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Critical Tokunaga model for river networks
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The hierarchical organization and self-similarity in river basins have been topics of extensive research in
hydrology and geomorphology starting with the pioneering work of Horton in 1945. Despite significant theoret-
ical and applied advances, however, the mathematical origin of and relation among Horton’s laws for different
stream attributes remain unsettled. Here we capitalize on a recently developed theory of random self-similar
trees to elucidate the origin of Horton’s laws, Hack’s laws, basin fractal dimensions, power-law distributions of
link attributes, and power-law relations between distinct attributes. In particular, we introduce a one-parametric
family of self-similar critical Tokunaga trees that includes the celebrated Shreve’s random topology model and
extends to trees that approximate the observed river networks with realistic exponents. The results offer tools
to increase our understanding of landscape organization under different hydroclimatic forcings, and to extend
scaling relationships useful for hydrologic prediction to resolutions higher than those observed.
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I. INTRODUCTION

In a pioneering study “of streams and their drainage
basins,” Horton [1] introduced the concept of river stream or-
der and formulated two fundamental laws of the composition
of stream-drainage nets. The law of stream numbers postulates
a geometric decay of the numbers NK of streams of increasing
order K , with the exponent RB. The law of stream lengths
postulates a geometric growth of the average length LK of
streams of increasing order K , with the exponent RL. During
the 20th century, geometric dependence on the stream order
has been documented for multiple stream attributes, including
upstream area, magnitude (number of upstream headwater
channels, also called sources), the total channel length, the
longest stream length, link slope, mean annual discharge, en-
ergy expenditure, etc. [2]; all such relations are also referred
to as Horton’s laws. Despite their elemental role in describing
the key regularities in river stream networks (such as fractal
dimension, Hack’s law, etc.), Horton’s laws remain an em-
pirical finding and their origin and apparent ubiquity remain
unsettled [3].

The first attempt at a rigorous explanation of Horton’s
laws was made by Shreve [4] in the 1960s, who examined
a “topologically random population of channel networks,”
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where all topologically distinct networks with given num-
ber of first-order streams are equally likely. This model is
equivalent to the celebrated critical binary Galton-Watson
branching process with a given population size [5,6]. Shreve’s
calculations imply that in this model the Horton’s law of
stream numbers holds with RB = 4. Although not attempted
by Shreve, it can be shown [5] that the law of stream lengths
also holds here with RL = 2 under the assumption of constant
or identically distributed link lengths. Albeit insightful and
mathematically tractable, the random topology model deviates
from observations, which became apparent with the develop-
ment of improved methods for extracting river networks [7,8].
This called for developing alternative modeling approaches
for river networks.

It has proven challenging to find a model that would be
mathematically tractable and flexible enough to reproduce the
Horton exponents and other scaling laws observed in river
basins. One end of the modeling spectrum is occupied by
conceptual approaches, such as the Peano fractal basin ([2],
their Sec. 2.4; [1], their Fig. 25) or Scheidegger’s lattice model
[9,10]. These models provide an invaluable insight into the
origin of the observed scalings; they however lack realistic
dendritic patterns and values of scaling exponents. On the
other end are simulation approaches that can generate visually
appealing networks that closely fit selected exponents, but can
be analytically opaque. The optimal channel network (OCN)
model [11–16] is a well-recognized simulation technique.
Following the energy expenditure minimization principle, the
model creates random drainage basins on a planar lattice (or
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more general graphs). We refer to [2] for a comprehensive
discussion of these and other models.

Despite the progress achieved by the modeling efforts of
the 20th century, the following essential questions remain
unanswered: What are sufficient conditions for Horton’s laws?
What are the values of the Horton exponents for river basins?
How are the Horton exponents for different stream attributes
related to each other and to other basin parameters? There
is a consensus that Horton’s laws are connected to the self-
similar structure of a basin [2,8,17,18], which is informally
understood as invariance of the basin’s statistical structure
with respect to changing the scale of analysis (zooming in or
out) [19]. However, a commonly accepted mathematical def-
inition of tree self-similarity is still lacking. Three alternative
definitions have been proposed: the Toeplitz property of the
Tokunaga coefficients [8,20]; the invariance of a tree distri-
bution with respect to the Horton pruning (cutting the source
streams) [5]; and statistical self-similarity of basin attributes
[17,21]. The unsettled questions are as follows: How are the
alternative definitions related? Is self-similarity (any version)
sufficient for selected Horton’s laws? These questions are
relevant in other areas beyond hydrogeomorphology where
Horton’s laws and related scalings have been reported, includ-
ing computer science [22,23], statistical seismology [24–27],
vascular analysis [28], brain studies [29], ecology [30], and
biology [31].

We answer the above questions within a self-consistent
mathematical theory of random self-similar trees recently
developed by the authors [32]. In particular, we propose
a concept of tree self-similarity that unifies the alternative
existing definitions, rigorously explains the appearance and
parametrization of Horton’s laws, and offers an approach to
modeling a variety of dendritic systems. The goal of this
paper is to adapt and extend the theory to the studies of river
networks. Most notably, we show that two fundamental and
practically appealing properties—coordination and Horton
prune invariance—result in trees that enjoy a wealth of scal-
ing laws observed in landscape dissection. Furthermore, we
propose a one-parametric family of critical Tokunaga trees,
which reproduces multiple Horton’s laws and related scalings
reported in river network studies, with realistic values of the
respective parameters. The critical Tokunaga family yields
rigorous relations among scaling exponents that have been
empirically documented in multiple earlier studies, and serves
as a useful analytic and modeling tool for further analysis of
river network structure and dynamics. Our results also offer a
computationally efficient algorithm of generating self-similar
trees with arbitrary parameters (Horton exponents, fractal di-
mensions, etc.), which facilitates ensemble simulations.

We represent a stream network that drains a single basin
(watershed, catchment) as a rooted binary tree. The basin
outlet (point furthest downstream) corresponds to the tree
root, sources (points furthest upstream) correspond to leaves,
junctions (points where two streams meet) correspond to
internal vertices, and links (stream segments between two
successive nodes) correspond to edges. This graph-theoretic
nomenclature provides a link to the probability and combi-
natorics literature on the topic. We assume that all examined
trees belong to the space L of finite binary rooted planted trees
with positive edge lengths [32]. Recall that a tree is called

planted if the tree root has degree 1 (the most downstream
link goes to an ocean or another large water body instead of
merging with another stream). The space L includes the empty
tree φ composed of the root vertex. We also consider the space
T of combinatorial projections of trees from L, that is, trees
with the same combinatorial structure but no edge lengths.

II. RESULTS

A. Review of Horton’s laws and implied scaling relationships

The Horton-Strahler orders for river streams have been
discussed extensively in the literature and nicely reviewed and
summarized in [2]. In this section we introduce the orders
through the viewpoint of Horton pruning—this streamlines
our exposition and prepares the reader for material that fol-
lows. We also discuss Horton’s laws and their implications.

Consider the map R : L → L that removes the source
links from a tree T ∈ L. The Horton-Strahler order of a tree
T [1,33,34] is the minimal number of Horton prunings that
completely eliminates it:

ord(T ) = min{k � 0 : Rk (T ) = φ}. (1)

The Horton pruning and Horton-Strahler orders are illustrated
in Fig. 1 (see Appendix A for details and an alternative com-
putational definition).

Horton’s law of stream numbers [1] postulates a geometric
decay of the stream counts NK of increasing order K with
Horton exponent RB � 2:

NK ∝ R−K
B or

NK

NK+1
= RB. (2)

The notation x ∝ y stands for x = const × y. The lower bound
on RB follows from the definition of Horton-Strahler orders,
since it takes at least two streams of order K to create a single
stream of order K + 1 (see Appendix A). The value of RB re-
ported in large river basins is close to 4.5 [2,4,17,19,21,33,35–
39]. Figure 2(a) (cyan circles) shows the Horton’s law for
stream numbers in the stream network of Beaver Creek of
Fig. 1; here RB ≈ 4.6.

Horton’s law of stream lengths [1] postulates a geometric
growth of the average length LK of streams of increasing order
K with exponent RL:

LK ∝ RK
L or

LK+1

LK
= RL. (3)

The value of RL in river networks is around 2.5 [2]. Figure 2(d)
(magenta squares) shows the Horton’s law for stream lengths
in the Beaver Creek network of Fig. 1; here RL ≈ 2.3.

Similarly to the laws (2) and (3) discussed above, a geo-
metric scaling of any average stream attribute ZK with order
K is also called Horton’s law, and the respective exponent is
called Horton exponent [8,20]. Horton’s laws are documented
for multiple physical and combinatorial attributes, including
upstream area, magnitude (number of upstream sources), total
upstream channel length, length of the longest channel to the
divide, etc. [2]. Figure 2 illustrates Horton’s laws for seven
stream attributes of the Beaver Creek network that is shown
in Fig. 1. We use a convention that the Horton exponent is
greater than unity, which always can be achieved by selecting
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FIG. 1. Horton pruning of the stream network of Beaver creek, Floyd County, KY. Streams of orders K = 2, . . . , 6 are shown by different
colors (see legend on the right). Streams of order 1 (source streams) are not shown for visual convenience. (a) The first Horton pruning, after
eliminating streams of order K = 1. (b–e) Second to fifth consecutive Horton prunings. The sixth pruning completely eliminates the network.
The channel extraction is done using RIVERTOOLS software [45].

the sign of the exponent K in the Horton’s law [e.g., Eqs. (2)
and (3)].

Horton’s laws imply power-law frequencies of link at-
tributes and power-law relations between the average values
of distinct attributes. Suppose that stream attributes Z and
Y satisfy Horton’s law with Horton exponents RZ and RY ,
respectively. Using each of the laws to express the channel
order K and equating these expressions, we find

ZK ∝ Y α
K , with α = log RZ

log RY
. (4)

Equation (4) is a punctured (by discrete orders) version of a
power-law relation Z ∝ Y α that abounds among hydrologic
quantities. A well-studied example is Hack’s law that relates
the length L of the longest stream in a basin to the basin area
A via L ∝ Ah with h ≈ 0.6 [40,41]. Equation (4) suggests that
the parameter h is expressed via the exponents RL and RA of
the Horton’s laws for length L and area A as

h = log RL

log RA
. (5)

Next, consider the value Z(i) of an attribute Z calculated at
link i in a large basin. Assuming Horton’s laws for NK and
SK with exponents RB and RS , respectively, and considering a
limit of an infinitely large basin we approximate the distribu-
tion of link attributes as (see Appendix B)

|i : Z(i) � z| ∝ z−β, β = log RB − log RS

log RZ
, (6)

where |A| denotes the number of elements in a set A.
Such power laws are documented for the upstream con-

tributing area, length of the longest channel to the divide,
water discharge, or energy expenditure. For example, analyses
of river basins (e.g., [14,42,43]) extracted from digital eleva-
tion models suggest

|i : A(i) � a| ∝ a−βA , βA ≈ 0.43 (7)

and

|i : �(i) � l| ∝ l−β�, β� ≈ 0.8, (8)

where A(i) is the area upstream of link i and �(i) is the distance
from link i to the furthest source (or, equivalently, to the basin
divide) measured along the channel network.

Horton’s laws [e.g., Eqs. (2) and (3)] and the implied
scaling relations [Eqs. (4) and (6)] provide key observational
constraints in modeling river networks [2,12,39,42]. Our pa-
per explains the appearance of Horton’s laws in terms of tree
self-similarity and offers a parametric toolbox for the analysis
and modeling of river networks and other branching structures
that exhibit such scaling relations.

B. Tree self-similarity and Tokunaga sequence

We introduce the concept of self-similarity for random
trees that encompasses the existing definitions and satisfies
practical intuitive expectations. The proposed definition ap-
plies to a distribution of trees from a suitable space such as T
or L and combines two fundamental properties—coordination
and Horton prune invariance.

Coordination means that the (random) structure of a river
basin is determined by its order. For example, a basin with
outlet of order 3 and a sub-basin of order 3 within a basin of
order 9 have, statistically, the same structure. This assumption
is at the heart of analyses based on the Horton-Strahler orders;
it has been imposed, explicitly or implicitly, in the mainstream
studies of river networks [1,2,4,7,8,21,36]. A distribution that
satisfies the coordination property is called coordinated. We
refer to [32] for a measure-theoretic definition of coordination.

Horton prune invariance formalizes the expectation that
the scaling laws of hydrology are (by and large) independent
of the data resolution. The Horton pruning R is a natural
model for the change of resolution in a river network. Indeed,
better observations lead to detecting smaller streams, which
increases the basin order. Pruning a basin by order is roughly
equivalent to decreasing the resolution of stream detection.
The Horton prune invariance requires that the statistical struc-
ture of trees remains the same after zooming in or out.

Definition 1 (Self-similar tree). A coordinated distribution
μ on the space T of combinatorial trees is called self-similar
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FIG. 2. Critical Tokunaga fit to the Horton’s laws in the stream network of Beaver creek. The stream network is shown in Fig. 1. Symbols
correspond to the values of the observed attributes. Lines and dots show the theoretical fit by the critical Tokunaga model with c = 2.3.
(a) Stream numbers NK . The model fit is given by (18); it has asymptotic slope − log10(2c) ≈ −0.66. (b) Average stream magnitude MK

(cyan circles) and average number of links SK (magenta squares). The fit for MK is given by (19); it has asymptotic slope log10(2c) ≈ 0.66.
The fit for SK is given by cK−1; it has theoretical slope log10 c ≈ 0.36. (c) Average total contributing area AK (cyan circles) and average total
upstream channel length Ltot

K (magenta squares). The fitting lines, according to a combination of Eqs. (19) and (G3), have theoretical slope
log10(2c) ≈ 0.66. (d) Average stream length LK (magenta squares) and average length �K of the longest stream to the divide (cyan circles).
The fitting lines, according to Eqs. (28) and (30), have theoretical slope log10(c) ≈ 0.36.

if it is invariant with respect to Horton pruning [5,44]:

μ[R−1(T )|T �= φ] = μ(T ) for any T ∈ T . (9)

Recall that φ denotes an empty tree. Equation (9) states
that, for any nonempty tree T , the total probability assigned
by μ to the collection of trees that result in T after pruning—
these trees are denoted by R−1(T )—is the same as the
probability of T . Informally, consider a forest of trees gen-
erated by measure μ, where each tree T occurs multiple times
according to its probability μ(T ). The forest is self-similar
if after pruning each tree by R we obtain the same forest.
This definition can be extended to trees with edge lengths
from space L; see Def. 9 in [32]. In that case, we allow the
edge lengths to scale after pruning by a multiplicative scaling

constant ζ > 0. We use a conventional abuse of terminology
by saying that a tree T is self-similar if T is a random tree
drawn from a self-similar distribution μ.

A measure-theoretic Definition 1 might be not appealing
for practical analyses that oftentimes involve only a handful of
finite basins. A bridge from this definition to easily computed
stream statistics is provided by the Tokunaga sequence.

Definition 2 (Tokunaga coefficients [5,8,32,48,53]). Fix a
coordinated measure μ on T and denote by ni, j the random
number of streams of order i per a randomly selected stream
of order j with respect to μ. For any pair i < j, the Tokunaga
coefficient Ti, j = Ti, j (μ) is the expected value of ni, j :

Ti, j = Eμ[ni, j], (10)
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where Eμ denotes the mathematical expectation with respect
to μ.

We can arrange the Tokunaga coefficients for trees of a
given order K in an upper triangular matrix:

TK =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 T1,2 T1,3 . . . T1,K

0 0 T2,3 . . . T2,K

0 0 . . .
. . .

...

...
...

. . . 0 TK−1,K

0 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

Theorem 1 (Tokunaga sequence [32]). Suppose μ is a self-
similar measure on T . Then the Tokunaga coefficients satisfy
the Toeplitz property: Ti,i+k = Tk for any positive integer pair
i, k. In this case the Tokunaga matrix becomes Toeplitz:

TK =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 T1 T2 . . . TK−1

0 0 T1 . . . TK−2

0 0 . . .
. . .

...

...
...

. . . 0 T1

0 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Proof. Consider the pushforward measure R∗(μ) induced
on T by the Horton pruning operator:

R∗(μ)(A) = μ[R−1(A)], ∀A ⊂ T . (13)

Since Horton pruning decreases the order of every stream
by 1, the Tokunaga coefficients T R

i, j computed on T with
respect to R∗(μ) satisfy T R

i, j = Ti+1, j+1. The self-similarity
of μ implies T R

i, j = Ti, j . Combining these relations, we find
Ti, j = Ti+1, j+1. This establishes the desired Toeplitz property
of the Tokunaga coefficients. �

The proof of Theorem 1 shows that in coordinated trees
both prune invariance and Toeplitz property take the same
algebraic form Ti, j = Ti+1, j+1. This leads to the following
corollary.

Corollary 1 (Prune invariance vs Toeplitz). Suppose μ is
a coordinated measure on T . Then the Toeplitz property
Ti,i+k = Tk and Horton prune invariance of Eq. (9) are equiva-
lent (i.e., both hold or do not hold at the same time).

We refer to the elements Tk of the Tokunaga sequence as
Tokunaga coefficients, which creates no confusion with the
original double-indexed coefficients Ti, j . According to Theo-
rem 1, each self-similar measure μ corresponds to a unique
non-negative sequence of Tokunaga coefficients Tk such that

Tk = Ti,i+k = Eμ[ni,i+k] for all i, k > 0. (14)

The Tokunaga coefficients Tk provide a fundamental
parametrization of a self-similar tree and constitute the main
tool of respective applied analyses.

Our Definition 1 of tree self-similarity unifies the alterna-
tive definitions used in the literature. Burd et al. [5] define
self-similarity in Galton-Watson trees as the Horton prune
invariance; this is a special case of our definition since the
Galton-Watson trees are coordinated [32]. Peckham [8] and
Newman et al. [20] define self-similarity as the Toeplitz
property for Tokunaga coefficients; this is equivalent to our
definition in coordinated trees (Corollary 1). The coordination

assumption is further justified in [32] by showing that the
Toeplitz property alone, without coordination, allows for a
multitude of obscure measures that are hardly useful in prac-
tice. Gupta and Waymire [17] and Peckham and Gupta [21]
suggested a concept of statistical self-similarity that requires a
random stream attribute Z to have distribution that scales with
order. It can be shown (Sec. 7 in [32]) that (i) statistical self-
similarity for some attributes (e.g., for any discrete attribute)
may only hold asymptotically and (ii) multiple attributes, in-
cluding stream length, magnitude, and total basin length, are
statistically self-similar in a limit of an infinitely large basin
that is self-similar according to our Definition 1.

C. Horton’s laws for stream numbers and magnitudes
in self-similar trees

We now capitalize on the concept of tree self-similarity
introduced above to establish a key emergent property of
self-similar trees—Horton’s laws for stream numbers and
magnitudes, conveniently parametrized by the Tokunaga se-
quence.

Consider the mean number

Ni[K] = Eμ[Ni(T ) | ord(T ) = K]

of streams of order i in a basin of order K and the mean
magnitude (number of upstream sources) Mi of a stream of
order i. Observe that for a fixed K the stream counts Ni[K]
form a decreasing sequence in i, and the sequence’s first term
N1[K] increases with K . At the same time, the average mag-
nitudes Mi form an increasing sequence in i; its first elements
M1, . . . , Mj are independent of basin order K for any K � j.
This explains the notational dependence on K in the average
stream counts and absence of such in the average magnitudes.
The definition implies NK [K] = M1 = 1 and N1[K] = MK

for any tree distribution. Moreover, in self-similar trees the
two sequences are deterministically related as [8,44]

NK− j+1[K] = N1[ j] = Mk for any 1 � j � K. (15)

Consider the generating function T (z) = ∑∞
k=1 Tkzk of the

Tokunaga coefficients and define

t̂ (z) = −1 + 2z + T (z). (16)

Theorem 2 (Horton’s law for stream numbers, magnitudes
in self-similar trees [32,44]). Consider a self-similar tree T
with Tokunaga sequence Tk and suppose that

lim sup
k→∞

T 1/k
k < ∞. (17)

Then, the stream numbers Ni[K] and the magnitudes Mi obey
Horton’s laws:

lim
K→∞

(
N1[K] R−K

B

) = M < ∞, (18)

lim
i→∞

(
Mi R−i

M

) = M < ∞. (19)

The Horton exponents are given by

RB = RM = 1/w0, (20)

where w0 is the only real root of the function t̂ (z) in
the interval (0, 1/2] and M is a positive real constant
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given by

M = − 1

w0
lim

z→w0

z(z − w0)

t̂ (z)
. (21)

Proof is based on the analysis of generating functions for
the sequences Ni[K] and Mi (Appendix C); it is given in
Appendix D.

Theorem 2 implies that Horton’s laws for mean stream
numbers Ni[K] and magnitudes Mi hold in almost any self-
similar tree. More specifically, the theorem shows that the
validity of the laws is determined by the Tokunaga sequence
Tk , and not the whole distribution μ. Furthermore, the only
restriction on the admissible Tokunaga sequences is given by
Eq. (17), which prohibits superexponential growth of Tk , such
as Tk = k! or Tk = kk . The theorem establishes a strong form
of Horton’s law [Eqs. (18) and (19)], which implies a weaker
version that is often reported in applied literature:

lim
K→∞

Ni[K]

Ni+1[K]
= RB for any i, and

lim
i→∞

Mi+1

Mi
= RM . (22)

Theorem 2 emphasizes the existence of a multitude of self-
similar measures with the same Horton exponent. Assume we
fix RB and hence the root w0 of t̂ (z) according to Eq. (20).
Equation (16) readily asserts that there is an infinite number
of Tokunaga sequences that correspond to an arbitrary w0

within (0, 1/2]. For example, if RB = 4, then w0 = 1/4 and
one needs T (z) = 1/2. This can be achieved by selecting any
of Tk = {2, 0, . . .}, {1, 4, 0, . . .}, {0, 8, 0, . . .}, {2k−1}, etc.,
where “. . .” denotes trailing zeros.

We observe that Horton’s law of stream numbers in Theo-
rem 2 [Eq. (18)] is an asymptotic statement, different from the
ideal Horton’s law for stream numbers (2) which is commonly
used in the literature. This is not a mathematical peculiarity—
the ideal Horton’s law is merely a convenient approximation
to the actual behavior of stream counts. Its approximate nature
is not related to the finite size of the observed basins—the
ideal Horton’s law rarely holds in theoretical trees of arbitrar-
ily large size. Formally, we show in Appendix E that the ideal
Horton’s law for stream numbers in a self-similar tree holds
if and only if Tk = 0 for k > 1. Realistically, Horton’s laws
are asymptotic statements of different strength. The strongest
form of Horton’s law for stream numbers is that of Eq. (18),
which implies a weaker version of Eq. (22). Accordingly,
the power relations among different stream attributes (4) and
power-law frequencies of link attributes (6) that we have de-
rived from the ideal Horton’s law of Eq. (2) remain heuristic.
A formal analysis based on actual Horton’s laws [like those
in Eqs. (18) and (19)], which will be presented elsewhere,
confirms the results of Eqs. (4) and (6) and reveals additional
solutions with oscillatory tail behavior.

The asymptotic nature of Horton’s laws triggers a natural
question of whether one can observe them in finite trees. The
most general approach to answering this question is given by
the implicit form of the average branch counts [32]:

N1[K + 1] = −
(̃

1

t̂

)
(K ), (23)

where we write

f̃ (k) = 1

2π i

∮
|z|=�

f (z)

zk+1
dz = ak (24)

for an analytic function f (z) represented by a power se-
ries f (z) = ∑∞

k=0 akzk in a nonempty disk |z| � � (see
Appendix C). Informally, the rate of convergence in Horton’s
law for stream numbers is determined by how well the only
real zero of t̂ (z) within (0, 1/2] is separated from other zeros.
A comprehensive treatment of this issue, including estimation
of the convergence rates in the general case, can be found in
[32, Sec. 4].

In many cases the sequence Ni[K] can be found explic-
itly. For example, consider the Tokunaga sequence Tk = (c −
1)ck−1 with c > 1; it corresponds to the critical Tokunaga tree
discussed below in Sec. II E. Kovchegov and Zaliapin [[32],
Sec. 7.6.3] have shown that in this case RB = 2c and

NK− j+1[K] = R j
B + RB − 2

2(RB − 1)
, j = 1, . . . , K.

Accordingly, with c = 2.3 (which we suggest in this paper as
a suitable value for the observed river basins) the sequence
N1[K]R−K

B takes the form

0.217, 0.156, 0.143, 0.140, 0.139, . . .

with all later terms being equal to the theoretical limit value of
0.139, all values being rounded to the third significant digit.
In other words, the Horton’s law asymptotic (18) is closely
attained starting from K � 3. This fast convergence is typical
in Horton’s laws.

Horton’s laws for other stream attributes may or may not
hold depending on additional assumptions about Tk and other
details of basin organization. A comprehensive treatment is
possible using the generating function approach outlined in
Appendix C. Most importantly, further analysis often requires
specifying a concrete self-similar distribution μ, not only
its Tokunaga sequence Tk . Below we examine a particularly
useful family of distributions.

D. Random attachment model of self-similar trees

According to Theorem 1, every self-similar measure cor-
responds to a unique Tokunaga sequence Tk . At the same
time, a multitude of self-similar measures can be constructed
for a given Tokunaga sequence. Here we introduce a partic-
ularly symmetric random tree (tree distribution) for a given
Tokunaga sequence and establish its key properties. We use
Poisson attachment construction within exponential segments;
this ensures that the link lengths have exponential distribution
and the attachment of streams of lower orders to a given
stream of a larger order is done in uniform random fashion.
We refer to this construction as the random attachment model
(RAM).

The RAM specifies a tree distribution on L by a non-
negative Tokunaga sequence Tk , the order distribution πK =
P[ord(T ) = K], and the distribution of stream lengths. The
model assumes that the lengths of streams of order j are in-
dependent exponential random variables with rate λ j . Hence,
the model is specified by three non-negative sequences:

{Tk}, {λ j}, and {πK}.
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FIG. 3. Examples of critical Tokunaga trees (special case of RAM). The trees are generated by the critical Tokunaga process with c = 2.3
and Horton-Strahler order K = 5. The linewidth is proportional to the contributing area. The figure accurately represents the tree combinatorial
structure; the edge lengths are scaled for a better planar embedding. We notice that the RAM generates trees with no planar embedding. The
current figure uses an ad hoc embedding; accordingly, the related purely geometric properties, such as junction angles or spacing between
channels, are not a part of the model.

Each sequence specifies a particular attribute of a random
tree: the Tokunaga coefficients Tk specify the combinatorial
structure of a tree of a given order; the probabilities πK specify
the frequencies of trees of different orders; and the rates λ j

specify the link lengths.
A random tree is constructed in a hierarchical fashion,

starting from the stream of the highest order and adding side
tributaries of consecutively smaller orders. The tree order K is
selected according to the distribution πK . At the first step we
generate the main stream that will have order K in the final
tree; its length is an exponential random variable with rate
λK . At each of the remaining K − 1 steps, we add streams
of lower orders to the existing tree by a Poisson attachment
procedure. The streams added at step m will have order i(m) =
K − m + 1 in the final tree. The lengths of the newly added
streams are independent exponential random variables with
rate λi(m). The new streams are added in two steps. First, we
consider the existing tree as a one-dimensional metric space
(union of link segments) and generate a collection of points on
this space according to a homogeneous Poisson process. The
process intensity depends on the order of a link within the final
tree. Specifically, within every link added at step K − j + 1
(that will have order j in the final tree) the Poisson intensity
is λ jTj−i(m). A single stream is then attached to each Poisson
point. Second, we add two new streams to each source stream
of the current tree (except the sources just added during this
step). The first part of this procedure (Poisson attachment)
ensures that the tree has Tokunaga coefficients Tk , and the
second part (adding stream pairs) increases the tree order by
one at each step.

The trees generated by RAM can be equivalently repre-
sented as trajectories of a continuous-time multitype hierar-
chical branching process, with time evolving from the root

upstream and member types corresponding to the stream or-
ders. This approach, explored by the authors in [32], yields the
joint distribution of the orders K1 < K2 of subtrees that share
a common root of order K :

P(K1 = j, K2 = m|K ) =
{

S−1
K if j = m = K − 1,

TK− jS
−1
K if j < m = K.

(25)
We now use this result to propose a computationally efficient
recursive construction of RAM trees. A tree of order 1 is a
stream of exponential length with rate γ . To create a tree of
order K > 1 we first generate a link of exponential length with
rate λK SK , where

SK = 1 +
K−1∑
i=1

Ti. (26)

To this link we attach two conditionally (conditioned on the
order K) independent trees the orders of which are drawn
from Eq. (25). Each of these trees is generated according to
the same recursive procedure. This algorithm generates trees
with up to 106 edges within seconds, providing a flexible
computational framework for ensemble simulations based on
independent statistical realizations of a tree with fixed param-
eters. Examples of RAM stream networks are shown in Fig. 3.

Another useful result of the branching process theory es-
tablishes the necessary and sufficient conditions for a RAM
tree to be self-similar according to Definition 1. These con-
ditions explicitly parametrize the probabilities πK and stream
length rates λ j for an arbitrary Tokunaga sequence Tk . This
emphasizes the richness of the self-similar family.

Theorem 3 (Self-similar RAM; [32, Theorem 11]). Suppose
T is a random tree generated by the RAM with parameters
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FIG. 4. Fractal dimension d (a) of Eq. (29) and Hack’s exponent h = d−1 (b) of a self-similar RAM tree in the limit of infinite size as a
function of the Horton exponents RB and RL . Selected levels of d and h are shown by marked black lines. Green thick lines correspond to the
critical Tokunaga process [Definition 3, Eq. (31)] for which RB = 2RL . Blue dots depict the pairs (RB, RL ) estimated in nine real river basins
by [42] (see also [2, Table 2.1]).

{Tk}, {λ j}, and {πK}. Then T is a coordinated tree. Tree T is
self-similar with scaling constant ζ > 0 (see Definition 1 and
its discussion) if and only if

πK = p(1 − p)K−1 (K � 1) and

λ j = γ ζ 1− j ( j � 1) (27)

for some parameters p ∈ (0, 1), γ > 0, and ζ > 0 (and any
Tokunaga sequence Tk).

Corollary 2 (Horton’s law for the stream lengths). Con-
sider a self-similar RAM tree with parameters given by
Eq. (27). Then the average length Lj of a stream of order j
satisfies

LjR
− j
L = 1

ζγ
< ∞ with RL = ζ . (28)

The proof is given in Appendix F. We notice that the
Horton’s law holds here in an exact form, without a limit in
order j.

We show below that the two well-known empirical prop-
erties of self-similar river basins—fractal dimension and
Horton’s law for the longest stream length—formally hold in
a self-similar RAM tree.

Theorem 4 (Fractal dimension of a self-similar tree). Con-
sider a self-similar RAM tree with Tokunaga sequence Tk and
other parameters given by Eq. (27). Let w0 be the only real
root of the function t̂ (z) [Eq. (16)] in the interval (0, 1/2].
Then, the fractal dimension of the tree in the limit of infinite
order and after a suitable length rescaling is given by

d = max{1, d0}, d0 = − log w0

log ζ
= log RB

log RL
. (29)

Proof is given in Appendix H.
Equation (29) coincides with the expression first obtained

by La Barbera and Rosso [46] using a heuristic assumption
of a basin with an ideal Horton’s law of stream numbers.
Figure 4(a) shows a map of d as a function of the Horton
exponents RB and RL.

Theorem 5 (Horton’s law for the length of the longest
stream). Consider a self-similar RAM basin with parameters
given by Eq. (27). Let �k denote the average length of the
longest stream in a basin of order k. Then

lim
k→∞

�kR−k
� = const < ∞ with R� = ζ . (30)

Proof is given in Appendix I.

E. Critical Tokunaga tree and emergent scaling relations

Observations on river networks have supported a basic
constraint that the link length distribution is independent of
the position of the link within a basin [2,47]. This motivates
one to describe a family of trees that respect this property.
Surprisingly, this leads to a one-parameter family of critical
Tokunaga trees that satisfy multiple additional symmetries
and include the celebrated Shreve model [4,5] as a special
case.

The length of a link of order K in the RAM model is an
exponential random variable with rate λK SK , which is a direct
consequence of using Poisson attachment along exponentially
distributed streams. The order-independent link length implies
λK SK = const. Using the general form of λK in a self-similar
RAM tree (27), one can select γ such that SK = ζ K−1. This
corresponds to the unique form of the Tokunaga sequence
in a self-similar RAM tree with identically distributed link
lengths:

Tk = (c − 1) ck−1 (k � 1), c = ζ � 1. (31)

Definition 3 (Critical Tokunaga tree). A self-similar RAM
with p = 1/2 and the Tokunaga sequence of Eq. (31) is called
the critical Tokunaga tree or critical Tokunaga model. By The-
orem 3, for this model we have πK = 2−K and λ j = γ ζ 1− j .

Figure 3 shows three examples of critical Tokunaga trees
of order K = 5 with parameter c = 2.3, which gives a close
approximation to the observed river networks (see Table I).
Equation (31) is a special case of the two-parameter sequence
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TABLE I. Scaling exponents in the critical Tokunaga model. Selected scaling exponents (first column) in the critical Tokunaga model
are expressed via the model parameter c � 1 (second column), fractal dimension d (third column), and Hack’s exponent h (fourth column).
Columns 5–7 show the values of the exponents in the critical Tokunaga model for c = 2.0, 2.3, 2.5. For comparison, column 8 shows the
values estimated in the OCN model. Column 9 summarizes estimations in the observed river networks. The agreement of the exponents of the
critical Tokunaga model with c = 2.3 (column 6) with those observed from real basins is noted.

Expressed via Critical Tokunaga model

Exponent c d h c = 2.0a c = 2.3 c = 2.5 OCNb Real basinsc

RB = RM = RA 2c 2d/(d−1) 21/(1−h) 4 4.6 5.0 4 4.1–4.8
RS = RL c 21/(d−1) 2h/(1−h) 2 2.3 2.5 2 2.1–2.7

d = log RB
log RL

logc (2c) d h−1 2 1.832 1.756 2 1.7–2.0

h = log RL
log RB

log2c c d−1 h 0.5 0.546 0.569 0.57 0.5–0.6
βA log2c 2 1 − d−1 1 − h 0.5 0.454 0.431 0.43 0.4–0.5
β� logc 2 d − 1 h−1 − 1 1 0.832 0.756 0.8 0.65–0.9

aEquivalent to the critical binary Galton-Watson branching process with independent and identically distributed exponential edge lengths.
bAverage values estimated in simulated OCN basins, according to [2,55].
cAccording to [2,7,8,14,38,41,42,47,53].

Tk = ack−1 introduced by Tokunaga [48] to approximate river
basin branching; this sequence has been examined in detail
in [8,19,20,38,44]. The one-parameter sequence of Eq. (31)
appears in the random self-similar network model of Veitzer
and Gupta [49], which uses a purely combinatorial algorithm
of recursive local replacement of the network generators to
construct random trees. A theoretical underpinning of this
constraint is revealed via the prism of branching process anal-
ysis. Kovchegov and Zaliapin [50] have shown that a random
tree T generated by the critical Tokunaga model is critical and
time invariant in both combinatorial and metric forms [32]. In
particular, the condition p = 1/2 is necessary and sufficient
for criticality. Moreover, the geometric branching process
(that generates the combinatorial part of a RAM tree) is time
invariant if and only if it corresponds to the critical Tokunaga
model. Recall that criticality means that a branching process
has unit average population size after an arbitrary but fixed
time advancement (in both discrete and continuous versions).
Time invariance means that the frequency of orders of subtrees
that survive after a given time advancement coincides with the
initial order distribution.

It is natural to assume that the local contributing area of
a link (area that contributes to the link directly, and not via
its descendant joint) is a function of the link length. This
allows us to examine the average total contributing area Ai

of a stream of order i. In particular, the order-independent link
lengths imply order-independent local areas. The following
result establishes Hack’s law in a critical Tokunaga tree.

Theorem 6 (Hack’s law in a critical Tokunaga tree). Con-
sider a critical Tokunaga tree (Definition 3). Then the average
lengths �i of the longest stream and the average total con-
tributing area Ai of a basin are related as

�i ∼ const × (Ai )
h, where

h = d−1= − log ζ

log w0
= log RL

log RB
. (32)

Proof is given in Appendix F.

The Hack’s law of Eq. (32) also holds in more general self-
similar RAM trees (which may not be critical Tokunaga) as
is shown in Appendix H. Figure 4(b) shows a map of h as
a function of the Horton exponents RB and RL. The critical
Tokunaga case corresponds to RB = 2RL = 2c and hence d =
logc(2c) and h = log2c c; this case is depicted by a green line
in Fig. 4.

Combining our results, we obtain the following summary
of the Horton exponents in a critical Tokunaga tree.

Corollary 3 (Horton exponents in a critical Tokunaga tree).
The Horton exponents in the critical Tokunaga model are
given by

2c = RB = RM = RA > RS = RL = R� = c. (33)

Proof is given in Appendix F.
Corollary 3 reveals that the essential Horton exponents in

critical Tokunaga trees only assume two distinct values (c and
2c). The inequality RS < RB, which is a part of Eq. (33), has
been conjectured by Peckham [8] for trees with a well-defined
Tokunaga sequence.

Notably, the critical Galton-Watson process with exponen-
tial edge lengths [6], which is equivalent to Shreve’s random
topology model after conditioning on the basin magnitude,
is a special case of the critical Tokunaga model with c = 2
[32, Theorem 15]. In other words, the critical Tokunaga model
offers a natural extension of the critical binary Galton-Watson
process to a similarly versatile family of processes with a
wide range of Horton exponents, fractal dimensions, Hack’s
exponents, and other parameters. As such, this model may be
useful for multiple fields beyond hydrology.

Results of Chunikhina [51,52] imply that the critical Toku-
naga model with c = 2 maximizes the entropy rate among
the trees that satisfy the Horton’s law of stream numbers, and
that the critical Tokunaga model with a fixed c maximizes the
entropy rate among the trees that satisfy the Horton’s law for
stream numbers with RB = 2c.

Some additional scaling properties of the critical Tokunaga
trees are collected in Appendix G.
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F. Critical Tokunaga model closely fits observations

The critical Tokunaga model provides a very close fit to
the data and scaling relations reported in river studies over
the past decades. Table I summarizes the values of the key
scaling exponents in the critical Tokunaga model and com-
pares them with exponents in river network observations and
the well-established OCN model [12]. The table uses the
results of Corollary 3, Eq. (33) (Horton exponents), Theo-
rem 4, Eq. (29) (fractal dimension d), Theorem 6, Eq. (32)
(Hack’s exponent h), and Eq. (6) (scaling exponents β�

and βA).
The critical Tokunaga model’s fit to the observed data is

further illustrated in the Beaver Creek basin of Fig. 1. Figure 2
shows seven Horton’s laws fit by the critical Tokunaga model
with c = 2.3. Specifically, we consider the following stream
attributes averaged over streams of order K = 1, . . . , 6: the
stream number NK (panel A), the average magnitude MK

and the average number SK of links in a stream (panel B),
the average total contributing area AK and the average total
upstream channel length Ltot

K (panel C), and the average stream
length LK and the average length �K of the longest channel to
the divide (panel D). The fitting lines correspond to the crit-
ical Tokunaga model predictions, which impressively agree
with observations of all examined stream attributes (see figure
caption).

III. DISCUSSION

A solid body of observational, modeling, and theoretical
studies connects Horton’s laws and power-law distributions
of and power-law relations among river stream attributes
to the self-similar structure of stream networks [2,5,8,17–
19,21,36,37,39,49,53–56]. We suggest a rigorous treatment
of the appearance and parametrization of Horton’s laws in
river networks using a recently formulated theory of random
self-similar trees [32]. The proposed framework unifies the
existing results and contributes to explaining the ubiquity of
Horton’s laws in dendritic systems of arbitrary origin.

The main technical contribution of our paper is a rigorous
treatment of the appearance of Horton’s laws in self-similar
trees [Eqs. (18), (19), (22), (28), and (30)]. We show that the
two fundamental properties—coordination and Horton prune
invariance—necessarily lead to the Horton’s laws for stream
numbers and magnitudes (Theorem 2). Additional mild as-
sumptions, like those in the RAM, yield the Horton’s laws
for multiple other attributes (Theorem 5; Corollaries 2 and 3),
which in turn imply basin fractal dimensions (Theorem 4),
Hack’s law (Theorem 6), and other power-law scaling rela-
tions [Eqs. (4) and (6)]. Our results can be easily extended to
other stream attributes such as stream slope, width, depth, and
velocity, which are known to be proportional to a power of the
upstream magnitude [2,17]. The developed framework may
also facilitate analysis of the width function [57] or scaling of
hydrologic fluxes [18,58] in self-similar basins. Such analyses
can be done either analytically, or using ensemble simulation
that is facilitated by a fast simulation algorithm for RAM
trees.

The self-similarity is defined here (Definition 1) as in-
variance of a coordinated tree distribution with respect to

the operation of Horton pruning, which is in accord with
the empirical and modeling evidence of the past decades
[5,8,20,34,44,49]. This approach unifies three seemingly dis-
tinct definitions of self-similarity that existed in the literature
[5,8,17,20]. Importantly, each self-similar tree distribution
corresponds to a unique Tokunaga sequence Tk that quantifies
merging of branches of distinct orders (Theorem 1, Corol-
lary 1). This provides a fundamental connection between an
abstract measure-theoretic prune-invariance property and the
tangible Tokunaga coefficients that can be statistically esti-
mated in a single tree.

The family of self-similar distributions (Definition 1) rig-
orously reproduces the key geomorphic scalings discovered
and reconfirmed during the past 80 years for river basins
and summarized by [2,14,18,19,53], with a close fit to the
examined exponents (Table I, Fig. 2). Interestingly, this fit
is achieved within a one-parameter family of critical Toku-
naga trees [Definition 3, Eq. (31)]. Although trees that satisfy
Eq. (31) (and commonly referred to as Tokunaga trees) have
been known for a long time [8,48,49], only very recently
a rigorous understanding has been gained of the theoretical
importance of this constraint within the general framework of
branching processes [32,44,50]. In addition, neither the order
distribution nor link lengths distribution [specified by πK and
λ j of Eq. (27)] has been examined in Tokunaga trees. The
critical Tokunaga model provides a natural parametric exten-
sion of the critical binary Galton-Watson branching process
(and includes it as a special case with c = 2), which proved to
be an indispensable model in many areas and remains at the
forefront of theoretical and applied research nearly 150 years
after its discovery [59,60]. This hints at deep and not fully
understood symmetries in the structure of river networks. The
theory of random self-similar trees explains the mathematical
origin of these symmetries and offers tools for future explo-
ration.

The presented results might advance applied statistical
analysis of river stream attributes, via mapping all quantities
of interest to a single master parameter c of Eq. (31). Sta-
tistical estimation of this parameter can be designed more
effectively than that for a range of distinct yet possibly re-
lated quantities (e.g., multiple Horton exponents). This in turn
facilitates global mapping of river network features and study-
ing possible effects of hydroclimatic variables on landscape
dissection. Corollary 3 shows that multiple Horton’s laws
examined in this paper hold with only two distinct Horton ex-
ponents: RB = RM = RA = 2c and RL = RS = R� = c. This
substantial reduction of observed quantities is well supported
by data (Table I, Fig. 2) and might inform a range of modeling
and theoretical efforts.

The critical Tokunaga model presents an ultimately sym-
metric class of trees characterized by coordination, Horton
prune invariance, criticality, time invariance, identically
distributed link lengths, and identically distributed local con-
tributing areas. Despite these multiple constraints, this class
is surprisingly rich, extending from perfect binary trees (c =
1) to the famous Shreve’s random topology model (c = 2)
to the structures reminiscent of the observed river networks
(c ≈ 2.3) and beyond. While offering a convenient theoreti-
cal and modeling paradigm, the critical Tokunaga model is
merely a subclass of a much broader family of self-similar
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trees that might better accommodate various problem-specific
data features. For instance, Fig. 4 suggests that the observed
stream networks tend to cluster around the critical Tokunaga
line RB = 2RL in the (RB, RL) space. An applied study can
use the self-similar theory to either focus on the symmetries
of the critical Tokunaga family, or explore deviations from
this stiff parametrization, both of which may have physical
underpinnings.

Multiple properties of the critical Tokunaga family are well
justified by the empirical evidence. We already mentioned that
the coordination means that the basin structure is determined
by its Horton-Strahler order, and the Horton prune invariance
implies that the fundamental scaling laws remain the same
after changing data resolution. Criticality ensures that the
stream networks uniformly fill the space, instead of exploding
(supercritical case) or rapidly fading off (subcritical case).
The time invariance (invariance of basin order frequencies
at different distances to the outlet) might reflect a physical
process of formation of a stream network from sources down-
stream, so that a link only “knows” the information about the
upstream part of the basin, yet remains unaware of how far it
is from the outlet. Deviations from this invariance might point
to anthropogenic changes in a basin by which various down-
stream alterations (dam construction, sediment aggradation,
etc.) impose upstream changes that deviate from the natural
organization of a left-alone erosional landscape. In the same
vein, it would be interesting to find a hydrogeomorphological
explanation for the joint distribution of the merging sub-basins
(25).

The understanding of the hierarchical organization and
scaling in convergent (tributary) river networks gained here
can be extended to other geomorphological processes. Impor-
tant examples include dynamic reorganization of landscapes
and stream networks [61–63] and scaling of peak flows [64].
Our results can also be extended to study the divergent
(distributary) networks of river deltas that are commonly
represented by a directed acyclic graph [65]—a next step
in complexity after trees examined in this paper. Quantify-
ing the structure, self-similarity, and scaling of such graphs
contributes to a still-missing unifying theory explaining how
deltaic river networks self-organize to distribute water and
sediment fluxes to the shoreline [66].

The self-similar family extends beyond the hydrological
constraints, allowing one to study self-similar trees with edge
lengths that depend on the position within the hierarchy,
arbitrary fractal dimension d > 1, and arbitrary Horton expo-
nents RB > 2 and RL > 1. For instance, the RAM might be a
suitable model for dendritic structures generated by diffusion
limited aggregation (DLA). We recall that the geometric form
of the Tokunaga coefficients Tk ∝ ck with c ≈ 2.72 ± 0.22
has been known in DLA for a long time [20,67]. It is note-
worthy that the independently estimated fractal dimension of
DLA clusters, d = 1.7 ± 0.05 [68], coincides with the fractal
dimension of a critical Tokunaga tree with c = 2.72 ± 0.22
according to our Eq. (29): d = logc(2c) = 1.7 ± 0.05.

In this paper we examined a very particular class of graphs
justified by hydrogeomorphological applications—reduced
binary trees. Each internal vertex in such a tree has a fixed
degree 3, being connected to a single downstream link and
exactly two upstream links, while the root and leaves have

degree 1. The theory of random self-similar trees, however,
readily applies to trees with multiple branching and extends
to general loopy graphs (networks).

For instance, all self-similar Galton-Watson (nonbinary)
trees have been recently described in [69]. The self-similar
family includes the critical binary Galton-Watson tree (using
the terminology of this paper—the critical Tokunaga tree with
c = 2), which is the only member with a finite branching.
All other family members have a power-law degree distribu-
tion with tail ∝ k−α and index α spanning the interval (2,3).
Natural applications for nonbinary self-similar trees include
phylogenetics [70] and statistical seismology, where trees rep-
resent temporal evolution of earthquake clusters [24–27].

More generally, many observed and simulated networks
are known to preserve their key statistical properties under
coarse graining—a renormalization group transformation that
merges selected vertices of a network G according to their
proximity [71]. Such a transformation is uniquely represented
by a tree T (G) the edges of which correspond to mergers
among the network’s nodes. The leaves of T (G) correspond
one to one to the nodes of G, internal vertices correspond
to the coarse-grained supernodes, and the root corresponds
to the single ancestral supernode that represents the entire
network. Informally, coarse graining of a graph G corresponds
to cutting selected peripheral subtrees of its merger tree T (G).
Different rules of coarse graining correspond to different types
of tree pruning, for example those discussed in [72,73]. Hor-
ton pruning is an important member of this larger class of tree
reductions. Statistical invariance of a network G under coarse
graining suggests that the corresponding tree T (G) is invariant
with respect to the associated pruning. This assertion is sup-
ported by numerical analysis of merger trees that represents
two-dimensional site percolation [74].
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APPENDIX A: HORTON-STRAHLER ORDERS
AND HORTON PRUNING

The importance of links and junctions in the basin hierar-
chy is measured by the Horton-Strahler order K � 1 [1,33].
Each link and its upstream junction have the same order. The
order assignment is done in a hierarchical fashion, from the
sources downstream. Each source is assigned order 1. When
two links of the same order K merge at a junction, the junction
is assigned order K + 1. When two links with different orders
K1 > K2 merge at a junction, the largest order prevails and the
junction is assigned order K1. The connected sequence of links
and their upstream junctions of the same order K is called
a stream (branch) of order K . We denote by NK = NK [T ]
the number of streams of order K in a finite tree T . The
Horton-Strahler order ord(T ) of a tree T is the maximal order
of its links (junctions, streams). The Horton-Strahler ordering
is illustrated in Fig. 1.
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The Horton-Strahler orders are closely related to the op-
eration of Horton pruning R that removes the source links
from a basin. This relation has been first recognized by Melton
[34] and proved valuable in rigorous statistical analyses of tree
self-similarity [5,8,21,32,44]. Formally, we consider the map
R : L → L that removes the source links from a tree T . This
may create nonbranching chains of links connected by degree
2 junctions—every such chain is merged into a single link.
The Horton pruning R reduces the order of each surviving
stream, and hence the basin order, by one. Accordingly, the
order of a tree is the minimal number of Horton prunings that
completely eliminates it, as in Eq. (1). We emphasize that
the pruning cannot cut a stream in the middle—it can only
eliminate the entire stream after a finite number of iterations
[34]. Figure 1 illustrates the Horton pruning for the stream
network of Beaver Creek, KY—the order of this basin is
K = 6 because it is eliminated in six Horton prunings.

APPENDIX B: POWER-LAW DISTRIBUTION
OF LINK ATTRIBUTES

Consider the value Z(i) of an attribute Z calculated at link
i in a large basin. The average number of links of order K is
given by NK SK , where SK denotes the average number of links
within a stream of order K . One can heuristically approximate
the frequencies of {Z(i)} by using the same average value
ZK for any link of order K . Then, assuming Horton’s laws
for NK and SK with exponents RB and RS , respectively, and
considering the limit of an infinitely large basin we find∣∣i : Z(i) � RK

Z

∣∣ ≈
∞∑

j=K

NjS j ∝
∞∑

j=K

(
RS

RB

) j

∝
(

RS

RB

)K

. (B1)

This is a punctured (by discrete order) version of a general
power-law relation of Eq. (6).

APPENDIX C: ASYMPTOTIC BEHAVIOR OF A
SEQUENCE—THE GENERATING FUNCTION APPROACH

This section summarizes the basic facts about generating
functions that are the main tool in establishing asymptotic
behavior of stream attributes in a self-similar basin.

The generating function f (z) of a sequence ak � 0, k =
0, 1, . . . , of non-negative real numbers is defined as a formal
power series:

f (z) =
∞∑

k=0

akzk, z ∈ C. (C1)

It is known [75] that there exists such a real number r � 0
that the series in the right hand side of (C1) converges to the
function f (z) for any |z| < r and diverges for any |z| > r. The
number r is called the radius of convergence of the sequence
ak; it provides notable constraints on the asymptotic behavior
of ak . The smaller the radius of convergence, the faster the
growth of the sequence coefficients. Informally, 0 < r < 1
implies that the coefficients ak increase geometrically, r > 1
implies that the coefficients decrease geometrically, and r = 1
implies that the coefficients vary at a rate slower than geo-
metric (e.g., polynomially). The values r = 0 and ∞ imply a
faster than geometric growth or decay, respectively.

The Cauchy-Hadamard theorem [75] expresses the radius
of convergence in terms of the series coefficients:

1

r
= lim sup

k→∞
a1/k

k . (C2)

Often, the radius of convergence for ak can be easily found
from the explicit form of f (z). Specifically, if r > 0, then
the function f (z) is analytic within the disk |z| < r and has
at least one singularity on the circle |z| = r, that is, it has
to diverge for at least one point on that circle [76, Theorem
2.4.2]. Thus, the radius of convergence equals to the modulus
of a singularity closest to the origin. Furthermore, recalling
that ak � 0 we have

| f (z)| =
∣∣∣∣∣

∞∑
k=0

ak zk

∣∣∣∣∣ �
∞∑

k=1

ak |z|k = f (|z|), (C3)

where the equality is only achieved for z = |z|. This means
that the singularity closest to the origin lies on the real axis
(although there might be other singularities with the same
modulus.) This makes the search for such a singularity much
easier: one can only consider the restriction of the function
f (z) on the real axis. In other words, despite the use of com-
plex analysis in establishing some of our results, the applied
treatment of suitable generating functions can be done in the
real domain. Furthermore, if the singularity of f (z) nearest to
the origin is a simple pole, then the coefficients ak asymptot-
ically form a geometric series, which we refer to as Horton’s
law.

Proposition 1 (Horton’s Law for a simple pole sequence).
Suppose f (z) = ∑∞

i=1 akzk is analytic in the disk |z| < ρ ex-
cept for a single pole of multiplicity one at a positive real value
r < ρ. Then the sequence ak obeys Horton’s law

lim
k→∞

ak rk = α (C4)

for some 0 < α < ∞. Furthermore, if we define g(z) =
f (z)(z − r), then α = −g(r)/r.

Proof. We have, for any � ∈ (0, r) [75],

ak = 1

2π i

∮
|z|=�

f (z)dz

zk+1
. (C5)

By the residue theorem [75], we obtain, for any γ ∈ (r, ρ),

1

2π i

∮
|z|=γ

f (z)dz

zk+1
= res

(
f (z)

zk+1
; 0

)
+ res

(
f (z)

zk+1
; r

)
(C6)

= ak + res

(
f (z)

zk+1
; r

)
. (C7)

Therefore,

ak = 1

2π i

∮
|z|=γ

f (z)dz

zk+1
− res

(
f (z)

zk+1
; r

)
, (C8)

where∣∣∣∣∮|z|=γ

f (z)dz

zk+1

∣∣∣∣ � max|z|=γ | f (z)|
γ k

= o(r−k ). (C9)

Consider g(z) = (z − r) f (z). It is known that [75]

res( f (z); r) = g(r), (C10)
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and hence

res

(
f (z)

zk+1
; r

)
= g(r)

rk+1
= g(r)

r
r−k. (C11)

Accordingly, we obtain

ak = −g(r)

r
r−k + o(r−k ), (C12)

which completes the proof. �
Proposition 1 is used in Appendices I and J to establish

Horton’s laws for �k and Ak .

APPENDIX D: PROOF OF THEOREM 2

The average magnitude Mk is the mean number of sources
upstream of an order k stream. It can be represented as the sum
of the magnitudes of two order k − 1 streams that formed this
stream, plus the magnitudes of all its side tributaries. Hence
M1 = 1, and

Mk = 2 Mk−1 +
k−1∑
i=1

Mi Tk−i, for k > 1. (D1)

The generating function for the average magnitudes Mk is
obtained by multiplying both sides in (D1) by zk and summing
over k � 1:

M(z) =
∞∑

k=1

Mk zk = z + 2zM(z) + M(z) T (z).

Thus,

M(z) = z

1 − 2z − T (z)
= − z

t̂ (z)
, (D2)

where, according to Eq. (16) of the main text,

t̂ (z) = −1 + 2z + T (z), T (z) =
∞∑

i=1

Tkzk.

The function M(z) is analytic with the exception of zeros and
singularities of t̂ (z). Observe that t (0) = −1, and since Tk � 0
we have t (1/2) = T (1/2) � 0. Furthermore, since

d

dz
t̂ (z) = 2 +

∞∑
k=1

kTk zk−1 > 0 for all z ∈ (0,∞),

the equation t̂ (z) = 0 has a unique real root w0 of multiplicity
in the interval (0, 1/2]. Let rT be the radius of convergence
for T (z), and hence for t̂ (z). We notice that rT > w0, so the
radius of convergence of M(z) coincides with the root of t̂ (z)
closest to the origin. We claim that this root is w0. Assuming
otherwise, there exists w ∈ C such that t̂ (w) = 0 and |w| <

w0. Since w0 is the unique real root of t̂ (z) within (0, 1/2],
w must have a nonzero imaginary part. This means that the
singularity of M(z) closest to the origin is not on the real axis,
which contradicts (C3). Hence the radius of convergence of
M(z) is w0, and w0 is a simple pole of M(z). Proposition 1
now establishes the result. �

APPENDIX E: EXACT HORTON’S LAW

Assume that the Horton’s law for stream numbers N1[K],
and hence for magnitudes MK , holds exactly (recall that

M1 = 1):

MK = RK−1
M . (E1)

Then,

M(z) = z

1 − RMz
,

which leads to

t̂ (z) = − z

M(z)
= −1 + RMz and T (z) = (RM − 2)z.

This implies that the only self-similar model with exact Hor-
ton’s law corresponds to the Tokunaga sequence

T1 = RM − 2, Tk = 0 for k > 1.

APPENDIX F: PROOFS OF COROLLARY 2,
THEOREM 6, AND COROLLARY 3

Proof of Corollary 2. By definition of the RAM, the length
of a stream of order j is an exponential random variable with
rate λ j . In a self-similar tree, the rate is given by Eq. (31):
λ j = γ ζ 1− j . This implies Lj = λ−1

j = γ −1 ζ j−1, which is
equivalent to the statement of Theorem 6 [Eq. (32)]. �

Proof of Theorem 6. Recall the Horton’s law for the aver-
age magnitude [Theorem 2, Eq. (19)] that holds in any tree
with a tamed Tokunaga sequence (lim supk→∞ T 1/k

k < ∞) and
the Horton’s law for the average length of the longest stream
[Theorem 5, Eq. (30)] that holds in any self-similar RAM tree.
These laws apply to a critical Tokunaga tree of the current
statement. Furthermore, the asymptotic equivalence between
the average basin contributing area and average basin magni-
tude [Eq. (G3)] implies the Horton’s law for the average basin
areas with Horton exponent RM . Finally, we use the general
result of Eq. (5) to establish Hack’s law [Eq. (32)] in a critical
Tokunaga tree. �

Proof of Corollary 3. Using the definition of t̂ (z)
[Eq. (16)] and the geometric form of the Tokunaga coefficients
[Eq. (31)] we obtain t̂ (z) = (1 − 2cz)(z − 1)/(1 − cz).
The only real root of t̂ (z) within (0, 1/2] is w0 = (2c)−1.
By Theorem 2, Eq. (20) we have RB = RM = 2c, and
Eq. (26) implies SK = cK−1, which corresponds to RS = c.
The equality RS = RL follows from independence of the
distribution of link lengths of their position within a basin.
Finally, R� = c is established in Theorem 5, Eq. (30). �

APPENDIX G: SCALINGS IN A CRITICAL
TOKUNAGA TREE

The critical Tokunaga model (Definition 3) satisfies Hor-
ton’s law for the original stream counts Ni [[32], Corollary 5]:

Ni

Ni+1

p−→ RB as i → ∞, (G1)

where
p−→ denotes convergence in probability [77]. This re-

sult strengthens the statement of Theorem 2, Eq. (22) that is
formulated for the respective averages.

The weak law of large numbers holds for the tree order.
Formally, denote by T [K] a critical Tokunaga tree of order K
and write |T [K]| for the number of links in this tree. Then [32,
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Corollary 6]

logRB
|T [K]|
K

p−→ 1 as K → ∞. (G2)

Informally, this means that the tree order grows as a logarithm
base RB of the tree size.

The identically distributed link lengths imply identically
distributed local areas, which in turn establishes the Horton’s
law for Ai. Specifically, in a critical Tokunaga tree we have
(Appendix J)

Ai ∼ const × Mi, (G3)

where xi ∼ yi stands for limi→∞ xi/yi = 1. The same ap-
proach shows that the asymptotic of Eq. (G3) holds also
for the average total channel length Ltot

i upstream of a
stream of order i, with different proportionality constant. The
asymptotic of Eq. (G3) formalizes one of the key empirical
observations [2] that connects physical (area Ai) and com-
binatorial (magnitude Mi) attributes of a river basin. This
asymptotic may not hold in a general self-similar (not critical
Tokunaga) tree.

APPENDIX H: FRACTAL DIMENSION OF A
SELF-SIMILAR RAM TREE

Consider a self-similar RAM tree T (Theorem 3) with
a Tokunaga sequence {Tk} satisfying lim supk→∞ T 1/k

k < ∞,
and parameters γ > 0 and ζ > 1. Below we construct a
Markov tree process {ϒK}K=1,2,... corresponding to T follow-
ing [32] and use it to find the fractal dimension of the resulting
tree in the limit of infinite tree order. The construction below
closely reproduces that of the RAM (see the main text), but
scales the edge lengths so that an infinitely large tree has a
proper fractal dimension.

Let ϒ1 be an I-shaped tree of Horton-Strahler order 1,
with the edge length distributed as an exponential random
variable with parameter γ . Conditioned on ϒK , the tree ϒK+1

is constructed according to the following transition rules.
We attach new leaf edges to ϒK at the points sampled by
an inhomogeneous Poisson point process with the intensity
ρ j,K = γ ζ K− jTj along the edges of order j � K in ϒK . We
also attach a pair of new leaf edges to each of the leaves
in ϒK . The lengths of all the newly attached leaf edges are
independent and identically distributed exponential random
variables with parameter γ ζ K that are independent of the
combinatorial shape and the edge lengths in ϒK . Finally, we
let the tree ϒK+1 consist of ϒK and all the attached leaves and
leaf edges.

By construction, a branch of order j in ϒK becomes
a branch of order j + 1 in ϒK+1 after the attachment of
new leave edges. The length of order j branch in ϒK (and
therefore, the length of order j + 1 branch in ϒK+1) is an ex-
ponential random variable with parameter γ ζ K− j . Therefore,
in a tree ϒK+1, the number n1, j+1(K + 1) of side branches of
order 1 in a branch of order j + 1 has geometric distribution:

P
(
n1, j+1(K + 1) = r

) = γ ζ K− j

γ ζ K− j + ρ j,K

(
ρ j,K

γ ζ K− j + ρ j,K

)r

= 1

1 + Tj

(
Tj

1 + Tj

)r

(H1)

for r = 0, 1, 2, . . ., with the mean value

E [n1, j+1(K + 1)] = ρ j,K

γ ζ K− j
= Tj .

After i � 1 rounds of attachments the mean number ni, j+i(M )
of side branches of order i in a branch of order j + i in a tree
ϒM (where M = K + i and K � j) is

E [ni, j+i(M )] = Tj .

Each tree ϒK is distributed as a self-similar RAM tree [32]
with Tokunaga sequence {Tk} and parameters (γ , ζ ), condi-
tioned on its Horton-Strahler order being equal to K , and with
its edge lengths scaled by ζ 1−K .

Observe that by construction ϒK ⊂ ϒK+1. Accordingly,
there exists the limit space

ϒ∞ = lim
K→∞

ϒK =
∞⋃

K=1

ϒK .

The self-similarity of the RAM process suggests that the limit
space does not change its statistical properties after rescaling,
which corresponds here to the Horton pruning. Let d denote
its fractal dimension. That the limit space includes at least
the root branch ϒ1 implies d � 1. Assume that d > 1. Then,
denoting the mean d-dimensional volume of ϒ∞ by vol, we
have

vol =
∞∑

k=1

tk
vol

ζ dk
. (H2)

This equation is obtained by splitting a tree ϒ∞ into the
subtrees attached to its highest-order branch ϒ1. There is an
average of t1 = T1 + 2 subtrees distributed as ϒ∞ scaled by
ζ−1. In general, for each k, there will be an average of tk sub-
trees distributed as ϒ∞ scaled by ζ−k . Scaling the lengths by
ζ−k in the d-dimensional space results in scaling the volume
by ζ−dk . The vol term in (H2) can be canceled out, yielding

t̂ (ζ−d) = 0, (H3)

and hence ζ−d = w0 = R−1
B . This leads to (29).

APPENDIX I: HORTON’S LAW FOR �k

If T is the tree representing a stream network, then the
length of the longest stream is the height of the tree T , denoted
by TH [6,32].

Consider a tree T generated by a self-similar RAM with
a Tokunaga sequence {Tk} satisfying lim supk→∞ T 1/k

k < ∞,
and parameters γ > 0 and ζ > 1. Let

�k = E [TH | ord(T ) = k] (I1)

that represents the mean length of the longest river stream in
a basin with the Horton-Strahler order k. Notice that, since
[R(T )]H � TH ,

ζ �k−1 = E{[R(T )]H | ord(T ) = k}
� E [TH | ord(T ) = k] = �k . (I2)

Hence, since �1 = γ −1, we have �k � γ −1ζ k−1. Next, let

Y1,Y2, . . . ,YN1[T ]

014301-14



CRITICAL TOKUNAGA MODEL FOR RIVER NETWORKS PHYSICAL REVIEW E 105, 014301 (2022)

denote the leaf lengths in the tree T . Then, since

TH � [R(T )]H + max
j=1,...,N1[T ]

Yj,

we have

�k � E{[R(T )]H | ord(T ) = k}
+ E

[
max

j=1,...,N1[T ]
Yj

∣∣ ord(T ) = k
]

= ζ �k−1 + γ −1E

[
N1[T ]∑
j=1

1

j

∣∣∣∣ ord(T ) = k

]

� ζ �k−1 + γ −1E{1 + log(N1[T ]) | ord(T ) = k}
� ζ �k−1 + γ −1 + γ −1 log{E [N1[T ] |ord(T ) = k]}

(I3)

by Wald’s equation, the coupon collector problem, and finally
Jensen’s inequality. Recall (Theorem 2) the Horton’s law for
the leaf count in a self-similar process:

N1[k] = Mk = M Rk
B + o

(
Rk

B

)
.

Hence, Eqs. (I2) and (I3) imply

0 � �k − ζ �k−1 � γ −1k log RB + β

for some constant β, and

0 � �k

�k−1
− ζ � γ −1 k log RB + β

�k−1
� k log RB + β

ζ k−2
→ 0

(I4)
as k → ∞. Accordingly,

log �k =
k∑

j=2

log

(
�k

�k−1

)
+ log �1

= (k − 1) log ζ +
k∑

j=2

log(1 + E j ) − log γ , (I5)

where 0 � E j � (k log RB + β )ζ 1−k , and therefore∑∞
j=2 log(1 + E j ) converges to a constant. We therefore

conclude that the strong Horton’s law holds for �k with

Horton exponent R� = RL = ζ :

�k ∼ const × ζ k . (I6)

APPENDIX J: HORTON LAW FOR Ak

Assume that the mean local contributing area of a link of
order k equals αk . Then the total mean contributing area AK of
a tree of order K � 1 is

AK =
K∑

i=1

αiSiNi[K], (J1)

where SkNk[K] is the mean number of links of order k in a
tree of order K . A convenient recursive expression is obtained
by noticing that A1 = α1 and

AK = 2AK−1 + αK SK +
K−1∑
i=1

Ai TK−i for K � 2. (J2)

The generating function for Ak is given by

A(z) =
∞∑

k=1

Akzk = 2zA(z) +
∞∑

k=1

αkSkzk + A(z)T (z),

which yields

A(z) =
∑∞

k=1 αkSkzk

1 − 2z − T (z)
= −D(z)

t̂ (z)
= M(z)

D(z)

z
. (J3)

Here D(z) is the generating function for the mean local con-
tributing areas αk Sk of streams of order k. Suppose that the
radius of convergence of D(z) is larger than w0. Then, by
Proposition 1,

Ak ∼ const × w−k
0 ∼ const × Mk . (J4)

Consider the critical Tokunaga model. Here αk = α, Sk =
ck−1, and hence

D(z) = α z

1 − cz

with the radius of convergence c−1 that coincides with that of
t̂ (z). Observe that the radius of convergence of t̂ (z) must be
greater than its zero, hence w0 < c−1, and so the asymptotic
of (J4) holds.
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