 0.856 O. 
3 

-0.013 1. 0.249 0.315 0.253 0.319 -0.255 0.878 

l. -0.013 0.390 0.333 0.394 0.338 0.857 O. 
4 

-0.013 l. 0.253 0.315 0.257 0.319 -0.255 0.877 
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(4) For a different percent of missing values the same 

series converges to a "different" point, but this is 

reasonable and expected since the constant information 

(existing values in the series) is different in each 

case, and a different model thus describes it better. 

The statistical properties of the two final series 

(from the 10% and 20% missing values) are shown in 

Table 5.15 together with the ones of the actual series. 

The monthly statistics are also shown in Table C.14 

(appendix C). Table 5.16 shows the statistical closeness of 

the two estimated series to the actual one. Again, the bias 

in the mean and correlation coefficient is not significant 

at the 5% significance level, but the bias in the standard 

deviation is. 

Table 5.15. Statistics of the Actual Series (ACT) and the 
Two Estimated Series (B10 and B20) . 

y 

ACT 4.126 

B10 4.096 

B20 4.077 

s 

3.673 

3.610 

3.523 

89.04 l. 332 0.366 0.134 

88.132 1.358 0.382 0.162 

86.421 l. 341 0.416 0.165 
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Table 5.16. Bias in the Mean, Standard Deviation and Serial 
Correlation Coefficient-Bivariate Model. 

Ye-Ya 

BIO -0.030 

B20 -0.049 

s /s e a 

0.983 

0.959 

r -r l,e l,a 

0.016 

0.050 



CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

Summary and Conclusions 

The objective of this study was to compare and evaluate 

different methods for the estimation of missing observations 

in monthly rainfall series. The estimation methods studied 

reflect three basic ideas: 

(1) the use of regional information in four simple 

techniques: 

- mean value method (MV) , 

- reciprocal distance method (RD) , 

- normal ratio method (NR) , 

- modified weighted average method (MWA); 

(2) the use of a univariate stochastic (ARMA) model 

that describes the time correlation of the series; 

(3} the use of a multivariate stochastic (ARMA) model 

that describes the time and space correlation of 

the series. 

An algorithm for the recursive estimation of the missing 

values in a time series using the fitted univariate or 

multivariate ARMA model has been proposed and demonstrated. 

Apparently, the idea of the recursive estimation of missing 

values is known (Orchard and Woodbury, 1972; Beale and 
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Little, 1974), as well as the idea of using the fitted model 

to directly derive the estimates (Brubacher and Wilson, 

1976; Damsleth, 1979). However it appears that a method 

which combines the above two ideas simultaneously in a 

recursive estimation of the missing values with parallel 

updating of the model has not been used before. 

The proposed algorithm is general and can be used for 

the estimation of the missing values in any series that can 

be described by an ARMA model. 

On the basis of the data from the four south Florida 

rainfall stations used in the analysis, the following con­

clusions can be drawn: 

(1) All the simplified estimation techniques give 

unbiased (overall and monthly) means and correla­

tion coefficients at the 5% significance level 

even for as high as 20% missing values. 

(2) At high percentages of missing values (greater 

than 10%) the MV method gives the more biased 

(although not significantly so) correlation coeffi­

cients. 

(3) All methods give a slightly biased overall variance 

but unbiased monthly variance at the 5% signifi­

cance level, and the l'-1V method gives the most 

biased variances for all percentages of missing 

values. 

(4) The NR method gives the most and the MV the least 

accurate estimates, at almost all levels of percent 

missing values. 



(5) The proposed recursive algorithm works satisfac­

torily in both the univariate and bivariate case. 

It converges rapidly and independently of the 

initial estimates and gives unbiased means and 

correlation coefficients at the 5% significance 

level. 

133 

(6) The use of a bivariate model as compared to a 

univariate one did not improve the estimates except 

for a slight improvement at 20% missing values. 

However, the use of a multivariate model based on 

three or four nearby stations is expected to give 

much better estimates. The use of three adjacent 

stations is the main reason for the better perform­

ance of the NR method over the more sophisticated 

univariate and bivariate ARMA models which use 

only zero and one additional stations. 

If the purpose of estimation is to calculate the 

historical statistics of the series (e.g., mean, standard 

deviation, and autocorrelations) the selection of the method 

matters little, and the simplest one may be chosen. How­

ever, if it is desired to fit an ARMA model to the incom­

plete series, to be used, say, to construct forecasts, the 

estimation of the missing values and the parameters of the 

model by the proposed recursive algorithm is recommended. 

In this case the equilibrium state (i.e., final series and 

parameters of the model) achieved upon convergence is 

unique, depending only on the existing information in the 



134 

system (available data) and not on any external information 

added to the system (by the replacement of the missing 

values with some derived estimates). The only assumption 

made is that the order of the ARMA model to be fitted to the 

series is known. In practical situations this is seldom a 

problem since the latter can be determined from the complete 

part of the series or from a series with similar characteris­

tics. For example, if an ARMA(l,l) model is known to fit 

the monthly rainfall series well at a couple of nearby sta­

tions, there is little doubt that it will fit the incomplete 

monthly rainfall series equally well at the station of inter­

est. Upon convergence, the recursive algorithm then gives 

the "best" estimates of the parameters of the model. 

Further Research 

Further research should include: 

(1) application of the simple estimation techniques in 

short records where the biases may be significant for 

the methods with the poorer performance; 

(2) test of the sensitivity of the recursive algorithm to 

the selection of the model (order of the model) when 

more than one model fits the data equally well; 

(3) derivation of the threshold percent of missing values 

after which the algorithm diverges; 

(4) application to the estimation of missing values in other 

hydrological series, e.g., runoff; 
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(5) trials of different forecasting procedures and deter­

mination of improvements obtained by the "between­

forecasting procedure" in cases of a large number of 

single-value gaps, e.g., use of the average of a back­

wards and forwards ARMA model forecast; 

(6) application of the concept of "missing values" for the 

estimation of erroneous values or outliers in a series 

to avoid errors when using the data, say, to construct 

forecasts; and 

cn estimation of values in a series that are affected by 

unusual circumstances, thereby permitting a measure of 

the magnitude of the unusual circumstance and the esti­

mation of the effect of similar circumstances in the 

future (e.g., effect of a drought on water supply). 



1. Strict stationarity 

APPENDIX A 

DEFINITIONS 

A stochastic process is said to be strictly stationary 

if its statistics (e.g., mean, variance, serial correlation) 

are not affected by a shift in the time origin, that is, if 

the joint probability distribution associated with n 

observations (zl' z2' ., zn)t made at time origin t, is 

the same as that associated with n observations (zl' z2' 

.. , zn)t+k made at time origin t+k. In other words, z(t) 

is a strictly stationary process when the two processes z(t) 

and z(t+k) have the same statistics for any k. 

2. Weak stationarity 

Weak stationarity of order f is when the moments of the 

process up to an order f depend only on time differences. 

Usually by weak stationarity we refer to second order 

stationarity, e.g., fixed mean and an autocovariance matrix 

that depends only on time differences (i.e., lags). 

3. Gaussian process 

If the probability distribution associated with any set 

of times is a multivariate normal distribution, the process 
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is called a normal or Gaussian process. Since the 

multivariate normal distribution is fully described by its 

first and second order moments it follows that weak 

stationarity and an assumption of normality imply strict 

stationarity. 

4. Non-stationarity 

A stochastic process is said to be nonstationary if its 

statistical characteristics change with time. A homogeneous 

nonstationary process of order d is a process, for which the 

dth difference vdZt is a stationary process. For example a 

first order homogeneous nonstationary process is one that 

exhibits homogeneity apart from constant (e.g., a linear 

trend), and a second order nonstationary is the one that 

exhibits homogeneity apart from constant and slope (e.g., a 

parabolic trend). 

5. Circular stationarity 

A stochastic process is said to be circularly 

stationary with period T, if the mUltivariate probability 

distribution of T observations (zl' z2' 

time origin t, is the same as that associated with T 

observations (zl' z2' . 

t +Tk, for k = 1, 2, 

., zT)t+Tk made at time origin 

For example, a monthly 

hydrologic series has a period of 12 months, i.e., 

T = 12 and circular stationarity suggests that the 
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probability distribution of a value of a particular month is 

the same for all the years. 

6. Stationarity condition 

A linear process can be always written in the random 

shock form: 

(A. 1) 

where B is the backward shift operator defined by BZ t = 

hence Bm = Z and Zt-l; Zt t-m 

(A. 2) 

is the so called transfer function of the linear system and 

is the generating function of the ~ weights. For the 

process to be stationary the ~ weights must satisfy the 

condition that ~(B) converges on or within the unit circle, 

e.g., for all IBI < 1. 

7. Invertibility condition 

The above model may also be written in the inverted 

form 

(A. 3) 

or 

n(B) (A. 4) 
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where 

is the generating function of the TI weights. For the 

process to be invertible the TI weights must satisfy the 

condition that TI(B) converges for all IBI < 1, that is on or 

within the unit circle. The invertibility condition is 

independent of the stationarity condition and is applicable 

also to the nonstationary linear models. The requirement of 

invertibility is needed in order to associate the present 

values of the process to the past values in a reasonable 

manner, as will be shown below. 

8. Duality between AR and MA processes 

In a stationary AR(p) process, at can be represented as 
rv 

a finite weighted sum of previous z's, 

(A. 6) 

rv 
or Zt as an infinite weighted sum of previous a's 

(A. 7) 

rv 
Also, in an invertible MA(q) process, Zt can be represented 

as a finite weighted sum of previous a's, 

(A. 8) 



'V 
or at as an infinite weighted sum of previous z's 

-1(B) e 
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(A. 9) 

In other words, a finite AR process is equivalent to an 

infinite MA process, and a finite MA process to an infinite 

AR process. This principle of duality has further aspects, 

e.g., there is an inverse relationship between the 

autocorrelation and partial autocorrelation functions of AR 

and MA processes. 

9. Physical interpretation of stationarity and 
invertibility 

Consider an AR(I) process (1 - ¢ I B) Zt = at. For this 

process to be stationary, the root of the polynomial 

1 - ¢lB = 0 must lie outside the unit circle, which implies 

that B = ¢~1 must be greater than one, or 1¢1 1 < 1. The 

process can be also written 

Zt = ¢ 1 Zt-l + at 

2 + + (A. 10) Zt+l = ¢I Zt-l ¢lat a t +1 

3 2 
+ ¢lat +1 + a t +2 etc. Zt+2 = ¢lZt-l + ¢la t 

When I¢l I > 1 (or 1¢1 I = 1) the effect of the past on the 

present value of the time series increases (or stays the 
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same) as the series moves into the future. Only when 

I¢ll < 1 (stationary process) does the effect of the past on 

the present decrease the further we move into the past, 

which is a reasonable and acceptable hydrologic fact 

(Delleur and Kavvas, 1978). 

Consider now an MA(l) process Zt = (1-8 1B)at . The 

invertibility condition implies that 181 I < 1. The process 

can also be written in the form: 

1 
= 1- e B Zt 

1 

-1 
where the polynomial (1-81B) can be expanded in an 

(A. 11 ) 

infinite sum of convergent series only if 181 I < 1. To 

illustrate the need for invertibility let us assume that 

I 81 I > 1. Then (A. 11) can be written as 

1 1 
(A. 12) 

and since 18~B I < 1, it can be expanded to the form 

( __ 1_ + ----21 2 + __ 1 __ + .•• ) Zt 
81 B 81B 8fB 3 

(A. 13) 

or 
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(A. 14) 

which implies that future values are used to generate the 

present values. It becomes clear that the invertibility 

condition is required in order to assure hydrologic 

realizability. 

10. The portemanteau lack of fit test 

The portemanteau lack of fit test (Box and Jenkins, 

1976, Ch. 8) considers the first K autocorrelations rk(a), 

k = 1, 2, ... , K, of the fitted residual series a of an 

ARIMA(p,d,q) process, to detect inadequacy of the model. It 

can be shown (Box and Pierce, 1970) that, if the fitted 

model is appropriate, 

Q = (N-d) 
K 2 A 

L: r k (a) 
k=l 

(A. 15) 

is approximately distributed as X2 (K-p-q) where K-p-q is the 

number of degrees of freedom, N is the total length of the 

series, and (N-d) is the number of observations used to fit 

the model. The adequacy of the model may be checked by 

comparing Q with the theoretical chi-square value x2 (K-p-q) 

of a given significance level. 
2 

If Q < X (K-p-q), at is an 

independent series and so the model is adequate, otherwise 

the model is inadequate. 
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For the choice of K, Box and Jenkins suggest it to be 

"sufficiently large so that the weights ~. in the model, 
J 

written in the form 

(A. 16) 

will be negligibly small after j = K" (Box and Jenkins, 

1976, p. 221). The IMSL subroutine FTCMP (IMSL - 0007, 

Ch. F) uses a value of K equal to NI10 + P + q to perform 

the portemanteau test. 

Ozaki (1977) points out that "for the application of 

the portemanteau test, fast dying off of the impulse 

response function (weights ~.) of the model is a necessary 
J 

condition" (Ozaki, 1977, p. 298). In cases where the 

impulse response function dies off rather slowly (possibly 

due to the near-nonstationarity of the model) when compared 

with the length of the series, the applicability of the 

portemanteau test is doubtful since the autocorrelations of 

the residuals may not be reliable at large lags. 

11. Cumulative periodogram test 

Another method used in the diagnostic checking stage of 

the Box-Jenkins procedure is the cumulative periodogram 

checking of the residuals. The normalized (area under the 

curve equal to one) cumulative periodogram for frequencies, 

f, between 0 and 0.5, of the fitted residuals at' is 

compared with the theoretical cumulative periodogram of a 
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white noise series which is a straight line joining the 

points (0, 0) and (0.5, 1). A periodicity in the residuals 

at frequency f. is expected to show up as a deviation from 
l 

the straight line at this frequency. Kolmogorov-Smirnov 

probability limits can be drawn on the cumulative 

periodogram plot to test the significance of such 

deviations. For a given level of significance a, the limit 

lines are drawn at distances ±Ka/ N' above and below the 

theoretical straight line, where N' = (N-2)/2 for N even and 

N' = (N-1) /2 for N odd. Approximate values of Ka for 

different levels of significance a, are: 

a 0.01 0.05 0.10 0.20 0.25 

K a 1. 63 1. 36 1. 22 1. 07 1. 02 

(Box and Jenkins, 1976, p. 297) . So, if more than aN of the 

plotted points fall outside the probability lines, the 

residual series may still have some periodicity; otherwise 

it may be concluded that the residuals are independent. 

In practice, "because the a's are fitted values and not 

the true a's, we know that even when the model is correct 

they will not precisely follow a white noise process" and 

thus the cumulative periodogram test provides only a "rough 

guide" to the model inadequacy checking (Box and Jenkins, 

1976, p. 297). 
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12. Akaike Information Criterion (AIC) 

The AIC for an ARMA(p,q) model is given by 

AIC(p,q) 
1'.2 

= N log (0 a) + 2 (p+q+2) + Nlog2'IT + N 

1'.2 Ii 
where 0 is the MLE of the residual variance given by a 

1 
N-p-q s (.!,~) (A. 1 7) 

and i, ~ are the vectors of the parameters ¢, e which 

minimize the sum of squares of the residuals at 

(A.18 ) 

For the purpose of comparison of models the definition of 

AIC can be replaced by 

AIC(p,q) 
1'.2 

= N log(Oa) + 2(p+q) (A.19) 

Ozaki (1977) demonstrates that the inherent difficulties 

associated with the Box-Jenkins procedure (identification, 

estimation and diagnostic checking) for the selection of the 

model, when several models fit the data equally well, can be 

overcome by using the MAICE (minimum AIC estimation) 

procedure as the only objective criterion for the selection 

of the "best" approximating model among a set of possible 
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models. He also points out that the AlC IImeasures both the 

fit of a model and the unreliability of a model ll (Ozaki, 

1977, p. 290). 

13. Positive definite (semidefinite) matrix 

A real symmetric matrix A is called positive definite 

(semidefinite) if and only if 

(.,::.0) (A. 20) 

for all vectors X ~ O. The two following theorems hold: 

Theorem 1: A matrix A is positive (semi-) definite if and 

only if all its characteristic values (i.e., eigenvalues) 

are (non-negative) positive. 

Theorem 2: A matrix A is positive (semi-) definite if and 

only if all the successive principal minors of A are 

(non-negative) positive. 

An obvious corollary of the above is that a positive 

semidefinite matrix is positive definite if and only if it 

is nonsingular i.e., none of its characteristic values are 

zero (Gantmacher, 1977, p. 305). 



14. Test for differences in the means of two normal 
populations 
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Let ~1' ~2 denote the population means of two normal 

distributions and xl' x2 the sample means respectively. Let 

also assume that the variance of the two normal 

distributions are equal but unknown. The hypothesis 

Ho: ~1 = ~2 versus Ha: ~1 # ~2 is tested by calculating the 

statistic 

where 

t = 

2 s = 

- x 
2 

which has a t distribution with N1 + N2 - 2 degrees of 

freedom. The H is rejected if o 

(A.21) 

(A. 22) 

(A.23) 

Although the test is based on sample normality, for 

large samples, the Central Limit Theorem enables us to use 

the test as approximate test for nonnormal samples. If the 

two populations are of equal length, N1 = N2 = N, then 

equation (A.21) reduces to 



t = 

15. Test for equality of variances of two normal 
distributions 
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(A.24) 

2 2 2 2 
Let aI' a 2 denote the population variances and sl' s2 

the sample variances of two normal distributions. The 

hypothesis Ho: ai = a; versus Ha: ai # a; is tested by 

calculating the statistic 

F c (A. 25) 

where si is the larger sample variance. Fc is distributed 

as an F distribution with Nl - 1 and N2 - 1 degrees of 

freedom where N1 is the length of the sample having the 

larger variance and N2 is the length the sample with the 

smaller variance. 

F c 

H is rejected if 
o 

N -1 
> F 1 

N -1 2 

1 - a 

16. Test for equ~lity of correlation coefficients 

(A.25) 

Let p denote the population correlation coefficient and 

r the sample estimate of p. If the sample size is 

moderately large (N > 25) then the quantity W is 
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approximately normally distributed with mean and variance 

1/N-3 where 

and 

W I 1 (1 + r) ="2 n 1 r 

To test the hypothesis H : P = r against the 
o 

alternative H : P # r the quantity a 

z = (W - w) IN - 3 

(A. 27) 

(A. 28) 

(A.29) 

can be considered to be normally distributed with zero mean 

and unit variance. If Iz I > zl- a /2 (z is the standard 

normal variable), Ho is rejected (see Haan, 1977, p. 223). 



·APPENDIX B 

DETERMINATION OF MATRICES A AND B OF THE 
MULTIVARIATE AR(I) MODEL 

Determination of matrix A 

The multivariate lag-one autoregressive model is 

written as 

(B. I) 

T Post-multiplying both sides of equation (B.I) by Zt-l and 

taking expectations it becomes: 

(B. 2) 

By definition 

(B. 3) 

and 

(B. 4) 
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and from the assumption of weak stationarity 

Also from the independent uncorrelated process Nt 

so that equation (B.2) becomes 

and solving for the parameter matrix A 

Determination of matrix B 

Post-multiplying equation (B.1) by ZT and taking 
t 

expectations in both sides it becomes 
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(B. 5) 

(B. 6) 

(B. 7) 

(B. 8) 

(B. 9) 
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Because E[NtN~J = I, an identity matrix, and E[NtZ~_l] = 0 

equation (B.9) can be written 

(B.lO) 

By substituting A from equation (B.B) and solving for B BT 

(B.ll) 

Solution of equation B BT = C 

The right hand side of equation (B.Il) involves the 

lag-zero and lag-one correlation matrices which can be 

estimated from the historical data and thus is a known 

guantity C. The problem that remains now, is to solve 

equation 

(B.12) 

for B. A necessary and sufficient condition to have a real 

solution for B is that C must be a positive semidefinite 

matrix. 

It can be proven (Valencia and Schaake, 1973) that if 

the correlation matrices MO and Ml have been calculated 

using equal length records for all m sites, then the matrix 

(B.13) 
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is always positive semidefinite and so a real solution for 

the matrix B exists. But this solution for B is not unique. 

An infinite number of matrices B exist that satisfy (B.12). 

Proof: Let B denote a matrix solution of equation (B.12) 

and K denote an (rnxm) matrix such that K KT = I where I is 

an (rnxm) identity matrix. A matrix BO defined as 

BO = B K (B.14) 

may be used in place of B in equation (B.12) since 

There exists more than one matrix K such that K KT = I, and 

therefore many solutions for matrix B exist, all valid since 

the elements of B have no physical significance as far as 

synthetic hydrology is concerned (Matalas, 1967). 

Several techniques have been proposed for the solution 

of equation (B.12). Fiering (1964) and Matalas (1967) 

suggested the use of principal component analysis and Moran 

(1970) used canonical correlation analysis. Young (1968) 

assumed that B is a lower triangular matrix, based on the 

fact that C = B BT is a symmetric matrix, and gave a unique 

recursive solution for the elements of B. Let us examine 

this case closely: 



154 

(1) C = B BT is symmetric for any B. The (i,j)th element of 

matrix C is 

c .. = 
1.J 

(B. 16) 

and the across the diagonal element is 

c .. = 
J1. 

(B. 17) 

where the prime denotes a transposed element. Thus, bkj = 

b jk and bki = b ik , which implies that 

therefore C is symmetric for any B. 

c .. 
1.J 

= c .. and 
J1. 

(2) That C is symmetric implies that m(m+l)/2 equations are 

required to specify it, and so m(m+1)/2 non zero elements of 

matric B are needed. Thus, since the (mxm) matrix B has m2 

elements there are m(m-l)/2 elements that can be set to 

zero. So the assumption of a lower triangular matrix B is 

valid. 

(3) The assumption of a lower triangular matrix B allows a 

recursive solution for the coefficients of B. This will be 

illustrated in the (2x2) case, and the reader is referenced 

to Young and Pisano (1968) for the general case. 
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b 11 0 b ll b 21 c II c l2 

= 

b 21 b 22 0 b 22 C21 c 2 2 

or (B.18) 

2 
b ll b 21 b ll c II c 12 

= 

b 21 b ll 
2 2 (b 21 - b 22 ) c 21 c 22 

from which 

b ll = c II 

b 21 = c 21 /b ll (B.19) 

V b 22 
2 

= c II - b 21 

with the constraints 

> 0 and (B.20) 



APPENDIX C 
DATA USED AND STATISTICS 

Table C.l. 55 years of monthly rainfall data for the 
South Florida Station 6038. 

...... * STATION 6039. MOORE HAVEN LOCK 1 *.*.* 

1"27 0.11 2. 0" 1. 70 2. 02 1. 94 10. 7'P 5. 79 8.61 6."9 4. 12 0.39 O. 39 
1"28 O. 42 2.31 2.46 1. 52 4. lCf 8. 12 5.43 11.82 14. 60 O. 47 0.97 O. 31 
1"29 O. 82 O. 14 O. 52 1. :55 2. 73 9. 35 8.44 4.93 13. 4:5 1. 71 1. 27 1.39 

1"30 0.49 3.23 4. 76 4. 12 11.33 17.8:5 4. 72 11.61 11. ~6 6. 33 O. 45 2. 33 
1931 2. 58 O. 76 5.90 3. 44 1. 59 1. 20 2.68 10.34 :5.06 1. 94 o.oe o 35 
1"32 1. 97 3. 13 2. 97 1. 76 6.05 4."6 6.25 15.71 :5."9 2. 93 3.29 O. 07 
1"33 1.65 O. 1" 3.88 6. "2 3.8Cf 4. 66 5. 36 5. 77 2. 75 5.18 0.Cf2 O. 28 
1"34 1. 33 :Z.E9 2. 73 2.22 6.43 4.36 8.48 6. 20 4. 18 5. 54 3.58 O. ;::6 
1935 O. 52 1.00 0.03 5. 18 3. 57 :5.84 :5. 09 5. 50 9. 53 1. 42 1. 71 1. 43 
1"36 2.23 4."7 1.95 2. 55 5. 41 14. 59 2. 99 :5. 79 11.51 3. 55 O. 58 1. 19 
1"37 2. 07 1. 70 4.83 4. 89 4.94 4. 29 13. 79 4. 71 4.48 8.72 5. 47 O. 44 
1938 O. 61 O. 57 0.34 O. 21 6.28 7. 40 8.20 2.39 2.23 3.92 1. 52 O. 11 
193'P O. 18 0.35 O. 79 3. 08 4.48 3. 61 16.13 10. 42 4.20 3.60 1. 45 1 ':'5 
1"40 2. 37 3.07 5. :55 2. 06 3.36 4. 96 7."2 10. 43 14. 13 0.3;Z O. 42 3.91 
1"41 :5. 73 3.86 3.68 :to 62 3.30 4. 87 13. 23 b.71 8. 54 ;Z. 92 1. 66 1. ~2 
1942 2.80 3. 51 4. :5:5 :5. 64 1. 99 ". :51 4.81 :5.66 4. 16 0.03 0.46 1. 62 
1943 O. 35 0.37 2. 72 3. 91 3. 43 5. 02 8.04 8.07 3 C'7 ;Z. 67 1. 69 O. ;20 
1944 O. 98 O. 12 2.35 5. 41 1. :52 :5. :50 8.36 :5. 42 9.23 3. 47 0.07 o 27 
1"4:5 1. 82 O. 27 O. 17 3. 20 2.22 7.07 ".47 6.86 8.38 4. 9;Z O. 53 o 57 
1946 O. 68 O. 76 ;Z. 53 0.27 7.5;Z :5. 74 6.90 4. 49 7.77 1. 16 2.16 O. 90 
1947 O. 70 1. 64 9. 73 O. :55 4.80 15.02 6. 43 10.74 10. :57 6. 18 4.33 1. ::i 1 
1948 4.16 O. 39 0.62 3. 15 2.24 4. 67 6.00 :3.94 21. 55 ;Z.42 0.57 O. 57 
1949 O. 05 0.0:3 O. 46 1. 64 3.13 6. :56 9. 40 12. :51 10. 22 O. 73 0.96 ;: i'~ 

1 <;1:50 O. 06 O. 72 1. 40 2. 98 :3.29 4. :5:5 7. :5:3 8. 86 2. 77 5. 54 157 1. 45 
1951 O. 15 1.99 O. 82 3. :31 4.47 5. 02 11.63 5.03 6.20 7.74 1.36 O. 11 
1952 O. 92 5. 02 1 50 2. 2:5 10.74 7. 56 7.05 8.09 6.35 11. 11 O. 19 Ci 46 
1953 1.45 2. 57 O. 76 4. 03 2.78 6. :52 9. 13 :5.6:5 14. 16 9.67 C. 55 1. 25 
1954 O. 39 1.72 ;Z.24 3. 52 11.96 12. 53 10. 58 !j. 96 6. 48 2.63 1. 19 1. 89 
1955 ;Z. 78 1.27 1. :26 1.7:2 3.91 13. 17 5. 80 3. 59 7.07 :2. 55 O.;?S 1. l8 
195-6 O. 96 1.04 O. 40 1. ~8 1. 13 5. 43 3. 53 4. 67 :5. 18 6. 47 O. 13 0 52 
19~7 1. 74 3. 73 6. 09 4. 06 5.58 4, 35 6. 59 7. 59 9. :50 1. 20 0.24 7 58 
1958 6. 04 0.84 7.03 5.84 4.91 :5.93 8.32 4. 12 3. 09 4. 59 0.47 ~ 77 
19:59 1.09 1.08 5.82 1.99 6. 07 10.16 :5. 60 O. 12 12. 00 12.36 1. 29 1 02 
1960 O. 31 4. 43 1.37 6. " 2.77 11.35 11. 11 6.37 11.30 5.99 1. 21 C. 69 
1961 2. 71 2. 16 3. 56 2.44 6. 1;Z 7. 17 3. 74 4. 73 2 64 0.66 1. 41 0. 33 
1962 O. 88 0.47 3. 57 2. 60 2.33 11.46 :5. 46 7. 71 8. 78 1. 20 4. 03 0 22 
1963 0.86 3.64 0.49 0.80 8.82 6. 92 1. 08 6. 06 3. 52 0.05 268 4 20 
1964 2. " 4. 80 0,61 0.67 2.34 5. 20 4.78 8.89 3.46 2. 74 0 05 O. 72 
1965 O. 42 3. 59 3. 16 1. 70 1. 11 10. 16 :5. 57 2. 78 4.71 9. 06 0.34 1. 89 
1966 5.47 3. 67 0.42 3. 01 ~.97 9. 26 10. 93 11. 19 6. 76 2. 62- O. 11 o 40 
1967 O. 84 1.69 O. 24 O. 14 2. 58 11.;Z7 7.02 3. 74 8. 53 3.37 0.08 1. 95 
1968 O. 58 1. 72 1. 03 O. 85 8. 64 10. 73 7.13 4.23 6,81 3. 21 2.~~ 0.21 
1969 1.76 2. 28 6.19 o 69 4. 10 10. 09 3. 68 10. 04 8. 49 11. 75 1.46 3. 82 
1970 3. 55 2.40 12. 63 O. 02 2.98 8. 74 5. 91 7.3~ 3.46 4.70 o 13 0.28 
1971 0.25 O. 51 0.37 O. 14 1. 50 13. 86 7.28 8.29 7. 18 6. 3:5 0 90 120 
1972 O. 30 1. ~5 2.24 2.34 7.52 10. 50 2.77 6.40 0.93 O. 40 2.21 1. 39 
1973 2. 72 2. 73 3.34 1. 02 5. 88 10. 48 8.01 ~. 58 8.43 1. 38 0.03 1. 52 
1974 O. 14 1. 36 0.08 0.97 3.00 14.91 18. 56 7.99 5. 91 1.35 1. 64 1. 71 
197:5 O. ;ZO 1. 95 O. 74 1.22 4.89 5.29 7.00 3. 13 11. 11 4. 88 0.27 0 38 
1976 0.65 1. 41 1. 59 1.81 4.43 3. 10 9.98 12.31 :5. 74 0.80 1. 88 2. 31 
1977 4. 87 1. 38 1. 12 0.20 :5.17 3. 74 6. 19 5. 51 6.29 1. 01 5. 33 4. 74 
1978 1. 78 1. 39 2. 64 2. 06 8.:38 ~. 43 9.32 2. 67 6.40 2. 23 2. 13 4. 39 
1979 21.40 0.23 2.30 0.84 7.64 1.09 1. 45 5.66 17.69 1. 90 1.83 1.96 
1980 2. 76 1. 08 2.32 :5.29 2.23 3. 10 7.~8 7.61 6. 88 1. 47 2 20 0.62 
1981 O. 87 1. 52 1. ;Z8 O. 38 2 06 3. 33 3. 70 10. 29 4. 54 O. 24 1. 27 o 15 
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Table C.2. 55 years of monthly rainfall data for the 
South Florida Station 6013. 

***** STATION 6013. AVON PARK ***** 
1927 O. 10 1. 87 2.29 1. ~2 0.31 S. ~9 5.39 ~. 93 3.9S 3. 80 0.40 1. 71 
1928 0.26 1. 14 3. 12 3.66 3.~1 6.90 13.01 9.66 10.64 2.05 1. 03 O. 35 
1929 1. 70 -1. 00 1. 35 2. 78 ~.62 S. 42 ~. 61 10. 55 11. 59 2. 40 0.56 2.29 
1930 4.00 4.17 6. 59 3.95 7.55 11.37 4.49 7.06 18.iil2 2.42 1. 25 4. 13 
1931 3.92 2.36 3.7~ ~.2~ 6. 10 3. 74 S.15 0.37 7.84 2.98 O. 18 1. 47 
1932 0.63 O. 14 1. "9 2.08 5.95 ".29 4.68 2. SO 4. 06 4. 50 2.48 0.07 
1933 1. 97 2.35 1. 70 5.90 3.66 4. 77 13.78 -1.00 11.71 1. 94 3.47 0.27 
1934 1. 22 2. SO 3. 5a 4.32 7. 15 10.94 4.13 -1.00 3.17 0.11 0.93 1. 00 
1935 O. 41 1. 15 O. Sl 6.03 2.87 6.87 -1. 00 9.93 11.35 2. 99 1. 05 2.39 
l'i136 4.83 8.35 5. 52 1.67 2.59 10.87 -1. 00 7.99 9.99 3.97 1.07 2. 14 
1937 2.63 5. 13 3.31 4.06 1. 65 -1.00 5. 29 6.27 6.47 6.47 5.44 O. 87 
1938 1.44 1. 43 1. 45 0.42 3.43 4.64 8. 13 4.24 2. 81 6. 44 2.50 O. 19 
1'i139 1.52 1.20 1.34 4.66 ~.85 7.91 S.22 19.85 6.22 4.63 O. 50 O. 61 
1.,40 3.83 3.06 3. 5S 1. 54 5.30 8. 43 11. 76 4.02 9.94 0.68 O. 10 4. 43 
l'i141 4.01 3.02 2.92 4. 73 1. 04 9. 52 15.20 3.11 4.S9 2.62 2.49 1. 98 
1942 4. 48 4.72 3.86 2.67 6.43 S. 52 8. 76 5. 19 5.37 0.13 0.0 3. 54 
1943 1.21 O. 46 4.94 1.69 8.83 ~. 76 7.86 10. 02 3. 98 4.35 1. 32 O. 59 
1944 -1. 00 -1. 00 -1.00 5. 73 2.07 7.39 11.17 6.42 3. 39 4.45 0.26 O. 51 
1.,45 1. 9~ 0.03 0.40 1.61 2.45 14.09 14.49 2. 7'i1 8. 43 5.94 0.49 2. 00 
1946 1. 14 2. 11 1.08 0.20 6.03 S.02 9. 88 6.04 8.09 4.74 2.06 1. 31 
1947 1.92 3.82 6. 19 4.65 3. 57 12. 77 10. 50 9.30 14.31 2.97 2.65 1.65 
1948 4.03 O. 51 0.83 6. 00 2.34 4.39 18.99 6. 72 16.10 6.99 1. 99 1. 50 
1949 O. 13 O. 09 0.92 3.30 2.66 6. 74 6. 48 10.12 8. 18 O. 70 1. 79 0.41 
19~ 0.0 O. 66 1. 46 3.15 2.42 2.09 3.38 5. 90 7.83 7.56 0.32 1.79 
1951 0.22 2. 57 0.64 10.35 0.33 6. 98 5.30 a. 72 3.99 5.94 -1. 00 O. 90 
1952 1. 30 4.61 5. 49 O. 97 5.48 7.39 7.23 a. 46 5. 42 6. 90 1. 60 1. 15 
1953 3. 27 2. 58 6.90 7.45 0.83 13. 16 5. 52 11.00 12. 71 6 92 7.44 2. 40 
1954 1. 78 1.96 1. 62 4. 71 3.12 la.95 4. 73 6.31 6.20 1. 60 1. 60 1. 97 
1955 2. 73 1. 06 1.67 1.31 1.62 5.27 6.65 1. 86 8.93 2. 46 0 56 O. 74 
1956 0.26 0.94 1. 54 2.23 1. 95 9. 13 4.70 10.95 6. 70 7. 78 0.22 O. 22 
1.,57 2. 14 5.10 4. 77 6. 07 10.91 9.37 12. 74 6.99 7. 08 1. 45 1. 30 2. 12 
1958 8.33 3. 50 5. 55 3.43 4.10 6. 77 4.45 6.31 4. 97 2. 75 0.91 3. 96 
1.,59 1.23 3.60 7.35 3.06 6.47 15. 17 7.03 8.20 12.06 11.26 1. 73 2. 47 
1960 O. 55 6. 54 5. 52 3. 00 2.28 7. 06 13.67 8.07 14.82 3.06 0.28 1. 02 
1.,61 2.30 3.22 3.02 2. 06 4.18 .,. 56 4.09 4. 77 2.86 2. 11 0 58 O. 78 
1962 1.62 1. 53 3.38 3.30 1.21 10. 90 2. 90 8. 42 7.07 1. 23 2. 68 1. 42 
1963 2.35 6. 13 1.22 0.81 13.06 7.28 7.24 6.29 10.10 O. 45 5 28 3. 59 
1964 2.97 4.~ 3.81 2.28 3.24 6.08 9.44 5.28 7.31 0.61 0.77 1.08 
1965 1. 08 4.37 6.85 2. 91 1. 44 'iI. 53 13.66 4.75 7. 67 4. 26 1. 19 2. 39 
1.,66 5.95 0.0' O. 77 2.98 '.OB 9.68 8.27 B. 98 7.85 2. 02 O. 15 1. 36 
1967 0.65 2.Bl O. '1 O. 0 -1. 00 -1.00 9. 74 9.94 7.15 O. 96 0.36 2. 42 
1968 O. 58 1.91 1.29 O. 43 8. 73 16. 73 8. 19 6.32 4.40 3. 94 2.73 o 35 
1969 1. 89 1. 80 6.B9 0.97 1. 86 11.92 5.34 8.88 7.84 7. 91 1. 64 4. 35 
1.,70 2.99 2.03 5. 0i!3 0.22 3.92 4. 51 14 . .,3 5.33 5.B4 2.:;!5 0.54 1. 06 
1971 O. 0i!2 2. 52 0.9' 0.49 2.34 6.22 5. 59 B.29 6. 17 7. 11 0.63 1. 92 
197~ 0.93 3.47 3. 74 2.24 4.75 B.30 9.67 7.23 O. 36 1.98 4.95 2.80 
1973 -1. 00 1. 57 3. 06 '.61 2.06 3.64 8.50 10. 71 7. 59 4.43 0.80 -1. 00 
1974 -1.00 1. 26 -1. 00 -1. 00 -1. 00 0i!0. 14 9.64 3. '3 3. 22 O. 36 0.23 2. 20 
1975 O. '0 1. 93 1. 98 0.23 5.30 ,. 45 5.90 8. 52 9. 14 6. 23 0.49 O. 28 
1976 O. 51 O. 54 2.46 1.59 6.20 7.66 8.84 7. 80 6.29 2. 09 1. 81 1. 91 
1977 2.69 1. 66 O. 46 0.26 3.99 4.95 8.27 4.3B 4. 03 1.62 4.39 2.61 
1978 2. 96 4.32 2.29 O. 13 '.17 10.0' 13.36 4. 13 2.02 1. 42 0.49 3. 23 
197., 6 53 1. 12 ·2.44 1.87 7.76 10.17 4.05 4.92 13. 37 1. 18 1. 23 1. 58 
1980 2.42 3.46 1. BO 5.41 3. 15 5.0" 4.60 6. " 3.88 4.19 2.68 1. 09 
1981 O. 57 4. 16 2. 13 O. 17 2.21 7. 56 6.57 6.49 8,01 O. 61 1. 03 O. 55 

Note: -1 indicates missing value. 



Table C.3. 

1927 0.30 
1928 0.2:3 
1929 1.09 
1930 1. 09 
1931 3. 5:3 
1932 O. 70 
1933 O. 25 
1934 O. 70 
19:35 0.24 
19:30 :3.:3:3 
1937 O. 52 
1938 2. 20 
1939 O. 45 
1940 :3. 79 
1941 :3. 02 
1942 1. 60 
1943 O. 74 
1944 1.20 
1945 2. 19 
1946 O. 35 
1947 0.83 
1948 4. 16 
1949 O. 01 
1950 O. 0 
1951 0.::38 
1952 1.28 
1953 1. 71 
1954 0.::30 
1955 2. 68 
1956 O. 57 
1957 O. 78 
1958 6.04 
1959 1. 48 
!960 O. 46 
1961 ::3. 31 
1962 0.43 
1963 O. 81 
1964 2. 88 
1965 1.24 
1966 3.39 
1967 1. 15 
1968 O. 40 
1969 1. 44 
1970 4.36 
1971 0.65 
1972 O. 77 
197::3 3. 14 
1974 0.36 
1975 O. 20 
1976 0.21 
1977 3. ~3 
1978 2. 48 
1979 7. 4~ 
1980 2. 44 
1981 O. 80 

55 years on monthly rainfall data for the 
South Florida Station 6093. 

**It.* STATION 609:3. FORT /'IVERS WSO AP * ••• * 

O. 76 1. 42 O. BO 1. 2:3 B. 04 B. 7B 3. 14 5.~9 1. 78 0.:30 
2.05 O. 51 1. 44 2.61 9.25 12.26 1:3.95 11.78 :3. 22 0.71 
O. OB 1. 0:3 O. BB 7.82 8.30 O. 08 5. ~6 15.44 3.42 0.30 
2.8B 5.08 ~.89 0.80 14.01 4. 05 5.97 1:3.7::3 1. 88 O. 13 
:3.70 6.64 2. 92 2.58 3. 96 6. 33 7.27 6.44 O. 86 O. 09 
O. 5:3 1.93 1. 06 7.03 3. 59 7.91 17.64 0.08 5. :37 0.71 
2. 60 3. 93 0.06 6.86 5.02 9.20 4. 51 4.63 2. 08 l. 09 
5. 93 O. 75 O. 92 5. 78 11.56 O. 09 3. 55 8.30 1. 59 0.66 
1. B1 0.0 3.50 2.30 O. 42 9.:30 9.38 14. 49 0.30 0.83 
5. 50 1. 69 1.14 6. 11 20.25 B.54 7.50 3. 56 5. 39 2. 78 
3.68 3. 74 1.38 0.94 10. 75 5. 13 7.00 3.04 5.88 l. 44 
0.34 O. 70 0.:33 2. 91 8.24 12. 71 5. 28 5. 12 3. 57 O. 39 
0.87 O. 04 B. 42 3. 01 16. 43 7.69 6. 97 12.83 5. Bl 1. BO 
4. 00 4. 41 1.73 O. 73 10. 52 3. 50 B.6q 13.02 0.61 O. 1:3 
3. B2 6. BB 7. 60 1. 16 7. 12 15.28 7.46 6.09 O. 96 2.4B 
3. 35 2.:31 4. 54 :3.:38 11. 15 10.66 9. 18 5.37 0.50 O. 08 
O. 71 1. 61 4. 45 5.96 16.06 12.24 B. 59 5.68 :3. 56 2. 37 
0.0 3. 76 O. B5 4.00 :3. 73 5.09 5.89 3. 50 5. 77 0.0 
O. 68 0.10 O. 21 1.58 11.97 12.41 11.06 5. 71 5. 19 0.03 
2.24 0.19 O. 01 0.71 10. 19 5. 78 6. 47 5.21 1. 34 3.:39 
2.92 B. 0;>4 2. B2 6. 47 12.84 11. 17 9.40 16.::32 4.97 2.05 
0.06 0.8:3 1.57 2.19 5.06 10.08 4. 9B 14.05 ::3. 90 O. 45 
O. 07 O. 13 5.50 4.03 7. 5::3 1::3. 32 7.60 12. 70 3. 60 1. 27 
O. 08 O. 49 O. 08 4.14 4. 84 6. 83 5. 93 8.::32 ::3. 26 O. 02 
1. 90 1. 13 2. 71 2.14 9. 19 11.44 10. 30 3.48 11. 91 1. 14 
4.::34 2. 05 O. 78 1. 75 7.95 5. 74 8.::39 12.::35 8. :34 0.75 
2.01 O. 68 2. 28 0.41 12.81 9.34 4. 32 15.58 6. 68 1. 07 
2. 53 2.13 :3. 49 4.08 4. 78 9. 19 6. 84 10.31 182 2.33 
1. 16 O. 32 O. 97 3.23 8. 53 8. 76 4. 29 10 50 2. 15 O. 52 
1.06 O. 05 3.50 4.76 4.67 5. :34 8.03 6.00 4. 42 135 
3. 68 4. 73 2. 09 7.97 4.85 12.52 9.::39 8. 77 3.19 1.52 
1. 26 10.:31 2. 18 6.22 7. :37 10. 92 4. 12 8.89 4. 57 1. 43 
1.n 6. 33 1. 75 4. 74 16. 10 6. 17 5. 75 0.89 12. 04 1. 92 
3.66 1. 87 3.8::3 2.20 5.20 13.76 5.66 11.93 :3. 01 2. 02 
1. B8 3. 58 0.46 4.92 9. 75 9. 82 1:3. 41 2.80 3. 16 1. 12 
O. 54 2. 65 1. :37 0.34 12.08 6. 01 10. 89 14.54 5. 44 3.01 
4.65 O. 59 0.27 7.58 7. 70 4.06 3.98 7.49 0.05 3.45 
3.:30 2. 12 O. 80 0.50 4. 58 2 28 4. 26 9.45 1. 38 0.22 
2. 99 2. 91 2.:39 4. 70 7. 78 12 05 6. 57 4.35 4.42 O. 58 
1. 06 0.37 3. 03 1. 61 12. 42 8.22 8. 10 4. 18 2. 14 0.18 
2. 15 O. 72 0.0 1. 46 7. 41 O. 09 15.86 7. 04 3. 08 0.92 
2. 08 O. 65 O. 57 10.32 15.0:3 9. 85 11.44 8.92 7.99 2.88 
2.87 4. 74 O. 15 4. 71 10. 63 7. 11 6. 49 16. 60 11.03 O. 22 
2.20 19.59 0.0 0.36 7. 47 4. 74 4. 82 8.::29 1. 19 O. 46 
1. 55 O. ~5 O. 70 3.77 6. 18 9. 50 8. 06 9.21 0.49 0.16 
2. 14 4. 72 0.27 5.20 7:80 9. 72 10.::2::2 2. ::33 2.20 3.95 
2.23 3. 69 1.71 0.78 3. 99 9. 57 6. 66 8. 38 O. 10 0.10 
O. 91 0.03 O. 11 2.40 20. 10 14. 47 7.70 4.::31 O. 19 1. 46 
0.27 1. 47 0.80 2.76 10. ~5 10.81 7. 74 12. 59 3.05 0.49 
1.20 0.<;>1 0.90 '.22 10. 59 6. 14 9.95 8.81 1. 96 2.10 
0.15 0.09 O. 70 O. 51 8.90 9.00 10. '8 9.21 O. 43 1. '0 
3. 36 3. 43 2.3~ 02. 52 6. 75 10. 29 10.90 ,. 18 1. 45 0.04 
1. 92 O. 43 3. 12 5.32 8.31 5. 90 14. 79 13.65 O. 39 O. 48 
1. 04 3.5<;> 1.52 6. 73 1. 99 7.02 8. 79 4.64 1. '4 3. 15 
1. o~ 1. 29 O. 06 3.07 11.79 8.24 10. 73 6.70 O. 40 0.71 
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O. 71 
O. 30 
1. 31 
2. 45 
1.83 
O. 30 
O. 13 
O. :31 
1. 58 
1. :34 
O. 72 
0.21 
1.01 
5. 42 
0.99 
1. BO 
O. 48 
0.32 
1. 45 
O. 57 
1.44 
O. 6::3 
1.62 
2.20 
O. 14 
O. 71 
1. 18 
1. 93 
O. 85 
0.10 
3. 55 
:3. 30 
1. 79 
O. 73 
O. 5:3 
0.85 
2.27 
1. 06 
O. 85 
0.29 
2. 91 
O. 16 
3. 95 
0.37 
0.::30 
1. 43 
1. 72 
O. 89 
0.69 
1. 68 
2. 74 
4. 35 
5. 16 
O. 55 
O. 73 
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Table C.4. 55 years of monthly rainfall data for the 
South Florida Station 6042. 

••••• STATION 6042 • CANAL POINT USDA ••••• 

1927 0.33 1. BO 2.37 1.0B 1.54 6.31 7.32 B. 14 3. :U 3.35 0.49 O. 40 
1928 O. 19 1.38 3. 4B 1.72 3. 10 5. 42 14. " 14. 13 16.45 O. 77 1.24 O. 20 
1929 1.34 O. 07 O. 60 2.32 5.43 11.74 11.26 6.31 10. 70 3.08 0.69 1. 08 
1930 2. 54 3. 03 4.32 '.25 6.10 16.96 4.08 3.07 5.36 5. 14 0.67 2. 77 
1.31 2.05 O. 91 4.27 5. 71 3.05 0.4' 3.33 4.67 5.64 4.43 0.70 4. 62 
1932 0.26 2. 3B O. B7 2.67 3.49 11. 26 4.'1 9.91 2.40 4.51 25.09 O. 16 
1933 1. 54 0.35 4. 73 6.4W! 1.31 7.62 14. 02 B. 51 8. 16 4.36 1. B4 O. 09 
1934 0.25 5.36 2. 77 7.64 6.27 7.96 5.20 B. 14 11.69 -1.00 -1.00 -1. 00 
1935 O. 16 2.Bl 0.17 5.45 0.76 6.11 3.98 3.62 11.90 4.44 0.57 1. 22 
1930 2.40 5.69 3.27 0.39 6.10 14.29 5.44 B. 59 4.08 2.84 5.0B 1.65 
1937 4.30 1. Bl 4.BB 3.36 1. 92 4. 44 14.62 ".37 5.88 6. 50 2.23 0.26 
1938 O. 12 0.B4 1.0B 0.45 3.13 6.67 7.28 5. 52 8.45 3. 69 0.97 O. 10 
1939 O. 38 0.08 1.26 2.B2 4.29 8.87 6.40 12.26 8.86 5. 55 0.42 2.32 
1940 -1.00 -1. 00 -1.00 0.38 5.61 B.63 8.79 B.22 6.09 1. 20 0.57 4. 76 
1941 5. 72 4.03 3. 74 6.68 2.23 3.90 14. 73 4. 78 6.40 4.92 1.72 1. 50 
1942 1.34 2. 77 6.36 2.36 4.92 14.11 3.62 4.42 4 . .,3 2.06 2.15 2. 47 
1943 0.31 O. 45 2.08 1.33 1.86 B.B3 11.73 6.56 5. 10 2.Bl 2.0B O. 38 
1944 0.98 0.04 4.17 2. 71 3.98 3. 40 5.66 5.81 4. 73 B. 35 0.30 O. 43 
1945 O. 47 0.88 O. 03 O. 70 3.11 10.93 10.83 7.24 13. 71 4.10 0.49 O. 53 
1.,46 1.13 O. B4 4. 31 ·0.0 10.60 11.20 8.59 6.98 12.2B 1.54 5.08 2. 13 
1947 O. 42 2. 66 8. 52 5. 16 4.46 10.90 11.56 10.66 17.61 9.72 5.28 1. 16 
1948 3. 70 0.48 O. 78 5. IB 1. 30 2. 17 7.62 8.41 16. 14 2. 74 0.38 0.34 
1949 O. 40 0.80 O. 52 1.94 1. 64 15.69 6.28 12. 16 7.36 1. 94 1. 09 6. 47 
1950 0.30 O. 79 3. 04 O. B7 2.14 2. 15 6.71 4.20 3.20 11. 17 1.07 1.25 
1951 O. 04 2.06 1.01 5.41 5.68 6.34 9.16 8.68 5.38 10.58 0.98 O. 90 
1952 1.68 5.20 O. 92 2.99 3.27 3. 46 8.13 8. 74 4. 90 13. 72 O. 1B O. 07 
1953 1. 83 1. 89 2. 69 4. 20 0.84 7.85 14.00 12.24 11. 02 7. 65 2. 10 1.82 
1954 O. 35 1. 96 2. 71 7. 57 6.77 12. 78 8.08 8.27 5. 45 2. 95 O. 56 1.60 
1955 1.31 2.20 2.08 2.67 1.55 12.93 8.45 7.27 4.46 1. 70 0.27 2. 03 
1956 O. 72 1.11 0.03 1.92 3.04 3. 70 7.34 3.08 14. 09 6.16 0.38 O. 50 
1957 3. 88 2. 57 2.97 5.73 11.35 5.20 10. B9 4.97 12.68 3.15 0.77 5. 75 
1958 8. 73 O. 61 5. 10 4.35 6.33 4.86 7.79 6.60 6.26 6. 07 0.62 6.35 
1959 2.20 O. 01 5.73 3.90 10.03 9. 19 12.52 5.29 7.72 9.66 2.18 1. 72 
1900 0.05 4.59 0.99 4.33 3.20 6.80 7.83 6. 16 12.89 4. 00 2.01 O. 70 
1961 3.67 0.43 4. 17 2.03 8.82 3.21 9.25 10. 79 1. 19 4.55 0.97 O. 20 
1962 1.22 O. " 3. 05 4.08 2.12 7.01 10.45 5. 14 9. 88 1. 70 2. 19 0.31 
1963 0.99 4. 18 0.71 0.09 6. 41 7.68 1. 60 5. 54 3.61 2.58 1.62 6. 09 
1964 3. 32 2.06 0.93 3.67 2.05 13. 52 9.02 B. 59 5.65 6. 63 0.45 4. 37 
1965 0.97 4. 54 2.20 2.04 4.50 10.25 8. 10 7.22 7.32 13. 24 0.32 1. 13 
1966 4.09 2.27 1.01 3.02 5.46 9.81 12.03 5.66 5. 77 6.60 0.31 0.84 
1967 O. 66 2.55 1. 00 0.0 1. 36 6.33 7.73 3.48 4.37 3. 45 0.13 1. 40 
1968 0.29 2.27 0.80 0.33 7.26 19. 18 10.35 4. 21 10.55 7.36 1. 77 O. 02 
1969 1. 66 1. 76 4. 74 1.87 7.17 9.93 3.36 S.09 5.S2 8.44 2.09 2. 14 
1970 3. 13 2.89 14.55 0.0 6.92 3. 10 9. 45 13. 07 2. 19 3. 79 0.17 O. 10 
1971 O. 40 1. 12 O. 40 0.16 6. 74 8. 43 5.07 5.40 6.47 8.09 1. 80 1.97 
1972 2.33 1." 2.09 4.03 -1.00 9.99 -1. 00 :2.50 1. 77 1.72 4. 15 2. 42 
1973 2.66 1.99 2.00 0.84 5.03 4.62 6.03 4.30 5. 74 3. 38 0.98 1. 77 
1974 :2. 12 0.5S O. 22 1.37 6.01 10. 43 6.87 5.S9 7. 14 2. 06 1.60 0.95 
1975 0.46 4. 15 1.00 1.09 10.13 7.34 7. 72 4.52 8.95 4.36 0.82 O. 21 
1976 0.43 2.11 O. 30 1.79 8.74 7.85 2.07 7. 49 2. 96 0.26 2.26 2. 41 
1977 3. 62 O. 46 O. 55 1.11 3.01 5.83 2.06 6.S4 13, 28 1. 39 6.17 6. 59 
1978 2.34 1.42 3. 73 2.02 5.69 15. 47 6.22 10.41 8.03 4. 57 2.37 4. 55 
1979 -1.00 -1.00 -1.00 -1.00 4,65 2.34 2.85 4.09 11.96 3.52 2. 52 2 10 
1980 3.06 1. 89 1. 94 5.08 4. 15 5.10 7. 52 5.96 16.08 1. 42 1.59 0, 62 
1981 O. 54 1. 62 2.27 O. 16 3.18 7. 16 4.05 13.50 5. 12 0.35 1.97 O. 27 

Note: -1 indicates missing value. 



Table C.S. 

VARIABLE 

-JAN 
FEB 
MAR 
APR 
MAY 
-JUN 
-JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

VARIABLE 

-JAN 
FEB 
MAR 
APR 
/'lAy 
-JUN 
-JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

VARIABLE 

-JAN 
FEB 
MAR 
APR 
MAY 
-JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

VAR IABLE 

-JAN 
FEB 
MAR 
APR 
MAY 
-JUN 
-JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

N 

:5:5 
:5:5 
~:5 
:5:5 
!5:5 
55 
55 
!55 
55 
55 
~5 
55 

N 

52 
:53 
:53 
54 
:53 
!53 
53 
~3 
:55 
:5:5 
54 
:54 

N 

N 

53 
!53 
53 
54 
54 
:55 
:54 
:5:5 
55 
:54 
54 
54 

Monthly statistics of stations 
6038, 6013, 6093, 6042. 

***** STATION 6038 ***** 
MEAN 

1.927 
1.878 
2. ~9~ 
2. 507 
4. 575 
7.606 
7.:235 
7.033 
7. 567 
3. 747 
1.379 
1. 457 

STANDARD 
DEVIATION 

3. 063 
1.368 
2. 456 
1.818 
2. !584 
3. 776 
3. 358 
2. 897 
4. 085 
3. 073 
1.283 
1. 555 

""***. STATION 6013 ****')f 
MEAN 

2.093 
2.718 
2. 987 
2.928 
4. 192 
8.613 
8.307 
7.258 
7.521 
3. 500 
1.567 
1.687 

STANDARD 
DEVIATION 

1. 780 
1.828 
2. 006 
2. 209 
2. 655 
3. 694 
3. 664 
3. 148 
3. 732 
2. 488 
1. 551 
1. 135 

***** STATION 6093 ***** 
MEAN 

1.636 
2.039 
2.619 
1.995 
4. 049 
9. 105 
8. 672 
8. 309 
8. 553 
3. 474 
1. 175 
1.399 

STANDARD 
DEVIATION 

1. ~87 
1.450 
3. 206 
1.953 
2.414 
4.082 
2. 976 
3. 490 
3. 988 
2. 877 
1.048 
1.260 

***** STATION 6042 ***** 
MEAN 

1.686 
1.960 
2. 632 
2. 860 
4. 626 
8. 141 
7.861 
7.194 
7. 802 
4.709 
1.972 
1.818 

STANDARD 
DEVIATION 

1.688 
1.475 
2.501 
2. 278 
2. 659 
4.107 
3. 408 
2. 853 
4. 126 
3. 163 
3. 489 
1.863 

SKEWNESS 

5.016 
O. 664 
1.762 
O. 674 
1.032 
O. 646 
1. 008 
O. 724 
1.081 
1. 138 
1.532 
1.975 

SKEWNESS 

1.344 
O. 798 
O. 676 
O. 864 
1.073 
1. 129 
O. 793 
1.487 
0.716 
O. 798 
1 833 
o 727 

SKEWNESS 

1. !531 
O. 588 
2. 779 
1.474 
O. 381 
O. 777 
O. 123 
O. 974 
O. 407 
1.295 
O. 881 
1. 555 

SKEWNESS 

1.812 
O. 881 
2. 388 
O. 758 
O. 666 
O. !530 
O. 256 
O. 636 
O. 660 
1. 056 
5. 743 
1.362 

c. v. 

159.002 
72. 856 
94.631 
72. 498 
56. 482 
49. 646 
46. 420 
41. 193 
53 983 
62.017 
93. 042 

106. 686 

c. v. 

85. 043 
67. 259 
67.151 
75. 460 
63.326 
42. 892 
44. 108 
43. 370 
49. 620 
71 082 
98. 982 
67. 280 

c. v. 

97.018 
71. 102 

122. 418 
97. 916 
59. 615 
44. 835 
34.313 
41.997 
46. 624 
82 817 
89. 186 
90. 105 

c. v. 

100. 077 
75. 242 
95.010 
79. 661 
57. 482 
50 446 
43 353 
39. 655 
52. 880 
67 163 

176.912 
102. 457 

160 



161 

Table C.6. Station 6038--monthly statistics of the 
incomplete and estimated series--2% 
missing values. 

VARIABLE 

.JAN 
FEB 
MAR 
APR 
MAY 
.JUN 
.JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

VARIABLE 

.JAN 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

** •• * STATION 6038 ( 27. MIS. 

N MEAN 

1.88:5 
1.906 
2.632 
2. ~07 
4. 624 
7.510 
7.308 
7.030 
7.567 
3. 747 
1.324 
1. 4~7 

STANDARD 
DEVIATION 

3. 076 
1. 36~ 
2.464 
1.818 
2. :583 
3.812 
3.399 
2. 938 
4. 08~ 
3. 073 
1.228 
1. :58:5 

***** 
C. V. 

163. 191 
71.646 
93. 616 
72. 498 
:55. 8:5:5 
50. 762 
46. 513 
41.798 
53. 983 
82.017 
92. 781 

108. 781 

* .. *** USING THE MEAN VALUE ( 27. MIS. ) .... *** 
MEAN 

1.885 
1.906 
2.632 
2. 507 
4. 624 
7. 510 
7. 308 
7. 030 
7. 567 
3. 747 
1.324 
1. 457 

STANDARD 
DEVIATION 

3. 048 
1. 353 
2.441 
1. 818 
2. :559 
3. 741 
3. 336 
2. 883 
4. 085 
3. 073 
1. 217 
1. 5~5 

C. V. 

161. 666 
70. 976 
92. 746 
72. 498 
55. 336 
49.813 
4~. 643 
41. 016 
53. 993 
82.017 
91. 911 

106. 738 

***** RECIPROCAL DISTANCES METHOD 27. MIS. 

VARIABLE 

JAN 
FEB 
MAR 
APR 
MAY 
.JUN 
.JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

MEAN 

1. 921 
1.878 
2.598 
2. 507 
4. :563 
7. 59~ 
7. 282 
6. 997 
7. :567 
3. 747 
1. 376 
1.460 

STANDARD 
DEVIATION 

3. 0~9 
1.368 
2. 453 
1. 818 
2. :598 
3. 80:5 
3. 341 
2. 891 
4. 085 
3. 073 
1.278 
1. :556 

C. V. 

159.265 
72. 821 
94. 413 
72. 498 
56. 929 
50. 10~ 
4~. 883 
41. 310 
53. 983 
82.017 
92. 825 

106. 592 

***** NORMAL RATIO METHOD ( 27. MIS. ) **.** 
VARIABLE 

.JAN 
FEB 
MAR 
APR 
MAY 
.JUN 
.JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

MEAN 

1.927 
1.876 
2. 598 
2. :507 
4. ~60 
7. :538 
7. 279 
6.977 
7. 567 
3. 747 
1.349 
1.448 

STANDARD 
DEVIATION 

3.064 
1.370 
2. 453 
1. 818 
2. 603 
3. 7:57 
3. 339 
2. 896 
4. 085 
3.073 
1. 231 
1. 5~6 

***** MODIFIED WEIGHTED AVERAGE 

VARIABLE 

.JAN 
FEB 
MAR 
APR 
I'1AY 
.JUN 
.JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

MEAN 

1.9~3 
1.871 
2. 591 
2. :;07 
4. 551 
7. 573 
7.235 
6. 963 
7. 567 
3. 747 
1. 349 
1.449 

STANDARD 
DEVIATION 

3.089 
1.377 
2.4~9 
1.818 
2.615 
3.812 
3. 362 
2. 909 
4. 085 
3. 073 
1. 230 
1. 556 

C. v. 

158. 978 
73. 020 
94. 437 
72. 498 
57. 080 
49. 839 
45. 877 
41. 516 
53. 993 
82.017 
91. 259 

107. 430 

27. I'IIS. ) ***** 
C. V. 

158. 165 
73. :587 
94.897 
72. 498 
57.459 
50. 339 
46.473 
41. 779 
53. 983 
92.017 
91.241 

107. 386 

SKEWNESS 

5.083 
0.643 
1. 743 
0.674 
1. 016 
0.717 
0.953 
o 725 
1.081 
1. 138 
1. 645 
1.943 

SKEWNESS 

5.127 
0.649 
1.759 
O. 074 
1.025 
o 730 
0969 o 738 
1 081 
1 139 
1.659 
1.977 

SKEWNESS 

5 039 
0.664 
1.766 
O. 074 
1 011 
O. 672 
0.987 
O. 764 
1.081 
1. 138 
1 527 
1.968 

SKEWNESS 

:5.014 
0.660 
1.766 
o 674 
1.002 
O. 703 
O. 993 
O. 779 
1.081 
1. 138 
1.566 
1.992 

SKEWNESS 

4.B89 
0.643 
1.757 
O. b74 
0.977 
0.6804 
1. 000 
O. 773 
1. 081 
1. 138 
1. 571 
1. 980 
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Table C.7. Station 6038--monthly statistics of the 
incomplete and estimated series--5% 
missing values. 

VARIABLE 

.JAN 
FEB 
MAR 
APR 
MAY 
.JUN 
,JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

VARIABLE 

,JAN 
FEB 
MAR 
APR 
MAY 
,JUN 
,JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

* ..... * STAT ION 6038 ( 51. 1115. 

N 

54 
52 
48 
51 
51 
52 
53 
54 
53 
52 
52 
55 

MEAN 

1.985 
1.925 
2.619 
2.368 
4. 521 
7.411 
7.355 
7. 062 
7.474 
3. 790 
1.344 
1.457 

STANDARD 
DEVIATION 

3. 076 
1.391 
2. 526 
1.731 
2. 437 
3. 693 
3. 3~6 
2.917 
4. 132 
3. 109 
1.238 
1. 555 

***** 
C. V. 

163. 191 
71. 771 
96. 460 
73. 093 
~3. 900 
49. 699 
45. 626 
41. 303 
5~. 287 
82. 021 
92. 137 

106. 686 

iHHHHt USING THE MEAN VALUE ( 51. MIS. ) iHHHHt 

MEAN 

1.885 
1.925 
2. 619 
2. 368 
4.521 
7. 411 
7. 356 
7. 062 
7. 474 
3 790 
1.344 
1.457 

STANDARD 
DEVIATION 

3. 048 
1.343 
2. 357 
1.666 
2. 345 
3. 580 
3. 293 
2. 890 
4. 055 
3. 021 
1.203 
1. 555 

C. V. 

161.666 
69. 758 
89. 985 
70. 330 
51. 866 
48. 299 
44. 772 
40.919 
54.255 
79. 711 
89. 555 

106. 686 

S!('Ewr~ESS 

5.083 
0.616 
1.804 
o 666 
O. 8~3 
0.719 
O. 984 
0.696 
1. 147 
1. 131 
1.643 
1.975 

S!('EWNESS 

5.127 
o 633 
1.922 
O. 689 
O. 884 
O. 738 
1. 001 
O. 702 
1 167 
1. 161 
1 688 
1.975 

*** .... RECIPROCAL DISTANCES METHOD 51. MIS. *** .. * 
VARIABLE MEAN STANDARD C. V. S!('EWNESS 

DEVIATION 

-.JAN 1. 921 3. 0~9 159. 265 5 039 
FEB 1. 867 1.370 73. 336 O. 683 
MAR 2. 580 2 426 94. 058 1 812 
APR 2. 429 1.786 73. 539 O. 667 
MAY 4. 417 2. 414 54. 646 O. 885 
,JUN 7. 613 3. 776 49. 603 0 653 
-.JUL 7. 259 3. 332 4~. 904 1 036 
AUG 7. 039 2. 895 41. 128 0 7"""" ...... 
SEP 7. 733 4. 294 55. ~26 1.022 
OCT 3. 837 3. 070 80 022 1.098 
NOV 1. 37~ 1.270 92. 366 1.578 
DEC 1. 4~7 1. ~~~ 106. 686 1.975 

-11**** NORMAL RATIO METHOD ( 51. IHS. ) .. **** 
VARIABLE MEAN STANDARD C. V. S!('EWNESS 

DEVIATION 

-.JAN 1.927 3. 064 158.978 ~. 014 
FEB 1.856 1.377 74. 160 O. 683 
MAR 2. 557 2. 423 94.741 1.847 
APR 2. 403 1. 752 72. 939 O. 660 
MAY 4. 434 2. 398 54. 081 O. 878 
,JUN 7. 536 3. 690 48. 961 O. 643 
-.JUL 7. 223 3.365 46. 590 1.012 
AUG 7. 062 2. 890 40.919 O. 702 
SEP 7. 691 4. 221 54. 883 1.008 
OCT 3.773 3. 041 80. ~88 1. 1'7 
NOV 1.335 1. 231 92. 198 1.608 
DEC 1. 457 1. ~~5 106. 686 1.975 

* ...... MODIFIED WEIGHTED AVERAGE 51. MIS. .. ..... 
VARIABLE MEAN STANnARD C. V. SKEWNESS 

DEVIATION 

.JAN 1. 9~3 3. 089 158. 165 4. 889 
FEB 1 849 1. 387 74. 995 O. 657 
MAR 2. 561 2. 459 96. 012 1. 756 
APR 2. 405 1. 773 73. 744 O. 644 
MAY 4. 403 &I 438 55. 374 O. 846 
-.JUN 7. 584 3.787 49. 934 o 666 
-.JUL 7. 197 3. 396 47.191 O. 973 
AUG 7. 019 2. 907 41. 409 0.725 
SEP 7. 796 4. 425 56. 753 1.085 
OCT 3. 816 3. 092 81.032 1. 106 
NOV 1 349 1. 221 90. 547 1 624 
DEC 1. 457 1. 555 106. 686 1 975 
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Table C.8. Station 6038--monthly statistics of the 
incomplete and estimated series--10% 
missing value. 

VARIABLE 

.JAN 
FEB 
MAR 
APR 
MAY 
,,)UN 
,JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

VARIABLE 

")AN 
FEB 
MAR 
APR 
MAY 
,,)UN 
.JlJL 
AUG 
SEP 
OCT 
NOV 

** ...... STATION 6038 ( 10;: MIS. 

.**** 

N MEAN STANDARD 
DEVIATION 

50 1.848 3. 108 
47 1.924 1. 374 
'2 2. 509 2. 463 
49 2. '6' 1. 874 
48 4.488 :o!.468 
'1 7.807 3. 742 
50 7.:O!23 3.308 
49 7.160 2.940 
51 7. 582 4. 124 
50 3. 706 2.976 
50 1. 315 1. 173 
51 1.486 1. 595 

USING THE t1EAN VALUE ( 10:1. 

MEAN 

1. 848 
1.923 
2. 509 
2. 566 
4. 488 
7. 807 
7. 223 
7. 160 
7. 582 
3. 706 
1.314 

STANDARD 
DEVIATION 

2. 961 
1. 268 
2. 394 
1. 767 
2. 302 
3.601 
3. 151 
2. 772 
3.969 
2.835 
1. 117 

*** ... * RECIPROCAL DISTANCES METHOD 

VARIABLE MEAN STANDARD 
DEVIATION 

")AN 1.872 3.025 
FEB 1.876 1.366 
MAR 2.610 2.462 
APR 2.608 1.941 
MAY 4.430 2. 462 
.JUN 7. 621 3.808 
,,)UL 7.435 3.313 
AUG 7. 158 2.832 
SEP 7. 681 4.042 
OCT 3. 746 3.032 
NOV 1.323 1. 156 
DEC 1.445 1. 553 

***** NORMAL RATIO METHOD ( 10:1. 

VARIABLE MEAN STANDARD 
DEVIATION 

")AN 1.883 3.025 
FEB 1. 817 1.341 
MAR 2. 590 2.448 
APR 2. 5:56 1.870 
MAY 4.498 2.432 
.JUN 7.632 3.814 
,,)UL 7.263 3. 188 
AUG 7. 121 2.800 
SEP 7. 624 4.019 
OCT 3. 660 2. 963 
NOV 1. 347 1. 175 
DEC 1.451 1. :5:53 

MIS. 

***.* 
C. V. 

168. 167 
71.410 
98. 180 
73. 066 
54. 985 
47. 931 
4:5.803 
41. 064 
:54. 393 
80. 318 
89. 225 

107. 372 

C. V. 

160. 178 
65.926 
~5. 411 
68. 873 
51.295 
46. 120 
43. 632 
38.715 
52. 341 
76. 501 
85. 021 

10:1. MIS. 

C. V. 

161. 608 
72. 829 
94. 323 
74. 405 
5:5. 572 
49. 967 
44. 566 
39. 562 
52. 631 
80. 926 
87. 370 

107. 435 

SKEWNESS 

5.328 
O. 705 
1.904 
O. 631 
1. 051 
0.675 
1.069 
O. t.97 
1.078 
1.261 
1.498 
1.943 

SKEWNESS 

***** 

5. 572 
O. 760 
1.955 
O. 665 
1. 120 
O. 700 
1. 118 
O. 736 
1. 117 
1. 318 
1.568 

SKEWt~ESS 

:5.225 
O. 736 
1.745 
O. 762 
O. 999 
0.629 
O. 861 
0.715 
1.014 
1.200 
1.421 
2. 007 

MIS. ) ***** 
C. V. SKEWI~ESS 

160. 648 5.217 
73. 800 O. 803 
94. 535 1. 775 
73. 141 O. 678 
54. 064 0.960 
49. 972 O. 647 
43. 889 1.046 
39. 326 O. 753 
52. 721 1.064 
80. 954 1. 192 
EJ7. 209 1.382 

107. 011 2. 000 

****if MODIFIED WEIGHTED AVERAGE 10:1. MIS. ***** 
VARIABLE MEAN STANDARD C. V. SKEWNESS 

DEVIA1ION 
")AN 1 908 3. 165 165. 872 4. 645 
FEB 1. 841 1.402 76. 132 O. 696 
MAR 2. 616 2. 478 94. 722 1.728 
APR 2. 596 1.959 75. 448 O. 780 
MAY 4. 4;:>~ 2. 532 57.217 O. 947 
.JUN 7. 53~1 3. 935 52. 237 O. 489 
,,)UL 7. 39't 3.359 45. 398 O. 826 
AUG 7. 11::. 2. 895 
SEP 7. 681 4. 086 

"40.689 O. 723 
53. 193 1.003 

OCT 3. 693 3. 119 84.458 1. 155 
NOV 1.299 1. 129 86. 871 1.557 
DEC 1. 419 1.568 110.497 1.971 
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Table C.9. Station 6038--monthly statistics of the 
incomplete and estimated series--15% 
missing values. 

VARIABLE 

,JAN 
FEB 
MAR 
APR 
MAY 
,JVN 
,JVL 
AVG 
SEP 
OCT 
NOV 
DEC 

VARIABLE 

,JAN 
FEB 
MAR 
APR 
MAY 
,JVN 
,JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

**«-<1* STATION 6038 ( 157- MIS. 

..... ** 

N MEAN STANDARD 
DEVIATION 

46 1.927 3. 284 
45 1.750 1.449 
43 2.448 2. 099 
47 2.484 1.857 
47 4.674 2. 490 
48 7.727 3.854 
50 7. 111 3.467 
45 7.245 2. 954 
47 7.293 3. 766 
49 3.656 3. 003 
46 1.488 1.343 
49 1.470 1.598 

USING THE MEAN VALUE ( 157. 

MEAN 

1. 927 
1.750 
2. 449 
2. 484 
4. 673 
7.728 
7. 111 
7. 244 
7. 293 
3. 656 
1.488 
1. 470 

STANDARD 
DEVIATION 

2. 998 
1.308 
1. 851 
1. 714 
2. 298 
3. 596 
3. 303 
2. 667 
3. 475 
2. 831 
1.226 
1. 506 

MIS. 

***** 
C. V. 

170.428 
82. 791 
85. 738 
74. 749 
53. 272 
49.876 
48. 762 
40.777 
51. 632 
82. 138 
90. 292 

108. 686 

) *** .. * 
c. V. 

155. 539 
74. 733 
75. 601 
69.007 
49. 174 
46. 529 
46. 450 
36. 813 
47. 657 
77. 431 
82. 403 

102. 471 

SKEWI~ESS 

4.910 
O. 895 
1. 171 
O. 749 
O. 887 
O. 592 
1. 101 
O. 664 
O. 673 
1. 182 
1. 417 
1. 975 

SKEWI~ESS 

5. 338 
0.984 
1.314 
O. 808 
O. 956 
O. 631 
1. 152 
O. 730 
O. 725 
1.247 
1. 540 
2.085 

***** RECIPROCAL DISTANCES METHOD 157. MIS. ***** 
VARIABLE MEAN STANDARD 

DEVIATION 

,JAN 2. 015 3.019 
FEB 1.898 1.443 
MAR· . 2. 672 2. 557 
APR 2. 659 1. 993 
MAY 4.711 2. 574 
JUN 7. 676 3. 765 
JUL 7. 159 3. 338 
AUG 7.174 2. 745 
SEP 7.401 3. 749 
OCT 3. 893 3. 118 
NOV 1. 402 1.272 
DEC 1. 463 1. 537 

..... *** NORMAL RATIO METHOD ( 

VARIABLE MEAN STANDARD 
DEVIATION 

,JAN 2. 017 3. 029 
FEB 1.808 1.370 
MAR 2. 621 2.377 
APR 2.571 1.878 
MAY 4. 750 2. 599 
'"'UN 7. 585 3. 732 
,",UL 7. 129 3. 362 
AUG 7.130 2. 739 
SEP 7. 314 3. 718 
OCT 3. 815 2.989 
NOV 1.412 1. 278 
DEC 1. 463 1. 538 

***** MODIFIED WEIGHTED AVERAGE 

VARIABLE MEAN STANDARD 
DEVIATION 

,JAN 2.152 3. 093 
FEB 1.853 1.467 
MAR 2.621 2. 547 
APR 2. 490 1.969 
MAY 4. 760 2. 707 
,JUN 7. 557 3. 871 
,",UL 7.053 3. 369 
AUG 7. 094 2. 835 
SEP 7.315 3. 857 
OCT 3. 865 3. 203 
NOV 1.413 1.248 
OEC 1.431 1. 553 

C. V. 

149. 847 
76. 039 
9S. 699 
74. 944 
54. 652 
49. 050 
46. 633 
38. 261 
50. 660 
80. 103 
90. 778 

105. 049 

157. 1'115. ) ****.:> 
C. V. 

150. 183 
75. 774 
90. 718 
73. 030 
54. 711 
49.208 
47. 161 
38.419 
50. 843 
78 337 
90. 467 

105. 085 

SKEWNESS 

5. 144 
0.757 
2.011 
O. 696 
0.775 
O. 578 
1.079 
O. 734 
O. 714 
1.068 
1.534 
1.979 

SKEWNESS 

5. 095 
O. 812 
1.575 
O. 625 
O. 794 
O. 639 
1.086 
O. 757 
O. 697 
1.009 
1. S07 
1.994 

157. MIS. ) ***** 
C.V. SKEWNESS 

143. 705 4. 701 
79 163 0.844 
97. 169 1.981 
79. 056 O. 564 
56.857 O. 797 
51.220 0.529 
47.772 1. 113 
39. 965 O. 700 
52. 732 O. 766 
82. 859 1. 120 
88. 354 1.623 

108. 479 1.956 
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Table C.IO. Station 6038--monthly statistics of the 
incomplete and estimated series--20% 
missing values. 

VARIABLE 

JAN 
FEB 
/'IAR 
APR 
/'lAY 
.)UN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

** ••• STATION 6038 ( ~O'l. MIS. 

N 

47 
4~ 
45 
48 
43 
43 
44 
42 
43 
45 
42 
43 

/'lEAN 

1.856 
1.909 
2.412 
2. ~73 
4. 797 
7. 306 
7.306 
7.023 
7. 528 
3.841 
1.364 
1.573 

STANDARD 
DEVIATION 

3.240 
1.436 
2. 112 
1.862 
2.769 
3. 900 
3. 720 
2.826 
4. 142 
3.210 
1.317 
1.703 

***** 
C. V. 

174.615 
7~. 213 
87. 561 
72. 393 
~7. 730 
53. 376 
50. 916 
40. 233 
55. 024 
83. 576 
96. 582 

108.218 

SKEWNESS 

5.048 
0.656 
1. 144 
O. 701 
O. 912 
0.818 
0.887 
O. 383 
1.291 
1. 180 
1.603 
1.765 

BU. USING THE 11£AN VALUE ( 20'l. MIS. ) ... 11-*11 .. 

VAR IABLE 

JAN 
FEB 
/'IAR 
APR 
/'lAY 
JUN 
.)UL 
AUG 
SEP 
OCT 
NOV 
DEC 

MEAN 

1. 856 
1.909 
2.411 
2. 572 
4. 797 
7. 307 
7. 307 
7. 022 
7. ~28 
3. 841 
1. 363 
1.573 

STANDARD 
DEVIATION 

2.991 
1. 296 
1.906 
1.738 
2. 442 
3. 439 
3.319 
2. 462 
3. 653 
2. 898 
1. 148 
1. 501 

C. v. 

161. 109 
67. 886 
79. 048 
67.547 
50. 905 
47.067 
45. 430 
35. 061 
48. 524 
75.446 
84.213 
95. 482 

SKEWI~ESS 

5.434 
O. 720 
1. 257 
o 748 
1 023 
o 917 
o 983 
o 435 
1 448 
1 0:96 
1 820 
1 981 

***** RECIPROCAL DISTANCES METHOD 201. MIS. ***** 
VARIABLE 

JAN 
FEB 
/'IAR 
APR 
/'IAV 
.)UN 
-JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

VARIABLE 

JAN 
FEB 
/'IAI< 
APR 
/'lAY 
.)UN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 

*_*iHt 

I'IEAN 

1. 930 
1.870 
2. 638 
2. 520 
4. 6~1 
7. ~29 
7. 643 
7. 060 
7. 839 
3. 840 
1. 710 
1.540 

NORMAL 

MEAN 

1.952 
1.828 
2. 580 
2. 530 
4.671 
7.181 
7.383 
6. 950 
7.684 
3. 779 
1. 459 
1.499 

STANDARD 
DEVIATION 

3. 032 
1. 343 
2. ~32 
1. 868 
2.636 
3.629 
3. 501 
2. ~31 
4. 065 
3.065 
2.417 
1.594 

R A TI 0 METHOD 

STANDARD 
DEVIATION 

3.037 
1.340 
2.344 
1. 870 
2. 658 
3. 591 
3. 404 
2. 570 
3.930 
3. 001 
1. 418 
1.543 

( 

***** MODIFIED WEIGHTED AVERAGE 

VARIABLE MEAN STANDARD 
DEVIATION 

JAN 2 027 3.143 
FEB 1.923 1. 371 
MAR 2. 591 2. 525 
APR ~. 501 1.996 
/'lAY 4. 705 2.770 
JUN 7 283 3. 690 
JUL 7. 572 3.610 
AfJO 6.941 2. 593 
SEP 7.929 4. 323 
OCT 3. 738 3. 188 
NOV 1 510 1.655 
DEC 1.494 1. 648 

C. V. 

157.096 
71. 811 
95. 978 
74. 132 
56. 673 
48. 200 
45. 811 
3~.852 
51. 860 
79. 805 

141. 338 
103.496 

SKEWNESS 

5 151 
o 686 
2. 121 
O. 665 
0.916 
o 662 
O. 669 
0.400 
O. 950 
1. 128 
4. 585 
1. 811 

20'l. MIS. ) * ... *** 
C. V. SKEWNESS 

155.594 5. 110 
73. 293 O. 780 
90. 853 1.626 . 
73.914 O. 665 
~6. 899 O. 859 
50. 001 0.894 
46. 102 O. 873 
36. 975 O. 428 
51.143 1.097 
79. 420 1.232 
97.228 1.850 

102. 983 1.948 

20'l. MIS. ***** 
C. V. SKEWNESS 

155.040 4. 605 
75. 175 o 674 
97. 451 2.107 
75. 377 0.644 
58. 864 0.779 
50. 666 O. 732 
47. 677 O. 736 
37. 356 0.517 
55.215 o 814 
85. 288 1. 043 

109. 608 :;;1. 92~ 
110.308 1. 751 
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Table C.11. Lag-zero covariance matrices of the monthly 
rainfall series of stations 6013, 6093, 6042. 
All matrices are symmetric. 

3.169 3.342 
JAN: 2.393 2.518 FEB: 1. 813 2.101 

2.343 1. 723 2.848 1. 496 1. 505 2.175 

4.022 4.881 
MAR: 3.501 10.275 APR: 1. 959 3.814 

2.677 6.921 6.254 3.545 2.378 5.190 

7.047 13.647 
MAY: 3.610 5.826 JUN: 8.235 16.666 

3.539 2.871 7.071 7.373 7.138 16.865 

13.425 9.907 
JUL: 3.655 8.854 AUG: -0.628 12.177 

3.378 2.546 11. 615 1. 630 0.260 8.138 

13.928 6.189 
SEP: 9.080 15.902 OCT: 5.032 8.278 

5.913 6.443 17.022 4.516 5.896 10.004 

2.406 1.289 
NOV: 0.822 1. 098 DEC: 1. 045 1. 588 

1. 395 0.547 12.174 1.145 1. 510 3.471 



Table C.12. Normality transformations applied 
on the monthly rainfall data of 
Station 6038. 

***** STATION 6038 ( NO TRANSFORMATION ) ***** 
VARIABLE MEAN STANDARD SKEWNESS C. V. 

DEVIATION 

JAN 1.927 3. 063 5. 016 15~.00~ 
FEB 1. a7a 1.36a O. 664 72.856 
MAR ~.5~5 ~. 456 1.762 94.631 
APR 2. :J07 1. ala O. 674 n. 4~8 
MAY 4. 57:J 2. 5a4 1.032 56. 482 
JUN 7.606 3. 776 0.646 4~.646 
JUL 7.~35 3. 358 1.008 46.420 
AVt; 7.033 2. a~7 o. 724 41. 193 
SEP 7.567 4. 085 1. 081 53 983 
OCT 3.747 3. 073 1. 13a a2 017 
NOV 1.379 1. ~83 1. 532 93.042 
DEC 1.4!57 1. 5!55 1.975 106.686 

... -ST A TI ON 6038 LOOARITHI'IIC TRANSFORI'IATION ** ... 
YARIABLE MEAN STANDARD 

DEYIATION 
SKEWNESS C. Y. 

..wi -0.009 O. :132 -0.266 -5!5~. 555 
FEB O. 103 0.466 -1. 224 4:12.424 
filAR O. ISS O. :121 -0.936 276.239 
APR 0.218 O. :102 -1.549 ii!3O.355 
MY 0.593 0.251 -0.164 42.276 
JUN 0.a22 0.246 -0.875 29.918 
JUt... 0.809 O. 227 -1. 034 28. 124 
AUQ 0.810 O. 184 -0.226 22.643 
SEP 0.814 0.253 -0.645 31. 143 
OCT 0.385 0.488 -1. 330 126.596 
NOV -0.088 0.519 -0. 755 -588.139 
DEC -0.068 0.479 -0.173 -706.420 

***** STATION 6038 ( POWER .. O.25 ) ***** 
VARIABLE MEAN STANDARD 

DEVIATION 
SKEWNESS C. V. 

JAN 1.040 O. 314 0.738 30. 141 
FEB 1.096 0.256 -0. !540 23.382 
/'tAR 1. 161 O. 312 -0. 108 26.870 
APR 1.175 0.283 -0.698 24.109 
MY 1.421 0.203 O. 143 14.281 
..AJN 1.620 0.218 -0.355 13.449 
..AJL 1.606 O. 19'9 -0. 4!56 12. 387 
AUt; 1.603 O. 168 O. 024 10.457 
SEP 1.614 0.227 -0. 140 14.051 
OCT 1.292 O. 316 -0. 334 24,436 
NOV 0.990 O. 268 -0. 130 27. 100 
DEC 0.998 0.270 O. 364 27.061 

*** .. * STATION 6038 ( POWER-o.35 ) .... *** 
VARIABLE MEAN STANDARD SKEWNESS C V. 

DEVIATION 

JAN 1. 083 O. 461 1. 219 42 5~3 
FEB 1.154 O. 361 -0. 327 31,285 
MAR 1.257 O. 458 O. 163 36,456 
APR 1. 274 O. 407 -0, 443 31.909 
MAY 1.644 O. 328 O. 264 19. 933 
JVN 1. 97!5 O. 366 -0. 180 18.530 
JUL 1.949 O. 332 -0. 238 17.051 
Aut; 1.942 O. ~83 O. 121 14.592 
SEP 1. 965 O. 382 O. 040 19.458 
OCT 1. 4!56 O. 480 -0. 060 32 927 
NOV 1. 006 O. 370 0.110 36. 724 
DEC 1.017 O. 383 0.581 37.667 

***** STATION 6038 ( SGUARE ROOT ) ***** 
VARIABLE MEAN STANDARD 

DEVIATION 
SKEWNESS C. V. 

JAN 1. 178 0.740 2.043 62,830 
FEB 1. 265 O. 533 -0.048 42. 115 
MAR 1.442 0.724 O. 540 50.192 
APR 1.459 O. 620 -0.117 42.466 
MY 2.059 O. 584 0.445 28.373 
.ruN 2.671 O. 693 0.053 25.944 
JUL 2.618 0.62!5 0.073 23.873 
AVQ 2. 598 O. 539 O. 265 20. 760 
SEP 2. 654 O. 729 0, 295 27. 446 
OCT 1. 768 0.79:5 O. 282 44.953 
NOV 1.051 O. 529 0.461 50. 341 
DEC 1. 067 O. 570 0.908 53.473 
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Table C.13. Statistics of the estimated series --
univariate model 

**11. UNIVARIATE I'iODEL ( 101. MIS. ) * ..... 
VARIABLE MEAN STANDARD SKEWNESS C. V. 

DEVIATION 

.JAN 1. 8:54 2.980 :5. 462 160. 709 
FEB 1. 891 1.278 0.B15 67. 608 
MAR 2. :503 2.402 1.943 95.956 
APR 2. 499 1. 805 O. 701 7;!.242 
MAY ... :504 2. 30:5 1. 09:5 51. 181 
.JUN 7. 809 3.601 0.697 46. 120 
.JUL 7. 185 3. 161 1. 141 43. 995 
AUG 7. 067 2. 809 O. 780 39. 757 
SEP 7. 563 3.975 1. 127 52. 553 
OCT 3. :594 2.871 1. 369 79.965 
NOV .1. 314 1.132 1. 515 86. 162 
DEC 1.475 1. 539 2.019 104.304 

.. * ... UNIVARIATE MODEL ( 201. MIS. ) * ..... 
VARIABLE MEAN STANDARD SKEWNESS C. V. 

DEVIATION 

.JAN 1.777 2. 997 5. 480 168. =23 
FEB 1. 846 1.303 0.854 70.585 
MAR 2. 334 1.914 1.364 81 989 
APR 2. 523 1. 743 O. 828 69. 053 
MAY ... 713 2.449 1. 119 51. 9'9 
.JUN 7. 199 3. 446 1.009 47.865 
.JUL 7. 216 3. 325 1.062 46.072 
AUG 6. 961 2.465 0.510 35.406 
SEP 7. 420 3. 659 1.531 49 316 
OCT 3.719 2.910 1.408 . 78.235 
NOV 1.302 1. 153 1.954 88. 580 
DEC 1.498 1. 509 2. 101 100. 727 

Table C.14. Statistics of the estimated series --
bivariate model 

**H BIVARIATE MODEL ( 101. MIS. ) **11. 

VARIABLE MEAN STANDARD 
DEYIATION 

SKEWNESS C Y. 

.JAN 1.825 2. 972 5. 532 162. 862 
FEB 1.869 1.287 O. 841 68. 866 
MAR 2. 483 2.398 1. 976 96. 608 
APR 2. 534 1. 781 0.698 70 275 
MAY <t. 491 2. 327 1. 086 51 825 
.JUN 7.749 3.612 O. 740 46 . 611 
.JUL 7. 2:20 3. 166 1. 104 43 856 
AUG 7. 110 2 784 o. 779 39. 159 
SEP 7. 523 3.979 1. 154 52 e:S8 
OCT 3. 592 2.863 1.392 79. 709 
NOV 1.293 1. 123 1.599 86.839 
DEC 1. 459 1. 539 2. 052 105. 450 

** ... BIVARIATE MODEL ( 207- MIS. ) * ...... 
VARIABLE MEAN STANDARD 

DEVIATION 
SKEWNESS C V. 

.JAN 1.798 3.013 5.374 167 566 
FEB 1.835 1.337 O. 790 72 847 
MAR 2. 353 1.936 1.283 82. 300 
APR 2.551 1.775 O. 763 69 591 
MAY <t. 759 2. 490 1.005 52. 327 
.JUN 7. 280 3. 490 O. 897 47 932 
.JUL 7. 263 3. 353 O. 994 46. 161 
AUG 6. 941 2.515 O. 506 36 239 
SEP 7. 482 3. 729 1.404 49. 839 
OCT 3. 786 2 941 1.294 77. 684 
NOV 1.322 1. 159 1.872 87.644 
DEC 1. 551 1.527 1.926 98. 456 



APPENDIX D 

COMPUTER PROGRAMS 

RAEMV-U 

(Recursive Algorithm for the Estimation of Missing 

Values - Univariate Model) 

Input 

The program inputs the time series; the parameters of 

the normality transformation to be performed (power 

transformation); the number of gaps (not necessarily the 

number of missing values unless all the gaps are singles); 

and for each gap the starting and ending point (counting 

starts from the first value in the series). For the first 

iteration the missing values in the original series (usually 

indicated by a code or by a negative value) are initialized 

to zeroes or to some other desired initial estimates. 

Program Description 

The main program reads the input data and then 

subsequently calls subroutine ARMA (each call corresponds to 

one iteration). Subroutine ARMA performs the following 

calculations each time it is called: 
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(1) The input series is transformed to normal (using the 
selected transformation) and stationary (by subtracting 
the monthly means and dividing by the standard 
deviations) • 

(2) The mean, variance, autocovariance function (ACVF), 
autocorrelation function (AGF) and partial 
autocorrelation function (PACF) of the transformed 
series are computed by calling the IMSL subroutine 
FTAUTO. 

(3) Preliminary estimates of the p AR parameters, and q ~ffi 
parameters are computed by calling the IMSL subroutines 
FTARPS and FTMPS subsequently. 

(4) Maximum likelihood estimates (MLE) of the AR and MA 
parameters are computed and the residual series is 
calculated by calling the IMSL subroutine FTMXL. 

(5) The mean, variance, ACVF, ACF and PACF of the residual 
series are computed by calling the IMSL subroutine 
FTAUTO. 

(6) The parameters of the fitted model (MLE) are used to 
estimate the missing values in all the gaps by the 
Box-Jenkins minimum mean square error forecasting 
procedure. 

(7) The inverse normality and stationarity transformations 
are performed on the series and the estimated complete 
series is output. 

The estimated series (output from the first call) now 

becomes the input series for the second call and the above 

seven steps are repeated. The subroutine ARMA is called as 

many times as needed until stabilization of the parameter 

estimates and of the missing values estimates occur. The 

program is initialized to five calls (more can be easily 

added as needed), and a stabilization check for the 

parameters is provided so that the iterations stop when the 

two parameters remain constant to the second decimal place. 

The computation and printing of the ACVF, ACF and PACF 

of the transformed and residual series (steps 2 and 5) are 
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not necessary and can be eliminated from the program without 

any problem. However, their inclusion permits the checking 

of the goodness of the fitted model at each iteration by 

diagnostic checking applied on the residuals. A listing of 

the program in FORTRAN follows. 

RAEMV-B 

(Recursive Algorithm for the Estimation of Missing 

Values - Bivariate Model) 

The special case of having only the one series 

incomplete and the other complete will be considered here. 

However, the program can be easily modified to include the 

case of having both the series incomplete. 

Input 

The program inputs the two time series, the parameters 

of the normality transformation to be performed on each 

series, the number of gaps and the position of each gap for 

the incomplete series. The missing values in the incomplete 

series are initialized to zeros or to some other values. 

Program description 

The main program reads the input data and then 

subsequently calls subroutine BIVAR (each call corresponds 

to one iteration). Subroutine BIVAR performs the following 

each time is called: 



(1) The two input series are transformed to normal and 
stationary by calling subroutine STAT. 

(2) The lag-zero and lag-one autocovariances and 
cross-covariances of the two series are computed by 
calling the IMSL subroutine FTCRXY. 

(3) The parameter matrices A and B are calculated. 
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Inversion and multiplication of matrices are performed 
by the IMSL subroutines LINV2F, VMULFF and VMULFP. 

(4) The parameter matrices A and B are used to estimate the 
missing values of the incomplete series. 

(5) The inverse normality and stationarity transformations 
are performed on the two series, and the estimated 
complete series is output. 

The estimated series (output from the first call) now 

becomes the input series for the second call and the above 

five steps are repeated until stabilization of the matrices 

A and B occurs. No check for stabilization is provided by 

the program (eight values must be checked simultaneously) 

but instead the subroutine is called for a prefixed number 

of times. A listing of the computer program in FORTRAN 

follows. 



C c----------------------------------------------------------
C 
C PROGRAM RAEMV-U 
C 
C RECURSIVE ALGORITHM FOR THE ESTIMATION OF 
C MISSING VALUES - UNIVARIATE ....:JOEL 
C C----------------------------------------------------------
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

10 
C 

20 
C 

30 
C 

5 
40 

C 

110 
C 
C 
C 
C 
C 
C 

11 
C 

15 
C 
C 
C 

100 
C 
C 
C 

50 
C 

DIMENSION RAIN(60, 12),NYEAR(60) 
DIMENSION VRAINCBOO),EIRAIN(60, 12),VRAINICBOO), 

E2RAIN C 60, 12)' VRAIN2 (BOO), 
E3RAINC60.12).VRAIN3CBOO). 
E4RAIN(60.12).VRAIN4CBOO), 
E~RAINC60. 12).VRAIN5CBOO). 
E6RAIN(60.12).VRAIN6(SOO) 

DIMENSION LI(200).LOC200). ISI(200), IEI(200) 
COMMON/AI ID.NYEAR 
COMMON/SI N.C.P 
COMMON/CI NG. I5G(200). IEG(200) 

READ INPUT PARAMETERS 
HEADER .. TITLE 
N ....... NUMBER OF YEARS 
NO ...... NUMBER OF GAPS 
LI ...... LENGTH OF INTEREVENT 
LG ...... LENGTH OF GAP 
C,P ...... PARAMETERS OF THE TRANSFORMATION 

TRANSFORMED SERIES Y=CX+C)**P 

READCS. 10) HEADER 
FORMATC20A4) 

READC5.20) C.P 
FORNAT(2F5.2) 

READCS.30) N.NG 
FORMAT< 2 ( 14/» 

DO ~ r-I,NO 
READ(S.40) LICI).LG(I) 
FORMAT(2I4) 

READCI0.II0) (10. CNYEAR(I). CRAIN(I, J). J=I, 12».1=1. N) 
FORMAT(A4, 13. IX, 12F6.2) 

FROM THE INPUT VARIABLES LI AND LG TWO ARRAYS OF 
LENGTH NG ARE COMPUTED. THtN THE STARTING POINT 
OF THE KTH GAP IS ISGCK) AND THE ENDING POINT IS 
lEG (K). 

151(1)-1 
lEI (1)=LI C 1) 
ISG(1)"'IEI(I)+1 
IEG(l)-ISGCl)+LGCl)-l 
DO 11 1=2. NG 
ISI(I)=IEGCI-l)+l 
IEI(I)=ISI(I)+LI(I)-l 
ISG(I)=IEICI)+l 
IEGCI)=ISGCI)+LGCI)-1 
CONTINUE 

WRITE(6rl~) HEADER 
FoRMAT(20A4. III) 

PRINT THE POSITION OF THE GAPS FDR CHECKING 

WRITE(6.100) (1.150(1). lEGe I), I-l.NG) 
FORMAT(316) 

INITIALIZE THE MISSING VALUES TO ZERO 

DO 50 1=1. N 
DO 50 J=I. 12 
IFCRAIN(I.J).EG. -1) RAIN(I. J)=O. 
CONTINUE 
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C SUBROUTINE ARMA IS CALLED TO FIT AN ARMA(P,Q) HODEL 
C TO THE INPUT ·SERIES. THE PARAMETERS OF THE MODEL 
C ARE USED FOR THE ESTIMATION OF THE MISSING VALUES. 
C 

C 
C 

CALL ARMA(RAIN,VRAIN,EIRAIN,VRAIN1,PHII,THETAl) 
CALL ARMA(EIRAIN,VRAIN1,E2RAIN,VRAIN2,PHI2,THETA2) 
CALL ARMA(E2RAIN,VRAIN2,E3RAIN,VRAIN3,PHI3,THETA3) 
IF( (PHI3-PHI2). LE. O. 001. ANO. (THETA3-THETA2l. LE. O. 001) 

GO TO 999 
CALL ARMA(E3RAIN,VRAIN3,E4RAIN,VRAIN4,PHI4,THETA4) 
IF ( (PHI4-PHI3). LE. O. 001. ANO. (THETA4-THETA3). LE. O. 001 ) 

GO TO 999 
CALL ARMA(E4RAIN,VRAIN4,E~RAIN,VRAIN5,PHI5,THETA5) 
IF( (PHI!5-PHI4). LE. O. 001. ANU. (THETA5-THETA41. LE. O. 001> 

GO TO 999 
CALL ARMA(E5RAIN,VRAIN5,E6RAIN,VRAIN6,PHI6,THETA6) 

999 STOP 
END 

C C--------------------- SUBROUTINE ARMA ---------------------------
C 
C 
C 
C 
C 
C 
C 

C 

C 

SUBROUTINE ARMA FITTS AN ARMA(P,G) MODEL TO THE INPUT 
SERIES EACH TIME IS CALLED. THE MISSING VALUES ARE 
ESTIMATED BY THE BOX-JENKINS FORECASTING PROCEDURE 
AND THE ESTIMATED SERIES 15 SAVED TO BE THE INPUT 
SERIES TO THE NEXT CALL. 

SUBROUTINE ARMA(RAIN,VRAIN,ERAIN,EVRAIN,PHI1,THETA1) 

REAL MEAN(13),MP,LP 
DIMENSION ERAIN(60, 12),EVRAIN(800), Z(800) 
DIMENSION RAIN(60, 12),NYEAR(60), IND(8), PHI<l1), 

THETA ( 11), SUMSGI (11,11), ACV(300), AC (300), PACV(300), 
VRAIN(800) ,TEMP(SOO), WKAREA(1600), A(1600),GR(1600) 

DIMENSION YTOTAL(61),STD(13) 
COMMONIAI ID,NYEAR 
COMMON/BI N,C,P 
COMMON/CI NG. ISG(200), IEG(200) 

C INPUT THE VALUES OF PHI ANO THETA FOR WHICH YOU WANT 
C THE SUM OF SQUARES SURFACE TO BE CALCULATED. 
C 

C 
C 
C 
C 

112 

111 
C 
C 
C 

10 
C 
C 
C 

25 

23 
22 

C 
C 
C 

34 
32 

C 

DATA PHI 1-. 5,-.4,-.3,-.2,-.1,0.,.1,.2,.3,.4,.51 
DATA THETA/O. ,.1,.2,.3,.4,.5,.6,.7,.8,.9,1. I 

PRINT OUT THE ORIGINAL SERIES. THIS IS THE SERIES 
THAT EACH ITERATION STARTS WITH. 

WRITE(6,112) 
FORMAT(IHl,II,50X, 'TABLE l',1140X, 

, ' MONTHLY RAINFALL SERIES', III) 
WRITE(6, 111) (ID, (NYEAR(I), (RAIN(r. J), J=l. 12»,1=1, N) 
FORHAT(IX.A4. 13, IX, 12F6.2) 

COMPUTE POWER TRANSFORMATION OF THE SERIES 

DO 10 I=I,N 
DO 10 J=I, 12 
RAIN(I,J)-(RAIN(I,J)+C)**P 
CONTINUE 

COMPUTE YEARLY TOTALS 

DO 22 1=1, N 
YTOTAL< I) =0. 
DO 23 J=I, 12 
YTOTAL(I)cYTOTAL(I)+RAIN(I, J) 
CONTINUE 
CONTINUE 

COMPUTE MONTHLY MEANS AND STANDARD DEVIATIONS 

DO 32 J=I,12 
MEAN(J)=O. 
STD(J)=O. 
DO 34 I=I,N 
MEAN(J)=MEAN(J)+RAIN(I,J)/FLOAT(N) 
STD(J)=STD(J)+RAIN(I,J)**2 
CONTINUE 
CONTINUE 

DO 36 1=1,12 
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36 
C 

38 

C 
C 
C 

42 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 

30 

130 

135 
C 

C 
C 
C 
C 

40 

140 

145 

STD(I)-«STD(I)-MEAN(I)**01*FLOAT(N»/(FLOAT(N)-I. »**0.5 
CONTINUE 

MEANC 13)=0. 
STD(13)-0. 
DO 38 1-1, N 
MEAN(13)-MEAN(13)+YTOTAL(I)/FLOAT(N) 
STD(13)-STDC13l+YTOTALCI)**2 
CONTINUE 
STDC 13 )-( CSTDe 13)-MEANC 13)**2*FLOATCN) ) I CFLOATCNl-l. ) )**0. S 

NOW STANDARDIZE THE MONTHLY SERIES 

DO 42 I-l,N 
DO 42 "'-1,101 
RAINCI,"')-(RAINCI,"')-MEAN("'l)/STD("') 
CONTINUE 

. STORE THE MA TR IX SER IES IN A VECTOR SER I ES 

DO 30 1-1, N 
DO 30 "'-1, 12 
K-"'+( 1-1 )*12 
VRAINCK)-RAIN(I,"') 
CONTINUE 
NN=N*12 

COMPUTE AC. PAC. AND ACV OF THE SERIES USING 
SUBROUTINE FTAUTO 

L=30 
CALL FTAUTOCVRAIN.NN,L.L,7,AMEAN.ACV(1),ACV(2).AC(2). 

• PACV(2),WKAREA) 

SET AC AND PACV OF LAG ZERO TO ONE 

AC (1I'"'l. 
PACV( 1 )-1. 
WRITE(6,130) AMEAN,ACV(1) 
FORMATCIHt.III, 15X. 'STANDARDIZED TRANSFORMED SERIES'. II. 

1 5X. 'MEAN ......... " F15. 7. II, 
2 SX, 'VARIANCE ..... '.FI5. 7.111) 

WRlTE(6, 135) 
FORMATCSX, 'LAG', 12X. 'AC', 12X. 'PACV'.1.2X,4'( '-'I/) 

SSQ=O. 
LP1=L+l 
DO 40 1=1. LP 1 
IM1'"'I-l 
WRITE(6.140) IM1.ACCI),PACV(l) 
SSQ=SSQ+ACCI)**2 
CONTINUE 
SSQ=SSQ-l 
FORMATC3X. IS.2FI5. 7) 
WRITEC6, 145) SSQ 
FORMAT<lII.2X. 'SUM OF AC"'*01 CNOT INCLUDING LAG 0)'.F1S.6) 

PRELIMINARY ESTIMATE OF AR PARAMETER AND OVERALL MA 
CONSTANT USING SUBROUTINE FTARPS 

CALL FTARPSCACV.AMEAN. 1, 1.ARPS,PMAC,WKAREA) 
WRITEC6, ISO) ARPS.PMAC 

150 FORMATCIII,2X. '-----SUBROUTINE FTARPS-----" II. 
1 5X, 'ESTIMATE OF AR PARAMETER CARPS l. ...... ',F15. 6. II, 
2 5X, 'OVERALL MA CONSTANT (PMACl. ........... ',F1S.6.//) 

C 
C ESTIMATE MA PARAMETER AND WHITE NOISE VARIANCE USING 
C SUBROUTINE FTMPS 
C 

C 

CALL FTMPSCACV.ARPS, 1, 1. PMAS.WNV,WKAREA. IER) 
WRITEC6, 155) PMAS,WNV 

155 FORMATCIII,2X, '-----SUBROUTINE FTMPS------', II, 
1 SX. 'ESTIMATE OF MA PARAMETER CPMASI. ..... '. F15. 6, II, 
2 5X, 'WHITE NOISE VARIANCE (WNVl. .......... " F1S. 6) 

C STORE VECTOR VRAIN BECAUSE FTMXL WILL DESTROY IT 
C 

DO 45 1-1. NN 
TEMP ( I ) -VRA I N ( I ) 

45 CONTINUE 
C 
C GENERATE SUM OF SQUARES SUwFACE OF THE RESIDUALS 
C LET ITHETA AND IPHI BE THE ROW AND COLUMN NUMBER 
C CORRESPONDING TO THE MINIMuM SUM OF SQUARES OF 
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C THE RESIDUALS 
C 

ITHETA"l 
IPHI=l 
DO '0 I 1 -1. 11 
DO " 12=1.11 
ETA~TEMP(2)-PHI(I2'*TEMP(l' 
SUMSQICI1.I2'=ETA**2 
00 60 I3=3.NN 
ETAI-TEMPCI3l-PHICI2'*TEMP(I3-1'+THETA(Il)*ETA 
ETA=ETAI 
SUMSQICI1. I2)"SUMSQ1(I1. I2'+ETAl**2 

60 CONTINUE 
IFCSUMSQl(II. 12). GT.SUMSQl(ITHET~ IPHI» GO TO '5 
ITHETA-Il 
IPHI'"'I2 

55 CONTINUE 
50 CONTINUE 

C 
C WRITE OUT THE SUM OF SGUARES SURFACE OF THE RESIDUALS 
C 

160 
WRITE(6,160) 
FORMAT(lHl.III.50X. 'TABLE 2',11.15X. 'SUM OF SQUARES OF THE'. 

• 'RESIDUALS OF THE STANDARDIZED TRANSFORMED SERIES'. 
• 111.'2 X. ' PHI ' ) 
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170 
C 

WRITE(6,16" (PHI(Il.I-l,l1) 
FORMAT(5X. 'THETA',2X, 11<3X, F'. 2, lXlIl 
WR ITE (6, 170) <THETA ( I). (SUMSG1 (I. J). J= 1. 11 ). 1"'1. 11 ) 
FORMAT< (5X. F'. 2, 3X. 11 (Fe. 2. 1l<) , ) 

LET THE VALUES OF ARPS AND PMAS THAT LED TO MINIMUM SUM 
OF SQUARES OF RESIDUALS BE INPUT TO SUBROUTINE FTMXL. 
COMPUTE IMPROVED ESTIMATES OF ARPS, PMAC. PMAS AND WNV 
USING SUBROUTINE FTMXL 

C 
C 
C 
C 
C 

DATA INDIO. 1. 1.0.7'.4. 1.31 
IND(l)'"'NN 
PMAS=THETA(ITHETA) 
ARPS .. PHI (IPHI) 

C 
C IF PHI-I SET PHI=0.99 SINCE PHI-I IS NOT DESIRABLE 
C 

C 

IF (PI'IAS. EG. 1. ) PMAS=O. 99 
WRITE(6, 180) ARPS,PMAS 

180 FORMAT<III.2X, 'THE SUM OF SQUARES OF RESIDUALS IS MINIMUM'. 
• ' FOR:', 11,4X. 'ARPS= '.F15.6,1.4X. 'PMAS= '.F15.6.1) 

CALL FTMXLCTEMP. IND.ARPS.PMAS.PMAC.WNV. GR, A. IER) 
WRITE(6.190) ARPS,PMAS.PMAC,WNV 

190 FORMAT(fIl.2X. '-----SUBROU1INE FTMXL-----'.II. 
1 5X, 'ESTIMATE OF AR PARAMETER (ARPS) ........ " F15. 6. II. 
2 5X. 'ESTIMATE OF MA PARAMFTER (PMAS) ........ " F15. 6. II. 
3 5X, 'OVERALL MA CONSTANT (PMACl. ............ ',FI5.6,11, 
4 5X. 'WHITE NOISE VARIANCE (WNVl. ............ " F15. 6) 

PHI1=ARPS 
THETAl=PMAS 

C 
C FIND AC AND PACV OF RESIDUALS THAT ARE STORED IN THE VECTOR 
C <A) AS OUTPUT FROM SUBROUTINE FTMXL 
C 

CALL FTAUTO(A,NN.L.L.7.AMEAN,ACV(1),ACV(2).AC(2). 
• PACV(2).WKAREA) 

AC (U=1. 
PACV( 1 )=1. 

C 
C WRITE OUT AC AND PACV . COl1PUTE SUM OF AC**2 
C 

C 

SSGR=O. 
WRITE(6,200) 

200 FORMAT<IHl.III.15X. 'RESIDUAL SERIES ',111l 
WRITE(6,135) 
DO 70 1=1. LP 1 
11'11=1-1 
WRITE(6, 140) IMl,AC(I).PACV(l) 
SSGR=SSGR+AC(I)**2 

70 CONTINUE 
SSGR=SSQR-l. 
WRITE16, 145) SSGR 

DO 15 1=1. NN 
15 EVRAIN(I)=VRAIN(I' 

C 
C GENERATE RANDOM NUMBERS N(O, 1) TO BE USED FOR THE 
C FORECASTING 
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C 

C 
C 

C 

DSEEO=1234:57. DO 
CALL QONMLCDSEED,NN, Z) 

00 20 I-l,NO 
I1=ISO C 1) 
I2:IEQ(1) 
K=I2-Il+1 
IFCK.QT. 1) 00 TO :51 
EVRAINCI1)-PHI1*VRAINCI1-1)-THETA1*Z(Il-l) 
GO TO 20 

!51 EVRAINCll)-PHI1*VRAIN(Il-l)-THETAl*Z(Il-l) 
DO 31 L=2,K 

31 EVRAINCIl+L-l):PHIl*EVRAIN(Il+L-2) 
20 CONTINUE 

C APPLY THE INVERSE TRANSFORMATIONS ON THE SERIES. 
C 

PP=l/P 
DO 61 1-1, N 
Kl=( 1-1 )*12+1 
K2:I*12 
00 71 L-Kl,K2 
J=L-(I-l)*12 
ERAIN(I,J)-(EVRAINCL)*STO(J)+MEAN(J»**PP 

71 CONTINUE 
61 CONTINUE 

C 
C 

RETURN 
END 

IIOO.SYSIN DO * 
***** STATION 6038 - UNIVARIATE MODEL ***** 

O. . 5 
!5!5 25 

1 4 
27 1 

!5 3 
11 5 

3 2 
63 3 

1 3 
10 4 

2 1 
19 2 
83 1 
11 1 
14 2 
36 2 
31 1 
33 7 
49 2 
19 7 
21 2 
39 1 
11 2 

2 1 
25 1 

2 2 
30 2 

1100. FTI0FOOl 00 DSN:UF. 80063401. 57. C60381. DISP=(OLO. KEEP) 
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c C-------------------------------------------------------------
C 
C PROGRAM RAEI'IV-B 
C 
C RECURSIVE ALGORITHM FOR THE ESTIMATION OF 
C MISSING VALUES - BIVARIATE MODEL 
C c--------------------------------------------------------------
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

10 
C 

20 
C 

30 
C 

S 
40 

C 

100 
C 
C 
C 
C 
C 
C 

11 
C 

15 
C 
C 
C 

101 
C 
C 
C 

DIMENSION RAINIC60. 12).VRICSOO).RAIN2(60. 12). VR2CSOO). 
1 EIRI C60. 12). VIRI CSOO). EIR2C60, 12), VtR2(SOO). At (2. 2), 
2 81(2.2),1'101(2.2).1'111(2.2) 

DIMENSION E2Rl(60. 12).V2Rl(SOO).E2R2(60. 12),V2R2(SOO). 
1 A2(2.2),82C2,2),M02(2.2).M12C2,2) 
DIMENSION E3Rl(60. 12),V3Rl(SOo).E3R2C60. 12).V3R2CSOO). 

1 A3(2,2).83(2,2).M03(2.2),M13(2,2) 
DIMENSION E4Rl(60. 12).V4Rl(SOO).E4R2C60, 12).V4R2(SOO), 

1 A4C2,2),84C2.2).M04C2.2).M14(2,2) 
DIMENSION E'Rl(60. 12),V'Rl(SOO),E5R2(60, 12),V5R2(SOO), 

1 A'C2,2),85(2,2),M05C2.2).Ml'C2.2) 
DIMENSION LI(200).LG(2001. ISI(200), IEI(200) 
COMMON/AI ID1.ID2.NYEAR(60) 
COMMON/BI N,C,P 
COMMON/CI NG, ISO(200). IEQ(200) 

READ INPUT PARAMETERS 
HEADER .. TI TLE 
N ....... NUMBER OF YEARS 
NG ...... NUMBER OF GAPS 
LI ...... LENGTH OF INTEREVENT 
LG ...... LENGTH OF GAP 
C.P ..... PARAMETERS OF THE TRANSFORMATION 

TRANSFORMED SERIES Y-(X+C).*P 

READ(5. 10) HEADER 
FORMA TC 20A4 ) 

READCS.20) C.P 
FORMATC2F5. 2) 

READ(S.30) N,NG 
FORMATC2( 141) ) 

DO 5 I=I.NG 
READ(5.40) LI(I).LG(I) 
FORMAT(214) 

READ(10.100) (IDI. CNYEARCII. (RAINlCI.J).J=1.12», I=1.N) 
READ (11. 100) (102. (NYEAR ( 1 ) • (R A I N2 C 1. J) • J= 1. 12) ), 1=1. N) 
FORMATCA4. 13. IX. 12F6.2) 

FROM THE INPUT VARIABLES LI AND LG TWO ARRAYS OF 
LENGTH NO ARE COMPUTED. THEN THE STARTING POINT 
OF THE KTH GAP IS ISOCK) AND THE ENDING POINT IS 
IEG(K). 

ISI(I)=l 
lEI C 1 )=LI Cl) 
ISG(1)=IEI(l )+1 
IEG(1)=ISGC1)+LG(1)-1 
DO 11 1=2. t~G 
ISICI)=IEGCI-l)+l 
IEICI)aISI(I)+LI(I)-l 
ISG(I)"'IEI(I)+l 
IEG(I)=ISGCI)+LG(I)-l 
CONTINUE 

WRlTE(6. 1') HEADER 
FORMATC20A4. II!) 

PRINT THE POSITIONS OF THE GAPS FOR A CHECK 

WRITE(6. 101) (I. ISG( I). IEG( I). 1=1. NG) 
FORMATC3I6) 

INITIALIZE THE MISSING VALUES OF THE INCOMPLETE 
SERIES 
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C 

60 
C 
C 
C 

C 
C 
C 
C 
C 
C 

C 

C 

102 
66 

DO 60 I=l.N 
DO 60 .J~1. 12 
IF(RAIN1(I • .J>'EG.-l) RAIN1(I • .J)-0. 
CONTINUE 

PRINT OUT THE SERIES WHICH IS TO BE ESTIMATED 

WRITE(6.66) 
WRITE(6.102) (101. (NVEAR(I). (RAINI(I...J) • ..J .. t.12». I"I.N) 
FORMAT(IX.A4. 13. IX, 12F6.2) 
FORMAT (lHI) 

SUBROUTINE BIVAR IS CALLED TO FIT A BIVARIATE AR(1) 
MODEL TO THE TWO INPUT SERIES. IT ESTIMATES ALSO 
THE MISSING VALUES OF THE ONE SERIES AND SAVES IT 
TO BE INPUT TO THE NEXT CALL 

CALL BIVAR(RAIN1.VR1.RAIN2,VR2.EIR1.VIR1.EIR2.VIR2. 
Al.Bl.MOt.Mll) 

CALL BIVAR(E1Rl.VlR1.ElR2.VlR2.E2R1.V2Rl.E2R2.V2R2. 
A2.B2.M02.M12) 

CALL BIVAR(E2Rl.V2Rl.E2R2.V2R2.E3Rl,V3Rl.E3R2.V3R2. 
A3.B3.M03,M13) 

CALL BIVAR(E3Rl.V3Rl,E3R2.V3R2.E4Rl.V4Rl,E4R2.V4R2. 
A4,B4,M04.M14) 

CALL BIVAR(E4Rl.V4Rl.E4R2.V4R2,E5Rl,V5Rl,E'R2.V5R2, 
A'.B',M05,M15) 

STOP 
END 

C------------------- SUBROUTINE BIVAR ---------------------------
C 
C SUBROUTINE BIVAR FITS A BIVARIATE AR(l) MODEL TO 
C THE TWO INPUT SERIES EACH TIME IS CALLED. IT 
C ESTIMATES ALSO THE MISSING VALUES OF THE ONE 
C SERIES AND THE ESTIMATED SERIES IS SAVED TO 
C BE INPUT TO THE NEXT CALL 
C 
C 

c 
SUBROUTINE BIVAR(RAIN1.VR1,RAIN2.VR2.ERAIN1.EVRI,ERAIN2. 

EVR2. A. B. MO. Ml) 

DIMENSION WKAREA(200) 
DIMENSION RAIN1(60. 12).VR1(SOO),RAIN2(60, 12),VR2(SOO) 
DIMENSION ERAIN1(60, 12).EVR1(SOO).ERAIN2(60. 12), EVR2(SOO) 
DIMENSION XM1(12). XM2(12).STD1(12),STD2(12) 
DIMENSION A(2.2).B(2.2),C(2.2).D(2.2) 
REAL MO(2.2),Ml(2.2),MOINV(2.2) 
COMMONIAI ID1.ID2.NYEAR(60) 
COMMON/BI N,C,P 
COMMON/CI NO. ISO(200). IEO(200) 
COMMONIDI XM1.XM2.STD1,STD2. Xl,X2.ST1.ST2 

C 
C CALL SUBROUTINE STAT TO NORMALIZE AND STANDARDIZE 
C THE SERIES AND COMPUTE THE STATISTICS 
C 

C 

CALL STAT(RAIN1.XM1.STD1.VR1, Xl.ST1) 
CALL STAT(RAIN2.XM2.STD2.VR2. X2.ST2) 

C CALL THE IMSL SUBROUTINE FTCRXV TO COMPUTE AUTO-
C AND CROSS-COVARIANCES OF THE SERIES 
C 

C 

C 

c 

CALL FTCRXV(VR1.VR2.N. Xl. X2.0.N.C120. IER) 
CALL FTCRXY(VRI. VRI. N. Xl. Xl. -1. N. Cllt. IER) 
CALL FTCRXV(VR2.VR2.N.X2.X2.-1.N.C221. IER) 
CALL FTCRXV(VR1.VR2.N. Xl.X2.-1.N.CI21. IER) 
CALL FTCRXV(VR2,VR1.N,X2.Xl.-1.N.C211. IER) 

MO( 1. 1 )~1. 
MO(2,2)=1. 
MO(1.2)=C120/(ST1*ST2) 
MO (2. 1 ) =MO ( 1 , 2 ) 

M 1 ( 1. 1 ) =C 1111 ( STl *STl ) 
Ml(2.2)=C221/(ST2*ST2) 
Ml(l,2)=C121/(ST1*ST2) 
Ml(2,1)=C211/(ST1*ST2) 

WRITE(6.66) 
66 FORMAT< IHll 

C 
C PRINT OUT THE CORRELATION MATRICES MO AND MI 
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C 
WRITE(6,110) ((MO(I,'}),.}-1,2) 1"1,2) 
WRlTE(6,111) (MU-I,.}),,J"1,2) 1"1,2) 

110 FORMATC'X, 'CORRELATION MATRIX MO',II, «5X,OlFI0.3)1) 
111 FORMATC5X,'CORRELATION MATRIX Ml',II,«5X,OlF10.3)1) 

C 
C CALCULATE THE PARAMETER MATRICES A AND 8 
C 

C 

10 
C 

C 
C 
C 

140 
141 

C 

15 
C 
C 
C 

40 
20 

C 
C 
C 

50 
C 
C 
C 

101 
C 

C 

CALL LINV2F(MO,Ol,Ol,MOINV,0, WKAREA, IER) 
CALL VMULFF(Ml,MOINV,Ol,2,ii!,2,2,A,2, IER) 
CALL VMVLFP(A,Ml,Ol,2,2,2,2, 0,2, IER) 

DO 10 1-1,2 
DO 10 .}-l,iiI 
C(I,,J)-MO(I,'})-O(I,,J) 

8(1, 1)-Cil, 11**0.5 
8 (2, 1) DC ( 1, ii!) 18 (1, 1 ) 
B (2, Ol) - (C (iii, 2) -c ( 1, iiI!) **2/C ( 1, 1 ) ) -0. 5 
8(1,2)"0. 

PRINT OUT THE MATRICES A AND 8 

WRITE(6,140) «A(I,,J),,J"1,2),I"I,2) 
WRITE(6,1411 «8(1,,J),,J=1.Ol),I=I,2) 
FORMATC 5X, 'COEFFIC lENT MATR I X: A I, II, « 5X, OlFI0. 3) Il ) 
FORMATC5X, 'COEFFIC lENT MATR I X: 8 I, II, « 5X, OlFI0. 3) Il ) 

NN=N*12 
DO 15 1=I,NN 
EVR2(1)=VR2(1) 
EVR1(1)=VR1(1) 

ESTIMATE THE GAPS OF THE INCOMPLETE SERIES 

DO 20 1=1. NG 
I1=ISG( I) 
12=IEG(I) 
K=12-ll+1 
DO 40 L=l,K . 
EVR1(Il+L-l)"A(2,1)*EVR1(ll+L-2)+A(2,2)*EVR2(Il+L-2) 
CONTINUE 

PERFORM INVERSE TRANSFORMATIONS 

PP=l/P 
DO 50 1=I,N 
DO 50 .}=1, 12 
L=,J+( 1-1 )*12 
ERAINl(I,.})=(EVR1(L)*STD1(,J)+XM1(J»**PP 
ERAIN2CI,J)=CEVR2(L)*STD2(,J)+XM2C,J»**PP 
CONTINUE . 

PRINT OUT THE ESTIMATED SERIES 

WRITE(6,66) 
WRITE(6,101) (101, (NYEARCI), (ERAINUI.,J),,J=I, lOl», I"l,N) 
FORMAT(lX,A4, 13, IX, 12F6.ii!) 

RETURN 
END 

C---------------- SUBROUTINE STAT 
C 
C 
C 
C 
C 

C 

SUBROUTINE STAT TRANSFORMS THE ORIGINAL SERIES TO 
NORMAL AND STATIONARY AND COMPUTES THE STATISTICS 
OF THE TRANSFORMED SERIES. 

SUBROUTINE STAT(RAIN, XM,STD, VRAIN, X,ST) 
DIMENSION RAIN(60, 12), VRAIN (800), XM( 12), STD( 12) 
COMMONIAI 101, 102, NYEAR(60) 
COMMON/81 N,C,P 
COMMON/CI NO, ISO(200), IEO(200) 

DO 10 I=l,N 
DO 10 J=1. 12 
RAIN(I,,J)-(RAINCI,,J)+C)**P 

10 CONTINUE 
C 
C COMPUTE MONTHLY MEANS AND STANDARD DEVIATIONS OF 
C THE NORMALIZED SERIES 
C 

DO 20 .1=1,12 
XMC,J)=O. 
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C 

2' 20 

30 
C 
C 
C 

40 
C 
C 
C 

STDeJ)=O. 
DO 25 1=1. N 
XM(JI-XMeJ)+RAINCI,J)/FLOATCN) 
STD(J)=STOeJ)+RAINCI,JI**2 
CONTINUE 
CONTINUE 

DO 30 1=1.12 
STDCI)=eCSTD(I'-XMCI'**2*FLOATeN)I/(FLOAT(N'-l. )1**0.5 
CONTINUE 

NOW,STANDARDIZE THE SERIES 

DO 40 I-I. N 
DO 40 J"'l, 12 
RAINCI,J)-CRAINeI,J)-XMeJ»/STDeJ) 
CONTINUE 

COMPUTE MEAN AND STD OF THE WHOLE SERIES 

NN=N*12 
IC=O 
DO 50 I=l.N 
DO '0 J=l, 12 
IC=IC+l 

'0 
C 

VRAIN(ICI-RAINCI,J) 
CONTINUE 

C 

X=O. 
ST=O. 
DO 60 1=1, NN 
X=X+VRAINCI) 
ST=ST+VRAIN(II**2 

60 CONTINUE 
X=X/FLOAT<NNI 
ST= ( (ST-X**2*FLOAT (NN) 1 I (FLOAT (NNI-l. ) ) **0. 5 

RETURN 
END 

IIGO.SYSIN DO * 
***** STATION 6039 - BIVARIATE MODEL ***** 

.0 .5 
55 25 

1 4 
27 1 

5 3 
11 5 

3 2 
63 3 

1 3 
10 4 

2 1 
19 2 
83 1 
11 1 
14 2 
36 2 
31 1 
33 7 
49 2 
19 7 
21 2 
39 1 
11 2 

2 1 
2' 1 

2 2 
30 2 

IIGO.FTIOF001 DO OSN=UF. B0063401. S7. C603820,DISP=(OLO,KEEPI 
IIGO.FTI1F001 DO DSN=UF. B0063401. 57. B6093,DISP=(OLD,KEEPI 
I*EOJ 
I*EOJ 

181 



REFERENCES 

Afifi, A.A., and Elashoff, R.M., 1966, "Missing observations 
in multivariate statistics I: Review of the 
literature," J. Am. Stat. Assoc., 61:595-604. 

Anderson, D.G., 1979. "Satelite versus conventional methods 
in hydrology" in Satellite Hydrology, American Water 
Resources Association, Minneapolis. 

Anderson, T. W., 1957, "Maximum likelihood estimates for a 
multivariate normal distribution when some observations 
are missing," J. Am. Stat. Assoc., 52:200-203. 

Ansley, G.F., Spivey, W.A., and Worblski, v1.J., 1977, "A 
class of transformations for Box-Jenkins's seasonal 
modelling," Appl. Stat., 26:173-178. 

Beale, E.M.L., and Little, R.J.M., 1975, "Missing values in 
multivariate analysis," J. R. Stat. Soc., B37:129-145. 

Beard, L.R., 1973, "Hydrologic data fill-in and network 
design," in Design of Water Resources Projects with 
Inadequate Data, Proc. of the Madrid Symposium, June, 
1973. 

Bendat, J.S., and Piersol, A.G., 1967, Measurement and 
Analysis of Random Data, John Wiley & Sons, New York, 
3rd. printing. 

Bloomfield, P., 1970, "Spectral analysis with randomly 
missing observations," J. R. Stat. Soc., B32:369-380. 

Box, G.E. P., and Cox, D.R., 1964, "An analysis of 
transformation (with discussion) ," J. R. Stat. Soc., 
B26:211-252. 

Box G.E.P., and J·enkins, G.M., 1973, "Some comments on a 
paper by Chatfield and Prothero and on a review by 
Kendall (with discussion) ," J. R. Stat. Soc., 
A135:337-345. 

Box, G.E.P., and Jenkins, G.M., 1976, Time Series Analysis 
Forecasting and Control, Holden-Day, San Francisco, 
Revised ed. 

182 



183 

Box, G.E.P., and Pierce, D.A., 1970, "Distribution of 
residual autocorrelations in autoregressive-integrated 
moving average time series models," J. Am. Stat. 
Assoc., 64:1509-1526. 

Brubacher, S.R., and Tunnicliffe Wilson, G., 1976, 
"Interpolating time series with application to the 
estimation of holiday effects on electricity demand," 
Appl. Stat., 25: 107-116 .. 

Buck, S.F., 1960, "A method of estimation of missing values 
in multivariate data suitable for use with an 
electronic computer," J. R. Stat. Soc., B22:302-307. 

Chatfield, C., 1980, The Analysis of Time Series: An 
Introduction, Chapman and Hall, London, 2nd ed. 

Chatfield, C., and Prothero, D.L., 1973a, "Box-Jenkins 
seasonal forecasting: Problems in a case study (with 
discussion)," J. R. Stat. Soc., A136:295-336. 

Chatfield, C., and Prothero, D.L., 1973b, "Reply by Dr. 
Chatfield and Dr. Prothero on the paper 'Some comments 
on a paper by Chatfield and Prothero and on a review by 
Kendall' by Box, G.E.P., and Jenkins, G.M.," J. R. 
Stat. Soc., A136:347-352. 

Crosby, D.S., and Maddoc, T., 1970, "Estimating coefficients 
of a flow generator for monotone samples of data," 
Water Resour. Res., 6(4) :1079-1086. 

Damsleth, E., 1980, "Interpolating missing values in a time 
series," Scand. J. Stat., 7:33-39. 

Dean, J.D., and Snyder, W.M., 1977, "Temporally and areally 
distributed rainfall," J. of the Irrigation and 
Drainage Div., ASCE, 103(IR2) :221-229. 

Delleur, J.W., and Kavvas, M.L., 1978, "Stochastic models 
for monthly rainfall forecasting and synthetic 
generation," J. Appl. Meteor., 17(10) :1528-1536. 

Draper, N.R., and Cox, D.R., 1969, "On distributions and 
their transformation to normality," J. R. Stat. Soc., 
B31:472-476. 

Draper, N.R., and Smith, H., 1966, Applied Regression 
Analysis, John Wiley & Sons, New York. 

Durbin, J., 1960, "The fitting of time series models," Rev. 
Int. Inst. Stat., 28:233. 

Fiering, M.B., 1964, "Multivariate technique for synthetic 
hydrology," J. Hydraul. Div., ASCE, 90(HY5) :43-60. 



Fiering, M.B., 1968, "Schemes for handling inconsistent 
matrices," Water Resour. Res., 4(2) :291-297. 

Fiering, M.B., and Jackson, B.B., 1971, "Synthetic 
Hydrology," Monograph No.1, American Geophysical 
Union, Washington, D.C. 

Finzi, G., Todini, E., and Wallis, J.R., 1977, "SPUMA: 

184 

Simulation package using Matalas algorithm," in 
Mathematical Models for Surface Water Hydrology, Ed. by 
Ciriani, T.A., Maione, U., and Wallis, J.R., John Wiley 
& Sons, London. 

Finzi, G., Todini, E., and Wallis, J.R., 1975, "Comment upon 
multivariate synthetic hydrology," Water Resour. Res., 
11 (6) :844-850. 

Gantmacher, F.R., 1977, The Theory of Matrices, Vol. I, 
Chelsea Publ. Company, New York. 

Granger, C.W.J., and Morris, M.J., 1976, "Time series 
modelling and interpretation," J. R. Stat. Soc., 
A139:246-257. 

Haan, C.T., 1977, Statistical Methods In Hydrology, Iowa 
State Univ. Press, Ames. 

Hamrlck, R.L., 1972, "South Florida's I unmanaged I resource," 
In Depth Report, Central and South Florida Flood 
Control District 1:1-12. 

Hannan, E.J., 1960, Time Series Analysis, Chapman and Hall, 
London. 

Hashino, M., 1977, "A similar storm method on filling data 
voids," in Hodeling Hydrologic Processes, Ed. by 
Morel-Seytoux, H., Salas, J.D., Sanders, T.G., and 
Smith, R.E., Water Resour. Res. Publications, Fort 
Collins, Colorado. 

Hinkley, D., 1977, "On quick choice of power transforma­
tion,1! Appl. Stat., 26(1) :67-70. 

IMSL LIB-0007, 1979, Reference Manual, Edition 7, Revised. 

Jenkins, G.M., and Watts, D.G., 1969, Spectral Analysis and 
its Applications, Holden-Day, San Francisco, 2nd 
printing. 

John, J.A., and Draper, N.R., 1980, "An alternative family 
of transformations," Appl. Stat., 29 (2) : 190-197. 

Jones, R.H., 1962, "Spectral analysis with regularly missed 
observations," Ann. Math. Stat., 32:455-61. 



Kahan, J.P., 1974, "A method for maintaining cross and 
serial correlations and the coefficient of skewness 
under generation in a linear bivariate regression 
model," Water Resour. Res., 10(6) :1245-1248. 

185 

Kavvas, M., and Delleur, J., 1975, "Removal of Periodicities 
by differencing and monthly mean substraction," J. 
Hydrol., 26:335-353. 

Kottegoda, N.T., and Elgy, J., 1977, "Infilling missing flow 
data," in Modeling Hydrologic Processes, Ed. by 
Morel-Seytoux, H., Salas, J.D., Sanders, T.G., and 
Smith, R.E., Water Resour. Res. Publications, Fort 
Collins) Colorado. 

Linsley, R.K., Jr., Kohler, M.A., and Paulhus, J.L.H., 1978, 
Hydrology for Engineers, McGraw-Hill Book Co., New 
York, 2nd ed. 

Marshall, R.J., 1980, "Autocorrelation estimation of time 
series with randomly missing observations," Biometrika, 
67 (3) :567-570. 

Matalas, N.C., 1967, "Mathematical assessment of synthetic 
hydrology," Water Resour. Res., 3(4) :937-945 . 

.M.atalas, N.C., 1978, "Generation of multivariate synthetic 
flows," in Mathematical Models for Surf~ce Water 
Hydrolog~ Ed. by Ciriani, T.A., Maione, U., and 
Wallis, J.R., John Wiley & Sons, London. 

Mejia, J.M., Rodriguez-Iturbe, I., and Cordova, J.R., 1974, 
"!-1ultivate generation of mixtures of normal and 
log-normal variables," Water Resour. Res., 
10 (4): 691-693. 

Moran, P.A.P., 1970, "Simulation and evaluation of complex 
water systems operations," l-vater Resour. Res., 
6 (6) : 1737-1742. 

Neave, H.R., 1970, "Spectral analysis with initially scarce 
data," Biometrika, 57:111-122. 

O'Connell, P.E., 1973, "Multivariate synthetic hydrology: a 
correction," J. Hydr. Div., ASCE, Tech. notes, 9(HY12): 
2391-2396. 

O'Connell, P.E., 1974, "Stochastic modelling of long-term 
persistence in streamflow sequences,", Ph.D. thesis, 
University of London, London, England. 



Orchard, T., and Woodbury, M.A., 1972, "A missing 
information principle: Theory and applications," in 
Proc. 6th Berkeley Symp. Math. Statist. Prob., Vol--
1:697-715. 

Ozaki, T., 1977, "On the order determination of ARlMA 
models," Appl. Stat., 26:290-301. 

Parzen, E., 1963, "On spectral analysis with missing 
observations and amplitude modulation," Sankhya, 
A25:383-392. 

186 

Paulhus, J.L.H., and Kohler, M.A., 1952, "Interpolation of 
missing precipitation records," Mon. Weather Review, 
80:129-133. 

Pegram, G.G.S., and James, W., 1972, "Multilag multivariate 
autoregressive model for the generation of operational 
hydrology," Water Resour. Res., 8(4) :1074-1076. 

Roesner, L.A., and Yevjevich, V., 1966, "Mathematical models 
for time series of monthly precipitation and monthly 
runoff," Hydrology paper No. 15, Colorado State 
University, Fort Collins, Colorado. 

Salas, J.D., Delleur, J.W., Yevjevich, V., and Lane, W.L., 
1980, Applied Modeling of Hydrologic Time Series, Water 
Resour. Res. Publ., Fort Collins, Colorado. 

Salas, J.D., and Pegram, G.G.S., 1977, "A seasonal 
multivariate multilag autoregressive model in 
hydrology," in Modeling hydrologic processes, Ed. by 
Morel-Seytoux, H., Salas, J.D., Sanders, T.G., and 
Smith, R.E., Water Resour. Publications, Fort Collins, 
Colorado. 

Slack, J.R., 1973, "I would if I could (self-denial by 
conditional models)," Water Resour. Res., 9(1) :247-249. 

Scheinok, P.A., 1965, "Spectral analysis with randomly 
missed observations: The binomial case," Ann. Math. 
Stat., 36:971-977. 

Schlesselman, J., 1971, "Power families: A note on the Box 
and Cox transformation," J. R. Stat. Soc., B33:307-311. 

Shearman, R.J., and Salter, P.M., 1975, "An objective 
rainfall interpolation and mapping technique," 
Hydrological Sciences Bulletin, 20(3) :353-363. 

Stidd, C.K., 1953, "Cube-root-normal precipitation 
distributions," Trans. Amer. Geophys. Union, 34:31-35. 



Stidd, C.J., 1968, "A three parameter distribution for 
precipitation data with a straight-line plotting 
method," Proc. 1st Statist. Meteorol. Conf., Amer. 
Meteor. Soc., Hartford, Connecticut, pp. 158-162. 

Stidd, C.K., 1970, "The nth root normal distribution of 
precipitation," Water Resour. Res., 6(4) :1095-1103. 

Tukey, J.W., 1957, "On the comparative anatomy of 
transformation," Ann. of Math. Stat., 28:602-632. 

Valencia, D.R., and Schaake, J.C., Jr., 1973, 
"Disaggregation processes in stochastic hydrology," 
Water Resour. Res., 9(3) :580-585. 

WastIer, T.A., 1969, Spectral Analysis, Applications in 
Water Pollution Control, U.S. Dept of the Interior, 
Federal Water Pol. Control Adm., Washington, D.C. 

187 

Wei, T.C., and McGuiness, J.L., 1973, "Reciprocal distance 
squared method, a computer technique for estimating 
areal precipitation," ARS NC-8, U.S., Dept. of 
Agriculture, Washington, D.C. 

Wilson, G.T., 1973, "Contribution to discussion of 
'Box-Jenkins seasonal forecasting: Problems in a case 
study," by C. Chatfield and D.L. Prothero, J. R. 
Stat. Soc., A136:315-319. 

Wold, H.O., 1938, A Study of the Analysis of Stationary Time 
Series, Almquist and Wicksell, Uppsala, 2nd ed., 1954. 

Yevjevich, V.M., 1972, "Structural analysis of hydrologic 
time series," Hydrol. paper No. 56, Colorado State 
University, Fort Collins, Colorado. 

Young, G.K., 1968, "Discussion of 'Mathematical assessment 
of synthetic hydrology' by N. G. Matalas," Water 
Resour. Res., 4 (3) :681-682. 

Young, G.K., and Pisano, W.C., 1968, "Operational hydrology 
using residuals," J. Hydr. Div., ASCE, 94(HY4) :909-923. 

Yule, G.U., 1927, "On a method of investigating 
periodicities in disturbed series, with special 
reference to Wolfer's sunspot numbers," in Statistical 
Papers of George Undy Yule, selected by Stuart, A., and 
Kendall, M., Hafner Publ. Co., New York, 1971. 


	67 cover
	2
	3
	4
	5

