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Continuous-Time Versus Discrete-Time Point Process Models 

for Rainfall Occurrence Series 
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Department of Civil Engineering, University of Washington, Seattle 

Several authors have had apparent success in applying continuous-time point process models to 
rainfall occurrence sequences. In this paper, it is shown that if rainfall occurrences are interpreted as the 
events of a point process (and not as a censored sample), the continuous-time point process methodology 
and estimation procedures are not directly applicable since they fail to account for the time discreteness 
of the sample process. This is demonstrated analytically by studying the effects of discretization on 
selected statistical properties of a Poisson process, a Neyman-Scott process, and a renewal Cox process 
with Markovian intensity. In general, the study of rainfall occurrences under the continuous-time point 
process framework may result in misleading inferences regarding clustering (dispersion), and conse- 
quently incorrect interpretations of the underlying rainfall generating mechanisms. For example, daily 
rainfall occurrence structures underdispersed relative to the Poisson process are usually overdispersed 
relative to the Bernoulli process (the discrete-time analogue of the Poisson). These findings are confirmed 
by the statistical analysis of six daily rainfall records representative of a range of U.S. climates, two of 
which are described in detail. 

1. INTRODUCTION AND PROBLEM STATEMENT 

The stochastic structure of daily rainfall occurrences has 
been extensively studied over the past two decades. The 
models suggested have evolved from the alternating renewal 
models [Green, 1964; Grace and Eagleson, 1966], to Poisson 
models [Todorovic and Yevjevich, 1969; Duckstein et al., 
1972], Markov chains [Gabriel and Neumann, 1962; Todorovic 
and Woolhiser, 1974; Smith and Schreiber, 1973], discrete 
autoregressive moving average (DARMA) models [Chang et 
al., 1984], and finally, to point process models [Kavvas and 
Delleur, 1981; Smith and Karr, 1983]. This paper concentrates 
only on the point process modeling approach. Other rainfall 
occurrence models have been reviewed elsewhere [Waymire 
and Gupta, 1981a; Roldan and Woolhiser, 1982]. For the gen- 
eral theory of point processes the reader is referred to Cox and 
Lewis [1978], •inlar[1975], Lawrance [1972], and Daley and 
Vere-Jones [1972]. Waymire and Gupta [1981b, c] have pre- 
sented a careful review of the theory of point processes and 
have illustrated their applicability to modeling rainfall and 
rainfall-driven hydrologic processes. 

Rainfall is a continuous intermittent process, whose inten- 
sity we denote as •(t). Rainfall measurements represent cumu- 
lative amounts over discrete time intervals such as minutes, 
hours, or days. Let {Y•(A)}, k = 1, 2, 3,... denote the discrete 
sequence of rainfall observations over an arbitrary time inter- 
val A. The continuous process •(t) is related to the discrete 
process { Y•(A)} by 

Y•(A) - •(•) d• (1) 
-1 

where tk- tk-• = A is the time scale of measurement. Figure 
1 illustrates this point: the continuous process •(t) is integrat- 
ed over, say, daily time intervals to give the sequence of daily 
data {Y•(A)},A = 1 day. 

In modeling daily rainfall occurrences as a point process, 
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i.e., a stochastic process which is completely characterized by 
the position of its events, two interpretations of the sampled 
data are possible: (1) the occurrences represent all of the 
events of the point process and (2) the occurrences represent a 
filtered sample of an underlying point process in which multi- 
ple occurrences during a day are possible, but only one is 
recorded when one or more occur. If the first interpretation is 
implemented, the event takes the meaning of a rainy day (see 
Figure 1) and one has to deal with a discrete-time point pro- 
cess, i.e., a point process in which events can occur only at 
time marks integer multiples of the sampling interval. All pre- 
vious studies on point process modeling of daily rainfall 
(except the recent work of Rodri•iuez-lturbe et al. [1984]) have 
implemented the first interpretation. It will be shown in this 
paper that this approach fails to account for the time dis- 
creteness of the process. 

A related issue that can present serious difficulties is model 
fitting. Under the first interpretation of rainfall occurrences, 
model parameters are estimated by fitting procedures based 
on direct comparison of the empirical properties of the 
discrete-time data with their theoretical continuous-time 

counterparts. This approach, which has been used in several 
previous studies [e.g., Kavvas and Delleur, 1981; Smith and 
Karr, 1983; Ramirez-Rodriguez and Bras, 1982], will be shown 
to introduce severe estimation biases. This will be demon- 

strated by studying the effects of discretization on selected 
statistical properties of three commonly used point process 
models for daily rainfall occurrences: a Poisson process, a 
Neyman-Scott process, and a renewal Cox process with Mar- 
kovian intensity. 

2. STATISTICAL BACKGROUND AND TERMINOLOGY 

For the discussion which follows, it is necessary to intro- 
duce a few functions which describe the statistical properties 
of a point process. More details on these functions can be 
found in statistical texts such as Cox and Lewis [1978] or in 
the work by Kavvas and Delleur 1-1981]. 

Let rn denote the rate of occurrence of a continuous-time 

stationary point process, and F(x) denote the cumulative dis- 
tribution of the interarrival times. The log-survivor function, 
In [R(x)], is defined as the logarithm of the probability of 
exceedance R(x)= 1--F(x). For a Poisson process In 
JR(x)] =--rnx. A concave log-survivor function indicates 
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overdispersion (i.e., a tendency for clustering of rainfall events) 
relative to Poisson, whereas a convex log-survivor function is 
indicative of a process underdispersed relative to the Poisson. 

The counting process, {Nt), of a point process is defined as 
the number of events in (0, Fl. The variance of Nt is a continu- 
ous function called the variance-time curve, V(t)= Var (Nt). 
When divided by the mean number of events in (0, t], M(t), a 
function called the index of dispersion, I(t) = V(t)/M(t) results. 
For a Poisson process, M(t)--V(t)=rnt, and therefore 
I(t) = 1, ¾ t. An index of dispersion I(t)> 1 (< 1) indicates 
overdispersion (underdispersion) relative to the Poisson pro- 
cess. This property is analogous to the coefficient of variation 
cv for the interarrival times, where similarly, cv > 1 (< 1). indi- 
cates overdispersion (underdispersion) relative to the Poisson 
process for which c,= 1. The spectrum of the counting pro- 
cess g+(c0), is defined as the Fourier transform of the covari- 
ance density of the differential counting process •ANt), where 
ANt is defined as the number of events in (t, t q-At]; i.e., 
Nt + at- Nt- For a Poisson process g +(co) = rn/•, and the nor- 
malized spectrum of counts, defined as g+'(co)= •rg+(co)/rn, 
takes on the constant value of 1. Another important parame- 
ter of a continuous-time stationary point process is the con- 
ditional intensity function, h(t), defined as 

P(dN t = 1 IN{0} = 1) (2) h(t) = dt 

[Cox and Lewis, 1978, p. 73], where dNt is the limit of ANt as 
At--• 0, and N{0) denotes "event at time 0." The interpretation 
of h(t)dt is the probability of an event at time t, given an event 
at time 0. For a Poisson process h(t) = rn, ¾ t. Inferences about 
clustering of a point process can be made from the way h(t) 
approaches the constant intensity rn of the process. For more 
information on all these functions see, for example, Cox and 
Lewis [1978, chapter 4]. For the spectral analysis of a point 
process consult Bartlett [1963]. 

A discrete-time point process is a process in which events 
can only occur at time values k = 1, 2, 3,.... Such an oc- 
currence process can be viewed equivalently as a sequence of 
binary random variables (Z•,), where Z•, takes on the values 1 
and 0 depending upon whether an event did or did not occur 
at time k [Lewis, 1970]. Let rn' denote the probability of oc- 
currence of an event at an arbitrary time value k. All the 
statistical functions discussed previously can be extended in a 
straightforward way to the corresponding functions of a 
discrete-time point process. For example, F(x) will be the cu- 

mulative distribution of the discrete probability mass function 
(pmf) of the interarrival times; N•, will be the number of events 
occurring within k time units; V• will be the variance of the 
counting process {Nk), etc. Similarly, the discrete-time ana- 
logue of the conditional intensity function is a sequence {hk) 
of conditional probabilities of occurrence, where h•, is defined 
as 

hn = e(zn = 1 I Zo- 1) (3) 

Note that hn are probabilities, whereas h(t) is a probability 
density. One major difference between continuous-time and 
discrete-time function definitions is the spectrum of counts, 
since the differential counting process {ANt} is not defined for 
a discrete-time point process. The spectrum of counts is in 
that case defined as the Fourier transform of the auto- 

covariance sequence (ck) of the binary time series (Zn). Help- 
ful remarks on the spectral analysis of continuous-time versus 
discrete-time point processes can be found in Lewis [1970]. 
The reader is referred to Guttorp [1985] for more rigorous 
definitions of the statistical properties of a discrete-time point 
process. 

3. REVIEW OF CONTINUOUS-TIME POINT PROCESS MODELS 

A Poisson cluster process, which has become known as the 
Neyman-Scott (N-S) process, was developed by Neyrnan 
[1939] for entomology and bacteriology population growth 
modeling. Subsequently, it was used by Neyrnan and Scott 
[1958] to model the spatial distribution of galaxies, and later 
by LeCarn [1961] to model the areal distribution of rainfall. 
Based on the work of LeCam, Kavvas and Delleur [1981] 
applied a Neyman-Scott model to the rainfall occurrences on 
the time continuum, and found that such a process appeared 
to describe the clustering of daily rainfall occurrences in In- 
diana. 

A N-S process is a two-level process. At the primary level, 
the rainfall generating mechanisms (RGM) occur according to 
a Poisson process with rate of occurrence ho (i.e., mean in- 
terarrival time 1/ho). Each RGM (also called a cluster center) 
gives rise to a group of rainfall events and each of these 
groups is called a cluster. Within each cluster, the events occur 
independently and their occurrence is completely specified by 
the distribution of the number of events and the distribution 

of their positions relative to their cluster center. Kavvas and 
Delleur [1981] assumed a geometric distribution, with param- 
eter p, for the number of rainfall events in a cluster and an 
exponential distribution, with parameter 0, for the distances of 
events from their cluster centers. For these distributions, the 
observed process has a rate of occurrence rn = ho/p. To cope 
with the long-term trends and within-year seasonality Kavvas 
and Delleur applied a homogenization scheme to the data. 
This scheme consisted of fitting a time-varying function 2(0 to 
the mean rate of occurrence and rescaling the original time 
increments of one day, At, to time-varying increments 
Ar = 2(t)At. In this way a stationary process (i.e., a process 
independent of the time origin) was obtained to which a N-S 
model was fitted. However, as Kavvas and Delleur comment, 
the fitted model cannot be used for simulation of daily rainfall 
occurrence sequences, since the inverse transformation, i.e., the 
deterministic transformation that will give the nonhomoge- 
neous process from the homogeneous one is not valid for a 
non-Poisson process [•'inlar, 1975, chapter 4]. 

Smith and Karr [1983] introduced another point process, 
the renewal Cox process with Markovian intensity (RCM pro- 
cess), which belongs to the class of doubly stochastic Poisson 
processes (also called Cox processes). In an RCM process, the 
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TABLE 1. Statistical Properties of a Poisson and a Bernoulli Process 

Poisson Bernoulli 

Interarrival times, X i f (x) = J.e-x,, J. > 0 p(x) = p(1 - p)"-x 0 < p < 1 
E(X) = 1/• E(X) = 1/p 
Var (X) = 1//L 2 Var (X) = (1 - p)/p2 
co= 1 co=(1-P)•/•< 1 

2-p 
Cs = 2 Cs- (1 - p)•/:z > 2 

Number of events, N, p(N,=k)- (•'t)•e-•' (k)•, kl p(N r = k) = p (1 - p)r-•' ß r 

E(N,) = J.t E(N•) = pk 
Var (N,)= ;•t Var (Nk)= iv(1 - p)k 

Conditional intensity h(t) = 2 hk = p 
function 

Log survivor function In [R(x)] = -J.x In [R(x)] = -In (1 - p)x 
Variance time curve V(t) = •t V• = p(1 - p)k 
Index of dispersion l(t) = 1 ¾t I• = 1-p < 1 ¾k 

function 

Spectrum of counts g +(•o) = •l/r• •o _> 0 g + (•o) = p(1 - p)/n •o _> 0 
Normalized spectrum • +'(•o) = 1 •o _> 0 g +'(•o) = 1 - p < 1 •o _> 0 

of counts 

Here •l, rate of occurrence ß p, probability of success' c o, coefficient of variation; and %, skewness 
coefficient. The properties of the discretized Poisson process can be obtained from the right-hand column 
by simply substituting the value of •l' = 1 - e-x for the value of p. 

rate of occurrence •.(u) alternates between two state s, one zero 
and the other positive. Retaining the nomenclature of Smith 
and Karr, let ax and a2 be the parameters oftthe exponential 
sojourn distributions of the intensity ,•(u) in the states 1 (dry) 
and 2 (wet), respectively. This simply amounts to 1/ax being 
the mean duration of a dry period and 1/a2 the mean duration 
of a wet period. During periods When the intensity .is zero, no 
events can occur; during periods with positive intensity, events 

, 

occur according to a Poisson process with rate of occurrence 
9•, and the sequence of states •isited form a Markov chain. 
This process is a renewal one (i.e., interarrival times are inde- 

, 

pendent) and Smith and Karr found it an adequate model of 
the summer season (July to October) daily rainfall occurrences 
in the Potomac River basin. It should be noted that both the 

.. 

Neyman-Scott process and the renewal Cox process with 
Markovian intensity are continuous-time point processes and 
clustered (overdispersed)relative to the Poisson process. 

The problem of fitting and validating daily rainfall oc- 
currence model s has not received as much attention as the 

specification of the model form. Kavvas and Dellcur [1981] 
used an iterative least squares estimation procedure, utilizing 
the estimated normalized spectrum of counts and the esti- 
mated log-sUrv'ivor function, for the fitting of the N-S model 
to daily rainfall occurrences from Indiana. Problems were en- 
countered in this procedure, however, since estimates of the 
implied variance of v, the number of events in a cluster, can 
become negati:ve. To avoid this problem an iterative esti- 
mation procedure is required which involves a somewhat arbi- 
trary assumption about the value of E(v•)/E(v). The problem 
of negative variance for the number of events in a cluster was 
also encountered by Ramirez-Rodriguez and Bras [1982], who 
fitted .the N-S model to the daily rainfall occurrences of 
Denver, Colorado. Both of the above studies assessed the va- 
lidity of the fitted model by the agreement of the theoretical 
and empirical spectrum of counts and log-survivor function, 
which were the same functions used for the fitting. However, 
the variance time curves inferred from the fitted parameters in 
both studies fail to reproduce the empirical ones, often dra- 
matically. 

We believe that the problems encountered by both Kavvas 
and Dellcur [1981] and Ramirez-Rodriguez and Bras [1982] in 

fitting the N-S model are due to the inappropriate use of 
continuous-time point process models for daily rainfall oc- 
currences, rather than shortcomings in the parameter fitting 
procedure. In that respect, even the maximum likelihood esti- 
mation (MLE) methods recently developed by Smith and Karr 
[1985] may cause difficulties when used for modeling discrete 
(e.g., daily) rainfall occurrences, since they use the likelihood 
function of the continuous-time process. 

4. INFERENCES ABOUT CLUSTERING OF DAILY 

RAINFALL OCCURRENCES 

In the theory of continuous-time point processes, the exis- 
tence and type of clustering in an occurrence process is often 
studied by comparing the process to an independent Poisson 
process with the same rate of occurrence. A clustered point 
process can be either overdispersed (i.e., more random oc- 
currences) or underdispersed (i.e., more regular occurrences) 
relative to a Poisson process. However, it is important that the 
clustering of a discrete-time point process, such as the daily 
rainfall occurrence process, be compared with the independent 
Bernoulli process (the discrete-time analogue of the Poisson 
process). Most previous studies have treated the daily rainfall 
occurrence process as a continuous-time point process and 
have modeled it in a continuous-time point process frame- 
work; i.e., clustering of daily rainfall has been inferred by 
comparing the empirical properties of the observed occurrence 
series to the theoretical properties of the Poisson process. In 
this section it is shown that such an approach can result in 
incorrect inferences about clustering of the underlying process. 
In particular, it is shown that if indeed the daily rainfall oc- 
currences were an independent process, i.e., a Bernoulli pro- 
cess, if modeled as a continuous-time point process they would 
be interpreted as underdispersed (relative to the Poisson pro- 
cess). On the other hand, daily rainfall occurrence series un- 
derdispersed relative to the Poisson process are, in fact, all 
shown to be overdispersed relative to Bernoulli. To illustrate 
these points, the statistical properties of a Bernoulli process 
are first studied. 

Consider a sequence of independent repeated trials with two 
possible outcomes, say, success and failure. Let p denote the 
probability of success at each trial and Nr the number of 
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Fig. 2. Effects of discretization on a Ncyman-Scott (N-S) process with parameters h o = 0.23, p = 0.67, and 0 = 0.75. 
Solid curve corresponds to the continuous-time process and the broken curve to the discrete-time process. 

successes in r trials. Then N, has a binomial probability distri- 
bution 

P(N,=k)=(•)pk(1-p)'-k k=0, 1,2 .... (4) 
and the number of trials between the nth and (n + 1)st success, 
Xn, has a geometric distribution 

P(X. = k)= p(1 - p)•'-' k = 1, 2 .... (5) 

for all n. Note that for the daily rainfall occurrences, the 
number of trials is interpreted as the number of discrete-time 
units, i.e., days. As was mentioned earlier, in the discrete-time 
point process terminology a success corresponds to the oc- 
currence of an event (i.e., a rainy day), N• to the counting 
process, that is the number of events in {0 ..... r}, and X, to 
the time between events. 

The Bernoulli process is the discrete-time analogue of the 
Poisson process, in the sense that it is characterized by inde- 
pendent intervals and independent counting increments. This 
lack of memory property is the result of the geometric distri- 
bution for the times between events, analogously to the ex- 
ponential distribution for the Poisson (see Feller [1968, p. 
329] for a proof). The statistical properties (i.e., mean, vari- 
ance, and higher moments) of the geometric and binomial 
distributions are well known (see, for example, Parzen [1967]). 
For this work, some additional properties of the Bernoulli 
counting process are of interest, such as the spectrum of 
counts, log survivor function, and variance time curves. These 
properties can be easily computed (see, for example, Foufoula- 
Georgiou [1985]) and are summarized in Table 1 of this paper, 
together with the corresponding properties of a Poisson pro- 
cess with rate of occurrence 4. The significance of comparing 
these statistical properties is illustrated below. 

Consider a sequence of daily rainfall occurrences. If a Ber- 
noulli process is fit to the series, the maximum likelihood 
estimate (MLE) of its probability of success, p, is i6 = No/N, 
where No is the number of days on which rainfall is recorded 
and N is the total number of days. Similarly, if a Poisson 
process is fit (under the interpretation that rainfall events rep- 
resent all of the events of the point process), the MLE of the 
rate of occurrence )•, is • = No/N. Thus /5 = •. Notice, how- 
ever, from Table 1 how different the other properties of the 
two processes are. In particular, the Bernoulli process has a 
coefficient of variation of interarrival times and an index of 

dispersion function always less than one, which imply under- 
dispersion relative to Poisson. This means that inferences 
about over- and underdispersion of the daily rainfall oc- 
currences would be different depending on whether the empiri- 
cal functions of the process were compared to those of a Pois- 
son or to those of a Bernoulli process. This is a simple but 
important observation and has immediate consequences in the 
interpretation of the statistical functions of the daily rainfall 
occurrence process. We suggest that a discrete-time point pro- 
cess model, such as daily rainfall occurrences, should be com- 
pared with the discrete-time independent Bernoulli process 
(and not with the continuous-time Poisson) if inferences about 
independence and clustering are to be made. 

5. EFFECTS OF DISCRETIZATION ON CONTINUOUS-TIME 
POINT PROCESSES 

In deriving a discrete-time occurrence series (binary series) 
from a continuous-time point process, two operations are per- 
formed: discretization and clipping. These operations are de- 
fined as follows: discretization is the grouping of events oc- 
curring within intervals of length equal to the time scale of 
measurement, and clipping is the assignment of the value of 
zero (or one) to each interval depending on whether or not at 
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least one event occurred within the interval. In this section, 
the effects of discretization and clipping (usually referred to 
only as discretization) of the Poisson process, the Neyman- 
Scott process, and the renewal Cox process with MarkovJan 
intensity, all of which have previously been used for modeling 
daily rainfall occurrences, are studied. 

5.1. Poisson Process 

Let F(x) denote the cumulative distribution function of the 
exponential pdf of the interarrival times in a Poisson process. 
The above discretization scheme is equivalent to replacing the 
continuous exponential distribution, f(x), with a discretized 
one, p(k), such that 

p(k) = F(k) - F(k - 1) = e -(•-')•(1 - e -•) k = 1, 2 .... (6) 

Note that the resulting discrete pmf, p(k), is geometric with 
parameter 

,•'= 1 -e -;t (7) 

implying that the discretized Poisson process is a Bernoulli 
process with a probability of occurrence equal to ,•', a value 
always less than ,L All the Other properties of the discretized 
Poisson process can therefore be obtained by substituting the 
value of ,•' for p in the right-hand column of Table 1. 

It is seen, for example, that the discretized Poisson process 
has a coefficient of variation c• = (1- •,)•/2 < 1, an index of 
dispersion I•--1- g'< 1, and a normalized spectrum of 
counts g+'(ro)= 1- •'< 1 ¾ co. This observation illustrates 
that if a daily rainfall occurrence process is modeled as a 
Poisson process, and if subsequently this Poisson process is 
used for simulation of rainfall, the resulting discrete-time rain- 
fall occurrence series will have properties substantially differ- 
ent from those of the inferred continuous-time process. To 

better illustrate this point, consider a Poisson process with 
rate of occurrence ;• = 0.5 (mean interarrival time of 2 days). If 
this process is used for simulation of daily rainfall occurrence, 
the synthetic arrival process will have a rate of occurrence 
•'= 1- exp (-0.5)= 0.393 (mean interarrival time of 2.5 
days) and a coefficient of variation equal to 0.626 < 1. Fur- 
ther, if the simulated occurrence sequences is analyzed under 
the continuous-time point process framework, they will indi- 
cate a process underdispersed relative to the Poisson process, 
where, in fact, it is an independent Bernoulli process. In the 
above context, the improper use of the continuous-time point 
process framework for the analysis and synthesis of daily rain- 
fall occurrences becomes apparent. 

5.2. Neyman-Scott Process 

The statistical properties of intervals and counts of a 
continuous-time Neyman-Scott process can be found in the 
work by Kavvas and Delleur [1981], while the corresponding 
properties of the resulting process after discretization are given 
in Guttorp [1985]. It is interesting to note that although the 
rate of occurrence of a Neyman-Scott process is m = ho/p, the 
probability of occurrence of an event in the discretized process 
is [Guttorp, 1985] 

[ p m'=l--e -no 1--1_(l_p)e 0 (8) 
Observe that m' is a function not only of the rate, of oc- 
currence of the cluster centers (ho) and the cluster size (p), but 
also of the dispersion of events within each cluster (0). 

Consider a Neyman-Scott process with parameters ho = 
0.23, p -- 0.67, and 0 -- 0.75. These parameters correspond to a 
clustered (overdispersed) occurrence process and are approxi- 
mately equal to those Ramirez-Rodriguez and Bras [1982] 
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TABLE 2. Information on the Six Daily Rainfall Stations Analyzed 

Station 

Station Identifi- Years Elevation, 
Location cation Analyzed Latitude Longitude ft 

Observation 
Time 

Snoqualmie Falls 45-7773 1948-1977 47033 ' 121051 ' 440 
Roosevelt 02-7281 1948-1977 33040 ' 111009 ' 2005 
Austin 41-0428 1948-1977 30018 ' 97042 ' 597 
Miami 08-5663 1949-1978 25ø48 ' 80016 ' 12 

Philadelphia 36-6889 1948-1977 39053 ' 75015 ' 10 
Denver 05-2220 1949-1978 39ø46 ' 104052 ' 5286 

5 P.M. 

7 A.M. 

midnight 
midnight 
midnight 
midnight 

One foot equals 30.48 cm. 

found for daily rainfall occurrences at Denver, Colorado. This 
arrival process has a mean rate of occurrence m = 0.34 (mean 
interarrival time of approximately 3 days), while the arrival 
process resulting after discretization has a mean rate of oc- 
currence m'= 0.260, that is, a mean interarrival time of ap- 
proximately 4 days. Figure 2 shows the comparison of the 
conditional inte•sity function, normalized spectrum of counts, 
variance time curve, and index of dispersion for the continu- 
ous and discretized N-S process. It should be noted that the 
different levels in the conditional intensity function and spec- 
trum of counts are the result of the different rate of occurrence 

of the two processes and do not affect the inferences about 
clustering, which only depends on the rate of decay of these 
functions. These two functions, together with the variance 
time curve and index of dispersion function, indicate that the 
resulting discrete-time arrival process is less clustered when 
compared with the continuous-time process it originated from. 
Also note that severe estimation biases are expected to result if 
the properties of the continuous (and not discretized) N-S 
process are used for the fitting. 

5.3. Renewal Cox Process With Markovian Intensity 
(RCM Process) 

The statistical properties of the RCM process are given in 
the work by Smith and Karr [1983], while the corresponding 
properties of the resulting process after discretization are given 
in the work by Guttorp [1985]. The parameters selected to 
illustrate the effects of discretization on an RCM process are 
a• = 0.2, a2 = 0.1, and 2 = 0.5. These parameters correspond 
to a daily rainfall occurrence process in which the dry periods, 
of an average duration of 5 days (1/ax), are followed by wet 
periods, of an average duration of 10 days (l/a2); during wet 
periods rainfall events occur on the average every 2 days (1/,•). 
The mean rate of occurrence of the continuous-time RCM 

process with the above parameters is m = 0.333, while the rate 
of occurrence of the discretized process is m' = 0.264. Figure 3 
shows the comparison of the conditional intensity function 
(CIF), normalized spectrum of counts, variance time curve, 
and index of dispersion for the continuous and discretized 
RCM processes. It is important to observe that while the CIF 
of the continuous-time process decreases monotonically to the 
intensity (this is true for all RCM processes' see smith and 
Karr [1983]), the CIF of the discretized process increases for 
lags up to 3 days and then starts decreasing to the intensity of 
the process m'. This implies that the discretized RCM process 
has an autocorrelation function rk, which increases up to lag 3 
and then starts decreasing. Such an autocorrelation function is 
highly atypical for rainfall occurrence series and without 
physical basis. Notice also from Figure 3 that the discrete-time 
occurrence process is more clustered than the continuous-time 
one when both are compared with the Poisson process. How- 
ever, when the discretized RCM process is compared with a 

Bernoulli process, it seems to be about as clustered as the 
continuous RCM process. 

6. STATISTICAL ANALYSIS OF DAILY RAINFALL OCCURRENCES 

In the preceding sections, it has been shown that the 
common practice of testing the independence and degree of 
clustering of daily rainfall occurrences by studying deviations 
from a Poisson process can be highly misleading. The extent 
of the differences that can result are demonstrated in this sec- 

tion using daily rainfall occurrences from Snoqualmie Falls, 
Washington, and Miami, Florida. A complete statistical analy- 
sis of four other daily rainfall structures (from Arizona, Texas, 
Colorado, and Pennsylvania) is given in the work by 
Foufoula-Georgiou [1985]. (All six rainfall stations used for the 
analyses above are given in Table 2 of the present papei'.) 

Table 3 shows the mean, standard deviation, coefficient of 
variation, and skewness coefficient of the interarrival times of 
the daily rainfall occurrences for Snoqualmie Falls and 
Miami. It is observed that the coefficient of variation is not 

always greater than one, and this was the case for some of the 
other stations analyzed as well. In particular, the winter 

TABLE 3. Statistics of Interarrival Times 

Number 

Month • s,, co c s of Events c o' 

Snoqualmie Falls 
Jan. 1.40 1.17 0.84 3.82 667 0.53 
Feb. 1.50 1.33 0.88 3.93 557 0.58 
Mar. 1.54 1.55 1.00 5.54 607 0.60 

Apr. 1.72 1.59 0.92 3.06 530 0.65 
May 2.21 2.50 1.13 3.19 429 0.74 
June 2.69 4.35 1.62 4.94 375 0.79 

July 4.26 6.08 1.43 2.91 205 0.87 
Aug. 3.32 4.23 1.27 2.26 260 0.84 
Sept. 2.71 3.76 1.39 4.27 332 0.79 
Oct. 1.75 1.67 0.95 3.08 499 0.66 
Nov. 1.44 1.23 0.85 4.22 613 0.55 
Dec. 1.34 0.98 0.73 4.17 694 0.50 

Miami 

Jan. 4.64 4.89 1.05 2.24 197 0.89 
Feb. 6.16 6.37 1.03 1.63 131 0.92 
Mar. 5.80 6.20 1.07 1.87 162 0191 
Apr. 4.99 5.75 1.15 1.96 174 0.89 
May 2.26 2.61 1.16 3.33 375 0.75 
June 1.99 1.97 0.99 3.25 444 0.71 

July 2.16 1.92 0.89 2.48 439 0.73 
Aug. 1.83 i.47 0.80 2.40 502 0.67 
Sept. 1.84 1.62 0.88 2.64 486 0.68 
Oct. 2.65 3.07 1.16 3.24 366 0.79 
Nov. 4.74 5.13 1.08 !.99 197 0.89 
Dec. 4.91 5.52 1.12 2.16 195 0.89 

Here i, sample mean; s,,, sample standard deviation' co, sample 
coefficient of variation' c s, sample coefficient of skewhess; and co', 
coefficient of variation of the Bernoulli process with the same prob- 
ability of occurrence as the rainfall series. 
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Fig. 4. Statistical properties of intervals and counts for daily rainfall occurrences at Snoqualmie Falls, Washington. I, 
normalized spectrum of counts versus frequency factor; II, log-survivor function versus interarrival time (days); III, 
variance of counts versus interval length (days); and IV, index of dispersion versus interval length (days). 

months (October-February) for Snoqualmie Falls, the summer 
months (May and June) for Roosevelt, the summer months 
(June-September) for Miami, and most of the months 
(January-April, June, July, November, and December) for 
Philadelphia have a coefficient of variation less than one. Ob- 
serve that this underdispersion is consistently shown in the 
spectrum of counts, log survivor function, variance time curve, 
and index of dispersion for these months and stations as well 
(see Figures 4 and 5). Therefore for these months comparison 
with the Poisson process would conclude that there is no 
clustering in rainfall and that rainfall events occur in a pattern 
more regular than that of an independent Poisson process. In 
fact, none of the available models would be able to accommo- 
date such structures, since both the Neyman-Scott and re- 
newal Cox process with Markovian intensity have a coefficient 
of variation greater than one. Previous studies have suggested 
that deterministic explanation for such regular occurrences 
should be sought. However, under the suggested approach, all 
these rainfall series appear to have a clustered structure. For 

example, Table 3 shows that the coefficient of variation of 
daily rainfall interarrival times is always greater than that of 
the Bernoulli process (the latter estimated as cv'=(1 
-1/•)•/2). It should be noted that for such structures the 

discretized Neyman-Scott or RCM processes may be appro- 
priate models, since both can admit coefficient of variations 
less than one. 

In reference to the spectrum of counts (see Figures 4 and 5), 
the following should be noted. For a continuous-time point 
process where theoretically, at least, events can occur arbi- 
trarily close to each other, the spectrum of counts extends to 
to- o•. For the daily rainfall occurrences, however, events 
cannot occur closer than one day apart and this introduces a 
cutoff frequency (Nyquist frequency) ton- •t, or equivalently, 
fN - 1/2 days-•. The value plotted on the abscissa of the spec- 
trum of counts plots is called the frequency factor and is de- 
fined as j - toT/2•t, where T is the total length of observation. 
Therefore the frequency factor corresponding to the Nyquist 
frequency is JN = T/2, and this is the maximum value over 
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Fig. 4. (continued) 

which the spectrum of counts should be computed. Guttorp 
and Thompson [1983] discuss aliasing of the spectrum of 
counts estimated from discrete sampled counting processes, 
and show that this can be severe, especially when the spectrum 
of counts does not decrease rapidly with respect to the sam- 
pling interval. For the daily rainfall occurrences, it was seen 
that the spectrum of counts began to rise at high frequencies, 
apparently due to aliasing, but the effects of aliasing intro- 
duced into lower frequencies cannot be easily assessed. The 
spectral estimates shown in Figures 4 and 5 were obtained 
using a uniform averaging over 15 nonoverlapping intervals. 
Notice that the normalized spectra of counts for most of the 
months decrease with increasing frequency to a value less than 
one and approximately equal to 1- m, where m is the esti- 
mated rate of occurrence. For the months that have coef- 

ficients of variation less than one, the spectrum of counts is 
either approximately constant (indicating an independent Ber- 
noulli process) or increases slightly over a range of low fre- 
quencies and then decreases. Such spectra of counts are usu- 
ally consistent with variance time curves below the one for the 

Poisson process, indicating underdispersion relative to Pois- 
son. However, all these structures are overdispersed relative to 
the Bernoulli, since the variance time curve of the Bernoulli 
process has a slope equal to m(1 - m) < m. 

The log survivor function has been plotted in such a way as 
to emphasize the discreteness of the interarrival times. For 
example, for an interarrival time x - xo multiple points (trian- 
gles) are shown on the plot to illustrate the number of ties, i.e., 
number of intervals of length x0. To interpret the log-survivor 
function, i.e., concavity or convexity and slope, only the lower- 
most points (triangles) at each entry are needed. Also, the full 
length of interarrival times has been retained to illustrate ex- 
treme situations. These extreme points, however, are less reli- 
able and should be given less weight if the log-survivor func- 
tion is used for model fitting. 

7. SAMPLING CONSIDERATIONS 

The previous discussion was oriented primarily toward 
daily rainfall sequences. One would naturally wonder if the 
problems addressed herein are associated with the large sam- 
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Fig. 5. Statistical properties of intervals and counts for daily rainfall occurrences at Miami, Florida. I, normalized 
spectrum of counts versus frequency factor; II, log-survivor function versus interarrival time (days); III, variance of counts 
versus interval length (days); and IV, index of dispersion versus interval length (days). 

pling interval of 1 day and would not exist for, say, hourly 
rainfall. In this section it is shown that a sampled rainfall 
occurrence series cannot be considered as a continuous point 
process, even at sampling intervals as short as a few minutes. 

Let A denote the sampling time interval in days. Then the 
rate of a Poisson process (me) and NeymanoScott process (mss) 
are given as 

me(A ) = (1 - e- x•)/A 

and 

mNs(A ) = 1 - e 1 - (1 - p)e -øA' 
respectively [Guttorp, 1985], where all the parameters have 
been defined previously. Figure 6 shows me(A ) for an arrival 
rate ;•- 2 days -•. We see that observations every 10 min 
induce only minor bias in the mean function, but hourly dis- 
cretization has serious effects. On the same figure, the mean 

function of a N-S process ruNs(A) is shown for ho = 0.1, 
p - 0.05, and 0 - 5.0, approximately the parameters obtained 
by Rodriguez-Iturbe et al. [1984] for Denver rainfall data 
during the period of May 15 to June 16. This N-S process has 
the same rate of occurrence (ho/O = 2 days-x) as the Poisson 
process, but Figure 6 suggests that in this case observations 
every 30 s would be required in order to avoid serious bias in 
the mean function. Again, hourly data are completely unsatis- 
factory when regarded as observations from this continuous- 
time process. It is important also to observe from Figure 6 
that the effects of discretization strongly depend on the degree 
of clustering. In general, the more clustered a process, the 
larger the loss of information through discrete sampling. 
Therefore it appears to be inadvisable to consider rainfall oc- 
currences as the events of a point process and to use the 
continuous-time methodology for modeling, even when sam- 
pling intervals are as small as a few minutes. It should also be 
noted that the practical difficulties of measuring small rainfall 
accumulations, such as would occur over such short time in- 
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Fig. 5. (continued) 

tervals, effectively preclude the application of the continuous- 
time point process framework to any real rainfall series of 
hydrologic interest. 

8. SUMMARY AND CONCLUSIONS 

Point process models for daily rainfall occurrences at a 
single station have been the subject of several earlier studies. 
Serious problems were encountered in fitting the Neyman- 
Scott model to daily rainfall occurrences in two of these stud- 
ies. We suggest that these problems may be the result of the 
inappropriate use of continuous-time point process method- 
ology for the daily rainfall occurrences. If daily rainfall oc- 
currences are interpreted as (all of) the events of a point pro- 
cess, they form a discrete-time point process in which events 
can only occur at time marks integral multiples of the sam- 
pling interval apart. Although previous studies have imple- 
mented the above interpretation of rainfall occurrences, they 
have failed to account for time discreteness and have followed 

a continuous-time point process framework for. modeling. In 
this paper, it has been shown that such an approach can 

induce severe biases in estimation and can result in misleading 
interpretations regarding rainfall clustering. We suggest that 
rainfall occurrences should be compared with the discrete-time 
independent Bernoulli process (and not with the continuous- 
time Poisson) if inferences about clustering and dependencies 
are to be made. We have shown that interpretations regarding 
clustering made under the continuous-time versus discrete- 
time framework differ, often critically. For example, daily rain- 
fall structures which are underdispersed relative to Poisson 
(i.e., more regular occurrences than a Poisson process) are, in 
general, overdispersed relative to Bernoulli (i.e., more random 
occurrences than in a Bernoulli process). 

The other issue addressed in this paper is the fitting of point 
process models to daily rainfall occurrences. Fitting pro- 
cedures which directly use the parameters of the continuous- 
time point processes (and which have been extensively used in 
the hydrologic literature) have been shown to induce severe 
biases in the parameter estimates. Such procedures should not 
be used even in modeling hourly rainfall, since the sampling 
interval under which rainfall occurrence data may be con- 
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sidered approximately continuous is on the order of a few 
minutes. We recommend instead that the appropriate ap- 
proach to modeling rainfall data using continuous-time point 
processes is the one followed by Rodriguez-lturbe et al. [1984] 
and Foufoula-Georgiou and Guttorp [1985]. An alternate ap- 
proach is to develop discrete-time point process models. 
Foufoula-Georgiou [1985] proposes the use of a semi-Markov 
model in this context. It seems, however, that the development 
of other classes of discrete-time point process models, as, for 
example, the discrete-time analogue of the Neyman-Scott pro- 
cess, will involve cumbersome closed form solutions, if they 
are feasible at all. 
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