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A Markov Renewal Model for Rainfall Occurrences 
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A probabilistic model for the temporal description of daily rainfall occurrences at a single location is 
presented. By defining an event as a day with measurable precipitation the model is cast into the 
discrete-time point process framework. In the proposed model the sequence of times between events is 
formed by sampling from two geometric distributions, according to transition probabilities specified by a 
Markov chain. The model belongs to the class of Markov renewal processes and exhibits clustering 
relative to the independent Bernoulli process. As a special case, it reduces to a renewal model with a 
mixture distribution for the interarrival times. The rainfall occurrence model coupled with a mixed 
exponential distribution for the nonzero daily rainfall amounts was applied to the daily rainfall series for 
Snoqualmie Falls, Washington, and was successful in preserving the short-term structure of the oc- 
currence process, as well as the distributional properties of the seasonal rainfall amounts. 

1. INTRODUCTION 

Point process theory has been widely used to model the 
stochastic structure of short-term rainfall [cf. Kavvas and Del- 
leur, 1981; Gupta and Waymire, 1979; Waymire and Gupta, 
1981a, b; Waymire et al., 1984; Smith and Karr, 1983, 1985]. 
Rainfall data are usually available in the form of cumulative 
amounts over disjoint equispaced time intervals. In adapting 
the continuous-time point process theory [cf. (finlar, 1975; 
Cox and Lewis, 1978; Cox and lsham, 1980] to modeling 
short-term rainfall, two approaches can be followed. The first 
is to define an "event" as a day with measurable precipitation 
and develop discrete-time point process models to describe the 
probabilistic structure of the sequence of rainy and dry days. 
Such a probabilistic model is proposed in this paper. The 
second approach is to assume the existence of an underlying 
continuous-time rainfall occurrence process whose outcome is 
only observed as the integral of the continuous process over 
the given sampling interval. Under the second approach, one 
tries to infer the properties of the underlying continuous-time 
process from the observed discrete data. Results in this direc- 
tion have been reported by Rodri•tuez-lturbe et al. [1984], 
Valdes et al. [1985], and Foufoula-Geor•tiou and Guttorp 
[1986]. The main conclusion of these studies is that the in- 
ferred description of the underlying process depends on the 
time scale at which the fitting of the model is made. This poses 
limitations on the model in terms of inability to extrapolate at 
other time scales and inability to infer properties of the un- 
derlying rainfall-generating mechanism based on the sampled 
realizations. In addition, estimation problems arise when ob- 
servations over relatively long sampling intervals, such as 
days, are used to estimate the parameters of continuous-time 
models [Foufoula-Geor•tiou and Guttorp, 1986]. 

The daily rainfall occurrence process has been extensively 
studied over the past two decades. The only discrete-time 
models investigated to date are Markov chains (see, for exam- 
ple, Gabriel and Neumann [1962]), the discrete autoregressive 
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moving average models (DARMA) [Chang et al., 1984], and a 
discrete-time alternating renewal model of [Galloy et al., 
1981]. Markov chains have been found, in general, to be inad- 
equate to model the clustering dependencies present in daily 
rainfall occurrences. Models from the DARMA family [Jacobs 
and Lewis, 1978] were used by Chang et al. [1984], who re- 
ported satisfactory results in modeling daily rainfall oc- 
currences in Indiana. In our view the main disadvantage of the 
DARMA models is the lack of physical motivation for the 
model structure and the discontinuous memory they exhibit 
[cf. Keenan, 1980]. On the other hand, point process theory 
permits more elegant mathematical formulations of intuitively 
appealing dependence properties of the process, such as the 
conditional intensity function or the index of dispersion, which 
also provide measures of clustering. Recently, Smith [1987] 
has proposed a new family of discrete point process models for 
daily rainfall occurrences. Theoretical and empirical compari- 
sons of those models (termed Markov Bernoulli models) with 
the class of models proposed herein would be worth investi- 
gating. 

Daily rainfall occurrences are the result of the interaction of 
several rainfall-generating mechanisms. For example, the first 
rainy day in a wet period may be the result of a frontal storm 
passing over a region, whereas subsequent rainy days in the 
same wet period may be considered secondary events. In that 
sense, times between events may come from different probabil- 
ity distributions, for instance, one with a small mean and coef- 
ficient of variation for the secondary events and one with a 
large mean and coefficient of variation for the primary events. 
The sequence of event types is governed by transition prob- 
abilities with higher probabilities of having secondary events 
after a primary event or after a small number of secondary 
events. In the model proposed in this paper the times between 
daily rainfall occurrences are sampled from two different prob- 
ability distributions (this is called a two-state process) which 
we assume to be geometric. The transition from one interarri- 
val type (or event type) to the other is governed by a Markov 
chain. This model belongs to a class known as Markov re- 
newal models [cf. (finlar, 1975; Cox and Lewis, 1978]. Markov 
renewal processes are, in general, nonrenewal, a nomenclature 
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Fig. 1. Schematic representation of a daily rainfall process and 
definition of the {Y•}, {Zi}, and {Xi} series. Note that the process 
starts at an arbitrary event. { Y•} is the series of the nonzero daily 
rainfall amounts, {Z•} is the binary series of rain-no rain, and {X•} is 
the series of interarrival times. 

that may at first seem contradictory. The term Markov re- 
newal refers to the conditional dependence of the present state 
(interarrival type) on the previous state only and not on states 
before that. By contrast, for a renewal process (which results 
as a special case of the Markov renewal process) the present 
state is independent of all previous states. 

Apart from the intuitive appeal that discrete rainfall 
amounts represent the combined effect of several underlying 
mechanisms, a justification for using a mixture model may be 
provided by the form of the cumulative distribution function 
F(x) of the interarrival times. For a geometric distribution 
with parameter p the log-survivor function (ln (1- F(x))) of 
the intervals is a straight line with slope In (1- p). Log- 
survivor functions of times between events at several stations 

located throughout the United States [Foufoula-Georgiou and 
Lettenrnaier, 1986] suggest that the interarrival times come 
from two different geometric distributions. It should be noted, 
however, that graphical identification of mixtures is extremely 
difficult, in general, [cf. Leytharn, 1984] and becomes even 
harder for discrete data. 

The general class of Markov renewal processes, to which 
the proposed discrete-time point process model proposed be- 
longs, were introduced by Smith [1955] and were later studied 
by Pyke [1961a, b] and Cox [1963]. An extensive bibli- 
ography of theoretical developments and applications of 
Markov renewal processes is given by Teugels [1976]. 
Markov renewal processes have a flexible dependence struc- 
ture. It will be seen later that Markov chains, Markov pro- 
cesses, renewal processes, and alternating renewal processes 
[cf. (,7inlar, 1975] are all special cases of the general Markov 
renewal process. In order to illustrate how our model differs 
from a Markov chain we briefly note that the probability of 
having a rainy day does not depend on the condition (rain-no 
rain) of the previous day but rather on the number of days 
since the last rain. Within a rainy period (consecutive rainy 
days), however, our process behaves as a Markov chain. 

The emphasis of the work presented in this paper is on the 
modeling of the occurrence process. Others [e.g., Woolhiser 
and Roldan, 1982] have addressed the modeling of event scale 
rainfall amounts. Although this paper is concluded with an 
example in which both the occurrences and amounts are mod- 
eled, the amounts modeling part closely follows the work of 
others. It is included primarily for completeness and to allow 
assessment of the performance of the occurrence model as it 
affects the modeling of cumulative (seasonal) amounts. 

2. RAINFALL OCCURRENCE MODEL 

Consider the daily rainfall process schematically presented 
in Figure 1. Let { Y•) denote the series of nonzero daily rainfall 

amounts, {Xi} denote the series of times between events (in- 
terarrival times), and {Zi) denote the binary series of zeros 
and ones, zeros for dry days and ones for wet days. Rainfall 
modeling at the event scale is best performed in two steps: the 
occurrence of rainfall is modeled first, followed by the mod- 
eling of the amounts; finally, the two models are superim- 
posed. 

Our rainfall occurrence model describes the sequence of in- 
terarrival times {Xi). Useful properties of the binary series 
{Zi), such as transition probabilities between rainy and dry 
days, are subsequently derived. The model of interarrival 
times is a discrete-time Markov renewal model. A formal defi- 

nition of a Markov renewal r•rocess i'n continuous time is 
given by (,7inlar[1975, p. 313]: 

Definition. For each n e N, let a random variable S, take 
on values in a countable set of states E = {1, 2, ..-) and a 
random variable T• take on values in R + = [0, + oo) such that 
0 = T O < T• < T: <.... The stochastic process (S, T) = 
{S,, T•}, n e N is said to be a Markov renewal process with 
state space E provided that 

P{S,+ • = j, T,+ • -- T• < tl$o, '", $.;ro, '", r.} 

= P{S.+• :j, T.+, -- T. _< IS,,} (1) 

for all n e N, j e E, and t e R +. 
For the rainfall occurrence model the random variable S n is 

given the interpretation of the "type" (or "state") of an interar- 
rival time and takes on values from the binary set E -- { 1, 2}. 
This is a two-state Markov renewal model where the two 

types of interarrival times (type 1 and type 2) are sampled 
according to a Markov chain with state space E. Let (X•) 
denote the type of the ith interarrival time, that is, (X•) = 1, 2 
for type 1 and type 2, respectively. The transition probability 
matrix of the Markov chain is 

where 

] 1 -- a• (2) 
a2 

a• = P{<X,) :jI<X,_x> =j} j = 1, 2 (3) 

For example, given that the interarrival time X•_ • is of the 
type 1, the probability that X i will also be of type 1 is ax. 
Associated with the Markov chain are the limit or equilibrium 
probabilities 

e• = limP{<X,):j} j = 1, 2 (4) 

which are the unconditional probabilities of any interval Xi 
being of type 1 or type 2. Note that e 2 = 1- ex. From the 
theory of Markov chains [cf. Cox and Miller, 1965] it is 
known that 

1 w a2 
(5) e• - 2 -- a• -- a 2 

Note that if the conditional probabilities a• and a2 are equal 
to the unconditional probabilities e x and e: (in that case, ax 
q-a 2 -- 1), the process of the types of interarrival times re- 

duces to a renewal process. 
To complete the model description, we need to specify what 

the type 1 and type 2 interarrival times mean. An interarrival 
time X i is said to be of type 1 (or type 2) if it is sampled from a 
probability distribution f•(x) (or f:(x)). For the rainfall oc- 
currence model these distributions have been assumed geo- 
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metric with parameters p• and P2, respectively. One can write 
therefore that 

f•(x,)=P{X,=x,l(X,)=j}=pfil-p) •"-• j= 1,2 (6) 

The assumption of geometric distributions is supported by the 
data analysis presented later in this paper and by Foufoula- 
Georqiou [1985]. In the rest of this section the statistical 
properties of intervals and counts for the proposed two-state 
Markov renewal model are derived. 

2.1. Interval Properties 

The moment-generating function of the interarrival times of 
a two-state Markov renewal model is given as 

½(z) = e•½•(z) + e2½2(z) (7) 

where ½fiz), j - 1, 2 is the moment generating function of the 
probability distribution of the type j intervals. For a geometric 
distribution with parameter p, 

o 

pz 
½(z) = (8) 

1 - (1 - p)z 

[cf. Parzen, 1960]. Moments of the interarrival times are then 
obtained from 

tike(z) I (9) E(X k) -- (-- 1)k dJ k z=l 
For instance, the mean, variance, and survivor function of the 
interarrival times are given by 

E(X) = e•/p• + e2/p2 

Var (X) = e•(1 -- p•)/p•2 + e2(1 _ p2)/p22 

+ e•e2(1/p• -- l/p2) 2 

(10a) 

(10b) 

R(x) = e•(1 - p•)•' q- e2(1 -- p2) x (10c) 

It is important to note here that the proposed model admits 
coefficients of variation of interarrival times with values less or 

greater than one. In contrast, both the continuous-time 
Neyman-Scott [e.g., Kavvas and Delleur, 1981] and the doubly 
stochastic Poisson [Smith and Karr, 1983] processes have co- 
efficients of variation always greater than one. In addition, it 
can be shown after some algebra that the coefficient of vari- 
ation of the proposed Markov renewal model is always great- 
er than 1 - m, where m = 1/E(X) is the rate of occurrence of 
the process. This observation suggests that the proposed pro- 
cess is always overdispersed (more clustered) than an indepen- 
dent Bernoulli process with the same rate of occurrence, which 
would have a coefficient of variation equal to 1 - m. This is a 
desirable property since an analysis of several rainfall series 
[Foufoula-Georgiou and Lettenmaier, 1986] suggests that most 
daily rainfall occurrence series are overdispersed relative to 
the Bernoulli process. 

The autocorrelation function of the interarrival times of the 

two-state Markov renewal process takes the form [cf. Cox and 
Lewis, 1978, p. 196] 

p•, = cff' (11) 

where 

e•e2(1/p • -- l/p2) 2 
C 

ex(1 -- pl)/Pl 2 q- e2(1 -- p2)/P2 2 q- eae2(1/p • -- l/P2) 2 

fi = ax + a 2 -- 1 (13) 

Consequently, the spectral density function of the intervals is 

1( ficosco--fi2 to.) f+ (c_o) = - 1 + 2c fi2 0 _< c_o _< •z (14) •z 1 + -- 2fi cos 

Note that the autocorrelation function of the intervals be- 

comes zero (renewal process) for a• + a 2 = 1, in which case 
the Markov chain of the type of intervals has conditional 
probabilities of occurrence equal to the unconditional ones, 
that is, it reduces to a Bernoulli process. Without loss of gen- 
erality, we can assume that the type 1 interarrival times are 
sampled from the geometric distribution with the smaller 
mean. Then, for persistent structures (clustering) the con- 
ditional probability of being in state 1 is greater than the 
unconditional probability of (5), resulting in a• + a: > 1. In 
this case, the interarrival times have a positive autocorrelation 
function decaying with a rate (a• + a 2 -- 1). 

2.2. Count Properties 

Let 

Z•, = I(Y• > e) k •_ 0 (15) 

be the binary series of zeros and ones, where I(E) is an index 
function taking the value of 1 if E occurs and zero otherwise, 
and where zeros (ones) correspond to days with cumulative 
rainfall less (greater) than e. The small quantity e (consistent 
with the previous definition of an event) has been taken equal 
to 0.01 inches. In this section we compute the statistical 
properties of the Z• series in terms of the four parameters a•, 
a2, p•, and P2 of the Markov renewal model. The rate of 
occurrence of the Z• process is 

p•p2(2 -- a• -- a2) 
m = P{'..} = P{Z• = 1} = (16) 

p•(1 -- a•) + p•_(1 -- a2) 

One of the most descriptive statistical properties of a 
continuous-time stationary point process is its conditional in- 
tensity function [cf. Cox and Lewis, 1978, p. 73]. An analogous 
property for a discrete-time point process may be defined as 

h•, = P{Z,+•, = llZ,- 1} = P{Z•, = llZ o - 1} (17) 

k= 1,2,... 

which essentially defines a sequence of conditional probabil- 
ities of occurrence (note that the last equality is due to station- 
arity). The interpretation of h• with respect to clustering re- 
mains the same as in the continuous case; values of h• greater 
than the constant (unconditional) probability of occurrence m 
imply that the chance of having an event at time t + k due to 
an event at time t is greater than the chance of having an 
event at any arbitrary time. Below we give the expression for 
h•,. 

Proposition. The conditional probability of occurrence hk 
of the discrete-time two-state Markov renewal process de- 
scribed above takes the form 

h• -- m + A W •- 

where 

k= 1, 2, --- (18) 

A = eapa + e2P 2 -- m 

W = 1 -- p•(1 -- a•)- p•_(1 -- a2) 

(19) 

(20) 

(12) An outline of the proof is given in Appendix A. 
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Fig. 2. Comparison of empirical (solid lines and open triangles) and theoretical (dashed lines) functions of the Markov 
renewal model fitted to daily rainfall occurrences at Snoqualmie Falls, Washington. G versus f is the normalized spectrum 
of counts g +'(to) versus frequency factor f= coT/2r•, R,, versus x is the log-survivor function In R(x) versus interarrival time 
x (days), and V• versus k is the variance of counts V• versus interval length k (days). For more details on these functions see 
text. 

It is particularly important to note in (18) that since A is 
positive and 0 < W < 1, the conditional intensity function de- 
creases geometrically to the constant intensity rn of the pro- 
cess. This implies that the Markov renewal process exhibits 
clustering. The shape of the conditional intensity function is 
only indicative of the presence, but not the type, of clustering. 
However, the fact that the coefficient of variation of the in- 
terarrival times is always greater than the coefficient of vari- 
ation of the Bernoulli process suggests that the form of clus- 
tering is overdispersion relative to the Bernoulli process. This 
is the type of clustering found in most daily rainfall occurrence 
series [e.g., Foufoula-Georgiou, 1985]. 

Having an expression for the conditional intensity function, 
all the other properties of the counting process can be readily 
obtained. The expected number of events within a period of k 
time units (for example, days) after the occurrence of an event 
is given as 

•, W•,+ X_ l 
H•,=mk + A • Wi=mk + A • k= 1, 2,..- (21) 

i=x W--1 

Notice that as k--} oo, H•,--mk--}O, where mk is the expected 
number of events in any one period of length k time units. The 
variance of counts, that is, the variance of the number of 
events in a period of k time units after the occurrence of an 
event, is 

• =mk - m2k 2 + 2m y'. (k - i)h i (22) 
i=l 

where h i is given by (18). Finally, the index of dispersion is 
I•, -- V•/rnk. Note that the above formulae for V• and I k apply 
to any discrete-time point process with conditional intensity 
function hk (see also Guttorp [1986]). 

The spectrum of counts, g+(ro), of the two-state Markov 
renewal process is 

m( g+(ro)=-- 1--m--2A W -- cos o) ) 1--2Wcosro+ W 2 0<ro<r• 
(23) 

and is computed by simply taking the Fourier transform of 
the covariance of counts cn = E(ZtZ t +t•) - rn(h•, -- rn) = 
rnAW•, - x. The normalized spectrum of counts is defined as 
g +'(to) = r•g + (ro)/rn and is usually plotted (see Figure 2) versus 
a frequency factor f-roT/2r•, where T is the total length of 
observation. 

3. METHODS FOR FITTING THE MARKOV 

RENEWAL MODEL 

The discrete-time Markov renewal model developed in the 
previous section has four parameters' ax, the transition prob- 
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ability from type 1 to type 1 interval; a 2, the transition prob- 
ability from type 2 to type 2 interval; p•, the parameter of the 
geometric distribution of the type 1 intervals; and P2, the 
parameter of the geometric distribution of the type 2 intervals. 
Note that the interarrival times cannot be classified directly as 
belonging to type 1 or type 2 by observation of the series of 
daily rainfall events. Only probabilistic classification is possi- 
ble. Thus the transition probabilities a• and a 2 must be esti- 
mated together with the parameters of the two geometric dis- 
tributions p• and P2. In the following section, maximum likeli- 
hood and method of moments estimators for the parameters 
aa, a2, Pa, and P2 are studied. 

3.1. Maximum Likelihood Estimation 

The observations to which the Markov renewal model is 

fitted are the interarrival times X i, that is, the sequence of 
lengths of dry periods between consecutive rainy days. Let 
0 = (a•, a 2, p•, P2) denote the vector of unknown parameters 
and (x•, x2, .-., x,) the sampled sequence of n interarrival 
times. 

Proposition. The likelihood function of the two-state 
Markov renewal model takes the form 

L(OIx•, ..., x.) = EB•PB2P, ..., B.' (24) 

where the matrices E, B•, ..., B, are functions of the four 
parameters of the model and the known sampled data: 

( l-a2 1-a• ) (25a) E = (ell -- el) = '2 -- a• -- a 2 2 -- a• -- a 2 

B, = (p•(1-- p•)X'-• 0 ) 0 P2(1 -- p2) x'- • i = 1, ..., n (25b) 

B,'= B,(i) (25c) 
and P is the transition probability matrix of the Markov chain 
as defined in (2). The proof of the above proposition is 
sketched in Appendix B. 

Note that for independent interarrival times the process re- 
duces to a renewal process with a mixed geometric distri- 
bution for the interarrival times. In this case, the log likeli- 
hood function is simply 

E(01x•, '", x.) = • In [e•p•(1 -- pO x'- • 
i=1 

+ (1 - e0p2(1 - p2) •'- •] (26) 

3.2. Method of Moments Estimation 

The method of moments (MOM) uses sample estimates of 
the first three moments and the lag 1 covariance of the interar- 
rival times and solves for the four parameters by using the 
theoretical relationships between the population moments and 
the parameters. This method has a major drawback in that the 
estimate of the third moment is highly variable, so the re- 
sulting parameter estimates can be unstable. A modified 
method of moments estimation which uses the median instead 

of the third moment was also tested [Foufoula-Georgiou, 
1985]. Due to the discreteness of the data, however, the 
median has poor sampling properties, which lead to unsatis- 
factory performance of this method. Therefore it was dropped 
from further consideration. 

It should be noted that the moments of the interarrival 

times involve only the equilibrium unconditional probabilities 
e• and e 2 - 1 - e•. The transition probabilities are introduced 
only in the second product moments, as, for example, in the 
autocorrelation coefficient r•. Therefore it is possible to use 
the first three moments for estimation of e•, p•, and P2 and 
then use the first autocorrelation coefficient r• = c(a• + a 2 
- 1), where c is given in (12), together with e• of (5) to solve 

for a• and a2: 

a• = (1 - e•)(r•/c + 1) + 2e• - 1 (27a) 

a 2 = ei(r•/c + 1)- 2e• + 1 (27b) 

From the above two equations one can see that for acceptable 
parameter estimates, that is, 0 < a•, a 2 < 1, the following in- 
equality must hold 

-min (e•/e2, e2/e•) < r•/c < 1 (28) 

Note that the value min (e•/e2, e2/e•) corresponds to the ratio 
of the smallest to the largest equilibrium probability, a value 
always less than 1. Therefore inequality (28) is consistent with 
the requirement that the autocorrelation function of the pro- 
cess, given as r k = c(a• + a• - 1) k, is less than 1 in absolute 
value. 

4. STATISTICAL PROPERTIES OF THE ESTIMATORS 

The two methods discussed in the previous section were 
tested for consistency (bias) and efficiency (variability) using 
Monte Carlo simulation. Several sets of population parame- 
ters were selected to represent a range of underlying processes 
consistent with the data analysis reported by Foufoula- 
Georgiou and Lettenmaier [1986]. Two kinds of dependencies 
were considered in selecting population parameters' depen- 
dency in the intervals (a measure of which is the auto- 
correlation function rn) and dependency in the counts or clus- 
tering (a measure of which is the conditional intensity function 
hn). The type of clustering (overdispersion and underdispersion 
relative to the Bernoulli process) is further inferred by the 
variance time curve and index of dispersion. It should be em- 
phasized that independence in intervals does not imply or 
result from independence in counts. For instance, a renewal 
process may well be clustered as, for example, the renewal Cox 
process with Markovian intensity [Smith and Karr, 1983] and 
the renewal form of the Markov renewal process discussed 
herein. In the discussion that follows the dependencies in both 
the intervals and counts are used to characterize the underly- 
ing process. Recall that, for a Markov renewal process, these 
dependencies take the form r&--c(a• + a 2 --1) & and hk = m 
+ A W •- •, with A and W defined in (19) and (20). 

The first set of parameters tested was {a• = 0.4, a 2 = 0.3, 
p• = 0.8, P2 -0.2}. These parameter values correspond to an 
occurrence process with a mean interarrival time of 2.98 days, 
a standard deviation of 3.59 days (coefficient of variation c o - 
1.2), a skewness coefficient Cs= 3.01, and a first auto- 
correlation coefficient r• = 0.08. The conditional intensity 
function is h• = 0.335 + 0.186(0.38) •- •, which indicates a clus- 
tering of counts. Five hundred synthetic sequences of 50, 100, 
200, 500, and 800 events (corresponding to approximately 150, 
300, •600, 1500, and 2400 days of observation, as inferred by 
the rate of occurrence m -- 0.34 events per day) were generated 
from a Markov renewal model with the above parameters. 
ML and MOM parameter estimates were computed for all 
synthetic sequences. (For the maximization of the likelihood 
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TABLE 1. Bias and Root-Mean-Square Error of the Parameter Estimates of a Markov Renewal 
Model With True Parameters a• = 0.4, a 2 = 0.3, p• = 0.8, and p2 = 0.2 

Bias RMSE 

N rn rn' Method a• a 2 p• P2 a• a 2 p• P2 

50 500 500 ML 

159 MOM 

100 500 500 ML 

238 MOM 

200 500 500 ML 

291 MOM 

500 500 500 ML 

322 MOM 

800 500 500 ML 

212 MOM 

--0.0076 --0.0100 0.0224 0.0063 0.2307 0.2220 0.1322 0.0537 

0.1134 0.0176 --0.0044 --0.0144 0.2955 0.2339 0.2062 0.0692 

-0.0052 --0.0027 0.0093 0.0023 0.1711 0.1637 0.1050 0.0392 

0.0433 0.0385 0.0182 --0.0049 0.2543 0.2400 0.1847 0.0511 
-0.0098 --0.0045 0.0087 0.0007 0.1216 0.1177 0.0775 0.0267 

0.0317 0.0053 --0.0091 --0.0090 0.2175 0.1777 0.1847 0.0412 

0.0019 --0.0042 0.0014 --0.0003 0.0464 0.0169 0.0786 0.0710 

0.0197 --0.0085 0.0012 --0.0057 0.1754 0.1314 0.1544 0.0314 
--0.0017 0.0018 0.0012 0.0004 0.0640 0.0578 0.0384 0.0135 

0.0090 --0.0075 0.0028 --0.0056 0.1612 0.1307 0.1500 0.0291 

N is the number of events in each sequence, rn is the number of sequences, and rn' is the number of 
sequences a method succeeded. ML is the maximum likelihood, MOM is the method of moments, and 
RMSE is the root-mean-square error. 

function the simplex method described by Nelder and Mead 
[1965] was used.) The bias and root-mean-square error of 
both parameter estimators are shown in Table 1. As expected, 
the consistency (bias) and efficiency (variability) of the esti- 
mators improve as the number of events increases. The ML is 
clearly superior to the MOM, although even the latter per- 
forms satisfactorily for moderately large samples (500 events). 
One major drawback of the MOM is that it often failed to 
obtain feasible parameter estimates. This is partly due to fail- 
ure of the iterative scheme to converge within the specified 
criteria and also due to infeasibility (equation (28)) of the ob- 
tained parameter estimates due to the large variability of r x in 
small samples. Refinement of the algorithm would probably 
decrease the number of failures. 

The second set of parameters tested was {ax - 0.9, a 2 - 0.6, 
p• - 0.8, P2 - 0.4}. These parameters correspond to an oc- 
currence process with mean interarrival time 1.5 days (rn - 
0.667), a standard deviation of 1.11 days (c o - 0.74), and a 
skewness coefficient c s - 4.02. The autocorrelation function of 
the process is r k = 0.1(0.5) k, and the conditional intensity 
function is h k - 0.667 4- 0.05(0.76) n- •. These functions indi- 
cate a strong dependence structure in the intervals but a rela- 
tively small clustering in the counts. These properties together 
with the small mean and variance of the lengths of interarrival 
times make this process difficult to identify. This expectation is 

confirmed by the results of Table 2, which shows that the ML 
method starts performing satisfactorily only for sample sizes 
greater than 200. Fortunately, for the rainfall series, small and 
less variable interarrival times are always associated with 
larger sample sizes (see, for example, Table 4). 

The effect of the dependence in the intervals (as measured 
by the first autocorrelation coefficient of the process) on the 
consistency and efficiency of the estimators ax, a2, px and p: 
was also tested. For the discussion that follows, the conven- 
tion is made that e x corresponds to the geometric distribution 
with the larger parameter (the distribution with the shorter 
tail). A value of e x > 0.5 therefore implies that shorter interar- 
rival times have greater probability of occurrence. The param- 
eter set considered is {e• = 0.6, p• = 0.9, p• = 0.1}. Depending 
on the value of the first autocorrelation coefficient r x, several 
sets of transition probabilities (a•, ae) were selected and the 
corresponding processes tested. Table 3 shows the results of 
this experiment. The ML estimator performs consistently well, 
while the performance of MOM becomes much poorer as the 
population parameters approach those of a renewal process. 

The Monte Carlo results show conclusively that the ML 
method is much superior. The results also provide confidence 
that ML estimation will result in unbiased and consistent esti- 

mators for sample sizes that are commonly available in prac- 
tice. 

TABLE 2. Bias and Root-Mean-Square Error of the Parameter Estimates of a Markov Renewal 
Model With True Parameters a• = 0.9, ae = 0.6, p• - 0.8, and pe = 0.4 

Bias RMSE 

N rn rn' Method a• a: p• p: a• a2 p• p: 

50 500 500 ML -0.1931 -0.0337 0.0650 

180 MOM -0.1158 -0.1837 0.0448 

100 500 500 ML -0.1182 -0.0369 0.0546 
258 MOM -0.0974 -0.1357 0.0437 

200 500 500 ML -0.0628 -0.0379 0.0279 

321 MOM -0.0785 -0.0913 0.0453 
500 500 500 ML -0.0298 -0.0184 0.0157 

423 MOM -0.0379 -0.0092 0.0338 

0.0923 0.3313 0.3325 0.1257 0.1950 

-0.1292 0.2578 0.3202 0.1470 0.2377 

0.0482 0.2592 0.3031 0.1086 0.1493 
-0.0650 0.2278 0.3006 0.1344 0.1875 

0.0181 0.1833 0.2589 0.0825 0.1137 

-0.0247 0.1755 0.2693 0.1058 0.1459 
0.0065 0.1082 0.1729 0.0513 0.0776 

0.0096 0.1094 0.2200 0.0737 0.0974 

N is the number of events in each sequence, rn is the number of sequences, and rn' is the number of 
sequences a method succeeded. ML is the maximum likelihood, MOM is the method of moments, and 
RMSE is the root-mean-square error. 
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TABLE 3. Bias and Root-Mean-Square Error of the Parameter Estimates of Markov Renewal Models With Various Sets of True Parameters 
(a t, a•) Consistent With the Fixed Parameters e 1 = 0.6, Pt = 0.9, and p•. = 0.1 

Bias RMSE 

(at, a2) 
r t N rn m' Method a t a2 Pt P2 at a2 Pt P2 

(0.4, 0.1) 200 500 500 ML -0.0006 -0.0002 -0.0006 0.0011 0.0613 0.0464 0.0339 0.0122 
--0.17 200 123 MOM -0.0323 0.0378 --0.0279 0.0038 0.1818 0.1049 0.1418 0.0181 

(0.52, 0.28) 200 500 500 ML 0.0059 --0.0014 --0.0010 0.0011 0.0632 0.0698 0.0415 0.0121 
--0.068 200 210 MOM 0.0233 0.0122 --0.0888 --0.0039 0.1961 0.1794 0.2343 0.0445 

(0.6, 0.4) 200 500 500 ML -0.0002 -0.0082 0.0006 0.0018 0.0608 0.0783 0.0431 0.0130 
0.0 200 290 MOM 0.0275 --0.0072 --0.1657 0.0019 0.2169 0.2072 0.3348 0.0427 

(0.8, 0.7) 200 500 500 ML --0.0002 --0.0076 0.0021 0.0020 0.0458 0.0664 0.0376 0.0127 
+0.17 200 279 MOM 0.0358 --0.0553 -0.1145 0.0010 0.1130 0.2014 0.2900 0.0499 

N is the number of events in each sequence, rn is the number of sequences, and m' is the number of sequences a method succeeded. ML is the 
maximum likelihood, MOM is the method of moments, and RMSE is the root-mean-square error. The autocorrelation coefficient is indicated 
as r 1. 

5. ANALYSIS OF DAILY RAINFALL DATA 

Fifteen years of daily rainfall data from Snoqualmie Falls, 
Washington, were analyzed and subsequently modeled by the 
Markov renewal model described in the previous sections. 
One important aspect of modeling a periodic process such as 
daily rainfall is the selection of seasons within which the pro- 
cess can be reasonably assumed stationary. Our approach to 
selection of seasons consisted of two steps. First, a complete 
statistical analysis of the daily rainfall occurrence process as 
well as of the nonzero daily rainfall amounts was performed 
on a monthly basis. Then, after careful examination of the 
qualitative and quantitative similarities of the statistical 
properties of the monthly rainfall counts and amounts, 
months were grouped together and a seasonal analysis was 
subsequently performed. The seasonal properties were then 
checked for agreement with the monthly properties for all the 
months in each season. Following such a seasonal discrimi- 
nation procedure, the seasons identified for Snoqualmie Falls 
were: season 1: January, February, and March; season 2: 
April, May, and June; season 3: July and August; season 4: 
September and October; and season 5: November and De- 
cember. For these seasons a statistical analysis of intervals and 
counts was performed. Table 4 shows the statistics of the in- 
terarrival times, and Table 5 lists the first five autocorrelation 
coefficients. An approximate test for the hypothesis of signifi- 
cant autocorrelation of intervals results from assuming that 

the estimated autocorrelation coefficient r• is distributed as 
N(0, 1/(n-j)•/:). Using this test, the hypothesis that the in- 
terarrival times for all seasons are different than zero was 

rejected at the 95% confidence level. This test, although ap- 
proximate, suggests that a renewal model with a mixed geo- 
metric distribution for the interarrival times would probably 

TABLE 4. Statistics of the Interarrival Times 

Number 

Season g s x % c s of Events 

1 1.496 1.377 0.920 4.217 896 

2 2.101 2.603 1.239 4.085 672 
3 3.715 5.235 1.409 2.924 246 

4 2.271 2.776 1.222 3.781 391 

5 1.393 1.125 0.808 4.212 657 

suffice for this data set. We have nonetheless elected to fit the 

Markov renewal model primarily for illustrative purposes. 
While fitting of the more parameter-parsimonious renewal 
process might be preferred in this special case, the Monte 
Carlo results (section 4) show that when ML parameter esti- 
mates are used the Markov renewal model can be successfully 
fit even when the true process is close to a renewal process. 
Therefore modest overfitting of the model is not a major con- 
cern. 

Table 6 shows the maximum likelihood and method of mo- 

ments parameter estimates of the Markov renewal model. For 
most seasons, ax + a: -• 1, confirming that the modeled pro- 
cess is very nearly a renewal process. The comparison of the 
empirical normalized spectrum of counts, log-survivor func- 
tion, and variance time curve with their theoretical counter- 

parts is shown in Figure 2. It is seen that the spectra of counts 
and the log-survivor functions are well preserved for all sea- 
sons. Although the theoretical variance time curves deviate 
from the empirical ones, they are, in fact, not significantly 
different given the wide confidence intervals of this highly 
variable function [cf. Cox and Lewis, 1978, p. 116]. 

The statistical properties of the nonzero daily rainfall 
amounts are shown in Tables 7 and 8. On the basis of pre- 
vious research [Woolhiser and Roldan, 1982] three marginal 
distributions (Weibull, Gamma, and mixed exponential) were 
fitted to the nonzero daily rainfall amounts. The mixed ex- 
ponential distribution was found to give the best fit. The maxi- 
mum likelihood parameter estimates for the five seasons are 
given in Table 9. As far as the dependence structure of the 
amounts is concerned, it was found that the first auto- 
correlation coefficient for seasons 1 and 5 (January-March 
and November-December) were significant (although small) at 

TABLE 5. Autocorrelation Coefficients of Interarrival Times 

Season 

Autocorrelation 

Coefficient 1 2 3 4 5 

0.047 --0.054 --0.010 0.025 0.036 
-0.026 0.074 0.057 -0.026 0.034 

0.032 0.016 --0.022 0.032 --0.040 
-0.022 --0.009 0.051 --0.053 --0.040 

0.003 0.042 -0.050 -0.042 --0.031 
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TABLE 6. Maximum Likelihood Estimates of the Parameters of a 
Markov Renewal Model Fitted to Daily Rainfall Occurrences at 

Snoqualmie Falls, Washington 

Season a• a 2 p• P2 

1 0.759 0.340 0.960 0.365 
2 0.616 0.289 0.913 0.252 
3 0.509 0.405 0.933 0.145 
4 0.614 0.416 0.915 0.247 
5 0.721 0.256 0.969 0.425 

TABLE 8. Autocorrelation CoeffÉcients of Nonzero Daily Rainfall 
Amounts 

Season 

Autocorrelation 

Coefficient 1 2 3 4 5 

rx 0.238* 0.058 0.094 0.054 0.130' 
r 2 0.008 0.016 0.011 0.016 0.023 
r 3 --0.014 --0.007 --0.046 0.057 0.014 
r,• 0.011 --0.026 -0.023 0.025 --0.003 
r 5 0.051 -0.010 0.012 0.014 --0.009 

the 5% level. We elected not to attempt to preserve these 
correlations in our modeling of the amounts. Although this 
could be done, for example, by drawing the amounts from a 
log-normal lag 1 Markov process, this would be accomplished 
by sacrificing the preservation of the third moment (skew coef- 
ficient) of the amounts. Another alternative would be to use 
Exponential-AR or Gamma-AR models (see, for example, 
Lawrance [1980] and Gaver and Lewis [1980]). 

6. PRESERVATION OF THE CUMULATIVE 

RAINFALL AMOUNTS 

For the purposes of streamflow prediction or other appli- 
cations where a mass balance is desired one is interested in the 

distribution of the total rainfall over the next t days. For 
example, for rainfall/runoff studies an important property of a 
daily rainfall generation scheme is its ability to preserve the 
total rainfall amounts over accounting periods such as a 
month or a year. The statistical properties of the accumulated 
rainfall process are given below (see also Smith and Karr 
[1983]). 

Let P(t) denote the accumulated rainfall process over a 
period of length t, that is, 

Nt 

P(t) = • Y• (29) 
i=1 

where { Y•} is the process of the nonzero daily rainfall amounts 
and {Nt} is the daily rainfall occurrence process. If the as- 
sumption is made that the nonzero daily rainfall amounts are 
independent and identically distributed and that they are inde- 
pendent of the daily rainfall occurrences, the mean and vari- 
ance of P(t) are given as 

E[P(t)] = laymt (30a) 

Var [P(t)] = #y2rnt + a•V(t) (30b) 

where #• = E[Y/], try 2= Var (Y/), V(t) is the variance time 
curve of the counting process {Nt}, and m is its rate of oc- 
currence. For a Markov renewal model, m and V(t) are given 
in terms of the parameters a•, a 2, p•, and P2 from (16) and (22), 
respectively. For a mixed exponential distribution, #• and ay 2 

*Significant at the 5% level. 

are given in terms of the parameters a, ,•, '•2 by 

#• = a/2• + (1 -- a)//• 2 (31a) 

a• 2 = a/2• 2 + (1 -- a)/)[22 q- a(1 -- a)(1/2• -- 1/)[2) 2 (3lb) 
It is understood that since there is a (slight) dependence in the 
Snoqualmie Falls rainfall amounts, (30a) and (30b) provide 
only approximations to the properties of the cumulative rain- 
fall amounts. Due to averaging, however, they are expected to 
provide good approximations for cumulative rainfall amounts 
over long periods (for example, months) but not as good for 
shorter periods (for example, days). From Table 10 it can be 
seen that the derived properties of the Snoqualmie Falls cu- 
mulative seasonal rainfall amounts are in very good agree- 
ment with their empirical counterparts and are worse for sea- 
sons 1 and 5 in which the assumption of independence is least 
valid. 

7. SUMMARY AND CONCLUSIONS 

Point process theory provides a powerful tool for modeling 
the clustering present in rainfall. However, almost all of the 
available point process models are continuous in time and are 
not directly applicable to discretely sampled data such as the 
occurrence of daily rainfall. In this paper an alternative 
discrete-time point process model applicable to daily rainfall 
occurrences was introduced and its statistical properties 
derived. The model belongs to the class of Markov renewal 
precesses and is, in general, a nonrenewal clustered (over- 
dispersed relative to the independent Bernoulli) process. Its 
flexible dependence structure is able to reproduce the types of 
clustering found in the daily rainfall occurrence structures 
analyzed by Foufoula-Georgiou [1985]. 

In the proposed model the sequence of times between events 
is formed through sampling from two geometric distributions 
according to transition probabilities specified by a Markov 
chain. As a special case, the proposed model includes a re- 
newal process with a mixture distribution for the interarrival 
times. Methods of moments and maximum likelihood were 

TABLE 7. Statistics of the Nonzero Daily Rainfall Amounts 

TABLE 9. Maximum Likelihood Estimates of the Parameters of a 

Mixed Exponential Distribution Fitted to the Nonzero Daily Rainfall 
Amounts 

Season • s x c o Cs Season 

1 0.373 0.456 1.222 3.019 
2 0.240 0.281 1.170 2.559 
3 0.216 0.274 1.270 2.116 
4 0.311 0.342 1.099 1.963 
5 0.407 0.474 1.164 2.165 

1 0.182 17.627 2.257 
2 0.201 17.033 3.504 
3 0.412 17.500 3.065 
4 0.120 26.743 2.855 

5 0.152 19.654 2.123 



FOUFOULA-GEORGIOU AND LETTENMAIER' MARKOV RENEWAL MODEL FOR RAINFALL OCCURRENCES 883 

TABLE 10. Comparison of the Empirical and Theoretical Rainfall 
Seasonal Means and Standard Deviations 

Mean Standard Deviation 

Season Empirical Theoretical Empirical Theoretical 

1 22.145 22.321 5.821 4.709 

2 10.621 10.386 2.643 2.609 

3 3.352 3.595 1.587 1.651 
4 8.689 8.400 2.749 2.782 

5 17.789 17.833 4.445 4.226 

Measurements in inches. 

presented and the properties of the respective estimators stud- 
ied via Monte Carlo simulation. 

The Markov renewal model was fitted to daily rainfall oc- 
currences for five seasons at Snoqualmie Falls, Washington. 
The adequacy of the model fit was confirmed by comparing 
the empirical normalized spectrum of counts, log-survivor 
function, and variance time curve, with their fitted counter- 
parts. The Markov renewal model coupled with a mixed ex- 
ponential distribution for the nonzero daily rainfall amounts 
was able to preserve the independently estimated means and 
variances of the cumulative rainfall amounts series. 

APPENDIX A' DERIVATION OF THE CONDITIONAL 

PROBABILITY OF OCCURRENCE 
Let 

hk'J= P{Zk = jlZ o = i) 

Using combinatoric arguments, one can write' 

h•, TM = a 1 •fl(k -l)ht TM + alfl(k) 
/=1 

+ (1 - a2) •f2(k - l)ht 12 (A2a) 
/=1 

hk 12 = (1 -- al) •fl(k - l)ht TM + (1 - aOfl(k ) 
/=1 

+ a 2 •f2(k - l)ht 12 (A2b) 
/=l 

k-1 

h•, 21 = al •fl(k - l)ht •l + (1 - a•)f•(k) 
/=1 

+ (1 - a2) •f2(k - l)ht 22 (A2c) 
/=1 

hk •2 = (1 -- al) •fl(k -- l)ht 21 + a2f2(k ) 
/=1 

+ a• •f2(k- l)ht 22 (A2d) 
/=1 

where fl( ) and f2( ) have been defined in the text (equation 
(6)). Moreover, 

h•, = el(h•, ll + htc 12) d- e2(htc 21 d- htc 22) (A3) 

To simplify the algebra above, let us define 

Fj(z) =f•(1)z +ffi2)z 2 +... j = 1, 2 (A4a) 

Hø(z)=hløz+h2øz •+..., i=1,2 j=l, 2 (A4b) 

(A1) 

Then (A3) becomes 

H(z) = ell'Hll(z) + H12(z)] + (1 -- el)l'H21(z) + H22(z)] (A5) 

where, for example, H i l(z) is given by 

Hll(z)=alFl(z)Hll(z)+alFl(z)+(1--a2)F2(z)H12(z) (A6) 

and similar expressions can be written for H12(z), H21(z), and 
H22(z). It is well known [cf. Parzen, 1960] that for a geometric 
distributiøn with parameter p, 

pz 
F(z)-- j = 1, 2 (A7) 

1 - (1 - p)z 

After some algebra on (A5)-(A7), one can show that 

mz Az 
m(z) = + • 

1--z 1-- Wz 

where rn, A, and W have been defined in the text (equations 
(16), (19), and (20)). Therefore 

h•, = m + A W •'- 1 

APPENDIX B' DERIVATION OF THE 

LIKELIHOOD FUNCTION 

L(0lxl,' ", XJn) --' P{Xl - xl, '", X n -- 

= P{X 1 = xl,..., X n -- Xnl(Xl> -- 1}e i 

+ P{X 1 = xl,..., X n = Xnl(gl> -- 2}(1 - 

= gl,nlel + gl,n2(1 -- el) (B1) 

where el = P{(X1)= 1} is the unconditional probability of 
type 1 interval, and the conditional probabilities g l,n 1 and 
gl,n 2 are defined from the general formula 

•'= P{X i = x,, ... X• = x•l(X,> - k} (g2) gi,j ' 

k=l, 2 i-- 1,-.-,n- 1 j=2,.--,n 

for i- 1 and j- n. It is easy to show that the conditional 
2 

probabilities g•,n 1 and gl,n can be written in a recursive form 

•]l,n 1 '--fl(Xl)[•I2,nlal + •/2,n2(1 -- al) ] (a3) 

gl,n 2 = f2(xO[g2,nl(1 --a2) + g2,n2a2] (B4) 

By further recursing expressions (B3) and (B4) and introducing 
matrix notation the likelihood function of the Markov re- 

newal model takes the form of (24) given in the text. 
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