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18.1 INTRODUCTION TO FREQUENCY
ANALYSIS

Extreme rainfall events and the resulting floods can take thousands of lives and cause
billions of dollars in damage. Flood plain management and designs for flood control
works, reservoirs, bridges, and other investigations need to reflect the likelihood or
probability of such events. Hydrologic studies also need to address the impact of
unusually low stream flows and pollutant loadings because of their effects on water
quality and water supplies.

The Basic Problem. Frequency analysis is an information problem: if one had a
sufficiently long record of flood flows, rainfall, low flows, or pollutant loadings, then
2 frequency distribution for a site could be precisely determined, so long as change
over time due to urbanization or natural processes did not alter the relationships of
concern. In most situations, available data are insufficient to precisely define the risk
of large floods, rainfall, pollutant loadings, or low flows. This forces hydrologists to

usc practical knowledge of the processes involved, and efficient and robust statistical
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techniques, to develop the best estimates of risk that they can.!'? These techniquesare
generally restricted, with 10 to 100 sample observations to estimate events exceeded
with a chance of at least 1 in 100, corresponding to exceedance probabilities of |
percent or more. In some cases, they are used to estimate the rainfall exceeded witha
chance of 1 in 1000, and even the flood flows for spillway design exceeded with a
chance of 1 in 10,000.

The hydrologist should be aware that in practice the true probablhty distributions
of the phenomena in question are not known. Even if they were, their functional
representation would likely have too many parameters to be of much practical use,
The practical issue is how to select a reasonable and simple distribution to describe
the phenomenon of interest, to estimate that distribution’s parameters, and thus to
obtain risk estimates of satisfactory accuracy for the problem at hand.

Common Problems. The hydrologic problems addressed by this chapter primarily
deal with the magnitudes of a single variable. Examples include annual minimum
7-day-average low flows, annual maximum flood peaks, or 24-h maximum precipi-
tation depths. These annual maxima and minima for successive years can generally
be considered to be independent and identically distributed, making the required
frequency analyses straightforward.

In other instances the risk may be attributable to more than one factor. Flood risk
at a site may be due to different kinds of events which occur in different seasons, or
due to risk from several sources of flooding or coincident events, such as both local
tributary floods and large regional floods which result in backwater flooding from a
reservoir or major river. When the magnitudes of different factors are independent, a
mixture model can be used to estimate the combined risk (see Sec. 18.6.2). In other
instances, it may be necessary or advantageous to consider all events that exceed a
specified threshold because it makes a larger data set available, or because of the
economic consequences of every event; such partial duration series are discussed in
Sec. 18.6.1.

18.1.1 Probability Concepts

Let the upper case letter X denote a random variable, and the lower case letter x a
possible value of X. For a random variable X, its cumulative distribution function
(cdf), denoted F(x), is the probability the random variable X is less than or equalto
X

Fx)=P(X=<x) (18.L.1)

F(x) is the nonexceedance probability for the value x.

Continuous random variables take on values in a continuum. For example, the
magnitude of floods and low flows is described by positive real values, so that X = 0.
The probability density function (pdf') describes the relative likelihood that a contin-
uous random variable X takes on different values, and is the derivative of the cumu-
lative distribution function:

dF X(x)

Sl = (18.1.2)

Section 18.2 and Table 18.2.1 provide examples of cdf’s and pdf’s.
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18.1.2 AQuantiles, Exceedance Probabilities, Odds Ratios, and Return
Periods

In hydrology the percentiles or quantiles of a distribution are often used as design
events. The 100p percentile or the pth quantile x, is the value with cumulative
probability p:

Fx(x,)=p (18.1.3)

The 100p percentile x, is often called the 100(1 — p) percent exceedance event be-
cause it will be exceeded with probability 1 — p.

The return period (sometimes called the recurrence interval) is often specified
rather than the exceedance probability. For example, the annual maximum flood-
flow exceeded with a 1 percent probability in any year, or chance of 1 in 100, is called
the 100-year flood. In general, x, is the T-year flood for

1
—p (18.1.4)
Here are two ways that return period can be understood. First, in a fixed T-year
period the expected number of exceedances of the T-year event is exactly 1, if the
distribution of floods does not change over that period; thus on average one flood
greater than the T-year flood level occurs in a 7-year period. -
Alternatively, if floods are independent from year to year, the probability that the
first exceedance of level x, occurs in year k is the probability of (k — 1) years without
an exceedance followed by a year in which the value of X exceeds x,:

P (exactly k years until X = x,) = p*~' (1 — p). (18.1.5)

This is a geometric distribution with mean 1/(1 — p). Thus the average time until the
level x, is exceeded equals 7 years. However, the probability that x, is not exceeded in
a T-year period is p7 = (1 — 1/T)7, which for 1/(1 — p) = T = 25 is approximately
36.7 percent, or about a chance of | in 3.

Return period is a means of expressing the exceedance probability. Hydrologists
often speak of the 20-year flood or the 1000-year rainfall, rather than events exceeded
with probabilities of 5 or 0.1 percent in any year, corresponding to chances of 1 in 20,
orof | in 1000. Return period has been incorrectly understood to mean that one and
only one T-year event should occur every T years. Actually, the probability of the
T-year flood being exceeded is 1/T in every year. The awkwardness of small proba-
bilities and the incorrect implication of return periods can both be avoided by report-
ing odds ratios: thus the 1 percent exceedance event can be described as a value with a
1 in 100 chance of being exceeded each year.

18.1.3 Product Moments and their Sample Estimators

Several summary statistics can describe the character of the probability distribution
of a random variable. Moments and quantiles are used to describe the location or
central tendency of a random variable, and its spread, as described in Sec. 17.2 and
Table 17.2.1. The mean of a random vanable X is defined as

mx = E[X] (18.1.6)
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The second moment about the mean is the variance, denoted Var (X) or 0% where
0% =Var (X) = E[(X — uy)? (18.1.7)

The standard deviation o, is the square root of the variance and describes the width
or scale of a distribution. These are examples of product moments because they
depend upon powers of X.

A dimensionless measure of the variability in X, appropriate for use with positive
random variables X = 0, is the coefficient of variation, defined in Table 18.1.1. Table
18.1.1 also defines the coefficient of skewness yy, which describes the relative asym-
metry of a distribution, and the coefficient of kurtosis, which describes the thickness
of a distribution’s tails.

Sample Estimators. From a set of observations (X, . . . , X,), the moments of a
distribution can be estimated. Estimators of the mean, variance, and coefficient of
skewness are

~F-3 X

¥ X — Xy
-]

g% = ‘i‘T_-_—l— (18.1.8)
nzw Xy
Pr=

- l)(n —2)8°

TABLE 18.1.1 Definttions of Dimensionless Product-
Moment and L-Moment Ratios

Name Denoted Definition

Product-moment ratios

Coefficient of variation CVy O 1y
—_y P
Coefficient of skewness* Yx &03&
X
— 4
Coefficient of Kurtosis' BX —p)
a%
L-moment ratios
L-coefficient of variation* L-CV, 1, A /A
L-coefficient of skewness L-skewness, 7, Ay/A,
L-coefficient of kurtosis L-kurtosis, 7, AafA,

* Some texts define B, = [yx]? as a measure of skewness.

t Some texts define the kurtosis as (E[(X — u,)*]/o% — 3); others use
the term excess kurtosis lor this difference because the normal distribu-
tion has a kurtosis of 3.

t Hosking? uses 1 instead of 1, to represent the L-CV ratio.
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Some studies use different versions of 6% and 7, that result from replacing (n — 1)
and (n—2) in Eq. (18.1.8) by n. This makes relatively little difference for large n. The
factor (n — 1) in the expression for 6% yields an unbiased estimator of the variance
a%. The factor n/[(n — 1)(n — 2)] in expression for 7 yields an unbiased estimator of
E[(X — ux)*], and generally reduces but does not eliminate the bias of 7, (Ref. 159).
Kirby® derives bounds on the sample estimators of the coefficients of variation and
skewness; in fact, the absolute value of both .S and G cannot exceed Vn for the sample
product-moment estimators in Eq. (18.1.8).

Use of Logarithmic Transformations. When data vary widely in magnitude, as often
happens in water-quality monitoring, the sample product moments of the logarithms
of the data are often employed to summarize the characteristics of a data set or to
estimate parameters of distributions. A logarithmic transformation is an effective
vehicle for normalizing values which vary by orders of magnitude, and also for
keeping occasionally large values from dominating the calculation of product-
moment estimators. However, the danger with use of logarithmic transformations is
that unusually small observations (or low outliers) are given greatly increased weight.
This is a concern if it is the large events that are of interest, small values are poorly
measured, small values reflect rounding, or small values are reported as zero if they
fall below some threshold.

18.1.4 L Moments and Probability-Weighted Momeﬁts

L moments are another way to summarize the statistical properties of hydrologic
data.” The first L-moment estimator is again the mean:

A, = E[X] (18.1.9)

Let X4, be the ith-largest observation in a sample of size n (i = 1 corresponds to the
largest). Then, for any distribution, the second L moment is a description of scale
based on the expected difference between two randomly selected observations:

Similarly, L-moment measures of skewness and kurtosis use
A3 =4 E[X(yy3 — 2X g3y + Xap3)]

(18.1.11)
A =% E[X 4 — 3X g1 + 3 X310 — Xiaiy]

as shown in Table 18.1.1.

Advantages of L Moments. Sample estimators of L moments are linear combina-
tions (hence the name L moments) of the ranked observations, and thus do not
involve squaring or cubing the observations as do the product-moment estimators in
Eq. (18.1.8). As a result, L-moment estimators of the dimensionless coefficients of
variation and skewness are almost unbiased and have very nearly a normal distribu-
tion; the product-moment estimators of the coefficients of variation and of skewness
in Table 18.1.1 are both highly biased and highly variable in small samples. Both
Hosking’ and Wallis'® discuss these issues. In many hydrologic applications an

" occasional event may be several times larger than other values; when product mo-

ments are used, such values can mask the information provided by the other observa-
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tions, while product moments of the logarithms of sample values can overemphasize
small values. In a wide range of hydrologic applications, L moments provide simple
and reasonably efficient estimators of the charactenstics of hydrologic data and ofa
distribution’s parameters.

L-Moment Estimators. Just as the variance, or coefficient of skewness, of a random
variable are functions of the moments E[X], E[X?], and E[X 3], L moments can be
written as functions of probability-weighted moments (PWMs),*®7? which can be
defined as

B, = E{X [F(X)]") (18.1.12)

where F(X) is the cdf for X. Probability-weighted moments are the expectation of X
times powers of F(X). (Some authors define PWMs in terms of powers of [1 — F(X)).)
For r =0, f, is the population mean uy.

Estimators of L moments are mostly simply written as linear functions of estima-
tors of PWMs. The first PWM estimator b, of f, is the sample mean X in Eq. (18.1.8).

To estimate other PWMs, one employs the ordered observations, or the order
statistics Xy = * * + =Xy, corresponding to the sorted or ranked observations ina
sample (Xi=1,- - -, n). A simple estimator of §, forr = 1 is

1 i—0.35)]
;;xﬁ,[l—y—;——)] (18.1.13)

where 1 — (j— 0.35)/n are estimators of F(X,;). b,* is suggested for use when esti-
mating quantiles and fitting a distribution at a smgle site; though it is biased, it
generally yields smaller mean square error quantile estimators than the unbiased
estimators in Eq. (18.1.14) below.%88°

When unbiasedness is important, one can employ unbiased PWM estimators

bD=X
n—1 j)k
=3
=t n(" D (18.1.14) °
"t(n—j)n—j— DXy

b, = 2

j=1

'S n—j—=1)(n—j—2)X,
by=2 n(n — (n— 2)(n — 3)

n(n — 1)(n -2)

j=1

These are examples of the general formula
n—j n—j
| n- ( r )X(l) n—r( r )XU) :
B=b=— Z (18.1.15) -
n < n—1 (r+l)}=l ( n ) _
r+1 4

forr=1,...,n—1 [see Ref. 89, which defines PWMs in terms of powers of :
(1 — F)]; this formula can be derived using the fact that (r + 1), is the expected value -
of the largest observation in a sample of size (r + 1). The unbiased estimators are
recommended for calculating L moment diagrams and for use with regionalization
procedures where unbiasedness is important.

A
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For any distribution, L moments are easily calculated in terms of PWMs from
A =PB
A2 =2B — Bo
Ay =068, —6p, + fo
Ae =208, — 308, + 128, — B,

(18.1.16)

Estimates of the A, are obtained by replacing the unknown g, by sample estimators b,
from Eq. (18.1.14). Table 18.1.1 contains definitions of dimensionless L-moment
coefficients of vanation 1,, of skewness 75, and of kurtosis 7,. L-moment ratios are
bounded. In particular, for nondegenerate distributions with finite means, |7,| < 1 for
r= 3 and 4, and for positive random variables, X > 0,0 < 1, < 1. Table 18.1.2 gives
expressions for 4,, 4,, 75, and 1, for several distributions. Figure 18.1.1 shows rela-
tionships between 75 and 1,. (A library of FORTRAN subroutines for L-moment
analyses is available; see Sec. 18.11.) “

Table 18.1.3 provides an example of the calculation of L moments and PWMs.
The short rainfall record exhibits relatively little variability and almost zero skew-
ness. The sample product-moment CV for the data 0f 0.25 is about twice the L-CV %,
equal to 0.14, which is typical because 4, is often about half of o.

L-Moment and PWM Parameter Estimators. Because the first r L. moments are
linear combinations of the first r PWMs, fitting a distribution $o as to reproduce the
first r sample L moments is equivalent to using the corresponding sample PWMs. In
fact, PWMs were developed first in terms of powers of (1 — F) and used as effective
statistics for fitting distributions.?-% Later the PWMs were expressed as L. moments
which are more easily interpreted.”>!28 Section 18.2 provides formulas for the pa-
rameters of several distributions in terms of sample L moments, many of which are
obtained by inverting expressions in Table 18.1.2. (See also Ref. 72.)

18.1.5 Parameter Estimation

Fitting a distribution to data sets provides a compact and smoothed representation of
the frequency distribution revealed by the available data, and leads to a systematic
procedure for extrapolation to frequencies beyond the range of the data set. When
- flood flows, low flows, rainfall, or water-quality variables are well-described by some
family of distributions, a task for the hydrologist is to estimate the parameters O of
that distribution so that required quantiles and expectations can be calculated with
the “fitted” model. For example, the normal distribution has two parameters, 1 and
o’. Appropriate choices for distribution functions can be based on examination of
the data using probability plots and moment ratios (discussed in Sec. 18.3), the
physical origins of the data, previous experience, and administrative guidelines.

~ Several general approaches are available for estimating the parameters of a distri-
~ bution. A simple approach is the method of moments, which uses the available
sample to compute an estimate © of © so that the theoretical moments of the
distribution of X exactly equal the corresponding sample moments described in Sec.
18.1.3. Alternatively, parameters can be estimated using the sample L. moments
discussed in Sec. 18.1.4, corresponding to the method of L moments.

Still another method that has strong statistical motivation is the method of maxi-
mum likelihood. Maximum likelihood estimators (MLEs) have very good statistical
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TABLE 18.1.2 Values of L. Moments and Relationships for the Inverse of the cdf for
Several Distributions

Distribution and inverse cdf L moments
) +a —-a
Uniform: ,=-ﬂ2— A= £ 3
x=a+—aF 13=1,=0
Exponential:* A =é+1 A - L
. 1 B 2 zﬂ
_e_llt-A) L1
x=¢ I Ty 3 T4 G
Normal? L=u /12=—g-—
- vn
x=p+ a® '[F] Ty = 1,=0.1226
Gumbel: AM=¢(4+057T2 A=aln2
x={¢~aln[—In F] 7, =0.1699 74 =0.1504
o a
GEV: A,=£+7C—(l—-l'[l+x]} Az=—’€(l—2“")1“(l+x)
e Y- —j2 =37
x~—£+x(l [~In F]¥) T, {(1—2"‘) 3}
1 =54+ 10370 — 6(27%)
t4=
| —2=
. « o
Generalized Pareto: Ay =¢&+ s Ay = m
e 2o - 1k _{U—K2—K
=t - FD BT3Fk T GHnE TR
Lognormal See Eqgs. (18.2.12), (18.2.13)
Gamma See Egs. (18.2.30), (18.2.31)

* Alternative parameterization consistent with that for Pareto and GEV distributions is:
x=¢—alo[l — Flyielding A, = { + a; 4, = /2.

t ®~! denotes the inverse of the standard normal distribution (see Sec. 18.2.1).

Note: F denotes cdf F,{x).

Source: Adapted from Ref. 72, with corrections.

properties in large samples, and experience has shown that they generally do well
with records available in hydrology. However, often MLEs cannot be reduced to
simple formulas, so estimates must be calculated using numerical methods.8 MLEs
sometimes perform poorly when the distribution of the observations deviates in
significant ways from the distribution being fit.

A different philosophy is embodied in Bayesian inference, which combines prior
information and regional hydrologic information with the likelihood function for
available data. Advantages of the Bayesian approach are that it allows the explicit
modeling of uncertainty in parameters, and provides a theoretically consistent
framework for integrating systematic flow records with regional and other hydrologic
information.>88.127.150
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L-Moment Diagram

1.0
0.8 > n Normal
o T LN
n
. 06 a3 B
2 o Gumbel
m
Y %
————— GEV
0 g e e | s Pareto
0.0
-0.2 0.0 0.2 04 0.6 0.8 1.0

L-Skewness

FIGURE 18.1.F This L-moment diagram illustrates the relationship between the L-kurtosis 1, and

the L-skewness 7, for the normal, lognormal (LN), Pearson type 3 {P3), Gumbel, generalized extreme
value (GEV), and Pareto distributions.

‘ " TABLE 18.1.3 Example of Calculation of L Moments Using Ranked Annual Ma:umum
. 10-min Rainfall Depths for Chicago, 19401947

Year 1943 1941 1944 1945 1946 1947 1942 1940

Depth, in* 0.92 0.70 0.66 0.65 0.63 0.60 0.57

0.34
Rank 1 -2 3 4 5 6

7 8

Biased PWMs [Eq. (18.1.13)]
X=b%=0.6338; bt = 0.3434; b3=0.2355
_ Unbiased PWMs [Eq. (18.1.14)]

* * *
= b, = 0.6338; b, = 0.92 + (%)*(0.70) + (%)8{0 66)+ -+ - +0%0.34) —0.3607

» (20,)* “ e % .
by 0.92 + (%2)*(0.70) + (%42) (0.686) + F0%0.57) + 0%0.34) _ ) 5545

L moments using unbiased PWMs [Eq. (18.1.16)]

A, =b,=0.6338: 1, =2b, — by = 0.0877; 1, = 6b, — 6b, + b, = —0.0016
L-CV and L skewness (Table 18.1.1)

t,=0.138; 1,=—0.018
Product moments for comparison [Eq. (18.1.8)]
n=28,x=0.6338,5s=0.160; CV =0.252, G = —0.088

*|in=254 mm.
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Occasionally nonparametric methods are employed to estimate frequency rela-
tionships. These have the advantage that they do not assume that floods are drawn
from a particular family of distributions.>’” Modern nonparametric methods have
not yet seen much use in practice and have rarely been used officially. However,
curve-fitting procedures which employ plotting positions discussed in Sec. 18.3.2are
nonparametric procedures often used in hydrology.

Of concern are the bias, variability, and accuracy of parameter estimators

8[X,, . . . ,X,], where this notation emphasizes that an estimator 6 is a random
variable whose value depends on observed sample values (X,, . . . X,}. Studies of
estimators evaluate an estimator’s bias, defined as

Bias [8] = E[6] — © (18.L17,

and sample-to-sample variability, described by Var [6). One wants estimators to be
nearly unbiased so that on average they have nearly the correct value, and also to
have relatively little variability. One measure of accuracy which combines bias and
variability is the mean square error, defined as

MSE [6] = E[(8 — 8)?] = {Bias [8])2 + Var [0] (18.1.18)

An unbiased estimator (Bias [8] = 0) will have a mean square error equal 1o its
variance. For a given sample size n, estimators with the smallest possible mean square
errors are said to be efficient.

Bias and mean square error are statistically convenient criteria for evaluating
estimators of a distribution’s parameters or of quantiles. In particular situations.
hydrologists can also evaluate the expected probability and under- or overdesign, ot
use economic loss functions related to operation and design decisions.!!%124

18.2 PROBABILITY DISTRIBUTIONS FOR
EXTREME EVENTS

This section provides descriptions of several families of distributions commonly used
in hydrology. These include the normal/lognormal family, the Gumbel/Weibull/
generalized extreme value family, and the exponential/Pearson/log-Pearson type 3
family. Table 18.2.1 provides a summary of the pdf or cdf of these probability
distributions, and their means and variances. (See also Refs. 54 and 85.) The L
moments for several distributions are reported in Table 18.1.2. Many other distribu-
tions have also been successfully employed in hydrologic applications, including the
five-parameter Wakeby distribution, %7 the Boughton distribution,'* and the TCEV
distribution (corresponding to a mixture of two Gumbel distributions!''?).

18.2.1 Normal Family: N, LN, LN3

The normal (N), or Gaussian distribution is certainly the most popular distribution
in statistics. It is also the basis of the lognormal (LN) and three-parameter lognormal
(LN3) distributions which have seen many applications in hydrology. This section
describes the basic properties of the normal distribution first, followed by a discus-
sion of the LN and LN 3 distnibutions. Goodness-of-fit tests are discussed in Sec. 18.]
and standard errors of quantile estimators in Sec. 18.4.2.
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The Normal Distribution. The normal distribution is useful in hydrology for de-
scribing well-behaved phenomena such as average annual stream flow, or average
annual pollutant loadings. The central limit theorem demonstrates that if a random
variable X is the sum of n independent and identically distributed random variables
with finite variance, then with increasing n the distribution of X becomes normal
regardless of the distribution of the original random variables.

The pdf for a normal random variable X is

1 | fx— yx) 2]
—=\— 18.2.1
V2nok exp[ 2 ( Ox ( )

X is unbounded both above and below, with mean u, and variance ¢%. The normal.
distribution’s skew coefficient is zero because the distribution is symmetric. The
product-moment coefficient of kurtosis, E[(X — uy)*]/o*, equals 3. L moments are
* given in Table 18.1.2.

The two moments of the normal distribution, u, and ¢%, are its natural parame-
ters. They are generally estimated by the sample mean and variance in Eq. (18.1.8);
these are the maximum likelihood estimates if (n — 1) is replaced by # in the denomi-
nator of the sample variance. The cdf of the normal distribution is not available in
closed form. Selected points z, for the standard normal distribution with zero mean
- and unit variance are given in Table 18.2.2; because the normal distribution is

symmeltric, z, = —z,_,
An approx1mat10n generally adequate for simple tasks and plotting, for the stan-
dard normal cdf, denoted ®(z), is

Jx) =

(83z+ 351)z+ 562] (18.22)

®(z)=1-05exp [_ 703/z + 165

for0 < z < 5. An approximation for the inverse of the standard normal cdf, denoted
o~ '(p)is

pOlJS _(1 — )0!35

-1(p) =
(p)=2z, 0.1975 (18.2.3a)
or the more accurate expression valid for 10~7 < p <0.5
Y [(4y + 100)y + 205]
-1 P —_
(=17, [2y + 56)y + 192]y + 131 (18.2.35)

where y = —1n (2p). [Eqs. (18.2.2) and (18.2.3b) are from Ref. 35.]

. . Lognormal Distribution. Many hydrologic processes are positively skewed and are
:not normally distributed. However, in many cases for strictly positive random vari-
. ables X > 0, their logarithm

= In (X) (18.2.4)

- is well-described by a normal distribution. This is particularly true if the hydrologic
variable results from some multiplicative process, such as dilution. Inverting Eq.
(18.2.4) yields

X =exp(Y)




TABLE 18.2.1 Commonly Used Frequency Distributions in Hydrology (see aiso Table 18.1.2)

Distribution pdf and/or cdf Range Moments
-t _lx_—_ﬂz)’] cm<x< dobirm0
Normal Sdx) %exp[ 2( o oLx<® Uxand 0% yy
ot _1 [l = py)’ - ( 9_’1)
Lognormal®* Jdx) x%exp[ 2( oy )] x>0 uy=expluy+ 3
ok = uilexp (0}) — 1]
7, =3CV,+CV?
Pearson type 3 S =180 — e SR L) a>0 e
I'(c) is the gamma function forf>0:x>¢ and y, = 72__-—
«
(forf>0and {=0:y,=2CV,) forp<0:x<¢ andy,=:—%
Va
log-Pearson type 3 100 =1BK Blin (x) — &)=t 2B (_i[ll.‘(’a()x’ ) See Eq. (18.2.34)
for < 0,0 <x<exp ({);for>0,exp ({)<x <
Exponential Sx) = B exp [— Blx — &)] x>Efor f>0 =&+ -}5; o= %

F{x)=1—exp (—Bp(x— )}

Yx=2

Gumbel

GEV

Weibull

Generalized Pareto

Fy(x)=exp {— [1 - L(x—_{)]”"}

a

—o < x < ®

(o2 exists for £ > —0.5)

whenx>0,x<(f+%);x<o,x>(f+%)

o))" o[- 2]

Fy(x) =1 — exp [—(x/a)]

_ 1 (x — é) l/lf—l

Jex) (a) [1 Ta ]
o= =0

Fyx)=1 [l K = ]

x>0, k>0

forx<0,{sx<w

foric>0,¢sxs€+%

(yxexists for x> —0.33)

=&+ 0.5772c

22
a}{=£6&=== 1.645a2; 7, = 1.1396

ux=¢+(%)[1—ru +x)]

oy = (%)2(1"(1 +2K) — [T +'0)P)

,ux=al"(l +%)

a}=a2{r(l+%)—[r(l+%)]z}
_ a

#X—é+_(l+x)

ok =a¥/{(1 + k(1 + 2x)]

L2 =kl + 2x)1/2

Yx (1 + 3x)

* Here Y = In (X). Text gives formulas for three-parameter lognormal distribution, and for two- and three-parameter lognormal with common base 10 logarithms.
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TABLE 18.2.2 Quantiles of the Standard Normal Distribution

p 05 0.6 0.75 0.8 0.9 0.95 0975 0.99 0.998  0.999
z, 0000 0253 0675 0.842 1.282 1.645 1960 2326 2.878 3.09

4

If X has a lognormal distribution, the cdf for X is

Y"’ﬂysln(x)‘“#y
Oy Oy

Fi)=P(X=x)=PY <In ()] = p[

- Q[lﬂ%—"—"—”] (18.2.5)

Y

where @ is the cdf of the standard normal distribution. The lognormal pdf for X in
Table 18.2.1 is illustrated in Fig. 18.2.1. fy(x) is tangent to the horizontal axis at
x = 0. As a function of the coefficient of variation CV, the skew coefficient is

As the coeflicients of vaniation and skewness go to zero, the lognormal distribution
approaches a normal distribution.

Table 18.2.1 provides formulas for the first three moments of a lognormally
distributed variable X in terms of the first two moments of the normally distributed
variable Y. The relationships for uy and g% can be inverted to obtain

02 1/2
Oy = [ln (1 +—;‘)] and  py=In(u,) —403 (18.2.6)

Hx

These two equations allow calculation of the method of moments estimators of yiy
and o,, which are the natural parameters of the lognormal distribution.
Alternatively, the logarithms of the sample (x;) are a sample of 1”s: [y; = In (x))].

15 ¢

)

FIGURE 18.2.1 The probability density function of the lognormal distribu-
tion with coefficients of variation CV = (.36, 0.8, and 3, which have coeffi-
cients of skewness yy = 1.13, 2.9, and 33 (corresponding 1o u, = 0 and oy =
0.35,0.7, and 1.5 for base elogarithms, or s, = O and ¢y, = 0.15,0.30, and 0.65
for common base 10 logarithms.)
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The sample mean and variance of the observed (y;), obtained by using Eq. (18.1.8),
are the maximum-likelihood estimators of the lognormal distribution’s parameters if
(n = 1) is replaced by n in the denominator of s3. The moments of the y,’s are both
easier to compute and generally more efficient than the moment estimators in Eq.
(18.2.6), provided the sample does not include unusually small values;!?$ see discus-
sion of logarithmic transformations in Sec. 18.1.3.

Hydrologists often use common base 10 logarithms instead of natural logarithms.
Let W be the common logarithm of X, log (X). Then Eq. (18.2.5) becomes

FX()C)=,D[W~;1WS log (x)-—uw] —o [log (x)—uw]
Ow Ow Ow

The moments of X in terms of those of W are
[y = 10#n+00002  and gk = p2 (10W10% — |) (18.2.7)
where In(10) = 2.303. These expressions may be inve;ted to obtain:

+ 2 1112 1/2 .
UW:[log (lln(lc(r);){/ux)] and g = log (i) — 4 In (10) 03 (18.2.8)

Three-Parameter Lognormal Distribution. In many cases the logarithms of a ran-
dom variable X are not quite normally distributed, but subtracting a lower bound
parameter £ before taking logarithms may resolve the problem. Thus

Y=In(X—-9 (18.2.9a)
is modeled as having a normal distribution, so that
X=¢+exp(Y) (18.2.95)

For any probability level p, the quantile x, is given by
x, = ¢+ exp (uy + Oy Z,) (18.2.9¢)

In this case the first two moments of X are

pe=ctexp(uy+io}) and ok = [exp Quy+ o})] [exp(o}) — 1]

(18.2.10a)
with skewness coefficient

Yx=3¢ + @3

where ¢ = [exp(g}) — 1]°5. If common base 10 logarithms are employed so that
W=log (X — &), the value of ¢ and the formula for y, are unaffected, but Eq.
(18.2.10a) becomes

Uy=CE+ 10w+ 0000h2 and gl =(u,— EPP?  (18.2.10b)

with ¢ = (loln(myfw/z — 1)0s,
Method-of-moment estimators for the three-parameters lognormal distribution

are relatively inefficient. A simple and efficient estimator of ¢ is the quantile-lower-
bound estimator:

E = X Xm T X median

18.2.11
.X(l) + X(n) - zxmedm ( )
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TABLE 18.2.2 Quantiles of the Standard Normal Distribution

p 05 0.6 0.75 0.8 0.9 0.95 0975 099 0.998  0.999
z, 0.000 0253 0675 0.842 1.282 1.645 1960 2326 2.878 3.090

If X has a lognormal distribution, the cdf for X is
Y—py_In (X)—uy]

Oy Oy

Fx)=PX=x)=P[Y=h(x)]= P[

= q:[m] (18.2.5)
Oy

where @ is the cdf of the standard normal distribution. The lognormal pdf for X in
Table 18.2.1 is illustrated in Fig. 18.2.1. f,(x) is tangent to the horizontal axis at
x =0. As a function of the coefficient of variation CV , the skew coefficient is

As the coefficients of variation and skewness go to zero, the lognormal distribution
approaches a normal distribution.

Table 18.2.1 provides formulas for the first three moments of a lognormally
distributed vaniable X in terms of the first two moments of the normally distributed
variable Y. The relationships for 4, and 0% can be inverted to obtain

0»2 172
ay=[ln (l +—’25)] and  py=In(uy) —40% (18.2.6)

135

These two equations allow calculation of the method of moments estimators of g,

and oy, which are the natural parameters of the lognormal distribution.
Alternatively, the logarithms of the sample (x;) are a sample of ¥’s: [y; = In (x,)].

15 ¢

f(x)

FIGURE 18.2.1 The probability density function of the lognormal distribu-
tion with coeficients of variation CV = (.36, 0.8, and 3, which have coeffi-
cients of skewness yy = 1.13, 2.9, and 33 (corresponding to uy =0 and g, =
0.35,0.7, and 1.5 for base elogarithms, or g = 0 and oy, = 0.15,0.30, and 0.65
for common base 10 logarithms.)
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‘he sample mean and variance of the observed (y;), obtained by using Eq. (18.1.8),
re the maximum-likelihood estimators of the lognormal distribution’s parameters if
1— 1) is replaced by n in the denominator of s3. The moments of the y;’s are both
asier to compute and generally more efficient than the moment estimators in Eq.
18.2.6), provided the sample does not include unusually small values;'2¢ see discus-
on of logarithmic transformations in Sec. 18.1.3.

Hydrologists often use common base 10 logarithms instead of natural logarithms.
et Wbe the common logarithm of X, log (X). Then Eq. (18.2.5) becomes

Fx) =P [W—ﬂw _log(® —uw] —o [log (x) —,1,,,]

Ow Ow Ow

he moments of X in terms of those of W are
fy = 10sw+0000%2  and g =y (100 — 1) (18.2.7)
here In(10) = 2.303. These expressions may be inverted to obtain:

+ gi/ul) | V2
W=[1og(11n(1%,)(/ux)] and  p, =log (iuy) — 1n (10) 03, (18.2.8)

tree-Parameter Lognormal Distribution. In many cases the logarithms of a ran-
m variable X are not quite normally distributed, but subtracting a lower bound
wrameter ¢ before taking logarithms may resolve the problem. Thus

Y=In(X—¢ (18.2.9q)
modeled as having a normal distribution, so that
X={¢+exp(Y) (18.2.95)

r any probability level p, the quantile x, is given by
x, = ¢+ exp(uy + oy 2) (18.2.9¢)

this case the first two moments of X are

={texp(uy+ioy) and  of=I[exp (2uy+ o})] [exp(o}) — 1]
(18.2.10q)
th skewness coefficient
=3¢+ ¢?

iere ¢ = [exp(o%) — 11°5, If common base 10 logarithms are employed so that

=log (X — £), the value of £ and the formula for y, are unaffected, but Eq.
1.2.10a) becomes

Py = é + 1(}“»’*‘1!1(10)61»'/2 and 0’3‘, = (/[x — é)zd)z (182.10b)

h d’ —_ (lOIn(lO)on/Z — 1)03,
Method-of-moment estimators for the three-parameters lognormal distribution

relatively inefficient. A simple and efficient estimator of & is the quantile-lower-
ind estimator:

— 2
t= X()X(n) ~ Xmedian

18.2.11
Xy F Ximy = 2Xnedinn ( )
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when Xy + X(u) — 2Xneqian > 0, Where X,y and x,,, are, respectively, the largest and
smallest observed values; X, 4iaq 1 the sample medium equal to x4 ,, for odd sample
sizes n = 2k + 1, and H(xyy + X41y) for even n = 2k. [When X, + X,y — 2Xpegn <
0, the formula provides an upper bound so that In(¢ — x) would be normally distrib-
uted.] Given ¢, one can estimate 41, and 0% by using the sample mean and variance
of y;=1In (x; — &), or w; =log (x; — £). The quantile-lower-bound estimator’s per-
formance with the resultant sample estimators of 1 and o% is better than method-of-
moments estimators and competitive with maximum likelihood estimators.5"%

For the two-parameter and three-parameter lognormal distribution, the second L
moment is

B a} oy _ ai) (ay 1
2, exp(uyfz)erf(z) 2exp(u,,+2 )] G 3 (18.2.12)

The following polynomial approximates, within 0.0005 for|5]<0.9, the relationship
between the third and fourth L-moment ratios, and is thus useful for comparing
sample values of those ratios with the theoretical values for two- or three-parameter
lognormal distributions:”3

7,=0.12282 + 0.77518 73 + 0.12279 74— 0.13638 7§ + 0.11368 7§ (18.2.13)

18.2.2 GEV Family: Gumbel, GEV, Weibull

Many random variables in hydrology correspond to the maximum of several similar
processes, such as the maximum rainfall or flood discharge in a year, or the lowest
stream flow. The physical origin of such random varables suggests that their distri-
bution 1s likely to be one of several extreme value (EV) distributions described by
Gumbel.®' The cdf of the largest of n independent variates with common cdf F(x)is
simply F(x)". (See Sec. 18.6.2.) For large n and many choices for F(x), F(x)" con-
verges to one of three extreme value distributions, called types I, I1, and III. Unfortu-
nately, for many hydrologic variables this convergence is too slow for this argument
alone to justify adoption of an extreme value distribution as a model of annual
maxima and minima.

This section first considers the EV type I distribution, called the Gumbel distribu- :
tion. The generalized extreme value distribution (GEV) is then introduced. It spans -
the three types of extreme value distributions for maxima popularized by Gum-
bel.588 Finally, the Weibull distribution is developed, which is the extreme value type
III distribution for minima bounded below by zero. Goodness-of-fit tests are dis-
cussed in Sec. 18.3 and standard errors of quantile estimators in Sec. 18.4.4.

The Gumbel Distribution. Let M,, . . . , M, be a set of daily rainfall, stream flow,
or pollutant concentrations, and let the random variable X = max (M) be the maxi-
mum for the year. If the M, are independent and identically distributed random
variables unbounded above, with an “exponential-like” upper tail (examples include
the normal, Pearson type 3, and lognormal distributions), then for large # the vanate
X has an extreme value type I distribution, or Gumbel distribution.3! For example,
the annual-maximum 24-h rainfall depths are often described by a Gumbel distribu-
tion, as are annual maximum stream flows.

The Gumbel distribution has the cdf, mean, and variance given in Table 18.2.
and corresponding L moments are given in Table 18.1.3. The cdfis easily inverted to :
obtain '

x,=¢—aln [~In(p)] A (18.2.14) -
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The estimator of « obtained by using the second sample L moment is
Q= s =.1443,‘1 (18.2.15)
n(2) ? o

If the sample variance s? from Eq. (18.1.8) were employed instead, one obtains

s Y6
b/

a= =(0.7797 s (18.2.16)

. The corresponding estimator of £ in either case 1s

E=x—-05712& (18.2.17)

" L-moment estimators for the Gumbel distribution are generally as good or better

than method-of-moment estimators when the observations are actually drawn from
a Gumbel distribution, though maximum likelihood estimators are the best in that
case.® However, L-moment estimators have been shown to be robust, providing
more accurate quantile estimators than product-moment and maximume-likelihood
estimators when observations are drawn from a range of reasonable distributions for
food flows.*

The Gumbel distribution’s density function is very similar to that of the lognor-
mal distribution with y = 1.13 in Fig. 18.2.1. Changing £ and & moves the center of
the Gumbel pdf, and changes its width, but does not change the shape of the distribu-
tion. The Gumbel distribution has a fixed coefficient of skewness y = 1.1396. For
large x, the Gumbel distribution is asymptotically equivalent to the exponential
distribution with cdf (1 — exp [—(x — &)/a]).

The Generalized Extreme Value Distribution. This is a general mathematical form
which incorporates Gumbel's type I, II, and lil extreme value distributions for max-
ima.%8 The GEV distribution’s cdf can be written

@

F(x) = exp {-ﬂ[l —M]w} fork #0 (18.2.18)

| The Gumbe) distribution is obtained when k = 0. For |k| < 0.3, the general shape of

the GEV distribution is similar to the Gumbel distribution, though the right-hand
tail is thicker for k¥ < 0 and thinner for x > 0.

Here £ is a location parameter, « is a scale parameter, and k is the important shape
parameter. For x > 0 the distribution has a finite upper bound at ¢ + «/x and corre-
sponds to the EV type 111 distribution for maxima that are bounded above; for k <0,
the distribution has a thicker right-hand tail and corresponds to the EV type Il
distribution for maxima from thick-tailed distributions like the generalized Pareto
distribution in Table 18.2.1 with k <O0.

The moments of the GEV distribution can be expressed in terms of the gamma
function, I'(s). For x> —', the: mean and variance are given in Table 18.2.1,
whereas

—T(1 4 3K) + 301 + ) T(1 4 2x) — 2T°%(1 + &)
[(F(1+ 26) — TX(1 + )7

yx = Sign (x) (18.2.19)

- where Sign (k) is plus or minus | depending on the sign of k, and I'( ) is the gamma

function for which an approximation is supplied in Ea. (18.2.21). For k¥ > — 1 tha
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order r PWM g, of a GEV distribution is

bt 1)_1{“%[ 1;1:1;()]} (182.20)

L moments for the GEV distribution are given in Table 18.1.2.
For 0 = J = 1, a good approximation of the gamma function, useful with Egs.
(18.2.19) and (18.2.20) is

5
I(l+d=1+ 73 ad+e (18.2.21)
i=

where a, = —0.574 8646

a, =0.951 2363

a,; =—0.699 8588

a, = 0.424 5549

as=-—0.101 0678

with |e| = 5 X 1073 [Eq. (6.1.35) in Ref. 1]. For larger arguments one can use the
relationship I'(1 + w)=wI(w) repeatedly until 0 <w< 1 for integer w,
I'(1 + w) = w! is the factorial function.

The parameters of the GEV distribution in terms of L moments are$®

K =7.8590c + 2.9554¢* . (18.2.22q)

KA,
F(l +K) (1 —27%)

4 a[Plir=)-1d
§= l,x K[%] (18.2.22¢)

(18.2.22b)

where

_ 2%, @ _28-84 Q)
L+31, In(3) 38,-f In(3)

The quantiles of the GEV distribution can be calculated from

X, =&+ % {1 =[=In (P (18.2.23)

where p is the cumulative probability of interest. Typically |x| = 0.20.

When data are drawn from a Gumbel distribution (x = 0), using the biased esti-
mator b¥ in Eq. (18.1.13) to calculate the L-moment estimators in Eq. (18.2.22), the "
resultant estimator of k has a mean of 0 and vaniance®®

Var (k) = 9——5:£ : (18.2.24)

Comparison of the statistic Z = kvn/0.5633 with standard normal quantiles allows
construction of a powerful test of whether k¥ = 0 or not when fitting a GEV distribu-
tion.%%72 Chowdhury et al.2? provide formulas for the sampling variance of the sam-
ple L-moment skewness and kurtosis 7; and 7, as a function of k for the GEV



FREQUENCY ANALYSIS OF EXTREME EVENTS 18.19

distribution so that one can test if a particular data set is consistent with a GEV
distribution with a regional value of «.

Weibull Distribution. 1f W, are the minimum stream flows in different days of the
year, then the annual minimum is the smallest of the W;, each of which is bounded
below by zero. In this case the random variable X = min (W,) may be well-described
by the EV type III distribution for minima, or the Weibull distribution. Table 18.2.1
includes the Weibull cdf, mean, and variance. The skewness coefficient is the nega-
tive of that in Eq. (18.2.19) with k = 1/k. The second L. moment is

A= a(l —2-'k) I‘(l + %) (18.2.25)

Equation (18.2.21) provides an approximation for I'(1 + J).
i+ Fork < 1the Weibull pdf goes to infinity as x approaches zero, and decays slowly
 forlarge x. For k = 1 the Weibull distribution reduces to the exponential distribution
" in Fig. 18.2.2 corresponding to y =2 and ap; =1 in that figure. For k> 1, the
Weibull density function is like a Pearson type 3 distribution’s density function in
Fig. 18.2.2 for small x and ap; = k, but decays to zero faster for large x. Parameter
estimation methods are discussed in Refs. 57 and 85.

There are important relationships between the Weibull, Gumbel, and GEV distri-
butions. If X has a Weibull distribution, then ¥ = —In [X] has a Gumbel distribu-
lion. This allows parameter estimation procedures [Egs. (18.2.15) to (18.2.17)] and
goodness-of-fit tests available for the Gumbel distribution to be used for the Weibull;
thus if +1n (X) has mean 4, 4.y, and L-moment 4, x,, X has Weibull parameters

_In() 0.5772)

k and a=ex (,1 +——
2'2;(111/\') P\ Ao A

(18.2.26)

Section 18.1.3 discusses use of logarithmic transformations.

I Y has a'EV type lI1 distnbution (GEV distribution with k¥ > 0) for maxima
bounded above, then (£ + a/k) — Y has a Weibull distribution with k = 1/x; thus for
k> 0, the third and fourth L-moment ratios for the Weibull distribution equal — 1,
and 1, forthe GEV distribution in Table 18.1.2. A three-parameter Weibull distribu-
¢ tion can be fit by the method of L moments by using Eq. (18.2.22) applied to — X.

18.2.3 Pearson Type 3 Family: Pearson Type 3 and Log-Pearson
Type 3

Another family of distributions used in hydrology is that based on the Pearson type 3
(P3) distribution.'? It is one of several families of distributions the statistician Pear-
son proposed as convenient models of random variables. Goodness-of-fit tests are
discussed in Sec. 18.3, and standard errors of quantile estimators, in Sec. 18.4.3,

The pdf of the P3 distribution is given in Table 18.2.1. For # > 0 and lower bound
{ =0, the P3 distribution reduces to the gamma distribution for which yx = 2CV .
In some instances, the P3 distribution is used with 8 < 0, yielding a negatively skewed
distribution with an upper bound of .

Figure 18.2.2 illustrates the shape of the P3 pdf for various values of the skew
coefficient y. For a fixed mean and variance, in the limit as the shape parameter o
goes to infinity and the skew coefficient y goes to zero, the Pearson type 3 distribution
converges to the normal distribution. For a < 1 and skew coefficient y > 2, the P3
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pdf goes to infinity at the lower bound. For &« = 1 and y = 2, the two-parameter
exponential distribution is obtained; see Table 18.2.1.

The moments of the P3 distribution are given in Table 18.2.1. The moment
equations can be inverted to obtain

a =4/

Ox Vx " (18.2.27)

which allows computation of method-of-moment estimators. The method of maxi-
mum likelihood is seldom used with this distribution; it does not generate estimates
of « less than 1, corresponding to skew coefficients in excess of 2.

A closed-form expression for the cdf of the P3 distribution is not available. Tables
or approximations must be used. Many tables provide frequency factors K,(y) which
are the pth quantile of a standard P3 variate with skew coefficient y, mean zero, and
variance 1.267? For any mean and standard deviation, the pth P3 quantile can be
written

x,=u+ok, (18.2.28)

With this parameterization, it is not necessary to estimate the underlying values of
« and f when the method of moments is used because the quantiles of the fitted
distribution are written as a function of the mean, standard deviation, and the
frequency factor. Tables of frequency factors are provided in Ref. 79. The frequency
factors for 0.01 < p = 0.99 and|y| < 2 are well-approximated by the Wilson-Hilferty

3.00

1
2.50 -
2.00

f(x) 1.50

5
t

1.00 -

050 1

0.00

FIGURE 18.2.2 The probability density function for the Pearson type 3 (P3) distribution with lowa
bound & = 0, mean x = 1, and coefficients of skewness y = 0.7, 1.4, 2.0, and 2.8 (corresponding to s
gamma distribution and shape parameters a = 8, 2, 1, and 0.5, respectively).



FREQUENCY ANALYSIS OF EXTREME EVENTS 18.21

transformation
2 yz, y? )3 2
—_— p ———
K,(7) y(l + ; 36 » (18.2.29)

where z, is the pth quantile of the zero-mean unit-variance standard normal distribu-
tionin Eq. (18.2.3). (Reference 83 provides a better approximation; Ref. 21 evaluates
several approximations.)

For the P3 distribution, the first two L moments are

a _ Na + 0.5)
B Va f ()

An approximation which describes the relationship between the third and fourth
L-moment ratios, accurate to within 0.0005 for |1,] < 0.9, is7

7,=0.1224 + 0.30115 13+ 0.95812 7§ — 0.57488 7§ + 0.19383 7§ (18.2.31)

Ao=&+ and 4, (18.2.30)

Log-Pearson Type 3 Distribution. The log-Pearson type 3 distribution (LP3) de-
scribes a random variable whose logarithms are P3-distributed. Thus

Q0 = exp [X] (18.2.32)

where X has a P3 distribution with shape, scale, and location parameters a, §, and &,
* Thus the distribution of the logarithms X of the data is described by Fig. 18.2.2, Eqs.
(18.2.27) to (18.2.29), and the corresponding relationships in Table 18.2.1.

The product moments of Q are computed for > r or § < 0 by using

E[Q7] = e (ﬂf r)" (18.2.33)

O [ My [

_EIQ] -3 EIQ*]1 + 245
9

Yo

- The parameter ¢ is a lower bound on the logarithms of the random variable if f is
&' positive, and is an upper bound if f is negative. The shape of the real-space flood
distribution is a complex function of & and B.!'-'3 If one considers W equal to the
common logarithm of Q, log (Q), then all the parameters play the same roles, but the
new " and &’ are smaller by a factor of 1/ln (10) = 0.4343.

This distribution was recommended for the description of floods in the United
States by the U.S. Water Resources Council in Bulletin 177 and in Australia by their
Institute of Engineers;!'? Sec. 18.7.2 describes the Bulletin 17 method. It fits a P3
distribution by a modified method of moments to the logarithms of observed flood
series using Eq. (18.2.28). Section 18.1.3 discusses pros and cons of logarithmic

e 'ransformations. Estimation procedures for the LP3 distribution are reviewed in
®. Rel. 5.
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18.2.4 Generalized Pareto Distribution 5

The generalized Pareto distribution (GPD) is a simple distribution useful for describ-
ing events which exceed a specified lower bound, such as all floods above a threshold
or daily flows above zero. Moments of the GPD are described in Tables 18.1.2 and
18.2.1. A special case is the 2-parameter exponential distribution (for k = 0).

For a given lower bound ¢, the shape k and scale & parameters can be estimated
easily with L-moments from

'11 "f
A

K= —2 and a=@U—E(1 +kK) (18.2.35)

or the mean and variance formula in Table 18.2.1. In general for x < 0, L-moment
estimators are preferable. Hosking and Wallis? review alternative estimation proce-
dures and their precision. Section 18.6.3 develops a relationship between the Pareto
and GEV distributions. If £ must be estimated, the smaller observation is a good
estimator.

18.3 PROBABILITY PLOTS AND i
GOODNESS-OF-FIT TESTS

18.3.1 'Principles and Issues in Selecting a Distribution #

Probability plots are extremely useful for visually revealing the character ofadataset,
Plots are an effective way to see what the data look like and to determine if fited
distributions appear consistent with the data. Analytical goodness-to-fit criteria are
useful for gaining an appreciation for whether the lack of fit is likely to be due to
sample-to-sample variability, or whether a particular departure of the data from &
model is statistically significant. In most cases several distributions will provide
statistically acceptable fits to the available data so that goodness-of-fit tests are unable
to identify the “true” or “best” distribution to use. Such tests are valuable when they
can demonstrate that some distributions appear inconsistent with the data.
Several fundamental issues arise when selecting a distribution.®? One should dis-

tinguish between the following questions:

1. What is the true distribution from which the observations are drawn?

2. What distribution should be used to obtain reasonably accurate and robust csth
mates of design quantiles and hydrologic risk?

3. Is a proposed distribution consistent with the available data for a site?

Question | is often asked. Unfortunately, the true distribution is probably loo.z
complex to be of practical use. Still, L-moment skewness-kurtosis and CV-skewness &
diagrams discussed in Secs. 18.1.4 and 18.3.3 are good for investigating what simple
families of distributions are consistent with available data sets for a region. Standand ;
goodness-of-fit statistics, such as probability plot correlation tests in Sec. 18.3.2, hm :
also been used to see how well a member of each family of distributions can fita ;
sample. Unfortunately, such goodness-of-fit statistics are unlikely to identify the ;
actual family from which the samples are drawn —rather, the most flexible famllla
generally fit the data best. Regional L-moment diagrams [ocus on the character of i %
sample statistics which describe the “parent” distribution for available samplcg 5
rather than goodness-of-fit. Goodness-of-fit tests address Question 3. «4

2
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Question 2 is important in hydrologic applications and has been the subject of
many studies (Ref. 29; examples include Refs. 32, 87, 90, 112, 124). At one time the
v+ distribution that best fitted each data set was used for frequency analysis at that site,
~ but this approach has now been largely abandoned. Such a procedure is too sensitive
to sampling variations in the data. Operational procedures adopted by different
national flood-frequency studies for use in their respective countries should be based
; on a combination of regionalization of some parameters and split-sample/Monte
.. Carlo evaluations of different estimation procedures to find distribution-estimation

: procedure combinations which yield reliable flood quantile and risk estimates. Such
! estimators are called robust because they perform reasonably well for a wide range of
- cases. In the United States, the log-Pearson type 3 distribution with weighted skew
- coefficient was adopted; an index-flood GEV procedure was selected for the British

#t. Isles (see Secs. 18.7.2 and 18.7.3). This principle also applies to frequency analyses of
other phenomena.

8.3.2 Plotting Positions and Probability Plots

The graphical evaluation of the adequacy of a fitted distribution is generally per-
ormed by plotting the observations so that they would fall approximately on a
- straight line if a postulated distribution were the true distribution from which the
" observations were drawn. This can be done with the use of special commercially
.. available probability papers for some distributions, or with the more general tech-
nique presented here, on which such special papers are based.* Section 17.2.2 also
discusses the graphical display of data.

Let {X;} denote the observed values and X;;, the ith largest value in a sample, so
that X,y = Xy = . . . =Xyy. The random variable U, defined as

Ui= l _F"'[X(,)] (18.3.1)

corresponds to the exceedance probability associated with the ith largest observation.
If the original observations were independent, in repeated sampling the U, have a
beta distribution with mean

i

" E[U] = —— (18.3.2)
'._lnd variance
_in—i+ 1)
. Var (U) = o i 1 3 (18.3.3)

. Knowing the distribution of the exceedance probabilities U;, one can develop esti-
mators g; of their values which can be used to plot each X, against a probability scale.
Let G(x) be a proposed cdf for the events. A visual comparison of the data and a
Btted distribution is provided by a plot of the ith largest observed event X, versus an
estimate of what its true value should be. If G(x) is the distribution of X, the value of
X = G~'(1 — U;)should be nearly G™'(1 — g,), where the probability-plotting posi-
tion g; is our estimate of U,. Thus the points [G™'(1 — ¢;), X{;] when plotted would,
spart from sampling fluctuation, lie on a straight line through the origin. Such a plot
would look like Fig. 18.3.1, which actually displays [®™'(1 — g;),log X;,]. The exceed-

i__
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FIGURE 18.3.1 A probability plot using a normal scale of 44 annual maxima for the Guada-
lupe River near Victoria, Texas. (Reproduced with permission from Ref. 20, p. 398.)

ance probability of the ith-largest event is often estimated using the Weibull plotting
position:

g = (18.34)

n+1

corresponding to the mean of U,.

Choice of plotting position. Hazen>® oniginally developed probability paper and
imagined the probability scale divided into n equal intervals with midpoints g,=
(i—0.5)/n,i=1, ..., n;theseserved as his plotting positions. Gumbel’' rejected
this formula in part because it assigned a return period of 2n years to the largest
observation (see also Harter3®); Gumbel promoted Eq. (18.3.4).

Cunnane?® argued that plotting positions g; should be assigned so that on average
X would equal G~'(1 — g;); that is, g; would capture the mean of X, so that

E[X;] = G1—gp) (18.35)

Such plotting positions would be almost quantile-unbiased. The Weibull plotting
positions i/(n + 1) equal the average exceedance probability of the ranked observa-
tions X;y, and hence are probability-unbiased plotting positions. The two criteriaare
different because of the nonlinear relationship between X;, and U,.

Different plotting positions attempt to achieve almost quantile-unbiasedness for
different distributions; many can be written

i—a

Tt i-2a (1838,

di

which is symmetric so that g;= 1 — g, ,-;. Cunanne recommended a = 0.40 for :
obtaining nearly quantile-unbiased plotting positions {or a range of distributions
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Other alternatives are Blom’s plotting position (a = 3), which gives nearly unbiased
quantiles for the normal distribution, and the Grningorten position (a = 0.44) which
yields optimized plotting positions for the largest observations from a Gumbel distri-
bution.* Theseare summarized in Table 18.3.1, which also reports the return period,
T, = 1/q,, assigned to the largest observation. Section 18.6.3 develops plotting posi-
tions for records that contain censored values.

The differences between the Hazen formula, Cunanne’s recommendation, and
the Weibull formula is modest for i of 3 or more. However, differences can be
appreciable for i = 1, corresponding to the largest observation (and i = n for the
smallest observation). Remember that the actual exceedance probability associated
with the largest observation is a random variable with mean 1/(n + 1)and a standard
deviation of nearly 1/(n + 1); see Eqs. (18.3.2) and (18.3.3). Thus all plotting posi-
tions give crude estimates of the unknown exceedance probabilities associated with
the largest (and smallest) events.

A good method for illustrating this uncertainty is to consider quantiles of the beta
distribution of the actual exceedance probability associated with the largest observa-
tion X;,. The actual exceedance probability for the largest observation X, in a
sample 1s between 0.29/n and 1.38/(n + 2) nearly 50 percent of the time; and be-
tween 0.052/n and 3/(n + 2) nearly 90 percent of the time. Such bounds allow one to
assess the consistency of the largest (or, by symmetry, the smaillest) observation with a
ftted distribution better than does a single plotting position.

Probability Paper. It is now possible to see how probability papers can be con-

structed for many distributions. A probability plot is a graph of the ranked observa-
tions x,;, versus an approximation of their expected value G~'(1 — ¢;). For the nor-

© TABLE 18.3.1 Alternative Plotting Positions and their Motivation*

Name Formula a T, Motivation
Weibull -_:_—l 0 n+1 Unbiased exceedance probabilities
n for all distributions
. i—0.3175 . ey
Mediant 70365 0.3175 147n+0.5  Median exceedance probabilities
n+o. for all distributions
i—0.35 .
APL p ~0.35 [.54n Used with PWMs [Eq. (18.1.13)]
Blom Lint/L} 0.375  1.60n+04  Unbiased normal i
nt1/a . .60n . nbiased normal quantiles
| — 0.40 . . .
Cunnane ln T2 0.40 1.67n+0.3  Approximately quantile-unbiased
. | — 0.44 .. . .
Gringorten i—m 044  1.79n+02  Optimized for Gumbel distribution
i—0.5 - .
Hazen p 0.50 2n A traditional choice

A * Here a is the plotting-position parameter in Eq. (18.3.6) and T, is the return period each plotting
position assigns to the largest observation in a sample of size n.
YFori= | and n, the exact valueisg, =1 —g,=1—0.5'",




18.26 ’ CHAPTER EIGHTEEN

mal distribution
G'(l—g)=pu+ao® (1l —gq) (18.3.7

Thus, except for intercept and slope, a plot of the observations x;, versus G~'[1 — g
is visually identical to a plot of x;;, versus ®~!(1 — g;). The values of g; are cfter
printed along the abscissa or horizontal axis. Lognormal paper is obtained by using:
log scale to plot the ordered logarithms log (x;,) versus a normal-probability scale
which is equivalent to plotting log (x,) verus @~ '(1 — ¢;). Figure 18.3.1 illustrate:
use of lognormal paper with Blom’s pfotting positions.

For the Gumbel distribution,

G '(I —¢g)=<¢{—aln[~In(l —g)] (18.3.8

Thus a plot of x;;, versus G~'(1 — g;) is identical to a plot of x;;, versus the reducec
Gumbel variate '

yi=—In[~In (1 —g;)] (18.3.9)

It is easy to construct probability paper for the Gumbel distribution by plotting x, as
a function of y;; the horizontal axis can show the actual values of y or, equivalently,
the associated ¢;, as in Fig. 18.3.1 for the lognormal distribution.

Special probability papers are not available for the Pearson type 3 or log Pearson
type 3 distributions because the frequency factors depend on the skew coefficient.
However, for a given value for the coefficient of skewness y one can plot the observa-
tion x;, for a P3 distribution, or log (x;,) for the LP3 distribution, versus the fre-
quency factors K, (y) defined in Eq. (18.2.29) with p; = 1 — g;. This should yield a
straight line except for sampling error if the correct skew coefficient is employed.
Alternatively for the P3 or LP3 distributions, normal or lognormal probability paper
is often used to compare the x;; and a fitted P3 distribution, which plots as a curved

TABLE 18.3.2 Generation of Probability Plots for Different Distributions

Normal probability paper. Plot x;, versus z, given in Eq. (18.2.3), where p, = | — g;. Blom's
formula (a = 3/8) provides quantile-unbiased plotting positions.

Lognormal probability paper. Plot ordered logarithms log [x,] versus z,. Blom’s formula
(a = 3/8) provides quantile-unbiased plotting positions.

Exponential probability paper. Plot ordered observations x;, versus ¢ —In (g;)/f or just
—In (g;). Gringorten’s plotting positions (@ = 0.44) work well.

Gumbel and Weibull probability paper. For Gumbel distribution plot ordered observations
Xy versus {—a In [—In (1 —g;)] or just y;=—In [—In (1 —g,)]. Gringorten’s plotting
positions (a = 0.44) were developed for this distribution. For Weibull distribution plot In
[x@] versus In (o) + In [—1n (g,))/k or just In [—In (g;)]. (See Ref. 154.)

GEY distribution. Plot ordered observations x;, versus £ + (a/k) (1 — [—=In (I — g;)]*, or just
(1/x) {1 — [—1In (1 — g;)]*}. Alternatively employ Gumbel probability paper on which GEV
will be curved. Cunnane’s plotting positions (a = 0.4) are reasonable.*?

Pearson type 3 probability paper. Plot ordered observations x;;, versus K|, (y), where p; = | -
g;. Blom’s formula (a = 3/8) is quantile-unbiased for normal distribution and makes sense
for small y. Or employ normal probability paper. (See Ref. 158.)

Log Pearson type 3 probability paper. Plot ordered logarithms log [x;] versus K, (y) where
p;= 1 — q;. Blom’s formula (@ = 3/8) makes sense for small y. Or employ lognormal proba-
bility paper. (See Ref. 158.)

Uniform probability paper. Plot x;, versus 1 — g;, where g; are the Weibull plotting positions
(a = 0). (See Ref. 154.)




18.26 ' CHAPTER EIGHTEEN

mal distribution
G'Il—¢g)=ut+ad¥l—gq) (18.3.7

Thus, except for intercept and slope, a plot of the observations x, versus G='[1 — g;
is visually identical to a plot of x, versus ®~!(1 — g,). The values of g; are oftet
printed along the abscissa or horizontal axis. Lognormal paper is obtained by using:
log scale to plot the ordered logarithms log (x;,) versus a normal-probability scale
which is equivalent to plotting log (x;,) verus ®~'(1 — g;). Figure 18.3.1 illustrate:
use of lognormal paper with Blom’s pfotting positions.

For the Gumbel distribution,

G'(l—¢g)=¢—aln[—In(l —g))] (18.3.8

Thus a plot of x;;, versus G~'(1 — g,) is identical to a plot of x;;, versus the reducec
Gumbel variate '

yi=—In[~In (1 —g,)] (18.3.9)

It is easy to construct probability paper for the Gumbel distribution by plotting x;; as
a function of y;; the horizontal axis can show the actual values of y or, equivalently,
the associated g;, as in Fig. 18.3.1 for the lognormal distribution.

Special probability papers are not available for the Pearson type 3 or log Pearson
type 3 distributions because the frequency factors depend on the skew coefficient.
However, for a given value for the coefficient of skewness y one can plot the observa-
tion x, for a P3 distribution, or log (x,) for the LP3 distribution, versus the fre-
quency factors K, (y) defined in Eq. (18.2.29) with p; = 1 — g,. This should yield a
straight line except for sampling error if the correct skew coeflicient is employed.
Alternatively for the P3 or LP3 distributions, normal or lognormal probability paper
is often used to compare the x;; and a fitted P3 distribution, which plots as a curved

TABLE 18.3.2 Generation of Probability Plots for Different Distributions

Normal probability paper. Plot x,;, versus z, given in Eq. (18.2.3), where p, = | — g;. Blom’s
formula (a = 3/8) provides quantile-unbiased plotting positions.

Lognormal probability paper. Plot ordered logarithms log [x,] versus z,. Blom’s formula
(a = 3/8) provides quantile-unbiased plotting positions.

Exponential probability paper. Plot ordered observations x;, versus £ —In (g,)/f or just
—In (g;). Gringorten’s plotting positions (a = 0.44) work well.

Gumbel and Weibull probability paper. For Gumbel distribution plot ordered observations
Xy versus {—a In [—In (1 —g;)] or just y;=—In [—In (1 — g,)]. Gringorten’s plotting
positions (a = 0.44) were developed for this distribution, For Weibull distribution plot In
[x@] versus In (o) + In [—1n (g,)}/k or just In [—In (g;)]. (See Ref. 154.)

GEYV distribution. Plot ordered observations x;, versus £ + (a/k) (1 — [=In(l — g;)]", or just
(1/x) {1 — [—In (1 — g;)]*}. Alternatively employ Gumbel probability paper on which GEV
will be curved. Cunnane’s plotting positions (a = 0.4) are reasonable.?

Pearson type 3 probability paper. Plot ordered observations x;, versus K, (y), where p; = | —
g;. Blom’s formula (a = 3/8) is quantile-unbiased for normal distribution and makes sense
for small y. Or employ normal probability paper. (See Ref. 158.)

Log Pearson type 3 probability paper. Plot ordered logarithms log [x;] versus K, (y) where
p; = 1 — g;. Blom’s formula (a = 3/8) makes sense for small y. Or employ lognormal proba-
bility paper. (See Ref. 158.)

Uniform probability paper. Plot x;, versus | — g;, where g; are the Weibull plotting positions
(a = 0). (See Ref. 154.)




FREQUENCY ANALYSIS OF EXTREME EVENTS 18.27

line. Table 18.3.2 summarizes how probability plots may be constructed for these
and other distributions.

18.3.3 Goodness-of-Fit Tests and L-Moment Diagrams

Rigorous statistical tests are available and are useful for assessing whether or not a
given set of observations might have been drawn from a particular family of distribu-
tions, as discussed in Sec. 18.3.1. For example, the Kolmogorov-Smirnov test pro-
vides bounds within which every observation on a probability plot should lie if the
sample is actually drawn from the assumed distribution; it is useful for evaluating
visually the adequacy of a fitted distribution. Stephens'?¢ gives critical Kolmogorov-
Smirnov values for the normal and exponential distributions (reproduced in Ref. 95,
p. 112); Chowdhury et al.?2 provide tables for the GEV distribution.

The probability plot correlation test discussed below is a more powerful test of
whether a sample has been drawn from a postulated distribution; a test with greater
power has a greater probability of correctly determining that a sample is not from the
postulated distribution. L-moment tests are also relatively powerful and can be used
to determine if a proposed Gumbel, GEV, or normal distribution is consistent with
the data. L-moment diagrams are useful as a guide in selecting an appropriate family
of distributions for describing a set of variables, such as flood distributions in a
region.

B.  Probability Plot Correlation Coefficient Test. A simple but powerful goodness-of-
fit test is the probability plot correlation test developed by Filliben.*' The test uses the
correlation r between the ordered observations x;, and the corresponding fitted
quantiles w; = G~!(1 — g;), determined by plotting positions g, for each x;;,. Values
of r near 1.0 suggest that the observations could have been drawn from the fitted
distribution. Essentially, r measures the linearity of the probability plot, providing a
quantitative assessment of fit. If x denotes the average value of the observationsand w
denotes the average value of the fitted quantiles, then

y= E(x(i)_)a(wi_w)
> (x(i) - X3P (w; — ’—‘—’)2] 0.3

(18.3.10)

Table 18.3.3 gives critical values of r for the normal distribution, or the logarithms
of lognormal variates, based on a plotting position with a = 3/8. Values for the
Gumbel distribution are reproduced in Table 18.3.4 for use with a = 0.44; the table
also applies to logarithms of Weibull variates (see Table 18.3.2 and Sec. 18.2.2).
Other tables are available for the uniform,'* the GEV,?? the Pearson type 3,'*® and
exponential and other distributions.*®

L-Moment Diagrams and Ratio Tests. Figure 18.1.1 provides an example of an
L-moment diagram.’>'53 Sample L moments are less biased than traditional product-
moment estimators, and thus are better suited for use in constructing moment
diagrams. (See Sec. 18.1.4.) Plotling sample statistics on such diagrams allows a
choice between alternative families of distributions (Ref. 29). L-moment diagrams
include plots of 7, versus 1, for choosing among two-parameter distributions, or of 7,
versus T, for choosing among three-parameter distributions. Chowdhury et al.??
derive the sampling variance of 7,, 7;, and 7, as a function of « for the GEV distribu-
tion to provide a powerful test of whether a particular data set is consistent with a
GEV distribution with a regionally estimated value of k, or a regional x and CV.
Equation (18.2.24) provides a very powerful test for the Gumbel versus a general
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TABLE 18.3.3 Lower Critical Values of the
Probability Plot Correlation Test Statistic for
the Normal Distribution Using p; = (i — %)/

(n+ )
Significance level

n 0.10 0.05 0.01
10 0.9347 0.9180 0.8804
15 0.9506 0.9383 0.9110
20 . 0.9600 0.9503 0.9290
30 0.9707 0.9639 0.9490
40 0.9767 0.9715 0.9597
50 0.9807 0.9764 0.9664
60 0.9835 0.9799 0.9710
75 0.9865 0.9835 0.9757

100 0.9893 0.9870 0.9812

300 0.99602 0.99525 0.99354
1000 0.99854 0.99824 0.99755

Source: Refs. 101, 152, 153. Used with permission.

TABLE 18.3.4 Lower Critical Values of the
Probability Plot Correlation Test Statistic for
the Gumbel and Two-Parameter Weibull
Distributions Using p; = (i — 0.44)/(n + 0.12)

Significance level

n 0.10 0.05 0.01

10 0.9260 0.9084 0.8630
20 0.9517 0.9390 0.9060
30 0.9622 0.9526 0.9191
40 0.9689 0.9594 0.9286
50 0.9729 0.9646 0.9389
60 0.9760 0.9685 0.9467
70 0.9787 0.9720 0.9506
80 0.9804 0.9747 0.9525
100 0.9831 0.9779 0.9596
300 0.9925 0.9902 0.9819

1000 0.99708 0.99622 0.99334

Source: Refs. 152, 153. See also Table 18.3.2.
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GEV distribution using the sample L-moment estimator of k. Similarly, if observa-
tions have a normal distribution, then 7, has mean zero and Var [7;] = (0.1866 +
0.8/n)/n, allowing construction of a powerful test of normality against skewed alter-
natives” using Z = %,/v(0.1866/n + 0.8/n2).

18.4 STANDARD ERRORS AND CONFIDENCE
INTERVALS FOR QUANTILES

A simple measure of the precision of a quantile estimator is its variance Var (x,),
which equals the square of the standard error, SE, so that SE2 = Var (£,). Confidence
intervals are another description of precision. Confidence intervals for a quantile are
often calculated using the quantile’s standard error. When properly constructed, 90
or 99 percent confidence intervals will, in repeated sampling, contain the parameter
or quantile of interest 90 or 99 percent of the time. Thus they are an interval which
will contain a parameter of interest most of the time.

| 18.4.1 Confidence Intervals for Quantiles

- The classic confidence interval formula is for the mean u, of a normally distributed
random vanable X. If sample observations X; are independent and normally distrib-
uted with the same mean and variance, then a 100(1 — a)% confidence interval for

. Hyis

=Kl ey Spy=T+E (18.4.1)

t‘_z_.
\/.;l. \/;1_ a/2n

where (,_,, ,_, is the upper lOO(aéJ% percentile of Student’s ¢ distribution with
" n— | degrees of freedom. Here s,/Vn is the estimated standard error of the sample
. mean; that is, it is the square root of the variance of the estimator X of uy. In large
~ samples (n > 40), the ¢ distribution is well-approximated by a ncrmal distribution, so
~ that z,_,,, from Table 18.2.2 can replace ¢, _,,, ,, in Eq. (18.4.1).

In hydrology, attention often focuses on quantiles of various distributions, such as
the [0-year 7-day low flow, or the rainfall depth exceeded with a 1 percent probabil-
ity. Confidence intervals can be constructed for quantile estimators. Asymptotically
{with mcreasmgly large ), most quantile estimators X, are normally distributed. If X,
has variance Var (X,) and is essentially normally dxstnbuted then an approx1mate
10(1 — a)% conﬁdence interval based on Eq. (18.4.1) is

%, = Zi_gpVVAr (&) t0 X, +2z_op VVar %)) (18.4.2)

Equation (18.4.2) allows calculation of approximate confidence intervals for
quantiles (or parameters) of distributions for which good estimates of their
standard errors, VVar (%,), are available.®

18.4.2 Results for Normal/Lognormal Quantiles

For a normally distributed random variable, the traditional estimator of x,, 1s

%, =X+ z,5x (18.4.3)
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Asymptoucally, the vanance ol this eslimalor is
.
Var (i, I--;r(l i——-‘*) [18.44)
Thus, an approcimate 10001 — )% canhdence mterval for X it

= 51 |
T A 1 T - \f% (I + = :;‘,] {18.4.3)

| hese results can also be used to ehtain confidence intervals for quanules of the
two-parameter lognormal distnbution. If .V is lognormally distnbuted. then ) =
In (X'} is normally distributed and

X,=gipi{g, .4} (1R.4.5)

The maximum hikelihood estimator of v, 15 essentially eap O + 25, ), for this cstima-

o1
) BEKH I .
Var (&) = \} { ” ( L ;*;):[ (1841

A simpie but approximate 10001 — )% confidence interval (or the lognormal quan:
tile x_ 15
r

o
exp [{1 § o ) s = IR 1\‘{ ( +§':)] {1K.4 8]

Conlidence intervals obtamed by substitutng Eq. (18.4.7)into Eq. 1 18.4. ) are not as
pood as Eq. (18.4.8) 12°

For the normal (and lognormal) distnibution, it s alsa possihle 1o calculate exact
confidence intervals using the noncentrai f dhstribution. Let &, jand &, . denotethe
|00 and 100(] — &) percentiles of the noncentral ¢ distribulion. Then an exacl
10071 — 20)% conlidence interval for x, = g ++ z,0 when X has a normal disiribution
is

st L o<, y+ T (18.4.9)

Stedinger'™ and App. ® in Rel. 79 provide tables of percentage points of the {
distibution, An approximation lor ¢, 1s

— 5
N i a n :{rr—‘ by Imin— 1) i18.4.10)

T
“n

VN

which 15 reasonably accurale for # = 15 and o = 005 (Rel 21} £, _, 15 obtuned
using Eq. (18.4.10) by replacwng =, by &, -, which equals — =,

Less work has beens done on lormulag [or the vanances of lognormal quanties
when three parameters are estunated, Formulas for maximum hkelihood, moment,
and moment/quantle-lower-hound estimalors are avaluated in Refl 67,
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18.4.3 Results for Pearson/Log-Pearson Type 3 Quantiles

Confidence intervals for normal quantiles can be extended to obtain approximate
confidence intervals for Pearson Type 3 (P3) quantiles y, for known skew coefficient
y by using a scaling factor #, obtained from a first-order asymptotic approximation of
the P3/normal quantile variance ratio:

Var (3,) \/1+y1<+vz(1+%y2)g
[Var( ] Tha (18.4.11)

where K, is the standard P3 quantile (frequency factor) in Egs. (18.2.28) and
(18.2. 29) with cumulative probability p for skew coefficient y;!? z, is the frequency
factor for the standard normal distributionin Eq. (18.2.3) employed to compute X, in
Eq.(18.4.3). An approximate 100(1 — 2a)% confidence interval for the pth P3 quan-
tile is

Vot G —ap = 25) 8, <V, < Pp + 1oy — 2,5, (18.4.12)

where ), =y + Ks,,.

Chowdhury and Stedinger?!' show that a generalization of Eq. (18.4.12) should be
used when the skew coefficient y is estimated by the at-site sample skew coefficient
G,, a generalized regional estimate G,, or a weighted estimate of G, and G,. For
example, if a generalized regional estimate G, of the coefficient of skewness is em-
ployed, and G, has variance Var (G,) about the true skew coefficient, then the scaling
factor in Eq. (18 4.12) should be calculated as?

_ \/1 + 9K, + ' (1 + % y) K2 + n Var (G,) (%45)
1 1+ 22

(18.4.13)

where, from Eq. (18.2.29),

%*l(zz—l)[ 3(%)2]+(zg—6zp)—+§ p(g) (18.4.14)

for]y|<2and 0.01 = p=0.99.

18.4.4 Results for Gumbel and GEV Quantiles

For the Gumbel distribution with two parameters estimated by the method of mo-
ments, the variance of the pth quantile is asymptotically 9

a(1.11 +0.52y + 0.6132)
n

Var (%,) = (18.4.15)

for a sample of size n where y = —In [—In (p)] is the Gumbel reduced variate.
For unbiased L-moment estimators31%°

Var (X, 5)
a?[(1.1128 — 0.9066/n) — (0.4574 — 1.1722/n)y + (0.8046 — 0.1855/n)y?

n—1

(18.4.16)



Equation (18.4.16) also provides a reasonable estimate of Var (x,) for use with biased
PWMs. These values can be used in Eq. (18.4.2) to obtain approxxmate confidence
intervals. Reference 109 provides formulas for Var (%,) when maximum likelihood
estimators are employed.

GEYV Index Flood Procedures. The Gumbel and GEV distributions are often usedas
normalized regional distributions or regional growth curves, as discussed in Sec.
18.5.1. In that case the variance of X, is given by Eq. (18.5.3).

GEV with Fixed k. The GEV distribution can be used when the location and scale
parameters are estimated by using L moments via Eqgs. (18.2.22b) and (18.2.22¢) with
a fixed regional value of the shape parameter x, corresponding to a two-parameter
index flood procedure (Sec. 18.5.1). For fixed k the asymptotic variance of the pth
quantile estimator with unbiased L-moment estimators is

a¥(c, + ¢,y + 3%

Var (X,) = .

(18.4.17)
where y = 1 — [In (p)]* when k # 0 and ¢,, c,, ¢, are coeflicients which depend on k.
The asymptotic values of ¢, ¢;, ¢ for —0.33 < k < 0.3 are well-approximated by*

¢; = 1.1128 — 0.2384x + 0.0908x* + 0.1084x3

where, for k > 0,

¢, =0.4580 — 3.0561k + 1.1104x? — 0.407 1k
¢; = 0.8046 — 2.8890« + 8.7874K?* — 10.375«3

and, for k <0,
¢, =0.4580 — 7.5124K + 5.0832k2 — 11.623x3 + 2.250 In (1 + 2k)
¢; = 0.8046 — 2.6215k + 6.8989x2 + 0.003x3 — 0.1 In (1 + 3x)
For x = 0, use Eq. (18.4.16).

Estimation of Three GEV Parameters. All three parameters of the GEV distribution
can be estimated with L. moments by using Eq. (18.2.22).6% Asymptotic formulas for
the variance of three-parameter GEV quantile estimators are relatively inaccurate in
small samples;?® an estimate of the variance of the pth quantile estimator with

TABLE 18.4.1 Coefficients for an Eq. (18.4.18) That Approximates Variance of Three-
Parameter GEV Quantile Estimators

Cumulative probability level p

Coefficient 0.80 0.90 0.95 0.98 0.99 0.998 0.999
a, —1.813 —2.667 —3.222 -—3756 —4.147 —5336 —5.943
a, 3.017 4.49] 5.732 7.185 8.216 10.711 11815
a, —1401 —2207 —2367 —2314 —0.2033 —1193 —0.630
a, 0.854 1.802 2.512 4.075 4.780 5.300 6.262

Source: Ref. 96.




unbiased L-moment estimators for —0.33 <k <0.3 1s

exp [ay(p) + a(p) exp (—k) + a,(p)x? + a;(p)x?]
n

Var (%) = (18.4.18)

¢ with coefficients a,(p) for selected probabilities p in Table 18.4.1 based on the actual
sampling variance of unbiased L-moment quantile estimators in samples of size
n= 40; the variances provided by Eq. (18.4.18) are relatively accurate for sample
sizes 20 = n < 70 and k > —0.20.

18.5 REGIONALIZATION

Frequency analysis 1s a problem in hydrology because sufficient information is sel-
dom available at a site to adequately determine the frequency of rare events. At some
sites no information is available. When one has 30 years of data to estimate the event
exceeded with a chance of | in 100 (the | percent exceedance event), extrapolation is
required. Given that sufficient data will seldom be available at the site of interest, it
makes sense to use climatic and hydrologic data from nearby and similar locations.

The National Research Council (Ref. 104, p. 6) proposed three principles for
hydrometeorological modeling: “(1) ‘substitute space for time’; (2) introduction of
more ‘structure’ into models; and (3) focus on extremes or tails as opposed to, or even
1o the exclusion of, central characteristics.” One substitutes space for time by using
hydrologic information at different locations to compensate for short records at a
single site. This is easier to do for rainfall which in regions without appreciable relief
should have fairly uniform characteristics over large areas. It is more difficult for
floods and particularly low flows because of the effects of catchment topography and
geology. A successful example of regionalization is the index flood method discussed
@ below. Many other regionalization procedures are available.?® See also Secs. 18.7.2

. and 18.7.3.

Section 18.5.2 discusses regression procedures for deriving regional relationships
relating hydrologic statistics to physiographic basin characteristics. These are partic-
ularly useful at ungauged sites. When floods at a short-record site are highly corre-
lated with floods at a site with a longer record, the record augmentation procedures
B described in Sec. 18.5.3 can be employed. These are both ways of making use of
& regional hydrologic information.

. 18.5.1 Index Flood

The index flood procedure is a simple regionalization technique with a long history in
{ hydrology and flood frequency analysis.?! It uses data sets from several sites in an
¢ effort to construct more reliable flood-quantile estimators. A similar regionalization
approach in precipitation frequency analysis is the station-year method, which com-
i bines rainfall data from several sites without adjustment to obtain a large composite
- record to support frequency analyses.'S One can also smooth the precipitation quan-
* tiles derived from analysis of the records from different stations.53

The concept underlying the index flood method is that the distributions of floods
at different sites in a region are the same except for a scale or index-flood parameter
2 which reflects the size, rainfall, and runoff characteristics of each watershed. Gener-
g% ally the mean is employed as the index flood. The problem of estimating the pth




quantile x, is then reduced to estimation of the mean for a site 11y, and the ratio x,/uy
of the pth quantile to the mean. The mean can often be estimated adequately with the
record available at a site, even if that record is short. The indicated ratio is estimated
by using regional information. The British Flood Studies Report'® calls these nor-
malized regional flood distributions growth curves. The index flood method was also
found to be an accurate and reproducible method for use at ungauged sites.!0’

At one time the British attempted to normalize the floods available at each site so
that a large composite sample could be constructed to estimate their growth
curves;'% this approach was shown to be relatively inefficient.®® Regional PWM
index flood frequency estimation procedures that employ PWM and L. moments,
and often the GEV or Wakeby distributions, have been studied.”!:8191.112.162 Thege
results demonstrate that L-moment/GEV index flood procedures should in practice
with approprately defined regions be reasonably robust and more accurate than
procedures that attempt to estimate two or more parameters with the short records
often available at many sites. Qutlined below is the L-moment/GEV version of the
algorithm initially proposed by Landwehr, Matalas, and Wallis (personal communi-
cation, 1978), and popularized by Wallis and others.5%160.162

Let there be K sites in a region with records [x/(k)], t=1, ..., n,, and
k=1, ..., K. The L-moment/GEV index-flood procedure is

1. Ateach site k compute the three L-moment estimators 71,(k), iz(k), y) 3(k) using the
unbiased PWM estimators b,.

2. To obtain a normalized frequency distribution for the region, compute the re-
gional average of the normalized L moments of order r = 2 and 3:

K

S we [Ak)/ A, (k)]

TR=k=]

AR= e
> W
k=1

forr=2,3 (18.5.1)

Forr= 1,18 = 1. Here w, are weights; a simple choice is w, = n,, where n, is the
sample size for site k. However, weighting by the sample sizes when some sites
have much longer records may give them undue influence. A better choice which
limits the weight assigned to sites with longer records is

ngn
W, = kTR

ny + Np
where n, are the sample sizes and ni = 25; the optimal value of the weighting
parameter n, depends on the heterogeneity of a region.!38.14!

3. Using the average normalized L moments 4,8, 1,8, and A,% in Egs. (18.2.22) and
(18.2.23), determine the parameters and quantiles X,® of the normalized regional
GEYV distribution.

4. The estimator of the 100p percentile of the flood distribution at any site k is
3,(k) = Ak xR (18.5.2)
where A% is the at-site sample mean for site k:

a |
}'Ik = 2 xr(k)

nk‘a]

SRR e

T




Of value is an estimate of the precision of flood quantiles obtained with Eq.
(18.5.2). Across the region of interest, let the variance of the differences %5 — X%
between the actual normalized quantile X3 for a random site and the average regional
estimator XX be denoted V% 12 describes the heterogeneity of a region. Then the
variance of the error associated with the flood quantile estimator X, equal to A £R for
at-site sample mean 4,, can be written

Var (%,) = E[4, 8 — 4, 351> = Var (1,) E[(R2?] + (4,2 02 (18.5.3)

The expected error in X, is a combination of sampling error in site k’s sample mean

0‘2
Var (4,) = Var [q(k)] = ==
ny

and the precision U of the regional flood quantile X% as an estimator of the normal-
ized quantile X; for assite in the region. In practice o2is generally difficult to estimate.
The generalized least squares regional regression methodology in Sec. 18.5.2 ad-
dresses the relevant issues and can provide a useful estimator.

A key to the success of the index flood approach is identification of reasonably
similar sets of basins to keep the error in the regional quantiles v2 small.? Basins can
be grouped geographically, as well as by physiographic characteristics including
drainage area and elevation. Regions need not be geographically contiguous. Each
site can potentially be assigned its own unique region consisting of sites with which it
is particularly similar,'? or regional regression equations can be derived to compute
normalized regional quantiles as a function of a site’s physiographic characteristics,
or other statistics.!2°

For regions which exhibit a large 92, or when the record length for a site is on the
order of 40 or more, then a two-parameter index flood procedure that uses the
regional value of i with at-site estimates of the GEV distribution’s £ and « parameters
becomes attractive.?* Chowdhury et al.??2 provide goodness-of-fit tests. to assess
whether a particular dimensionless regional GEV distribution, or a specified regional
K, is consistent with the data available at a questionable site.

18.5.2 Regional Regression

Regression can be used to derive equations to predict the values of various hydrologic
statistics (including means, standard deviations, quantiles, and normalized regional
flood quantiles) as a functlon of physiographic characteristics and other parameters.
Such relationships are needed when little or no flow data are available at or near asite.
Figure 18.5.1 illustrates the estimated prediction errors for regression models of
low-flow, mean annual flows, and flood flows in the Potomac River Basin in the
United States. Regional regression models have long been used to predict flood
quantiles at ungauged sites, and in a nationwide test this method did as well or better
than more complex rainfall-runoff modeling procedures. '’

Consider the traditional log-linear model for a statistic y; which is to be estimated
by using watershed characteristics such as drainage area and slope:

=qa + f3, log (area) + f#, log (slope) + . . . t+ € (18.5.4)

A challenge in analyzing this model and estimating its parameters with available
records is that one only obtains sample estimates, denoted ;, of the hydrologic
statistics y;. Thus the observed error € is a combination of: (1) the time-sampling error
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FIGURE 18.5.1 Percentage error for regional regression estimators of different statistics in the
Potomac River Basin in the United States. (From Ref. 142.)

in sample estimators of y; (these errors at different sites can be cross-correlated if the
records are concurrent) and (2) underlying model error (lack of fit) due to failure of
the model to exactly predict the true value of the y’s at every site. Often these
problems have been ignored and standard ordinary least squares (OLS) regression
has been employed.'4? Stedinger and Tasker!3°-132 develop a specialized generalized
least squares (GLS) regression methodology to address these issues. Advantages of
the GLS procedure include more efficient parameter estimates when some sites have
short records, an unbiased model-error estimator, and a better description of the
relationship between hydrologic data and information for hydrologic network analy-
sis and design;'¥!4! see also Sec. 17.4.8. Examples are provided by Tasker and
Driver,'* Vogel and Kroll,'*¢ and Potter and Faulkner.!!!

18.5.3 Record Augmentation and Extension

One can fill in missing observations in a short record by using a longer nearby record
with which observations in the short record are highly correlated. Such cross-
correlation can be used to fill in a few scattered missing observations, to extend the
shorter record, or to improve estimates of the mean and variance of the eventsat the
short-record site. For this third purpose it is not necessary to actually construct the
extended series; one needs only the improved estimates of the moments. This idea is
called record augmentation (Ref. 97, Ref. 105, App. 7 in Ref. 79).

Let x and y denote the flow record at the long- and short-record sites, respectively;
let subscript 1 denote sample means and variances calculated for the period of
concurrent record and subscript 2 denote the sample mean and variance for the
long-record x site calculated using only the observations for which there is no corre-
sponding y. The Matalas-Jacobs augmented-record estimator of the mean is

s = ny - -
dy=y+ n+ bp—Xx) n=4 (18.5.5)




where n, is the number of concurrent observations and n, is the number of additional
observations available at the x site. Their estimator of the varance 1s essentially

o} =s2, + + 2b2 (52,—s2) nm =6 (18.5.6)
n

except for several negligible adjustments; here

b=pxy32il (18.5.7)

isthe standard linear regression estimator of change in y from a change in x. Equation
(18.5.5) is relatively effective at improving estimates of the mean when the cross-
correlation is 0.70 or greater; Eq. (18.5.6) transfers less information about the var-
- iance, which generally requires a cross-correlation of at least 0.85 to be worthwhile.'>!
If the observations are serially correlated, considerably less information is trans-
ren-ed.lﬂ.lS?

In some cases one actually wants to create a longer series that will be used in
-~ simulation or archived as described in Sec. 17.4.10. In such cases it would be prefera-
-~ ble if the extended series y, had the same variance as the original series and was not
smoothed by the process of regressing one record on another. This idea of record
extension is developed in Refs. 64, 65, and 151 and, for the multivariate case with
cross-correlation, in Ref. 50.

18.6 PARTIAL DURATION SERIES, MIXTURES,
- AND CENSORED DATA

This section discusses situations where data describing hydrologic events are not a
- simple series of annual values. Partial duration series and mixture models discussed
in Secs. 18.6.1 and 18.6.2 describe hydrologic events by more than an average or a
single annual maximum or minimum. These are examples of the 1dea of stochastic
structure discussed in the introduction to Sec. 18.5. Section 18.6.3 discusses methods
for dealing with censored data sets that occur when some observations fall below a
recording threshold.

18.6.1 Partial Duration Series

Two general approaches are available for modeling flood, rainfall, and many other
hydrologic series. Using an annual maximum series, one considers the largest event
in each year; using a partial duration series (PDS) or peaks-over-threshold (POT)
approach, the analysis includes all peaks above a truncation or threshold level. An
objection to using annual maximum series is that it employs only the largest event in
each year, regardless of whether the second largest event in a year exceeds the largest
events of other years. Moreover, the largest annual flood flow in a dry year in some
arid or semiarid regions may be zero, or so small that calling them floods is mislead-
ing.

Partial duration series analyses avoid such problems by considering all indepen-
dent peaks which exceed a specified threshold. Fortunately one can estimate annual
exceedance probabilities from the analysis of PDS with Eq. (18.6.4), below, or empir-




ical relationships.5® Arguments in favor of PDS are that relatively long and reliable
PDS records are often available, and if the arrival rate for peaks over the threshold is
large enough (1.65 events/year for the Poisson arrival with exponential exceedance
model), PDS analyses should yield more accurate estimates of extreme quantiles
than the corresponding annual-maximum frequency analyses.'0%118.145 Gjl|, a draw-
back of PDS analyses is that one must have criteria to identify only independent
peaks (and not multiple peaks corresponding to the same event); thus PDS analysis
can be more complicated than analyses using annual maxima.

Partial duration models are applicable to modeling flood or rainfall events that
exceed some threshold depth, or the occurrence of runoff carrying non-point-
pollution loads. Partial duration models, perhaps with parameters that vary by sca-
son, are often used to estimate expected damages from hydrologic events when more
than one damage-causing event can occur in a season or within a year.'%®

Two issues arise in modeling PDS. First, one must model the arrival rate of events
larger than the threshold level; second, one must model the magnitudes of those
events. For example, a Poisson distribution is often used to model the arrival of
events, and an exponential distribution to describe the magnitudes of peaks which
exceed the threshold.'¢ For large-return-period events, the actual probabilistic model
for arrivals is not important, provided different models yield the same average num-
ber of arrivals per year.2"!03

There are several general relationships between the probability distribution for
annual maximum and the frequency of events in a partial duration series. Fora PDS,
let A be the arrival rate, equal to the average number of events per year larger than a
threshold x,; let G(x) be the probability that events when they occur are less than x,
and thus falls in the range (x,, x). Then the arrival rate for any level x, with x = X, is

A*=A1—-GW)] (18.6.1)

The cdf F,(x) for the corresponding annual maximum series is the probability that
the annual maximum for a year will not exceed x. For independent events, the
probability of no exceedances of x over a 1-year period is given by the Poisson
distribution, so that

F,(x) =exp (—A*) =exp {—[1 — G(X)]} (18.6.2)

[ This relationship can be derived by dividing a year into m intervals, each with arrival
rate A*/m. Then for small 1*/m, the probability of no arrivals in a year is essentially
(1 — 2*/m)™. Equation (18.6.2) is obtained 1n the limit as m — «_]

Equation 18.6.2 reveals the relationship between the cdf for the annual maxi-
mums, and the arrival rate of and distribution for partial duration peaks. If the
annual exceedance probability | — F,(x) ts denoted 1/7,, for an annual return pe-
riod T, (denoted as T elsewhere in the chapter) and the corresponding exceedance
probability [1 — G(x)] for level x in the partial duration series is denoted q,, then Eq.
(18.6.2) can be written

l 1
Ta— l—exp(—ig)=1 exp( -—7—;) (18.6.30)

p
where T, = 1/1q, is the average return period for level x in the PDS. Equation
(18.6.3a) can be solved for T, to obtain

‘ 1
T =

>~ In(l —T,) (18.6.%)




T, is less than 7, because more than one event can occur per year in a PDS.

Equation (18. 6 3a) transforms the average arrival rate Aq, for events larger than x
into the annual exceedance probability 1/T, in the annual maximum series. For
levels x with T, > 10, corresponding to infrequent events, the annual exceedance
probability 1/7, essentially equals the average arrival rate Ag, = 1[1 — G(x)] for the
PDS, so that T, = T, (Ref. 93). [See also Eq. (18.10.1).]

Consider a useful application of Eq. (18.6.2). Suppose a generalized Pareto distri-
bution (Sec. 18.2.4) describes the distribution G(x) of the magnitude of events larger
than a threshold x;:

Gx) =1 —-[1 —x(x;x")]m for K # 0 (18.6.4)

For positive k this cdf has upper bound x,,,, = X, + a/k; for k <0, an unbounded
and thick-tailed distribution results; x = 0 yields a two-parameter exponential distri-
bution. Substitution of Eq (18.6. 4) for G(-)into Eq. (18.6.2) yields a GEV distribu-
tion for the annual maximum series greater than X, if k # ;3470125

4 x— é I/x
F,(x)=exp|—|1—«k o k+#0 (18.6.5a)
and a Gumbel! distribution for k = ;16

F,(x) = exp [— (%é)] (18.6.5b)

when x = x;; the transformed parameters £ and o* are defined by

{=xt
E=x,+aln () k=0

@ a*=al—x K#O i

(18.6.6)

This general Poisson-Pareto model is a flexible and physically reasonable model of
many phenomena. It has the advantage that regional estimates of the GEV distribu-
tion’s shape parameter x from annual maximum and PDS analyses can be used
interchangeably.

In practice the arrival rate A can simply be estimated by the average number of
exceedances of x, per year. For either the exponential or generalized Pareto distribu-
tions in Table 18.1.2 for G(x), the lower bound (denoted £in Table 18.1.2) equals x;.
The other parameters in Egs. (18.6.5) and (18.6.6) can be estimated by substituting
sample estimators into the inverse of the relationships in Table 18.1.2:

For k # 0: x=ﬂ%x‘3——2;a=(u—xo)(l+}c)
2

(18.6.7)

1
Forﬁxedrc=0:' —=a=U— X

B

where 4 = A, is the mean of X, 4, is the second L moment, and f is the exponential
distribution’s scale parameter in Tables 18.1.2 and 18.2.1.



18.6.2 Mixtures

A common problem in hydrology is that annual maximum series are composed of
events that may arise from distinctly different processes. Precipitation series may
correspond to different storm types in different seasons (such as summer thunder-
storms, winter frontal storms, and remnants of tropical hurricanes). Floods arising
from different types of precipitation events, or from snow melt, may have distinctly
different probability distributions.!68

The annual maximum series M can be viewed as the maximum of the maximum
summer event .S and the maximum winter event W-

M = max (S, W) (18.6.8)

Here Sand W may be defined by a rigidly specified calendar period, a loosely defined
climatic period, or the physical characteristics of the phenomena.

Let the cdf of the S'and W variables be F¢(s) and F,(w). Then, if the magnitudes
of the symmer and winter events are statistically independent, meaning that knowing
one has no effect on the probability distribution of the other, the cdf for M is

F\{m) = P{M = max (S, W) < m] = Fy(m) F(m) (18.6.9)

because M will be less than m only if both S and W are less than m. If two or more
independent series of events contribute to an annual maximum, the distribution of
the maximum is the product of their cdfs.

An important question is when it is advisable to model several different compo-
nent precipitation or flood series separately, and when it is better to model the
composite annual maximum series directly. IT several series are modeled, then more
parameters must be estimated, but more data are available than if the annual maxi-
mum series (or the partial duration series) for each type of event is employed. Fortu-
nately, the distributions of large events caused by different mechanisms can be
relatively similar.®> Modeling the component series separately is most attractive
when the annual maximum series is composed of components with distinctly differ-
ent distributions which are individually easy to model because classical two-
parameter Gumbel or lognormal distributions describe them well, and such a simple
model provides a poor description of the composite annual maximum series.

18.6.3 Analysis of Censored Data

In some water-quality investigations, a substantial portion of reported values of
many contaminants is below limits of detection. Likewise, low-flow and sometimes
flood-flow observations are rounded to or reported as zero. Such data sets are called
censored samples because it is as if the values of observations in a complete sample
that fell above or below some level were removed, or censored. Several approaches
are available for analysis of censored data sets, including probability plots and
probability-plot regression, weighted-moment estimators, maximum likelihood esti-
mators, and conditional probability models.3%57¢! See also Section 17.5.
Probability-plot methods for use with censored data are discussed below. They are
relatively simple and efficient when the majority of values are observed, and unob-
served values are known 1o be below (above) some detection limit or perception
threshold which serves as an upper (lower) bound. In such cases, probability-plot
regression estimators of moments and quantiles are as accurate as maximum likeli-
hood estimators, and almost as good as estimators computed with complete sam-



ples.3>60 Partial PWMs are the expectation of xF(x)* for x values above a threshold;
they are conceptually similar to probability-plot regression estimators and provide a
useful alternative for fitting some distributions. !¢

Weighted moment estimators are used in flood frequency analyses with data sets
that include both a complete gauged record and a historical flood record consisting of
all events above a perception threshold.”-133!65 (See Sec. 18.7.4.) Weighted moment
estimators weight values above and below the threshold levels so as to obtain mo-
ment estimators consistent with a complete sample. These methods are reasonable
when a substantial fraction of the observations remain after censoring (at least 10
percent), and a value is either observed accurately or falls below a threshold and thus
is censored.

Maximum likelihood estimators are quite flexible, and are more efficient than
plotting and weighted moment estimators when the frequency with which a thresh-
old was exceeded represents most of the sample information.?*!3? They allow the
recorded values to be represented by exact values, ranges, and various thresholds that
either were or were not exceeded at various times; this can be particularly important
with historical flood data sets because the magnitudes of many historical floods are
not recorded precisely, and it may be known that a threshold was never crossed or was
crossed at most once or twice in a long period.?? (See Sec. 18.7.4.) In these cases
maximum likelihood estimators are perhaps the only approach that can make effec-
tive use of the available information.??

Conditional probability models are appropriate for simple cases wherein the cen-
soring occurs because small observations are recorded as zero, as often happens with
low-flow and some flood records. An extra parameter describes the probability p,
that an observation is zero. A continuous distribution G(x) is derived for the strictly
positive nonzero values of X; the parameters of the cdf G can be estimated by any
procedure approprate for complete samples. The unconditional cdf F(x) for any
value x > 0 is then

F(x)=py,+ (1 — py) G(x) (18.6.10)

Equations (18.7.6) to (18.7.8) provide an example of such a model. -

Plotting Positions for Censored Data. Section 18.3.2 discusses plotting positions
useful for graphical fitting methods, as well as visual displays of data. Suppose that
among n samples a detection limit or perception threshold is exceeded by water-
quality observations or flood flows r times. The natural estimator of the exceedance
probability g, of the perception threshold is r/n. If the r values which exceeded the

threshold are indexed by i= 1, . . . ,r, reasonable plotting positions approximating
the exceedance probabilities within the interval (0, g,) are
i—a r i—a

Qi-q"(r+l—2a)—;(r+l—2a) (18.6.11)

where a is a value from Table 18.3.1. For r > (1 — 2a), g; is indistinguishable from
(i — a)/(n+ 1 — 2a) for a single threshold. Reasonable choices for a generally make
little difference to the resulting plotting positions.5®

The idea of an exceedance probability for the threshold is important when detec-
tion limits change over time, generating multiple thresholds. In such cases, an excee-
dance probability should be estimated for each threshold so that a consistent set of
plotting positions can be computed for observations above, below, or between
thresholds.5%% For example, consider a historical flood record with an h-year histori-



cal period in addition to a complete s-year gauged flood record. Assume that during
the total n = (s + A) years of record, a total of r floods exceeded a perception thresh-
old (censoring level) for historical floods. These r floods can be plotted by using Eq.
(18.6.11).

Let e be the number of gauged-record floods that exceeded the threshold and
hence are counted among the r exceedances of that threshold. Plotting positions
within (g,, 1) for the remaining (s — ¢) below-threshold gauged-record floods are

= R j—a
g=4¢.t(—q,) (s—e-i— 1 —Za) (18.6.12)

for j = 1 through.s — e, where again a is a value from Table 18.3.1. This approach
directly generalizes to several thresholds.®%% For records with an rof only 1 or 2, Rel.
166 proposes fitting a parametric model to the gauged record to estimate g,; these are
cases when nonparametric estimators of g, and g; in Eq. (18.6.11) are inaccurate,*
and MLEs are particularly attractive for parameter estimation.?*!33

Probability-Plot Regression. Probability-plot regression has been shown to be a
robust procedure for fitting a distribution and estimating various statistics with
censored water-quality data.’® When water-quality data is well-described by a log-
normal distribution, available values log [X;)] = . . . =log [X,,] can be regressed
upon ®7![1 — g, fori= 1, . . . , r, where the r largest observation in a sample of
size n are available; and g, are their plotting positions. If regression yields constant m
and slope s, a good estimator of the pth quantile is

x,=10""" (18.6.13)

for cumulative probability p > (1 — r/n). To estimate sample means and other statis-
tics, one can fill in the missing observations as

Xi =10 fori=r+1,...,n (18.6.14)

where y(i)=m+ s ® (1 — ¢g,) and an approximation for @' is given in Eq.
(18.2.3). Once a complete sample is constructed, standard estimators of the sample
mean and variance can be calculated, as can medians and ranges. By filling in the .
missing small observations, and then using complete-sample estimators of statistics
of interest, the procedure is made relatively insensitive to the assumption that the
observations actually have a lognormal distribution.®

18.7 FREQUENCY ANALYSIS OF FLOODS

Lognormal, Pearson type 3, and generalized extreme value distributions are reason-
able choices for describing flood flows using the fitting methods described in Sec.
18.2. However, as suggested in Sec. 18.3.3, it isadvisable to use regional experience to
select a distribution for a region and to reduce the number of parameters estimated
for an individual site. This section describes sources of flood flow data and particular
procedures adopted for flood flow frequency analysis in the United States and the
United Kingdom, and discusses the use of historical flood flow information.




18.7.1 Selection of Data and Sources

A convenient way to find information on United States water data is through the U.S.
National Water Data Exchange (NAWDEX) assistance centers. [For information
:ontact NAWDEX, U.S. Geological Survey (USGS), 421 National Center, Reston,
Va. 22092; tel. 703-648-6848.] Records are also published in annual U.S. Geological
Survey water data reports. Computerized records are stored in the National Water
Data Storage and Retrieval System (WATSTORE). Many of these records (climate
Jata, daily and annual maximum stream flow, water-quality parameters) have been
put on compact disc read-only memories (CD-ROMSs) sold by EarthInfo Inc. (5541
Central Ave., Boulder, Colo. 80301; tel. 303-938-1788; fax 303-938-8 183) so that the
Jata can be accessed directly with personal computers. The WATSTORE peak-flow
records contain annual maximum instantaneous flood-peak discharge and stages,
and dates of occurrence as well as associated partial duration series for many sites.
USGS offices also publish sets of regression relationships (often termed state equa-
tions) for predicting flood and low-flow quantiles at ungauged sites in the United
States.

18.7.2 Bulletin 17B Frequency Analysis

Recommended procedures for flood-frequency analyses by U.S. federal agencies are
Jescribed in Bulletin 17B.7 Bulletin no. 15, “A Uniform Technique for Determining
Flood Flow Frequencies,” released in December 1967, recommended the log-Pear-
son type 3 distribution for use by U.S. federal agencies. The original Bulletin 17,
released in March 1976, extended Bulletin 15 and recommended the log-Pearson
lype 3 distribution with a regional estimator of the log-space skew coefficient. Bulle-
lin 17A followed in 1977. Bulletin 17B was issued in September 1981 with correc-
lions in March 1982. Thomas'4? describes the development of these procedures.

The Bulletin 17 procedures were essentially finalized in the mid-1970s, so they did
not benefit from subsequent advances in multisite regionalization techniques. Stud--
ies in the 1980s demonstrated that use of reasonable index flood procedures should
provide substantially better flood quantile estimates, with perhaps half the standard
error.®!+112.162 Bylletin 17 procedures are much less dependent on regional multisite
analyses than are index flood estimators, and Bulletin 17 is firmly established in the
United States, Australia, and other countries. However, App. 8 of the bulletin does
describe a procedure for weighting the bulletin’s at-site estimator and a regional
regression estimator of the logarithms of a flood quantile by the available record
length and the effective record length, respectively. The resulting weighted estimator
reflects a different approach to combining regional and at-site information than that
employed by index flood procedures.

Bulletin 17B recommends special procedures for zero flows, low outliers, historic
peaks, regional information, confidence intervals, and expected probabilities for
estimated quantiles. This section describes only major features of Bulletin 17B. The
full Bulletin 17B procedure is described in that publication and isimplemented in the
HECWRC computer program discussed in Sec. 18.11.

The bulletin describes procedures for computing flood flow frequency curves
using annual flood series with at least 10 years of data. The recommended technique
fits a Pearson type 3 distribution to the common base 10 logarithms of the peak
discharges. The flood flow Q associated with cumulative probability p is then

log (Q,) =X +K,S (18.7.1)



where X and S are the sample mean and standard deviation of the base 10 logarithms,
and K, is a frequency factor which depends on the skew coefficient and selected
exceedance probability; see Eq. (18.2.28) and discussion of the log-Pearson type 3
distribution in Sec. 18.2.3. The mean, standard deviation, and skew coeflicient of
station data should be computed by Eq. (18.1.8), where X; are the base 10 logarithms
of the annual peak flows. Section 18.1.3 discusses advantages and disadvantages of
logarithmic transformations.

The following sections discuss three major features of the bulletin: generalized
skew coefficients, outliers, and the conditional probability adjustment. Expected
probability adjustments are also discussed. Confidence intervals for Pearson distri-
butions with known and generalized skew coefficient estimators are discussed in Sec.
18.4.3. Use of historical information is discussed in Sec. 18.7.4, mixed populationsin
Sec. 18.6.2, and record augmentation in Sec. 18.5.3.

Generalized Skew Coefficient. Because of the variability of at-site sample skew
coefhicients in small samples, the bulletin recommends weighting the station skew
coeflicient with a generalized coeflicient of skewness, which is a regional estimate of
the log-space skewness. In the absence of detailed studies, the generalized skew
coefficient G, for sites in the United States can be read from Plate I in the bulletin.
Assuming that the generalized skew coefficient is unbiased and independent of the
station skew coefficient, the mean square error (MSE) of the weighted estimate is
minimized by weighting the station and generalized skew coefficients inversely pro-
portional to their individual mean square errors:

G — OJIMSE(G,) + G/MSE(G,)
¥~ 1/MSE(G,) + 1/MSE(G,)

(18.7.2)

Here G, is the weighted skew coefficient, G, is the station skew coefficient, and G, is
the generalized regional estimate of the skew coefficient; MSE( ) is the mean square
error of the indicated variable. When generalized regional skew coefficients are read
from its Plate I, Bulletin 17 recommends using MSE(G,) = 0.302.

From Monte Carlo experiments,'*® the bulletin recommends that MSE(G,) be
estimated using the bulletin’s Table 1, or an expression equivalent to

10a+b 1
MSE(G)) = —3 (18.7.3) 4

where
a=—033+008|G,| if |GJ=0.90
=—0.524030G| if |G,J>0.90
b=0.94 —0.26|G,| if  |GJ=1.50 i
=0.55 it |G> 1.50

MSE(G,) is essentially 5/n for small G;and 10 < n < 50. G, should be used in place of
G, in Eq. (18.7.3) when estimating MSE(G,) to avoid correlation between G, and the
estimate of MSE(G,) (Ref. 138). McCuen®® and Tasker and Stedinger!*® discuss the -
development of skew-coefficient maps, and regression estimators of G, and
MSE(G,).

Outliers. Bulletin 17B defines outliers to be ““Data points vs{hi‘ch depart §igr}iﬁcanlly :
from the trend of the remaining data.” In experimental statistics an outlier is often a 3
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rogue observation which may result from unusual conditions or observational or
recording error; such observations are often discarded. In this application low out-
liers are generally valid observations, but because Bulletin 17 uses the logarithms of
the observed flood peaks to fit a two-parameter distribution with a generalized skew
coefficient, one or more unusual low-flow values can distort the entire fitted fre-
quency distribution. Thus detection of such values is important and fitted distribu-
tions should be compared graphically with the data to check for problems.
The thresholds used to define high and low outliers in log space are

X+K,S (18.7.4)

where X and .S are the mean and standard deviations of the logarithms of the flood
peaks, excluding outliers previously detected, and K, is a critical value for sample size
n. For normal data the largest observation will exceed X + K,.S with a probability of
only 10 percent; thus Eq. (18.7.4) is a one-sided-outlier test with a 10 percent signifi-
cance level. Values of K, are tabulated in Bulletin 17B; for 5 = n < 150, K,, can be
computed by using the common base 10 logarithm of the sample size

K, =—0.9043 + 3.345 Vlog (n) — 0.4046 log (n) (18.7.5)

Flood peaks identified as low outliers are deleted from the record and a conditional
probability adjustment is recommended. High outliers are retained unless historical
information is identified showing that such floods are the largest in an extended
period.

Conditional Probability Adjustment. A conditional probability procedure is rec-
ommended for frequency analysis at sites whose record of annual peaks is truncated
by the omission of peaks below a minimum recording threshold, years with zero flow,
or low outliers. The bulletin does not recommend this procedure when more than 25
percent of the record is below the truncation level. Section 18.6.3 discusses other
methods.

Let G(x) be the Pearson type 3 (P3) distribution fit to the r logarithms of the
annual maximum floods that exceeded the truncation level and are included in the
record, after deletions of zero, low outliers, and other events. If the original record

- spanned » years (n > r), then an estimator of the probability the truncation level is
- exceeded is

g, =— (18.7.6)

. Flood flows exceeded with a probability g < g, in any year are obtained by solving
q=ql1 — G(x)] (18.7.7)

- 10 obtain

Ge) =1 —;]q—= 1 —q(") (18.7.8)

A r

‘ Bulletin 17 uses Eq. (18.7.8) to calculate the logarithms of flood flows which will
' be exceeded with probabilities of g = 0.50, 0.10, and 0.01. These three values are
~ used to define a new Pearson type 3 distribution for the logarithms of the flood flows
© which reflects the unconditional frequency of above threshold values. The new Pear-

.. son type 3 distribution is defined by its mean M, variance S2, and skew coeflicient




G,, which are calculated as ‘ ‘

log (Q0.99/ Qo.90)
G,=-25043.12
‘ log ((o.90/Po.50)
log ((s.99/Co.50)
S, = 18.19)
¢ Ko.99 — Kys0 ( ).

= log (Qo.50) — Ko.s0 S,

for log-space skew coeflicients between —2.0 and + 2.5. The Pearson type 3 distribu-
tion obtained with the moments in Eq. (18.7.9) should not be used to describe the
frequency of flood flows below the median @, 5,. Fitted quantiles near the threshold
are likely to be particularly poor if the P3 distribution G(x) fit to the above threshold
values has a lower bound less than the truncation level for zeros and low outliers,
which is thus a lower bound for x.

Expected Probability. A fundamental issue is what a hydrologist should provide
when requested to estimate the flood flow exceeded with probability ¢ = 1/T using
short flood flow records. It is agreed that one wants the flood quantile x, _ , which will
be exceeded with probability g. An unresolved question is what should be the statisti-
cal characteristics of estimators X, _ ,. Most estimators in Sec. 18.2 yield X, _, thatare
almost unbiased estimators of x;_,: ‘

Elx_J=x_, (18.7.10)

and which have a relatively small variance or mean square error. However, an
equally valid argument suggests that one wants X;_, to be a value which in the future
will be exceeded with probability g, so that

PX>%_)~g (18.7.11)

when both X'and X, _ are viewed as random variables. If one had a very long record,
these two criteria would lead to almost the same design value x;_,. With shon
records they lead to different estimates because of the effect of the uncertainty in the
estimated parameters.®'!3127

For normal samples, App. |1 in Bulletin 17B"° (see also Ref. 20) provides formu-
las for the probabilities that the almost-unbiased estimator X, = x + z,s of the 100p
percentile will be exceeded. For p = 0.99 the formula is '

Average exceedance probability for X4 = 0.01 (1 + ﬁ) (18.7.12)

1.16

For samples of size 16, estimates of the 99 percentile will be exceeded with a proba-
bility of 2 percent on average. Bulletin 1 7B notes that for lognormal or log-Pearson
distributions, the equations in its App. 1 | can be used to make an expected probabil-
ity adjustment.

Unfortunately, while the expected probability correction can eliminate the biasin
the expected exceedance probability of a computed T-year event, the corrections
would generally increase the bias in estimated damages calculated for dwellings and
economic activities located at fixed locations in a basin.*!?” This paradox anses
because the estimated 7-year flood is a (random) level computed by the hydrologist
based on the fitted frequency distribution, whereas the expected damages are calcu-
lated for human and economic activities at fixed flood levels. Expected probability
issues are related to Bayesian inference.'?’
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18.7.3 British Frequency Analysis Procedures

: The Flood Studies Report'® contains hydrological, meteorological, and flood rout-

. ing studies for the British Isles. The report concluded that the GEV distribution

¢ provided the best description of British and Irish annual maximum flood distribu-

" tions and was recommended for general use in those countries. The three parameter
P3 and LP3 distribution also described the data well (Ref. 105, pp. 241, 242).

A key recommendation was use of an index flood procedure. The graphically
derived normalized regional flood distributions were summarized by dimensionless
GEV distributions called growth curves. Reevaluation of the original method showed
that the L-moment index flood procedure is to be preferred.®® (See Sec. 18.5.1.) The
report distinguishes between sites with less than 10 years of record, those with 10 to

. 25 years of record, and those with more than 25 years of record (Ref. 105, pp. 14 and
| v 243):
Sites with n < 10 Years. The report recommends a regional growth curve with O
obtained from catchment characteristics (see Sec. 18.5.2), or at-site data extended if
possible by correlation with data at other sites (see Sec. 18.5.3).

. Sites with 10 =< n < 25 Years. Use either the index flood procedure with at-site data
. loestimate Q or, if the return period T < 2, the Gumbel distribution.

" Sites with n > 25 Years. Use either an index flood estimator with at-site data to
estimate Q or, if the return period T < 2n, GEV distribution (see Sec. 18.2.2).

- For T> 500. Use O with a special country-wide growth curve.

18.7.4 Historical Flood Information

Available at-site systematic gauged records are the traditional and most obvious
source of information on the frequency of floods, but they are of limited length.
Another source of potentially valuable at-site information is historical and paleo-
flood records. Historical information includes written and other records of large
floods left by human observers: newspaper accounts, letters, and flood markers. The

. term paleoflood information describes the many botanical and geophysical sources

~ of information on large floods which are not limited to the locations of past human
observations or recording devices.52%134 Botanical data can consist of the systematic
interpretation of tipped trees, scars, and abnormal tree rings along a water course
providing a history of the frequency with which one or more thresholds were ex-
ceeded.”’® Recent advances in physical paleoflood reconstruction have focused on
the use of slack-water deposits and scour lines, as indicators of paleoflood stages, and
the absence of large flows that would have left such evidence; such physical evidence
of flood stage along a water course has been used with radiocarbon and other dating
techniques to achieve a relatively accurate and complete catalog of paleofloods in
favorable settings with stable channels.?

Character of Information. Different processes can generate historical and physical
paleoflood records. A flood leaving a high-water mark, or known to be the largest
flood of record from written accounts, is the largest flood to have occurred in some
period of time which generally extends back beyond the date at which that flood
. occurred.% In other cases, several floods may be recorded (or none at all), because
-, they exceed some perception level defined by the location of dwellings and economic




activities, and thus sufficiently disrupted people’s lives for their occurrence to be
noted, or for the resultant botanical or physical damage to document the event. In
statistical terms, historical information represents a censored sample because only
the largest floods are recorded, either because they exceeded a threshold of perception
for the occupants of the basin, or because they were sufficiently large to leave physical
evidence which was preserved. To correctly interpret such data, hydrologists should
understand the mechanisms or reasons that historical, botanical, or geophysical
records document that floods of different magnitudes either did, or did not, occur.
The historical record should represent a complete catalog of all events that exceeded
various thresholds so that it can serve as the basis for frequency analyses.

Estimation Procedures. A general discussion of estimation techniques with cen-
sored data is provided in Sec. 18.6.3, including plotting positions and curve fitting
based on a graphical representation of systematic and historical flood peaks. Bulletin
17B7 recommends a historically weighted moments procedure. A similar partial
PWM method has been developed.'®® Curve fitting and weighted moments require
that historical flood peaks above the perception level be assigned specific values.
Even when the magnitudes of the few observed historical floods are available, histori-
cally weighted moments are not as efficient as maximum likelihood estimators.*'¥
The value of historical information using maximum likelihood estimation tech-
niques is well-documented.?3.81.133 Maximum likelihood estimation is quite flexible
and allows the historical record to be represented by thresholds that were not ex-
ceeded and by flood events whose magnitude is known only to have exceeded a
threshold, to lie within some range, or which can be described by a precise value.'*

18.8 FREQUENCY ANALYSIS OF STORM
RAINFALL

The frequency of rainfall of various intensities and durations is used in the hydrologic
design of structures that control storm runoff and floods, such as storm sewers,
highway culverts, and dams. Precipitation frequency analysis typically provides rain-
fall accumulation values at a point for a specified exceedance probability and various
durations. Basin-average rainfall values are usually developed from point rainfall by
using a correction factor for basin areas greater than 10 mi? (25.9 km?), as shown in
Fig. 3.9.2,100.103

18.8.1 Selection of Data and Sources

United States precipitation data are published in Climatological Data and Hourly -
Precipitation Data by the National Oceanic and Atmospheric Administration
(NOAA) from their National Climatic Data Center (NCDC); precipitation records
and publications can be obtained directly from the center (NCDC, Federal Building,
Asheville, NC 28801; tel. 704-259-0682; fax 704-259-0876). Climatic data have been
put on CD-ROMs sold by Earthlnfo Inc. (5541 Central Ave., Boulder, Colo. 80301,
tel. 303-938-1788; fax 303-938-8183). NRC'™ discusses the availability and inter- .
pretation of United States rainfall data. Other national and regional agencies publish
their own precipitation records.

The user of precipitation data should be aware of possible errors in data collection
caused by wind effects, changes in the station environment, and observers. Users




1 check data for outliers and consistency. Interpretation of data is needed to
nt for liquid precipitation versus snow equivalent and observation time differ-
Stations submitting data to NCDC are expected to operate standard equip-
and follow standard procedures with observations taken at standard times.'¢°
infall frequency analysis is usually based on annual maximum series or partial
on series at one site (at-site analysis) or several sites (regional analysis). Since
Il data are usually published for fixed time intervals, e.g., clock hours, they
yield the true maximum amounts for the indicated durations. For example,
mnual maximum 24-h rainfalls for the United States are on the average 13
nt greater than annual maximum daily values corresponding to a fixed 24-h
1.9 Adjustment factors are usually employed with the results of a frequency
sis of annual maximum series. Such factors depend on the number of observa-
| reporting times within the duration of interest. (See Ref. 172, p. 5-36).
1other source of data which has been used to derive estimates of the probable
mum precipitation, and to a lesser extent for rainfall frequency analysis, 1s the
Army Corps of Engineers catalog of extreme storms. The data collection and
ssing were a joint effort of the U.S. Army Corps of Engineers and the U.S.
her Bureau. Currently, a total of 563 storms, most of which occurred between
- and 1940, have been completed and published in Ref. 146; see also Refs. 104
[23. There are problems associated with the use of this catalog for frequency
isis. It may be incomplete because the criteria used for including a storm in the
og are not well-defined and have changed. Also, the accuracy in the estimation
¢ storm depths varies.

}.2 Frequency Analysis Studies

Rainfall Frequency Atlas,®® known as TP-40, provides an extended rainfall
iency study for the United States from approximately 4000 stations. The Gum-
istribution (Sec. 18.2.2; see also Ref. 172) was used to produce the point precipi-
n frequency maps of durations ranging from 30 min to 24 h and exceedance
1abilities from 10 to 1 percent. The report also contains diagrams for making
ipitation estimates for other durations and exceedance probabilities. The U.S.
ther Bureau, in a publication called TP-49,'*® published rainfall maps for dura-
sof 2 to 10 days. Isohyetal maps (which partially supersede TP-40) for durations
to 60 min are found in Ref. 46, known as HYDRO-35, and for 6 to 24 h for the
ern United States in NOAA Atlas 2.'® Examples of frequency maps can be found
hap. 3.

‘or a site for which rainfall data are available, a frequency analysis can be per-
ned. Common distributions for rainfall frequency analysis are the Gumbel, log-
rson type 3, and GEV distributions with x < 0, which is the standard distribution
1 in the British Isles.!03

viaps presented in TP-40 and subsequent publications have been produced by
rpolation and smoothing of at-site frequency analysis results. Regional frequency
lysis, which uses data from many sites, can reduce uncertainties in estimators of
eme quantiles (Refs. 15 and 161; see Sec. 18.5.1). Regional analysis requires
ction of reasonably homogeneous regions. Schaefer!?® found that rainfall data in
shington State have CV and y which systematically vary with mean areal precipi-
on. He used mean areal precipitation as an explanatory variable to develop a
ional analysis methodology for a heterogeneous region, thereby eliminating
indary problems that would be introduced if subregions were defined.
Models of daily precipitation series (as opposed to annual maxima) are con-



structed for purposes of simulating some hydrologic systems. As Chap. 3 discusses,
models of daily series need to describe the persistence of wet-day and dry-day se-
quences. The mixed exponent distribution, and the Weibull distribution with k=
0.7 t0 0.8, have been found to be good models of daily precipitation depths on rainy
days, though an exponential distribution has often been used.!?»173

18.8.3 Intensity-Duration-Frequency Curves

Rainfall intensity-duration-frequency (IDF) curves allow calculation of the average
design rainfall intensity for a given exceedance probability over a range of durations.
IDF curves are available for several U.S. cities; two are shown in Fig. 18.8.1.'48 When
an IDF curve is not available, or a longer data base is available than in TP-25 or
TP-40, a hydrologist may need to perform the frequency analyses necessary to con-
struct an IDF curve (see p. 456 in Ref. 20).

IDF curves can be described mathematically to facilitate calculations. For exam-
ple, one can use

_ ¢
e+ f

(18.8.1)

where i is the design rainfall intensity (inches per hour), # is the duration (minutes), ¢
is a coeflicient which depends on the exceedance probability, and e and fare coeffi-
cients which vary with location.!” For a given return period, the three constants can
be estimated to reproduce i for three different ¢’s spanning a range of interest. For
example, for a 1 in 10 year event, values for Los Angeles are ¢ = 20.3, ¢ = 0.63, and
Jf=2.06, while for St. Louis ¢ = 104.7, ¢ =0.89, and /=.9.44.

More recently, generalized intensity-duration-frequency relationships for the
United States have been constructed by Chen'? using three depths: the 10-year 1-h
rainfall (R19), the 10-year 24-h rainfall (R}?), and the 100-year 1-h rainfall (R}%) from
TP-40. These depths describe the geographic pattern of rainfall in terms of the
depth-duration ratio (RT/R1,) for any return period T, and the depth-frequency ratio
(R}%/R)%) for any duration ¢. Chen’s general rainfall IDF relation for the rainfall
depth RT in inches for any duration # (in minutes) and any return period 7 (in years) -
is

a,R}° [x — 1)log(T,/10) + 1] (60)

T —
R (t+ b))

(1882)

where x = (R1%/R1°), T, is the return period for the partial duration series (equal 10
the reciprocal of the average number of exceedances per year), and a,, b,, and ¢, are
coefficients obtained from Fig. 18.8.2 as functions of (R}°/R43) with the assumption
that this ratio does not vary significantly with 7. Chenuses 7,=—1/In (1 — 1/T)t0
relate T, to the return period T for the annual maximum series (see Sec. 18.6.1); for
T>10 there is little difference between the two return periods. The coefficients
obtained from Fig. 18.8.2 are intended for use with TP-40 rainfall quantiles.

For many design problems, the time distribution of precipitation (hyetograph)is -
needed. In the design of a drainage system the time of occurrence of the maximum :
rainfall intensity in relation to the beginning of the storm may be important. Design
hyetographs can be developed from IDF curves following available procedures (se¢

Chap. 3).
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18.8.4 Frequency Analysis of Basin Average Extreme Storm Depths

The stochastie storm transposition (SST) methadology has been developed for very
leww Trequency rainfall {exceedance probabibities less than 1ina 10K, 58T provides
estimales of the annual exceedance probability of the avernge catchment depth,
winch s the storm depth deposited over the catchment of snierest. The estimate 1
hased an reginnalized storm charctenstics and estimation of the joint prohabeding
distnhution of storm characteristics and storm occurrences within a region #5441

Fhe SST method first selects a large cliamatologically homogeneons area (called
the storm cransposition dred). Extreme sterms ol record wathin that area are em-
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ployed to estimate the joint probability distribution of selected storm characteristics
(such as maximum storm-center depth, storm shape parameters, storm orientation,
storm depth spatial variability, etc.). Then, the probability distribution of the posi-
tion of the storm centers within the transposition area is determined. This distribu-
tion is generally not uniform because the likelihood of storms of a given magnitude
will vary across a region.*’ Integration over the distribution of storm characteristics
and storm locations allows calculation of annual exceedance probabilities for various
catchment depths. An advantage of the SST method is that it explicitly considers the
morphology of the storms including the spatial distribution of storm depth and its
relation to the size and shape of the catchment of interest.

18.9 FREQUENCY ANALYSIS OF LOW FLOWS

Low-flow quantiles are used in water-quality management applications including
waste-load allocations and discharge permits, and in siting treatment plants and
sanitary landfills. Low-flow statistics are also used in water-supply planning to deter-
mine allowable water transfers and withdrawals. Other applications of low-flow
frequency analysis include determination of minimum downstream release require-
ments from hydropower, water-supply, cooling plants, and other facilities.

18.9.1 Selection of Data and Sources

Annual-Event-Based Low-Flow Statistics. Sources of streamflow and low-flow data
are discussed in Sec. 18.7.1. The most widely used low-flow index in the United
States is the one in 10-year 7-day-average low flow, denoted Q4o (Ref. 117). In
general, 0, is the annual minimum d-day consecutive average discharge not ex-
ceeded with probability p.

Prior to performing low-flow frequency analyses, an effort should be made to
“deregulate” low flow series to obtain “natural’ streamflows. This includes account-
ing for the impact of large withdrawals and diversions including water- and
wastewater-treatment facilities, as well as urbanization, lake regulation, and other
factors. Since low flows result primarily from groundwater inflow to the stream
channel, substantial year-to-year carryover in groundwater storage can cause se-
quences of annual minimum low flows to be correlated from one year to the next (see
Fig. 9in Ref. 116 or Fig. 2 in Ref. 157). Low-flow series should be subjected to trend
analysis so that identified trends can be reflected in frequency analyses.

The Flow-Duration Curve. Flow-duration curves are an alternative to analysis of
annual minimum d-day averages (see Sec. 8.6.1). A flow-duration curve is the empir-
ical cumulative distribution function of all the daily (or weekly) streamflow recorded
-~ at a site. A flow-duration curve describes the fraction of the time over the entire
* record that different daily flow levels were exceeded. Flow-duration curves are often
used in hydrologic studies for run-of-river hydropower, water supply, irrigation plan-
ning and design, and water-quality management. 3640433312t The flow-duration
curves should not be interpreted on an annual event basis, as is 0, ,, because the
flow-duration curve provides only the fraction of the time that a stream flow level was
exceeded; it does not distinguish between regular seasonal variation in flow levels,
and random vanations from seasonal averages.



18.9.2 Frequency Analysis Methods for Low Flows and Treatment of
Zeros

Estimation of Q,, from stream flow records is generally done by fitting a probability
distribution to the annual minimum d-day-average low-flow series. The literature on
low-flow frequency analysis is relatively sparse. The extreme value type 111 or Weibull
distribution (see Sec. 18.2.2) is a theoretically plausible distribution for low flows.
Studies in Canada and the eastern United States have recommended the three-
parameter Weibull, the log-Pearson type 3, and the two-parameter and three-
parameter lognormal distributions based on apparent goodness-of-fit.2413%.154 Fitting
methods for complete samples are described in Sec. 18.2.

Low-flow series often contain years with zero values. In some arid areas, zero
flows are recorded more often than nonzero flows. Stream flows recorded as zero
imply either that the stream was completely dry or that the actual stream flow was
below a recording limit. At most U.S. Geological Survey gauges there is a lower
stream flow level (0.05 ft3/s) below which any measurement is reported as a zero. This
implies that low-flow series are censored data sets, discussed in Sec. 18.6.3. Zero
values should not simply be ignored, nor do they necessarily reflect accurate mea-
surements of the minimum flow in a channel. Based on the hydraulic configuration
of a gauge, and knowledge of the rating curve and recording policies, one can gener-
ally determine the lowest discharge which can be reliably estimated and would not be
recorded as a zero.

The plotting-position method or the conditional probability model in Sec. 18.6.3
are reasonable procedures for fitting a probability distribution with data sets contain-
ing recorded zeros. The graphical plotting position approach without a formal statis-
tical model is often sufficient for low-flow frequency analyses. One can define visu-
ally the low-flow frequency curve or estimate the parameters of a parametric
distribution using probability-plot regression.

18.9.3 Regional Estimates of Low-Flow Statistics

Regional regression procedures are often employed at ungauged sites to estimate
low-flow statistics by using basin characteristics. If no reliable regional regression
equations are available, one can also consider the drainage area ratio, regional statis-
tics, or base-flow correlation methods described below.

Regional Regression Procedures. Many investigators have developed regional
models for the estimation of low-flow statistics at ungauged sites using physiographic
basin parameters. This methodology is discussed in Sec. 18.5.2. Unfortunately, most
low-flow regression models have large prediction errors, as shown in Fig. 18.5.1,
because they are unable to capture important land-surface and subsurface geological
characteristics of a basin. In a few regions, efforts to regionalize low-flow statistics
have been improved by including basin parameters which in some manner describe
the geohydrologic response of each watershed.®!%!5¢ Conceptual watershed models
can be used to formulate regional regression models of low-flow statistics.!

Drainage Area Ratio Method. Perhaps the simplest regional approach for estima-

tion of low-flow statistics is the drainage area ratio method, which would estimale a
low-flow quantile y, for an ungauged site as

4
Y, = (—A;Z) X, (189.1)

Lt



where x,, is the corresponding low-flow quantile for a nearby gauging station and A,
and A4, are the drainage areas for the gauging station and ungauged site, respectively.
Seepage runs, consisting of a series of discharge measurements along a river reach
c!uring periods of base flow, are useful for determining the applicability of this simple
linear drainage-area discharge relation.''* Some studies employ a scaling factor

(4,/4,)" to allow for losses by using an exponent b < 1 derived by regional regression.
(See Sec. 18.5.2.)

Regional Statistics Methods. One can sometimes use a gauging station record to
construct a monthly streamflow record at an ungauged site using

S() [xG, ) — M(x;)]
S(x;)

\Yhere y(i,J) and x(7, j) are monthly stream flows at the ungauged and nearby gauged
sites, respectively, in month / and year j; M(x;) and S(x;) are the mean and standard
deviation of the observed flows at the gauged site in month i; and M(y,) and S(y,) are
the corresponding mean and standard deviation of the monthly flows at the un-
gauged site obtained from regional regression equations, discussed in Sec. 18.5.2.
Hirsch® found that this method transferred the characteristics of low flows from the
gauged site to the ungauged site.

(i, ) = M(y) +

(18.9.2)

Base Flow Correlation Procedures. When base flow measurements (instantaneous
or average daily values) can be obtained at an otherwise ungauged site, they can be
correlated with concurrent stream flows at a nearby gauged site for which a long flow
record is available.!'*''6 Estimators of low-flow moments at the ungauged site can be
developed by using bivaniate and multivariate regression, as well as estimates of their
standard errors.!* This is an extension to the record augmentation idea in Sec.
18.5.3. Ideally the nearby gauged site is hydrologically similar in terms of topogra-
phy, geology, and base flow recession characteristics. For a single gauged record, if
regression of concurrent daily flows at the two stations yields a model

y=atbx+e with Var (¢€) = 52 (18.9.3)
estimators of the mean and variance of annual minimum d-day-average flows y are

My)=a+ b M(x)

Sy) = b2 S%x0) + 52 (18.9.4)
where M(x) and S%*(x) are the estimators of the mean and variance of the annual
minimum d-day averages at the gauged x site. Base flow correlation procedures are
subject to considerable error when only a few discharge measurements are used to
estimate the parameters of the model in Eq. (18.9.3), as well as error introduced from
use of a model constructed between base flows for use in relating annual minimum
d-day averages. (Thus the model R? should be at least 70 percent; see also Refs. 56
and 144.)

18.10 FREQUENCY ANALYSIS OF WATER-
QUALITY VARIABLES

Inthe early 1980s, most U.S. water-quality improvement programs aimed at obvious
and visible pollution sources resulting from direct point discharges of sewage and



wastewaters to surface waters. This did not always lead to major improvementsin the
quality of receiving waters subject to non-point-source pollution loadings, corre-
sponding to storm-water runoff and other discharges that carry sediment and pollu-
tants from various distributed sources. The analyses of point- and nonpoint-source
water-quality problems differ. Point sources are ofien sampled regularly, are less
variable, and frequently have severe impacts during periods of low stream flow.
Nonpoint sources often occur only during runoff-producing storm events, which is
“when nonpoint discharges generally have their most severe effect on water quality.

18.10.1 Selection of Data and Water-Quality Monitoring

Water-quality problems can be quantified by a number of vanables, including biode-
gradable oxygen demand (BOD) and concentrations of nitrogenous compounds,
chlorophyll, metals, organic pesticides, and suspended or dissolved solids. Water-
quality monitoring activities include both design and actual data acquisition, and the
data’s utilization.!02167 Monitoring programs require careful attention to the defini-
tion of the population to be sampled and the sampling plan.4” A common issue isthe
detection of trends or changes that have occurred over time because of development
or pollution control efforts, as discussed in Chap. 17.

The statistical analysis of water-quality data is complicated by the facts that
quality and quantity measurements are not always made simultancously, the time
interval between water-quality samples can be irregular, the precision with which
different constituents can be measured varies, and base flow samples (from which
background levels may be derived) are often unavailable in studies of non-point-
source pollution. The U.S. National Water Data Exchange provides access to dataon
ambient water quahty, see Sec. 18.7.1. A list of other non-point-source water-quality
data bases appears in Ref. 76.

18.10.2 Frequency Analysis Methods and Water-Quality Data

It is often inappropriate to use the conventional approach of selecting a single design
flow for managing the quality of receiving waters. The most critical impact of pollu-
tant loadings on receiving water quality does not necessarily occur under low flow
conditions; often the shock loads associated with intermittent urban storm-water
runoff are more crtical.” Nevertheless, water-quality standards are usually stated in
terms of a maximum allowable d-day average concentration.'¥” The most common
type of design event for the protection of aquatic life is based on the one in T-year
d-day average annual low stream flow. !0

For problems with regular data collection programs yielding continuous or regu-
larly spaced observations, traditional methods of frequency analysis can be em-
ployed to estimate exceedance probabilities for annual maxima, or the probability
that monthly observations will exceed various values. Event mean concentrations
(EMC) corresponding to highway storm-water runoff, combined sewer overflows,
urban runoff, sewage treatment plants, and agricultural runoff are often well approx-
imated by lognormal distributions,*® which have been a common choice for consti-
tuent concentrations.4” Section 18.1.3 discusses advantages and disadvantages of
logarithmic transformations. Procedures in Sec. 18.3 for selecting an approprate
probability distribution may be employed.

Investigations of the concentrations associated with trace substances in receiving
waters are faced with a recurring problem: a substantial portion of water sample



concentrations are below the limits of detection for analytical laboratories. Measure-
ments below the detection limit are often reported as “less than the detection limit”
rather than by numerical values, or as zero.*” Such data sets are called censored data
in the field of statistics. Probability-plot regression and maximum likelihood tech-
niques for parameter estimation with censored data sets are discussed in Sec.
18.6.3.6061

For intermittent loading problems the situation is more difficult and corresponds
roughly to partial duration series, discussed in Sec. 18.6.1. In the context of urban
storm-water problems, the average recurrence interval (in years) of a design event has

£ been estimated as

1

T=3pCc=cy

(18.10.1)

where N is the average number of rainfall runoff events in a year, C is a constituent
concentration, and the probability P(C = C;) that an observation C exceeds a stan-
dard C, in a runoff event is obtained by fitting a frequency distribution to the
_concentrations measured in observed runoff events.’” This corresponds to Eq.
(18.6.3) of Sec. 18.6.1 with event arrival rate 1 = N. Models such as SWMM (see
Chap. 21) can also be used to estimate T directly.

18.11 COMPUTER PROGRAMS FOR -
FREQUENCY ANALYSIS

Many frequency computations are relatively simple and are easily performed with
standard functions on hand calculators, spreadsheets, or general-purpose statistical
packages. However, maximum likelihood estimators and several other procedures
can be quite involved. Water management agencies in most countries have computer
packages to perform the standard procedures they employ. Four sets of routines for
{lood frequency analyses are discussed below.

U.S. Army Corps of Engineers Flood Flow Frequency Analysis (HECWRC). The
U.S. Army Corps of Engineers has developed a library of 60 FORTRAN routines to
support statistical analysis on MS-DOS personal computers. The library includes
routines for performing the standard Bulletin 17B analyses, as well as general-
purpose functions including general statistics, time series, duration curves, plotting
positions, and graphical display. Information can be obtained by contacting Flood
Frequency Investigations, Department of the Army, COE 51 Support Center, Hy-
drologic Engineering Center, 609 Second St., Davis, Calif. 95616-46897. HECWRC
and other HEC software, with some improvements in the user interface and user
support, are actively marketed by several private vendors. The U.S. Geological Sur-
vey also provides a program for Bulletin 17B analyses (Chief Hydrologist, U.S.
Geological Survey, National Center, Mail Stop 437, Reston, Va. 22092).

British Flood Studies Software. Micro-FSR is a microcomputer-based implemen-
tation of the flood-frequency analysis methods developed by the Institute of Hydrol-
ogy.!% It also contains menu-driven probable maximum precipitation, unit hydro-
graph, and reservoir routing calculations for personal computers running MS-DOS.
The package and training information can be obtained from Software Sales, Institute
of Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire



0OX10 38800, United Kingdom; phone, 0491 38800; telex, 849365 HYDROL G
fax, 0491 32256

Consolidated Frequency Analysis (CFA) Package. The package incorporates FOR-
TRAN routines developed by Environment Canada for flood-frequency analysesin
that country with MS-DOS computers. Routines allow fitting of three-parameter
lognormal, Pearson, log-Pearson, GEV, and Wakeby distributions using moments,
maximum likelihood, and sometimes probability-weighted moment analyses. Capa-
bilities are provided for nonparametric trend and tests of independence, as well as
employing maximum likelihood procedures for historical information with a single
threshold. Contact Dr. Paul Pilon, Inland Waters Directorate, Water Resources
Branch, Ottawa, Ontario K1A 0E7, Canada.

FORTRAN Routines for Use with the Method of L Moments. Hosking” describesa
set of FORTRAN-77 subroutines useful for analyses employing I. moments, includ-
ing subroutines to fit 10 different distributions. Index-flood procedures and regional
diagnostic analyses are included. Contact Dr. J. R. M. Hosking, Mathematical
Sciences Dept., IBM Research Division, T. J. Watson Research Center, Yorktown
Heights, N.Y. 10598. The routines are available through STATLIB, a system for
distribution of statistical software by electronic mail. To obtain the software send
the message ‘“send Imoments from general” to the e-mail address:
statlib@lib.stat.cmu.edu.
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