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Interpolation of Binary Series Based on Discrete-Time Markov Chain Models 
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We consider the problem of interpolating missing observations in a time series modeled by a discrete- 
time Markov chain. The general interpolation scheme involves a finite enumeration of all possible paths 
(i.e., admissible values for the missing data) and computation of the probability distribution of the paths. 
Procedures for the selection of a particular path are discussed in terms of a prespecified interpolation 
objective. In the special case of two-state Markov chains, we investigate an efficient way of enumerating 
the paths based on the set of sufficient statistics. An example using daily rainfall occurrence series is 
presented. 

1. INTRODUCTION 

The hydrologist often faces the problem of incomplete re- 
cords which must be filled in before the data can be used for 

operational hydrologic analyses. For instance, streamflow sim- 
ulation by routing effective rainfall through a conceptual 
rainfall-runoff model usually requires uninterrupted rainfall 
records during the simulation period. In the case of noninter- 
mittent time series such as monthly or annual series, one may 
use parametric models such as autoregressive moving average 
(ARMA) models to fill in the missing data [-cf. Damsleth, 1980; 
And•l, 1979]. However, the identification and fitting of such 
models to incomplete series may require a nonroutine auto- 
correlation and spectral analysis [-cf. Marshall, 1980; Bloom- 
field, 1970]. 

In this note we study the interpolation of missing data in a 
time series modeled by a discrete-time Markov chain. Our 
analysis addresses the case of a two-state Markov chain (MC) 
or order 1. Higher orders can be approached in a similar 
fashion even though the computational issues become signifi- 
cantly more involved. Moreover, any finite-state MC of order 
greater than one can always be brought into the form of a MC 
of order 1 by appropriately augmenting the set of states. The 
general interpolation scheme is based on the enumeration of 
all possible paths, i.e., admissible sequences for the missing 
values, and the computation of the probability distribution of 
the paths. A particular path is then selected in accordance 
with a prespecified interpolation objective. 

The objectives of an interpolation scheme can vary depend- 
ing on the particular application. In simulation studies where 
preservation of the historical statistical characteristics is de- 
sired, a valid approach would be to draw the missing se- 
quences at random from their estimated probability distri- 
bution. However, quite often the local features of the record 
are of central importance. In such cases, estimates of the miss- 
ing data are usually chosen on the basis of their likelihood of 
occurrence. Certain negative aspects to that approach are evi- 
dent when one considers the overall effect this has on the 

statistics of the record. Alternatively, an interpolation scheme 
can be based on a prespecified "statistical characteristic" of the 
gap which is considered of primary interest. For instance, in 
case the number of occurrences of an event is of interest and 
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not the precise order of events, the very number of occurrences 
will form the statistical characteristic of the gap to be pre- 
served. A set of sufficient statistics [cf. Kedern, 1980] would be 
another choice. In all cases, we are led to determine the esti- 
mates of the missing data on the basis of the likelihood of 
their statistical c•haracteristic. In our developments we will 
focus on the set of sufficient statistics because any other statis- 
tic "factors" through a set of sufficient statistics and the devel- 
opment would be similar. Apart from the locally optimal 
nature of this choice, it appears that this scheme has in many 
cases minimal effect of the global statistical features of the 
interpolated record. 

The general interpolation scheme is presented in section 2, 
while in section 3 the special case of two-state Markov chains 
is discussed in detail. Two-state (binary) Markov chains are of 
particular interest to hydrologic applications. The two states 
can be thought of corresponding to "success" and "failure," 
respectively. For instance, presence or absence of measurable 
rain during a day, exceedence-nonexceedence of daily base 
flow, and detection-nondetection of a threshold pollutant con- 
centration during a sampling interval are a few examples of 
binary (zero-one) series. It should be noted that a binary pro- 
cess may arise either naturally or by clipping of a continuous 
process. In the second case, some information is usually lost 
by throwing away the continuous data, but this might be 
unavoidable or even desirable, depending on the nature of the 
data and the intended use of the outcome. In any case, by 
making use of the sufficient statistics of binary Markov chains 
the computational efficiency of our interpolation scheme can 
be enhanced by enumerating only the number of distinct sets 
of sufficient statistics instead of the number of all possible 
paths. An example involving interpolation of daily rainfall oc- 
currence series is presented in section 4 to illustrate the pro- 
cedure. 

2. GENERAL INTERPOLATION SCHEME 

Let a random sequence X•,, k • Z be an n-state stationary 
Markov chain of order m; i.e., 

= P{Xk = xklXk-1 = Xk-1, ''', X k-m = Xk-m} 

where x•, takes on values from the set of states E, = (ex, -.., 
en). Consider now the sequence { Y•} formed out of rn tuples of 
the sequence {X•,}' i.e., 

Yk = (Xk, Xk-1, ''', Xk-m+ 1) 
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One can easily show that the random sequence {Y•} is an 
N-state Markov chain of order 1 where N -- nm. Thus with no 

loss in generality we may begin with Y•, k e Z, an N-state 
stationary Markov chain of order 1, taking on values Yk e 
F = (En) m. Let 

•'•(0 = {"" Y-l, Yo' Yt+ l, Yt+2, "'} 

be a realization of Y• with a gap of length I. The function 
P{ Y1 = Yl, "', Y• - Y•l•(0} can be though of as a conditional 
likelihood function and will be denoted by L(y l, "', Yt; -•e(t))' 
Values of L(y l, --', y•; •e(0) can be computed for all possible 
paths based on estimates for 

p, = P{Y• =f•} (la) 

PO = P{Y• =f•lY•- 1 =f/} (lb) 
which can be obtained from the available observations. Also, 

if Y• is derived from an n state, ruth order Markov chain Xk, as 
above, the N x N transition probability matrix 

P = [Pij]i,j= I N 

will be sparse having at most n nonzero entries per column. 
Due to the fact that Y• is a Markov chain it follows that (for 

a proof see the appendix) 

P{Y1 =fq, '", 

= P{Y, =f•,, '", Y• =f•,lYo =f•, Y•+l =fa} (2) 
Also 

P{Yo =f•, "', Y•+l =fa} = P•P•i,Pi,i2"' Pi,ls 

P{ Yo -- f•, Y•+l=fa)=P• Y'• P•j,P•d2 " ' P•,a 
j•e F 

Hence the conditional likelihood of the path •,•:, '", •) is 

L(•, . . . , f •; L, f•) = P•i• '" Pi• / E r P•j•Pj•: "' Pj• (3) j• e 

We wish to classify all admissible paths into path classes 
according to prespecified statistical characteristics. Ideally, we 
would like to group them in path classes corresponding to 
different values of a set of sufficient statistics [cf. Kedem, 
1963]. It is not known, however, what a set of sufficient statis- 
tics is for a general N state Markov chain of order 1. Thus one 
can possibly employ other statistics, e.g., the number of oc- 
currences of an event, and then approach the problem directly 
based on (3). That is, after forming path classes, determine 
their respective conditional probabilities by summing up the 
probabilities of their elements each given by (3). 

It is clear that paths corresponding to the same values of 
sufficient statistics would have the same likelihood of oc- 

currence. Even though the converse is not true, in general, it 
suggests an interesting alternative, i.e., to classify path classes 
according to the likelihood of occurrence of their elements. 
Thus one could group paths corresponding to the same likeli- 
hood of occurrence given by (3) into classes and proceed 
thereafter to choose first the class with the highest likelihood 
of occurrence and then a path out of this class drawn at 
random. 

In several interesting cases, as, for instance, binary Markov 
chains of order equal to or greater than one, a set of sufficient 
statistics is known [Whittle, 1955; Keriera, 1980]. In such a 
case, the likelihood of a path can be determined directly as a 
function of the sufficient statistics. In the next section we dis- 

cuss the case of binary Markov chains of order 1. 

3. BINARY MARKOV CHAINS: AN APPLICATION 

Let X•, k = 1, 2, ---, n be a binary Markov chain of order 1, 
where X k takes values in {0, 1}. One hydrologic application of 
such a process may be the modeling of sequences of wet and 
dry days. Consider the marginal and conditional probabilities 

Pl = P{X, = 1} (4a) 

Pll = P{X, = llX,_ 1 -- 1} (4b) 

The transition probability matrix is given by 

p = [Poo 
LPlo Poll] = [(1--2Pl +PlPll)/ql (1 -- pll)pl/qll 

(5) 

where Po was defined in (lb), and ql = 1- p•. (Note that 
and Pll must obey the inequality max(O, (2pl- 1)/pl)< 
Pll < 1.) 

NOW, define the quantities 

S = X i R1 --' E XiXi- I H = X 1 + X n (6) 
i=1 i=2 

Note that S is the number of l's, R 1 the number of transitions 
from 1 to 1, and H the "end points" condition of the binary 
series of length n. The joint distribution P{X• = xl, "', Xn = 
Xn} is given by 

p{x 1 --- x1, ... ' X n -- Xn} = plS--r'(1 -- pl) s--h--n+ 2p[' 1 

(l -- Pll)2s--2r1--h(1 -- 2Pl + PlPll) --2s+r'+h+n--1 (7) 

[cf. Kedern, 1980, p. 11], where he {0, 1, 2}, r• e {0, 1, ..., 
s-1}, and s e{h, h+ 1,--., n}. It is interesting to note 
[Klotz, 1973] that (S, R l,/-/) is a sufficient statistic for the pair 
(P•, Pll) under the standing hypothesis that the process is 
generated by a two-state Markov chain of order 1. That is, all 
the information (with regard to the actual values of p• and 
Ply) that can be extracted from the finite record (x 1, x 2, "', 
xn) is contained in the derived statistics (S, R 1, H). The joint 
distribution of the sufficient statistics (S, R1, H) is 

P{S = s, R 1 = r 1, H= h} 

-- Mn(S , rl, h)P{X 1 = xl, '", X n = Xn} (8) 

where Mn(S, r l, h) is the number of binary sequences having 
the same (s, r l, h), and (x l, ..-, x n) is any such particular 
realization. Klotz [1973] gives 

(9) 

with the convention ( •l)_ 1. For second-order Markov 
chains, similar but more involved results apply [Kedern, 1963, 
1977], and extensions to higher-order Markov chains can be 
obtained [Whittle, 1955; Kedern, 1980]. 

The above results can now be used to handle the interpola- 
tion of binary Markov chains. Let (Yl, "', Yt) be a gap of 
length I in a series described by a binary Markov chain (BMC) 
of order 1 and let Yo =f•, Yt+ 1 =fa be the known end points 
of the gap. Using the above results one can easily see that 
instead of enumerating all the 2 t possible sequences (yl, '", Yt) 
it suffices to enumerate all the possible pairs (s, r l) given the 
end point condition h-f• +f•. The number of these pairs, 
which specifies the number of path classes to be enumerated, 
depends quadratically (and not exponentially) on the gap 
length. Using combinatorial arguments, these numbers have 
been computed for all possible configurations of gap lengths 
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TABLE 1. Number of Path Classes as a Function of the Gap 
Length I and the Known End Points Condition h 

h I Number of Path Classes 

even (1/2)(1/2 + 1)+ 1 2, or0 
odd ([//2] + 1)([//2] + 1)+ 1 

1 even (1/2 + 1)(//2 q- 1) 
odd (I-I/2] + 1)([I/2] + 2) 

Each path class includes all possible paths with the same likelihood 
of occurrence. 

and end points conditions, and the results are given in Table 
1. Notice that in formulae (6)-(9) n is now equal to I q- 2. 

4. DAILY RAINFALL OCCURRENCES: AN EXAMPLE 

We consider the daily rainfall occurrence series during the 
months April through June at Cedar Falls, Washington, and 
for the period 1948-1977. In computing the statistics of the 
series, the "end effects" at the beginning and end of the season 
have been smoothed out by continuing in the next season 
until the whole wet period has been considered. For this series 
we estimated the transition probabilities Poo = 0.667 and 
p• = 0.685, which result in p• = (1 -- Poo)/(2 -- p• -- Poo) = 
0.514. 

Suppose now that there is a gap of 10 values in the series 
and that the gap starts with a dry day and ends with a wet 
day. Instead of enumerating the 2 xø = 1024 possible paths and 
computing their conditional likelihood from (3), we only have 
to enumerate the 36 possible pairs (s, r•) given h = 1. Each of 
these 36 (s, r x) pairs defines a path class. The number of paths 
in each path class conditioned at the known end points is 
Mn(s, r• Ih) -- Mn(s, r•, h)/(•), and the conditional probability of 
the path class is p(s, r• Ih) = M.(s, r• Ih)p(s, r•, h). The results of 
these computations are given in Table 2. From that table we 
also observe that paths corresponding to distinct (s, rx) pairs 
have different probabilities of occurrence and thus the admis- 
sible values of (s, r•)characterize different path classes. 

In general, interpolation can be based on the probability 
distribution of the paths. If the results of interpolation are to 
be used for simulation purposes, then a path can be drawn at 
random from its probability distribution. On the other hand, if 
a predictive scheme based on likelihood of occurrence is uti- 
lized, the path most likely to have occurred is the one with 
s- 11 and r• - 10. This corresponds to the trivial path of 
having all values equal to 1, as was expected intuitively from 
the values of the conditional probabilities. Clearly, such a 
choice would alter significantly the statistics of the record. 
Alternatively, the selection can be based upon the likelihood 
of a certain statistic. In all cases, the results can be directly 
computed from Table 2. In particular, on the basis of the 
likelihood of the sufficient statistic pair (s, rx), the optimal 
choice is a path drawn at random from the path class with 
s--6 and r• = 4. Any such path has the most likely to have 
occurred number of wet days and number of transitions from 
wet to wet day. Furthermore, in the case that only the number 
of wet days during the missing period is of importance, it can 
be verified from Table 2 that the optimal path would be a 
path drawn at random from the probability distribution of the 
four path classes inside the larger class described by s- 8. 
(This is because the corresponding statistic is now s, and 
larger classes corresponding to constant s values can be 
formed and the one with the maximum likelihood selected.) 

Note that in cases where interpolation is based on the likeli- 
hood of a statistic, the choice amounts to preserving the mode 

of the associated probability distribution, whereas drawing a 
path at random amounts to preserving the mean. The above 
example was merely presented for illustration purposes. It sug- 
gests, however, that several interpolation alternatives exist 
which apart from being locally optimal do not significantly 
alter the global characteristics of the record. Simulation stud- 
ies are needed to establish the properties of the different inter- 
polation alternatives. 

5. CONCLUDING REMARKS 

In this note we have suggested and exploited an interpola- 
tion scheme for filling in gaps in hydrologic time series mod- 
eled by Markov chains. Since an N-state higher-order Markov 
chain can always be brought into the form of a multistate 
first-order MC by appropriately augmenting the states, the 
general ideas of the interpolation scheme have been presented 
in terms of an N-state first-order M C. The special case of a 
two-state MC of order 1 has been analyzed in detail in terms 
of the sufficient statistics. Finally, an example involving daily 
rainfall occurrences has been presented. Depending on the 
objective of interpolation, alternative optimality criteria have 
been discussed, and their implementation has been illustrated. 

Although we have concentrated on discrete-valued sto- 
chastic processes described by Markov chains, it is clear that 
the suggested interpolation procedure can also be applied to 
real-valued Markov processes after an appropriate set of rep- 
resentative states has been selected [cf. Yakowitz, 1979]. 

TABLE 2. Example of Filling in a Ten-Value Gap of a Rainfall 
Occurrence Series 

Class (s, r•) M,(s, r•lh) p(s, r•lh) 

1 (1, 0) 1 0.002816 
2 (2, 0) 9 0.005976 
3 (2, 1) 1 0.002892 
4 (3, 0) 28 0.004396 
5 (3, 1) 16 0.010928 
6 (3, 2) 1 0.002971 
7 (4, 0) 35 0.001295 
8 (4, 1) 63 0.010143 
9 (4, 2) 21 0.014721 

10 (4, 3) 1 0.003052 
11 (5, 0) 15 0.000135 
12 (5, 1) 80 0.003040 
13 (5, 2) 90 0.014850 
14 (5, 3) 24 0.017280 
15 (5, 4) 1 0.003135 
16 (6, O) I 0.000002 
17 (6, 1) 25 0.000225 
18 (6, 2) 100 0.003900 
19 (6, 3) 100 0.017000 
20 (6, 4) 25 0.018500 
21 (6, 5) 1 0.003220 
22 (7, 2) 15 0.000135 
23 (7, 3) 80 0.003200 
24 (7, 4) 90 0.015750 
25 (7, 5) 24 0.018240 
26 (7, 6) 1 0.003308 
27 (8, 4) 35 0.014350 
28 (8, 5) 63 0.011277 
29 (8, 6) 21 0.016401 
30 (8, 7) 1 0.003398 
31 (9, 6) 28 0.005152 
32 (9, 7) 16 0.012832 
33 (9, 8) 1 0.003490 
34 (10, 8) 9 0.007416 
35 (10, 9) 1 0.003585 
36 (11, 10) 1 0.003683 

Number of paths in each path class and conditional likelihood of 
occurrence of all possible path classes are also given. 
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APPENDIX: PROOF OF STATEMENT (2) 

Let { Y•: k • Z} be a discrete-time, N-state, Markov chain or 
order 1. We tacitly assume that { Y•} is irreducible and ergodic 
so that no state or group of states is absorbing, and the un- 
conditional probabilities of the various states are nonzero. In 
this appendix we will prove the statement that was employed 
in (2). 

Under the above hypothesis, { • = Y-n, k • Z} is a discrete- 
time N-state Markov chain of order 1, with state transition 
matrix given by 

^ N [ PJl N (A1) P = [/•i•]i'•=• = P•' •//__li.;=• 
where 

P = [pij']i,5= 1 

is the state transition matrix of { Y•, k • Z}, and the pi's are the 
unconditional probabilities defined in (la). 

Proof of the Lemma 

We first show that Y• is time reversible' that is, • is an 
N-state Markov chain of order 1. It suffices to show that 

P { Yo = glY1 = •, Y2 = 7,'" } = P { Yo = glY1 = fl} 

Using Bayes' theorem we obtain that 

P { Y• = fi, ' " I Yo = • } P { Yo = • } 
e { ro - •l r• - fi, " '} - 

e{r• =•,...} 

e{r•=•,---Ir0=•, r• = •}e{ r• = •1 r0 = •}P{ r0 = •} 
P { Y2 = 7, " ' I Y• = fi } P { Y• =fi} 

P{r• =•lro =•}P{r0 =•} 
- = e{ro-•lr•=fi} 

where the step before the final one follows from the Mar- 
kovian property of {•}. We now show the validity of (A1). It 
follows once again from Bayes' theorem that 

= P{•-• =•l[ =f•} where l'=--k 

P{• =•1•_, =•}P{•_• 
P{• 

Pj 

Pi 

This completes the proof of the lemma. We now proceed with 
the proof of the following proposition. 

Proposition 

P { v• = f, 1." '. • = f,•l•r.d 

= P{Y• =f•, '", Yt =f•,lYo =f•, Yt+• =f•} (A2) 

Proof of Proposition 

Let • = (.,., Y-• =f•, Y0 =f•) and • = (Yt+• =f•, 
Yt+2-f•,, "') denote the past and future observations, re- 
spectively, and G = (Y• --f•,, ß ß -, Y1 = f•,)denote the gap in the 
record. Then, 

P{•, 
P{GI•, •} = 

P{•I•} 

P{G, •-IYo = •} 
P{•IYo = •} 

- P{G[Yo - o•, 

as it follows from the Markovian property of { Y•}. But 

P{G, Yo = •l•} 
p{G[Yo - •, • } - 

P{ Yo = •1•} 

P{•, Yo = •IY,+, = tq 
P{Yo = •IY,+, = tq 

where the last step follows from the Markovian property of 
{ • = Y-k}-So finally, 

P{•I•, s•} = P{•IY0 = •, Y,+, = •} 

and the proof of the proposition is completed. 

Remark 

It is interesting to note that in the case of a two-state 
Markov chain {•} the corresponding "time-reverse" Markov 
chain { •} has the same state transition matrix' 

flii=Pii i=0, 1 

(1 -- P00)/(2 -- P0o - P•a) P• = (1 p •) •0• = P•0- -- 
P0 (1 -- p•)/(2 -- P00 - Pa•) 

= 1--P00=P0• 

and, similarly, 

•0 = P•0 

For Markov chains with more than two states this is not true 

and, in general, P is given in terms of P from (A1). 
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