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Neyman-Scott type cluster point processes have been used in several studies to model temporal rainfall at a 
single location. In this paper we study the applicability of such models with the rainfall thought of as 
instantaneous bursts at the points of the Neyman-Scott process. We find that this class of models does not 
provide adequate fit to some observed rainfall series. We also discuss some estimation problems associated with 
the fitting procedure, and examine the importance and appropriateness of the distributional assumptions made in 
the modeling. 

1. INTRODUCIION may, directly or indirectly, check the assumptions made in the 
Neyman-Scott model. As an illustration, lid-opening data from the 

Hobbs and LocateIll [1978] describe mesoscale rainfall activity MAP3S (Multistate Atmospheric Power Product Pollution Study) 
in cyclonic storms roughly as follows. Synoptic-scale weather acid rain monitoring network are used to study the distribution of 
fronts contain in them large mesoscale regions or rainfall bands, cluster size. 
where precipitation activity is possible. In turn, these bands 
contain moving rain cells, which are points of higher rainfall rates. 
On the basis of a similar physical description, LeCam [1961] 
suggested modeling rainfall at a location by a cluster point process 
having as its underlying primary process the arrival of cyclonic 
storm systems, wgh the secondary process, the one actually 
observed, corresponding to the mesoscale precipitation 

2. Tnvm SCALE CONSISTENCY OF PARAMETER 

ESTIMATES FOR INSTANTANEOUS 

NEYMAN-SCOTF MODELS 

W: ": ..... &c. rainfall process in a simplistic fashion as 
instantaneous bursts of precipitation at the times of events. The 
amounts of precipitation corresponding to each event are called phenomena. Kavvas and Dellcur [1981] suggested a Neyman- 

Scott Poisson cluster process, in which the primary process is a marks, and the overall process is a marked point process. No 
nonhomogeneous Poisson process and where the secondary points specification of the actual relation between rainfall amounts and 
are laid down in an independent and identically distributed the process of rainfall events will be attempted here, and, in fact, 

our results are valid for any such specification. We will follow fashion around the cluster centers of the primary process. 
Rodriguez-Iturbe and coworkers [Rodriguez-Iturbe et al., 1984; Rodriguez-Iturbe et al. [1984], henceforth referred to as RGW, in 
Valdes et al., 1985; Rodriguez-Iturbe et al., this issue] have assuming that the primary process follows a homogeneous 

Poisson process with intensity )•, whereas the cluster of secondary studied different versions of this model, usually made stationary 
events associated with a given primary event has a size described by considering only a short time period each year, such as a 

month, and taking rainfall into account by somehow modeling the by a geometric distribution of parameter p and occurs at temporal 
locations which have exponentially distributed distances from the relation between the point process of rainfall occurrences and the 
location of the primary event. This exponential distribution has precipitation amounts per event. The main approach of the 

previous studies to judging the goodness of the fit of the model parameter I•. This model is applicable to relatively short, and 
therefore approximately stationary, segments of precipitation data. has been to study the consistency of parameter estimates based on 

rainfall amounts subjected to varying amounts of aggregation. In our work we use a separate model for each month. 
Since we usually only have access to hourly data, we do not In this paper we will concentrate on the point process of event 

occurrences for short, stationary periods. On the basis of some of know the exact times of events. However, we can observe whether 
or not there was precipitation (corresponding to at least one event) the numerical results in the work by Foufoula-Georgiou and 
in each time period. Using results from Guttorp [1986a], we base Guttorp [1986], henceforth referred to as FGG, we will present a 
our inference on this binary occurrence series. We fit the model critical assessment of the validity of a class of Neyman-Scott 

models for temporal rainfall. We will look at the consistency of parameters using the method of moments. The observed mean 
and lag one and lag two autocorrelations of the binary series are parameter estimates based on different time scales. The problems 

associated with different estimation procedures will be discussed. 
In particular, we give an explicit recursive formula for computing 
the likelihood of an observed zero-one process indicating presence 
or absence of precipitation in each time interval. We will 
highlight the sensitivity of one estimation method to different 
distributional assumptions. Finally, we discuss some ways one 
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set equal to their theoretical counterparts. A detailed analysis of 
two data sets, together with a Monte Carlo study of the accuracy 
of the estimation procedure, can be found in the work by FGG. 
We used six different aggregation scales, ranging from 1 to 24 
hours. Here we show one example of the results. Data from Sea- 
Tac airport in Washington for the month of December, 
1965-1982, yielded the parameter estimates in Table 1. 

There is systematic variation of the parameter estimates with 
the discretization interval A. This was found for all months in 

data from both Sea-Tac and Denver. Since the problem could be 
associated with the fitting procedure, we applied the procedure to 
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TABLE 1. Parameters of an Instantaneous Neyman-Scott Model 
Fitted to Sea-Tac Data for December, 1965-1982. 

A in days: 
1/24 1/12 1/6 1/4 1/2 1 

1.25 0.98 0.81 0.75 0.63 0.68 
0.025 0.055 0.083 0.098 0.202 0.316 
8.790 8.452 5.374 4.224 1.934 1.772 

, " d simulated data from Neyman-Scott processes with a wide range of where q=l-p, dj =exp(-[•bj), fj=exp(-[•aj) Cj=Y'.i=j(fi- i), 
parameter values. An example is shown in Table 2. and Cn+• = 0. Furthermore, the likelihood L (•,p, [•) from the 

Since there is no indication in the simulation study of the observed binary series can be computed recursively using the fact 
systematic variation of parameter estimates with A seen in the that 

rainfall data, we conclude that the instantaneous-burst Neyman- P(y 1 x) = P(y ox) - P(y 0 x) Scott model is not describing the data well. Furthermore, the 

appealing physical interpretation of the components of the model, where y and x are arbitrary sequences of zeros and ones, the dot 
identifying the primary process with the frontal systems and the (.) stands for an arbitrary symbol (a zero or a one), and P is the 
secondary process with the rainbands, is untenable, since these probability measure of the binary series for given values of the 
physical processes do not change with the discretization scale. parameters 3., p and [•. In other words, the probability of the 
Valdes et al. [1985] found similar systematic variation of sequence y, followed by a one, and then followed by the sequence 
parameter estimates when fitting a particular case of this model to x, can be computed when one knows the probability of the 
data simulated from the space-time model of Waymire et al. sequence y, followed by any single event, and then the sequence 
[1984]. x, as well as the probability of the sequence y, followed by a zero, 

and then followed by x. The procedure is to take the given 
3. ESTIMATION PROBLEMS FOR INSTANTANEOUS sequence of zeros and ones, transform its probability into a linear 

NEYMAN-SCOTr MODELS 
combination of probabilities of sequences only involving the zero 

The general problem of parameter estimation for point and the dot, which subsequently can be expressed in terms of • 
processes has been studied in the statistical literature [e.g., evaluated at sets of the form t,d(kiA, liA) for integers k,. and lt. An 
Brillinger, 1978; Ogata, 1978; Kutoyants, 1984]. However, the example of this procedure is given in the appendix of FGG. 
application to particular models is often far from straightforward. The resulting likelihood will now have to be optimized 
In this section we will discuss two estimation methods, maximum numerically. For a large data set the resulting likelihood function 
likelihood and the method of moments, each of which has its own (which, of course, is just the probability of the observed sequence, 
problems. viewed as a function of the unknown parameters) is a complicated 

expression which may require considerable computing time to 
3.1 Maximum Likelihood Estimation optimize. One has to evaluate a linear combination of 2 v0) terms 

of the form given in the expression for log •(A ) above, where v(1) 
The method of maximum likelihood is well respected in is the number of rainy time intervals (e.g., hours or days) in the 

classical statistical theory, since it yields asymptotically efficient data. For small data sets the method of maximum likelihood 
½stimators. Similar results have been obtained for maximum should be used because of its higher efficiency, rather than the 
likelihood estimation in stochastic processes [Heyde, 1978]. It is method of moments discussed below. In the data set previously 
in principle possible to fit the binary occurrence series using discussed in Table 1, with 13,392 hourly observations, we were 
maximum likelihood. In order to do so, we need two simple unable to compute the maximum likelihood estimates. 
results. Let •(A ) denote the probability of no points of the 
continuous time Neyman-Scott process N falling in the set A. 3.2 Numerical Problems With the Method of Moments 
Suppose that A is of the form t,d•'(at, b•) where b•<a•+i. 

log •(A ) =-X.{b,, + q•(bj-aj) - •- log j=l j=O qCj+l+pf j+l 

- • log (Cj+,-dj)+dj log l+q(Cj+•-dj)/fj } 

When the form of the likelihood is too complicated, one is 
forced to try a different estimation method which yields simpler 
expressions for the estimates. The method of moments often has 
this property. One simply equates expressions for theoretical 
moments to estimates of these moments until there are enough 
equations to solve for the unknown parameters. Generally, one 

TABLE 2. Mean and Standard Deviation of Parameter Estimates 

From 500 Replicates of a Neyman-Scott Model 

A in days: 
1/24 1/12 1/6 1/4 1/2 1 

mean, •, 0.105 0.103 0.102 0.1 02 0.102 0.101 
sd, • 0.029 0.012 0.009 0.009 0.009 0.009 

mean,/• 0.050 0.051 0.051 0.052 0.052 0.080 
sd,/• 0.013 0.007 0.009 0.011 0.017 0.056 

mean, • 5.144 5.081 5.027 5.027 5.083 4.601 
sd, [• 1.671 0.701 0.478 0.479 0.690 1.824 

Parameters are: ),=0.10; p =0.05; [5=5.0. 
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tries to use low-order moments or product moments for the chemical analyses need to be made on the samples, the data are 
equations, since high-order moments are difficult to estimate collected in samplers which open only when it rains. Data from 
accurately. Naturally, the simplicity of the method has a price: the the MAP3S network station at Whiteface Mountain, New York, 
method of moments estimates typically have larger variance than (described by Guttorp, [1986b]) contain for each event the 
the maximum likelihood estimates. In large data sets this may not number of lid openings. Taking these to correspond (at least 
matter too much, since then the variance of the moment estimates roughly) to cluster events, we observed an average of 11.7 
would berelatively small. openings per event, with a standard deviation of 14.6. It is 

Since we have three parameters, )c, [•, and p, in the interesting to note that this average is similar in size to those 
instantaneous Neyman-Scott model, we use the mean and the lag reported by FGG and RGW, although the data of the latter are 
one and lag two autocorrelations for the fitting. A major problem hourly observations rather than event-based observations. The size 
with using the lag two autocorrelation (r 2) is that it often is quite of the standard deviation immediately rules out. the Poisson 
small, especially when A is large. Consequently, one may distribution, which has a variance equal to its mean. The estimated 
frequently obtain negative estimates of this parameter. Negative standard deviation from a geometric distribution is 11.2, and a 
parameter values are impossible under the model (cf. FGG), and Z2-test rejects the geometric distribution. There are too many 
the resulting equations have no admissible solution. Furthermore, extreme events with either very few or very many openings. 
the derivative of r 2 with respect to 3, is found to be very small for Hence a Neyman-Scott-type model for these data will have to use 
a large range of values of [•. Thus the estimates may be quite a more complicated cluster size distribution than Poisson or 
unstable, in that a small change in an empirical moment estimate geometric. 
may lead to a large change in the estimated parameter value. This A natural candidate is the negative binomial d•^stribution [cf. 
is one reason for the high variability of the method of moment Johnson and Kotz, 1969, chap. 5]. This is a two-parameter 
estimator of [•, even for the simulated data in Table 2. distribution, which allows for added flexibility in fitting. The 

The method of moments is sometimes praised for the quality of geometric is a special case. There is a natural link between the 
preserving the observed low-order moments, something that Poisson, geometric, and negative binomial distributions. The latter 
presumably is desirable for a model which is intended as the input two are derived from the former by suitable randomization of the 
to a hydrological simulation program. On the other hand, Poisson mean. Thus if one regards the formation of secondary 
empirical moments have large variability, and it is more important events as generated by a Poisson mechanism, one obtains a 
to validate the structure of the model against data than to choose geometric distribution of cluster size by assuming that each storm 
some particular empirical moments and preserve these. An draws its mean cluster size from an exponential distribution. The 
advantage with the maximum likelihood estimates is that they negative binomial is obtained by instead drawing the mean cluster 
automatically provide estimates of the low-order moments by size from a gamma distribution. Fitting a truncated negative 
plugging the parameter estimates into the theoretical formulae. binomial (excluding zeros) to the lid-opening data gave good 
Serious discrepancies of the maximum likelihood estimates of agreement (the P-value is 0.17 for a Z2-test). The estimated 
low-order moments from corresponding sample moments cast gamma shape parameter was 0.47, corresponding to a density with 
doubt over the validity of the model. a tendency to give more small events than the exponential 

The sensitivity of the equations defining the method of distribution (corresponding to a geometric cluster size). In 
moments estimates is also illustrated in a discussion by FGG. Two addition, the fitted gamma density was more spread out more than 
methods of fitting an instantaneous bursts Neyman-Scott model the fitted exponential, so that more large events would be 
are compared, yielding models with very similar moments but expected as well. 
with quite different estimated parameter values. This puts severe 
strains on the physical interpretability of the parameters and 
illustrates further the need for independent checking of the 
components of the stochastic model that is being fitted. 

3.3 Sensitivity to Choice of Cluster Size Distribution 

4. DISCUSSION 

A stochastic model that is based on a conceptualization of the 
physical mechanism governing the phenomenon under study 
should have some components, at least, with physical 
interpretation. This is particularly important if the model is to be 

The choice of distribution of the number of events in a cluster used as input to studies of complex systems, as is often the case in 
has largely been a matter of mathematical convenience. In the hydrology, since deviations from the physical structure of the 
hydrological literature, either the geometric or the Poisson input to the system may have quite unforeseen effects on the 
distribution has been assumed. The Poisson assumption allows output. It is not enough to simply preserve a few empirical 
Smith and Karr [1985] to develop maximum likelihood estimates moments. Rather, the model and its conceptual basis must be 
for a continuously observed Neyman-Scott process. The 
geometric assumption, which is more common, is used in this 
paper to obtain a closed form for the likelihood of the binary 
series discussed previously. We will relate these assumptions later 
in this section. 

An example given by FGG shows how extremely sensitive 
parameters like the expected rainfall amounts in each cluster 
member and the rate of events, are relative to the specific choice 
of distribution for the cluster size. Ideally, observations of the 

validated. 

In the case of the instantaneous Neyman-Scott model discussed 
in this paper, the temporal distribution of storm front arrivals and 
the size of clusters are parameters of the model, which could, at 
least in principle, be determined from data such as satellite and/or 
radar measurements. Efforts in this directions would be beneficial 

in uncovering structural properties of the actual precipitation 
processes that can be very useful in the stochastic model building. 
The results discussed in section 2 indicate that the particular 

cluster members should be used to determine the distribution of version of the stochastic model studied does not have a physical 
cluster size. Such observations have not usually been available to basis. There are at least three different possible explanations. 
the hydrological community. However, in acid rain research it is First, the structure of the conceptual model for the underlying 
often the case that observations are made based on events, unobserved mechanism may be incorrect. Second, the simplistic 
corresponding to storm fronts passing over a station. Because view of instantaneous bursts of rainfall may be incorrect. Third, 
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