
Random Self-Similar Trees: Emergence of Scaling Laws

Yevgeniy Kovchegov1 • Ilya Zaliapin2 • Efi Foufoula-Georgiou3

Received: 5 March 2021 / Accepted: 26 November 2021
� The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
The hierarchical organization and emergence of scaling laws in complex systems—geo-

physical, biological, technological, and socioeconomic—have been the topic of extensive

research at the turn of the twentieth century. Although significant progress has been

achieved, the mathematical origin of and relation among scaling laws for different system

attributes remain unsettled. Paradigmatic examples are the Gutenberg–Richter law of

seismology and Horton’s laws of geomorphology. We review the results that clarify the

appearance, parameterization, and implications of scaling laws in hierarchical systems

conceptualized by tree graphs. A recently formulated theory of random self-similar trees

yields a suite of results on scaling laws for branch attributes, tree fractal dimension, power-

law distributions of link attributes, and power-law relations between distinct attributes.

Given the relevance of power laws to extreme events and hazards, our review informs

related theoretical and modeling efforts and provides a framework for unified analysis in

hierarchical complex systems.

Keywords Geophysical hazards � Hierarchical system � Scaling � Self-similarity � Horton’s

laws � Tokunaga model � Hierarchical branching process

Article Highlights

• Theory of random self-similar trees provides a unifying framework for studying scaling

laws in complex systems

• Hierarchical branching process explains power laws for system attributes, system

fractal dimension, and other scalings

• A one-parameter critical Tokunaga model closely fits the key data and scalings of

geomorphology
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1 Motivation

The emergence of extremes in complex natural systems—tectonic, hydrological, climatic,

biological—has been a topic of extensive research, recognizing the catastrophic impact

that hazards produced by these systems exert on population, economy, and the environ-

ment. The science of complexity, developed and proliferated at the turn of the twentieth

century, recognizes several fundamental traits shared by natural extremes and hazards of

different origin: (i) They are generic in systems that have hierarchical organization.

Notably, such a hierarchy ‘‘need not be manifest in the object but may arise in the con-
struction of a model’’ (Badii and Politi 1999). (ii) The hazard-generating systems exhibit

scalings, often expressed as power-law distributions and/or power-law relations among the

system’s attributes (Barenblatt 1996). (iii) The scalings are often connected to self-simi-
larity—a property of the system to retain its statistical properties after being zoomed in or

out via a suitable transformation (Mandelbrot 1982; Barenblatt 1996). The results reviewed

in this work originated in the analysis of systems whose hierarchical organization is

particularly evident, and is commonly represented by a tree graph, and whose scalings and

self-similarity are well established empirically.

An example of such a system is the Earth’s lithosphere that generates earthquakes. The

two staples of statistical seismology are the power-law distribution of earthquake moments,

which is equivalent to the celebrated Gutenberg–Richter law of earthquake magnitudes

(Gutenberg and Richter 1954) and power-law temporal decay of event rate within after-

shock series (Omori 1894; Utsu et al. 1995). Multiple other physical and statistical scalings

of earthquake attributes are summarized in (Ben-Zion 2008, Table 2). Hierarchical rep-

resentation of seismicity by branching processes is also well explored, starting from the

pioneering works of Kagan (1973), Kagan and Knopoff (1976, 1981), and Vere-Jones

(1976). A very popular epidemic-type aftershock sequence (ETAS) model of earthquake

dynamics (Ogata 1998) is a Galton–Watson branching process with a power-law offspring

distribution and space–time–magnitude marks (Saichev et al. 2005; Baró 2020). A tra-

jectory of this process is a tree graph whose vertices represent individual earthquakes and

edges—triggering processes. Alternative tree representations of seismicity are discussed in

Baiesi and Paczuski (2004); Holliday et al. (2008); Zaliapin et al. (2008); Yoder et al.

(2013); Zaliapin and Ben-Zion (2013). More conceptually, the lithosphere can be thought

as ‘‘a hierarchy of blocks separated by boundary zones, with densely fractured nodes at
junctions and intersections’’ (Keilis-Borok 2002). This hierarchy spans a wide range from

the seven major tectonic plates of continental size to nearly 1025 grains of rocks. The

earthquakes are produced by complex dynamics and interaction of these blocks (Burridge

and Knopoff 1967; Allegre et al. 1982; Gabrielov et al. 1990; Zaliapin et al. 2003;

Soloviev and Ismail-Zadeh 2003).

Another prime hierarchical system prone to natural hazards is geomorphological

landscape evolution, which is associated with and in part driven by mass movement

processes like sediment transport, rockfalls, debris flows, and landslides. One of the sys-

tem’s fundamental outputs is the network of stream channels that spans the continental

Earth in the form of permanent river and delta networks and ephemeral drainage pathways

that extend to the grain scales. This network is naturally linked to such hazards as floods
(Gupta et al. 1994, 2007; Tessler et al. 2015) and coastal and hillslope erosion (Roering

et al. 1999). Geomorphological networks are conventionally represented by trees (for

converging river channels) or directed acyclic graphs (for diverging deltaic systems or

braided rivers) (Sapozhnikov and Foufoula-Georgiou 1996; Lashermes et al. 2007;
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Passalacqua et al. 2010; Tejedor et al. 2017, 2015a, b), and their scaling laws have been

recognized since the groundbreaking work of Horton (1945); see (Rodriguez-Iturbe and

Rinaldo 2001, and references. therein).

Geomorphic hazards like landslides, avalanches, and forest fires are characterized by

scaling laws similar to those in seismicity (Malamud et al. 1998; Turcotte et al. 2002;

Malamud et al. 2004a, b), and have been successfully examined within a hierarchical

framework (Turcotte 1999; Turcotte et al. 1999, 2002). Biological hazards, such as the

spread of human, animal, and plant epidemics, are naturally modeled by time-oriented

trees where vertices represent infected subjects. The discussed phenomenology is relevant

in other areas beyond hazard studies where hierarchical organization and related scalings

have been reported. These areas include computer science (Flajolet et al. 1979; Drmota

and Prodinger 2006), statistical physics of fracture (Zaliapin et al. 2003; Davidsen et al.

2007; Herrmann and Roux 2014), vascular analysis (Kassab 2000), brain studies (Cassot

et al. 2006), ecology (Grant et al. 2007), scaling of biomass in river streams (Barnes et al.

2007; Gangodagamage et al. 2007), fractal hydraulic conductivity (Neuman 1990; Molz

et al. 1997), and allometric scaling laws in biology (West et al. 1997; Turcotte et al. 1998).

The multitude of systems traditionally studied via a prism of tree representation and

associated hierarchical dynamics calls for a unifying framework to address the following

questions:

What is a self-similar tree?
How to model a self-similar tree?
How to test for self-similarity with limited data (in a single tree)?
What does self-similarity imply for the scalings of observed attributes?

This survey summarizes the currently available answers to these questions. We show that

the key manifestation of self-similarity is Horton’s laws that describe scaling of various

tree attributes. A geomorphologic origin of the Horton’s laws and the fact that tree rep-

resentation of river networks is direct and intuitive affected our choice of examples and

terminology. Our main results, however, have universal applicability and are formulated in

generic graph-theoretic terms.

2 Introduction

In a pioneering study ‘‘of streams and their drainage basins,’’ Robert E. Horton took the

first steps toward exploring ‘‘the problems of the development of land forms, particularly
drainage basins and their stream nets, along quantitative lines’’ (Horton 1945). Starting

from William Playfair’s shrewd observation of ‘‘a nice adjustment of [stream] declivities’’

that produces ‘‘system of valleys, communicating with one another,’’ Horton revealed

deeper regularities in organization of river streams. He introduced the concept of stream

order and formulated two fundamental laws of the composition of stream-drainage nets

(Horton 1945, p. 291). The Law of Stream Numbers postulates a geometric decay of the

numbers NK of streams of increasing order K, with the exponent RB; see Sect. 3.3, Eq. (8).

The Law of Stream Lengths postulates a geometric growth of the average length LK of

streams of increasing order K, with the exponent RL. The initial Horton’s ordering

scheme has been later adjusted by Arthur Newell Strahler (1957) to its present form (which

we call Horton–Strahler orders, Sect. 3.2), preserving the laws of stream numbers and

lengths. Horton–Strahler orders are illustrated in Figs. 1 and 2.
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During the twentieth century, geometric dependence on the order has been documented

for multiple physical and combinatorial stream attributes, including upstream area, mag-

nitude (number of upstream sources), the total channel length, the longest stream length,

link slope, mean annual discharge, and energy expenditure (Rodriguez-Iturbe and Rinaldo

2001, and references. therein). A geometric scaling of an arbitrary river stream attribute

with order is called Horton’s law and the respective geometric index is called Horton
exponent; see Sect. 3.3, Eq. (9). Horton’s laws play an elemental role in studies of drainage

networks. Being important in their own right, Horton’s laws imply power-law tails for the

empirical frequencies of link attributes (Sect. 3.5) and power-law relations between dif-

ferent attributes (Sect. 3.4). A celebrated example is the upstream contributing area AðiÞ of

a link i and the length KðiÞ of the longest channel from the link i to the basin divide. Each of

these attributes has a power-law empirical frequency,

#fi : AðiÞ � ag / a�bA ; #fi : KðiÞ � lg / l�bK ; ð1Þ

(a) (b)

Fig. 1 Horton–Strahler orders in a binary tree. Different colors correspond to different orders of vertices and
edges, as indicated in the legend. a Perfect binary tree—orders are inversely proportional to vertex/edge
depth. b General binary tree—orders represent vertex importance in the hierarchy, from leaves (smallest
order) to the root (largest order)

Fig. 2 Stream network of Beaver creek, Floyd County, KY. A Streams (branches) of orders K ¼ 2; . . .; 6 are
shown by different colors (see legend on the right). Streams of order K ¼ 1 (source streams) are not shown
for visual convenience. Accordingly, this is the first Horton pruning of the network. B–E Consecutive
Horton prunings of the river network; uses the same color code for branch orders as panel (A). The basin has
order K ¼ 6 since it is completely eliminated in 6 Horton prunings. The channel extraction is done using
RiverTools software (http://rivix.com)
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where i spans a large collection of links. The expression a / b means that a is proportional

to b, that is a ¼ Const:� b. Furthermore, the two quantities are related via a power-law

KðiÞ / Ah
ðiÞ, with h � 0:6. This relation is known as the Hack’s law (Hack 1957); it is often

reported for the area and the length of the longest stream in a basin (Rigon et al. 1996;

Rodriguez-Iturbe and Rinaldo 2001).

Intriguingly, the key parameters of these and other scaling laws can often be expressed

via the Horton exponents RB and RL. For example, De Vries et al. (1994) and La Barbera

and Rosso (1989) have shown, under some simplifying assumptions, that

bA ¼ 1 � log RL

log RB
and bK ¼ log RB

log RL
� 1; ð2Þ

and the fractal dimension d of a large tree is given by

d ¼ log RB

log RL
: ð3Þ

This yields simple relations among the examined quantities:

bA ¼ 1 � h; bK ¼ d� 1; and h ¼ 1

d
: ð4Þ

Despite their recognized importance, Horton’s laws remain an empirical finding and their

origin and apparent ubiquity remain unsettled. A first attempt at rigorous explanation of

Horton’s laws and related scalings was made by Ronald L. Shreve (Shreve 1966), who

claimed that ‘‘the statistical nature and remarkable generality of Horton’s law of stream
numbers suggest the speculation that the law of stream numbers arises from the statistics of
a large number of randomly merging channels in somewhat the same fashion that the law
of perfect gases arises from the statistics of a large number of randomly colliding gas
molecules.’’ To substantiate this claim, Shreve examined a ‘‘topologically random popu-
lation of channel networks, defined as a population within which all topologically distinct
networks with given number of first-order streams are equally likely.’’ This model is

equivalent to the critical binary Galton–Watson process with a given progeny (Burd et al.

2000; Pitman 2006; Kovchegov and Zaliapin 2020). Shreve’s calculations imply that in

this model Horton’s law of stream numbers holds with RB ¼ 4. Although not attempted by

Shreve, it can be shown (Burd et al. 2000) that the law of stream lengths also holds here

with RL ¼ 2 under the assumption of constant or equally distributed edge lengths. This

corresponds to

bA ¼ 1=2; bK ¼ 1; d ¼ 2; and h ¼ 1=2: ð5Þ

Albeit insightful and mathematically tractable, the random topology model deviates from

the observations. This has been explicitly noted by De Vries et al. (1994) who examined

the observed area scaling and have shown that bA � 0:45 6¼ 0:5, and by Peckham (1995)

who has shown in a detailed analysis of river networks that RB � 4:5 6¼ 4. This called for

developing alternative modeling approaches.

Versatile modeling efforts of the past decades have proved challenging to develop an

approach that would be mathematically tractable and flexible enough to fit a range of

observations. One end of the modeling spectrum is occupied by conceptual models, such as

the Peano fractal basin (Rodriguez-Iturbe and Rinaldo 2001, Sect. 2.4) that has already

appeared in Horton’s work under a different name (Horton 1945, Fig. 25), or Scheideg-

ger’s lattice model (Scheidegger 1967; Takayasu et al. 1988). These models provide an
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invaluable insight into the origin of the observed scalings; they however lack realistic

dendritic patterns and values of scaling exponents because of a stiff geometry. On the other

end are simulation approaches that are successful in generating visually appealing net-

works and closely fitting selected exponents, but can be analytically opaque. The optimal

channel network (OCN) model (Rinaldo et al. 1992; Rigon et al. 1993; Balister et al.

2018) is a particularly recognized simulation technique. Following the energy expenditure

minimization principle, the model constructs random drainage basins on a planar lattice (or

more general graph) and fits a variety of observed scaling laws. We refer to Rodriguez-

Iturbe and Rinaldo (2001) for a comprehensive discussion of these and other models.

Despite the progress achieved by the modeling efforts of the twentieth century, the

following essential questions remain unanswered:

What are sufficient conditions for Horton’s laws?
What are the values of the Horton exponents? and

How are the Horton exponents for different stream attributes related to each other
and to other basin parameters?

There is a consensus that Horton’s laws are connected to the self-similar structure of a

basin’s, which is generally understood as invariance of basin’s statistical structure under

changing the scale of analysis (zooming in or out). However, a consensus is still lacking

about a suitable formal definition of tree self-similarity. Three alternative definitions have

been studied: the Toeplitz property of the Tokunaga coefficients (Peckham 1995; Newman

et al. 1997); invariance of a distribution with respect to the Horton pruning (cutting source

streams) in Galton–Watson trees (Burd et al. 2000); and statistical self-similarity of basin

attributes (Gupta and Waymire 1989; Peckham and Gupta 1999). This triggers the

questions:

How are the alternative definitions of tree self-similarity related? and

Is self-similarity (any version) sufficient for selected Horton’s laws?

Answers to these questions require a rigorous toolbox that would go beyond the con-

ventional heuristic approaches, which, albeit able to suggest quick routes to useful results,

may lead to contradictions. For example, the classical works of De Vries et al. (1994), La

Barbera and Rosso (1989) and many later studies adopted the assumption of an ideal basin
that obeys the exact Horton’s laws of stream numbers and lengths with RL\RB (Rodri-

guez-Iturbe and Rinaldo 2001, Sect. 2.5). The mean size (the number of links) of a basin of

order K in this model is asymptotically given by Rodriguez-Iturbe and Rinaldo

(2001), Eq. (2.91)

RK
B � RK

L

RB � RL
: ð6Þ

Observe that the mean basin size also equals twice the mean number N1 of leaves, which is

2N1 ¼ 2RK�1
B , where the equality holds because of the exact Horton’s law for stream num-

bers. Equating the two expressions for the mean basin size and considering the limit of large

K one obtains RB ¼ 2RL. If in addition one expects the fractal dimension of a basin to be

d ¼ 2, then RB ¼ R2
L, in accordance with (3). The two constraints lead to the unique solution

RB ¼ 4, RL ¼ 2 that corresponds to the Shreve’s random topology model (or, more precisely,

to the critical binary Galton–Watson model, since the basin size is random). However, the

initial assumption of the exact Horton’s law does not hold in the Shreve’s model. Moreover,
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the mean tree size in this model scales as
4

3
RK�1

B ; see Sect. 9, Eqs. (72), (73). In general, the

ideal basin assumption is unrealistic in analysis of river networks as follows from the results

of the present paper (see Appendix G). This prompts one to carefully validate the results

yielded by heuristic approaches and calls for developing formal techniques. (We must notice

that despite the mentioned contradiction, the key heuristic results obtained in the classical

works are valid and are reproduced by formal techniques.)

We answer the questions posed above and develop a rigorous toolbox of working with

branching structures capitalizing on a self-consistent mathematical theory of random self-

similar trees recently developed by the authors (Kovchegov and Zaliapin 2020; Kovchegov

et al. 2021). The main goal of the current work is to present the theory in relation to the

empirical and modeling constraints accumulated in the studies of river networks.

The theory builds on the self-similarity concepts developed by Horton (1945), Strahler

(1957), Hack (1957), Shreve (1966, 1969), Tokunaga (1978), Mandelbrot (1982), Tarboton

et al. (1988), La Barbera and Rosso (1989), Gupta and Waymire (1989), Tarboton et al.

(1989), Leopold et al. (1992), Rinaldo et al. (1992), Rigon et al. (1993), Tarboton (1996),

Maritan et al. (1996), Turcotte (1997), Gupta and Waymire (1998), and many others.

Technically, its impetus is provided by the works of Peckham (1995), Newman et al.

(1997), Turcotte et al. (1998), Peckham and Gupta (1999), Burd et al. (2000), Veitzer and

Gupta (2000), and McConnell and Gupta (2008).

2.1 How to Use This Survey

The survey has a threefold goal: (i) to outline the key technical tools for examining scaling

laws in trees; (ii) to present a number of scaling results for familiar tree attributes; and (iii)

to propose the critical Tokunaga process as a model for river networks. To help a reader to

promptly find the desired material, we briefly (and informally) summarize the main results

of the work below in Sect. 2.2. Section 2.3 discusses the organization of material

throughout the paper. Finally, Table 1 provides cross-references to relevant equations and

figures for each of the attribute and scaling exponent examined in the work.

2.2 The Main Results: A Brief Overview

Here we take a short stroll through the main staples of the theory of random self-similar

trees and give an overview of the results presented in this work, before these are expanded

in detail in the sections that follow.

We work with systems represented by binary tree graphs. The action takes place on the

space L of all such trees, with a root and positive edge lengths. In essence, the survey

examines a series of consecutively narrower subspaces of trees with consecutively stronger

symmetries related to scaling laws—Fig. 3 illustrates the examined hierarchy.

The key element of the theory is the operation of Horton pruning R that removes (using

the hydrological terminology) the source streams from a basin. The number of Horton

prunings necessary to remove a link from a basin defines the link’s Horton–Strahler order,

hence the pruning name. An alternative (equivalent) counting approach to assigning the

Horton–Strahler orders is described in Sect. 3.2. Figures 1, 2 illustrate Horton–Strahler

orders and Horton pruning in simple binary trees and in the stream network of Beaver

Creek, KY.
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Table 1 Tree attributes and scaling exponents examined in the study, with corresponding equations and
figures

Description Eqns. Figs.

Attribute

AðiÞ Contributing area of vertex i (1),(14),(99),(100) 15,16a

Ak Empirical average of the contributing areas of
order-k branches

(17),(18)

Ak Mean contributing area of an order-k branch (37),(38),(59), (76),(77) 5c,10c

L½i� Length of branch i (105) 16b

Lk Empirical average of the lengths of order-k
branches

(17),(18)

Lk Mean length of an order-k branch (51),(60) 5d,9

Ltot
k Mean total channel length upstream of an order-

k branch
5c

KðiÞ Length of the longest stream to the divide from
vertex i (height)

(101),(102),(103) 15

Kk Empirical average of the heights of order-k
branches

(17),(18)

Kk Mean length of the longest stream to the divide
from an order-k branch (height)

(95),(96),(97) (98) 5d

MðiÞ Magnitude of vertex i 9

Mk Empirical average of the magnitudes of order-k
branches

(17),(18)

Mk Mean magnitude of an order-k branch (34),(36),(40),(42),
(59),(72),(73),(122)

5b,10b

Nk½T � Number of branches of order k in a tree T (8),(10), (78),(79),(80),(82) 5a,10a

N k½K� Mean number of branches of order k in a tree of
order K

(35),(36),(43),(44),
(59),(72),(73),(122), (123)

Ti;j Tokunaga coefficients (20)

Tk Tokunaga sequence (23),(24)

Sk Empirical average of the number of edges
(vertices) in order-k branches

(17),(18)

Sk Mean number of edges (or vertices) in an order-
k branch

(33),(50),(60),(118) 5b,10d

Exponent

d Fractal dimension of a tree (3),(4),(5), (85),(87) 11a,12a,14a

h Hack’s exponent (4),(5),(88), (96),(97),(98) 11b,12b,14b,
16

RB Horton exponent for mean branch numbers

N k½K�
(7),(8),(10),(13),

(27),(43),(44),(59),
(70),(78),(79),(120),
(100),(102)

5a,10a,13a

RM Horton exponent for mean branch magnitudes
Mk

(7),(40),(42),(70) 5b,10b

RA Horton exponent for mean branch contributing
areas Ak

(7),(12),(48),(70), (100),(102) 5c,10c

RL Horton exponent for mean branch lengths Lk (7),(12),(51),(60), (70),(85) 5d

RS Horton exponent for mean combinatorial branch
lengths Sk

(7),(13),(50),(70), (100),(102) 5b,10d
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Self-similarity is defined as distributional invariance with respect to the Horton pruning

in trees that satisfy the coordination property. Coordination means that the (random)

structure of a river basin is determined by its order. For example, a basin with outlet of

order three and a sub-basin of order three within a basin of order nine have, statistically, the

same structure. This assumption is in the heart of analyses based on the Horton–Strahler

orders; it has been imposed, explicitly or implicitly, in the mainstream studies of river

networks (Horton 1945; Rodriguez-Iturbe and Rinaldo 2001; Shreve 1966; De Vries et al.

1994; Peckham 1995; Peckham and Gupta 1999; Tarboton 1996). A distribution that

satisfies the coordination property is called coordinated. The Horton pruning R is a natural

model for the change of resolution in a river network (Fig. 2). Indeed, better observations

lead to detecting smaller streams, which increases the basin order. Pruning a basin by order

is roughly equivalent to decreasing the resolution of stream detection. The Horton prune

invariance requires that the statistical structure of trees remains the same after zooming in

or out (Sect. 4.3, Eq. (22)).

Self-similar distributions are abundant on spaces of rooted trees. Each self-similar

distribution corresponds to a unique sequence of nonnegative Tokunaga coefficients Tk,

k � 1, equal to the mean number of tributaries of order K � k within a stream of order K,

for any K (Sects. 4.1, 4.4). At the same time, an arbitrary sequence of Tokunaga coeffi-

cients Tk corresponds to an infinite number of self-similar distributions (with the same

mean numbers of side tributaries). The well-established models such as Peano basin or

Shreve’s topologically random model are self-similar in the above sense.

A foundational result (Sect. 7, Thm. 1 and Cor. 1) states that self-similarity implies

Horton’s law for the mean branch numbers N K with exponent RB and for the mean branch

magnitudes MK with exponent RM ¼ RB. Furthermore, a conventional hydrological

assumption of equally distributed link lengths (Rodriguez-Iturbe and Rinaldo 2001; Tar-

boton et al. 1989) yields Horton’s laws for the mean branch contributing areas AK , mean

number SK of links within a stream, and mean total stream length LK . The corresponding

Horton exponents are uniquely expressed via Tk. Section 7 and Appendix C examine the

Horton’s laws for mean branch attributes in the most general situation, with and without

the equally distributed link length assumption. Horton’s laws for the mean attributes imply

Horton’s laws (with the same exponents) for the random attributes obtained by averaging

over branches of a given order in a single tree (Sect. 3.7).

Horton’s laws imply power-law frequencies of stream attributes and power-law rela-

tions between different attributes (Sects. 3.4, 3.5). This includes the power-law frequencies

of (1) for link contributing areas and the length of the longest channel from a link to the

basin divide, as well as for the length of a random stream in a basin. This, in turn, leads to

Table 1 continued

Description Eqns. Figs.

RK Horton exponent for mean lengths Kk of the
longest stream to the divide (heights)

(7),(102) 5d,15

bA Exponent of the power-law exceedance
frequency of branch contributing areas AðiÞ

(1),(2),(4),(5),(14), (99),(100),
(102),(103)

16a

bK Exponent of the power-law exceedance
frequency of lengths of the longest stream to
the divide (heights) KðiÞ

(1),(2),(4),(5),(15),
(101),(102),(104)
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the conventional expressions (3) and (4) that involve the Hack’s law and basin fractal

dimension. Table 1 lists the attributes and exponents examined in this work, with refer-

ences to the related equations and figures.

A self-similar hierarchical branching process (HBP) introduced in Sect. 8 generates a

particularly symmetric distribution of trees for a given Tokunaga sequence Tk. The HBP

trees obey the strongest forms of Horton’s laws for multiple stream attributes. A fast and

simple recursive simulation algorithm allows one to generate networks of realistic size

within seconds (Fig. 4). Multiple additional symmetries and a well-developed theoretical

framework make the process an efficient modeling tool.

A special subfamily of HBPs, a one-parameter critical Tokunaga model, is specified by

Tk ¼ ðc � 1Þck�1 for some c� 1 (Sect. 9). This model yields a simple relation among the

Horton exponents:

2c ¼ RB ¼ RM ¼ RA [RS ¼ RL ¼ RK ¼ c; ð7Þ

where we list, left to right, the Horton exponents for the stream counts (RB), magnitude

(RM), area (RA), number of links in a stream (RS), stream length (RL), and lengths of the

longest channel to the divide (RK). The critical Tokunaga model provides a close fit to the

data and scalings reported in river studies over the past decades. We illustrate this in the

Beaver Creek basin of Fig. 2. Figure 5 shows seven Horton’s laws and their respective fits

by the critical Tokunaga model with c ¼ 2:3. Specifically, we consider the following

stream attributes parameterized by stream order K ¼ 1; . . .; 6: the stream numbers NK

(panel a), the mean magnitude MK and the mean number SK of links in a stream (panel b),

the mean contributing area AK and the mean total channel length Ltot
K upstream (panel c),

the mean length KK of the longest channel to the divide and the mean stream length LK

Fig. 3 Tree spaces examined in this survey: A Venn diagram. We work with binary rooted trees with edge
lengths from the space L formally defined in Sect. 3.1. The self-similar trees belong to the intersection of
coordinated trees (Sect. 4.2) and Horton prune-invariant trees (Sect. 4.3). The hierarchical branching
process (HBP) of Sect. 8 generates a particularly symmetric (infinite-dimensional) family of self-similar
tree distributions, which we propose as a default model for applications. A one-parameter family of critical
Tokunaga trees (Sect. 9) is a model proposed for river networks. It includes the celebrated critical binary
Galton–Watson tree with exponential edge lengths. The combinatorial part of this tree, being conditioned
on the tree size, is equivalent to the Shreve’s random topology model
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(panel d). The fitting lines correspond to the theoretical model predictions (see fig-

ure caption) that we derive in Sects. 9, 11. We notice that the model predictions in panels

(a) and (b) span the entire range of orders, while those in panels (c) and (d) only give

asymptotic behavior at large orders. This explains some fairly large deviations between the

data and fitting lines that one can notice at small orders in panel (d).

Table 2 summarizes the expressions for the Horton exponents and main scaling con-

stants in the critical Tokunaga model and compare them with the respective quantities

estimated in data and the OCN model.

It may seem remarkable that a model with a single parameter provides such a close fit to

the variety of Horton’s laws (and other attributes, as can be seen from the further dis-

cussion). This hints at deep symmetries in the structure of trees that describe river net-

works. The theory of random self-similar trees explains the mathematical origin of these

symmetries and provides one with tools for future exploration.

2.3 Survey Organization

The rest of the paper is organized as follows. Section 3 presents main concepts and

definitions. Tree representation of a stream network and graph-theoretic terminology

(Fig. 6) used throughout the paper are introduced in Sect. 3.1. Sections 3.2, 3.3 define

Horton–Strahler stream orders and related Horton’s laws (in their simplest form) for stream

attributes. The remainder of this section discusses essential heuristic implications of the

Horton’s laws for power-law frequencies of and relations among stream attributes.

Fig. 4 Examples of HBP trees (Sect. 8). The trees are generated by the critical Tokunaga process with
c ¼ 2:3 and order K ¼ 5 (Sect. 9). The line width is proportional to the contributing area approximated byP

‘2
i , where the sum is taken over all upstream edges. The figure accurately represents the tree

combinatorial structure; the edge lengths are scaled for a better planar embedding. We notice that the HBP
generates trees with no planar embedding. The current figure uses an ad hoc embedding; accordingly, the
related purely geometric properties, such as junction angles or spacing between channels, are not a part of
the model
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Section 4 introduces the key technical tools of self-similarity analysis—Tokunaga

coefficients, coordination of tree measures, Horton pruning, and Horton prune invariance.

Section 5 recalls basic facts from the theory of generating functions and complex

analysis that are used to establish our main results. Here we formalize the notion of

Horton’s laws for mean stream attributes by considering three consecutively stronger

versions—(R), (Q), and (G)—of geometric variation. Later we refer to those as the root
Horton’s law, quotient Horton’s law, and geometric Horton’s law, respectively.

The key stream attributes and their relations are presented in Sect. 6. This includes the

mean number SK of edges in a branch of order K, the mean magnitude MK of a branch of

order K, the mean number N k½K� of branches of order k in a tree of order K, the mean

length LK of a branch of order K, and the mean contributing area AK of a branch of order K.

Fig. 5 Horton’s laws in the stream network of Beaver creek, Floyd County, KY of Fig. 2. Symbols
correspond to the observed attributes. Lines and dots show theoretical fit by a critical Tokunaga model
(Sect. 9) with c ¼ 2:3. a Stream numbers NK . The model fit is given by (73); it has asymptotic slope
� log10ð2cÞ � �0:66, which is achieved here at small orders. b Stream magnitudes MK (cyan circles) and
number of links SK in a stream (magenta squares). The fit for MK is given by (73); it has asymptotic slope

log10ð2cÞ � 0:66, which is achieved here at large orders. For this model, SK ¼ cK�1, which corresponds to
the slope log10 c � 0:36. c Contributing areas AK (cyan circles) and total upstream channel length Ltot

K

(magenta squares). The fitting lines have theoretical slope log10ð2cÞ � 0:66; see (76). The intercept is
selected so that the fitting line coincides with an observed quantity at K ¼ 6. d Lengths KK of the longest
stream to the divide (cyan circles) and lengths LK of streams (magenta squares). The fitting lines have
theoretical slope log10ðcÞ � 0:36; see (60) and (95)
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Section 7 presents the main results of this work—Horton’s laws for mean branch

attributes in a self-similar tree. We start in Sect. 7.1 with the geometric Horton’s laws for

the mean branch magnitudes Mk (Theorem 1) and mean branch numbers N k½K� (Corol-

lary 1). These laws hold in any self-similar tree under a mild constraint

lim supk!1 T
1=k
k \1; they form a foundation for further development. Section 7.2

establishes quotient Horton’s laws for Sk, Lk, and Ak under additional Assumption 1, which

seems practically appealing to most applications. Section 7.3 discusses a special case of

Horton’s laws under the hydrologically relevant constraint of unit Horton exponent for

edge lengths, which is a substantial generalization of the condition of equally distributed

edge lengths that is well documented in hydrologic observations. Section 8 introduces a

self-similar hierarchical branching process (HBP)—a computationally simple and

Table 2 Selected scaling exponents (1st column) in critical Tokunaga model expressed via the model
parameter c� 1 (2nd column), fractal dimension d (3rd column), and Hack’s exponent h (4th column).
Columns 5-7 show the values of the exponents for c ¼ 2:0; 2:3; 2:5. Column 8 shows the values estimated in
the OCN model. Columns 9 summarizes estimations in the observed river networks. The agreement of the
exponents of the critical Tokunaga model with c ¼ 2:3 with those observed from real basins is noted.

Exponent Expressed via Critical Tokunaga model OCNy Real basinsz

c d h c ¼ 2:0� c ¼ 2:3 c ¼ 2:5

RB ¼ RM ¼ RA 2c 2d=ðd�1Þ 21=ð1�hÞ 4 4.6 5.0 4 4.1 – 4.8

RS ¼ RL c 21=ðd�1Þ 2h=ð1�hÞ 2 2.3 2.5 2 2.1 – 2.7

d ¼ log RB

log RL

logc ð2cÞ d h�1 2 1.832 1.756 2 1.7 – 2.0

h ¼ log RL

log RB

log2c c d�1 h 0.5 0.546 0.569 0.57 0.5 – 0.6

bA log2c 2 1 � d�1 1 � h 0.5 0.454 0.431 0.43 0.4 – 0.5

bK logc 2 d� 1 h�1 � 1 1 0.832 0.756 0.8 0.65 – 0.9

�Equivalent to the critical binary Galton–Watson branching process with independent and identically dis-
tributed (i.i.d.) exponential edge lengths

yMean values estimated in simulated OCN basins. According to Rodriguez-Iturbe and Rinaldo (2001);
Cieplak et al. (1998)

zAccording to Rodriguez-Iturbe and Rinaldo (2001); De Vries et al. (1994); Peckham (1995); Maritan et al.
(1996); Rigon et al. (1996); Tarboton et al. (1988)

Fig. 6 Hydrologic versus graph
theoretic terminology. The
figure shows, clockwise from the
bottom, the basin outlet (tree
root), a stream junction (internal
vertex), link (edge), and a source
(leaf). Vertex b is an offspring of
a; and a is the parent for b
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analytically tractable model that generates trees with arbitrary Tokunaga sequences and

obeys the (strongest) geometric Horton’s laws for the mean branch counts, magnitudes, and

lengths. An important one-parameter family of self-similar HBP—critical Tokunaga pro-

cess with Tk ¼ ðc � 1Þck�1 for c� 1 —is examined in Sect. 9. We propose this as a

conceptual model for river stream networks, as it provides a very close fit to the attributes

and scalings reported in observations (see Table 2 and Fig. 5). A classical model with

slightly relaxed constraints on the Tokunaga sequence, Tk ¼ ack�1, is discussed in

Appendix E.

Fractal dimension and Hack’s law in self-similar HBP trees are examined in

Sects. 10, 11, respectively. We show in particular that the fractal dimension d and Hack’s

exponent h are reciprocal to each other, which has been heuristically known for trees with

exact Horton’s laws since the 1980s (La Barbera and Rosso 1989; De Vries et al. 1994;

Peckham 1995).

Section 12 illustrates the origin of power-law exceedance frequencies of edge and

branch attributes in a tree that satisfies selected Horton’s laws. Specifically, we consider

the vertex contributing area AðiÞ, the length KðiÞ of the longest stream from a vertex to the

divide, and the length L½i� of a randomly selected branch. Section 13 provides concluding

remarks. Proofs and most general results, which may not be of prime interest in applied

analyses, are given in appendices.

3 Horton’s Laws and Their Implications: A Heuristic Approach

3.1 Tree Representation of River Networks

River studies commonly represent a stream network that drains a single basin (watershed,

catchment) as a rooted binary tree with planar embedding. The basin outlet (point furthest

downstream) corresponds to the tree root, sources (points furthest upstream) to leaves,

junctions (points where two streams meet) to internal vertices, and links (stream segments

between two successive nodes) to edges. A node j immediately upstream of a node i is

called an offspring of i, and i is called the parent of j. Any node j upstream of i is called a

descendant of i, and any node j downstream of i is called an ancestor of i. Figure 6

illustrates this correspondence.

In this work, we use the graph-theoretic nomenclature, which provides a better link to

the other systems examined using their tree representation (see Sect. 1). We assume that all

examined trees belong to the space T of finite binary rooted trees, or to the space L of trees

from T with positive edge lengths (Kovchegov and Zaliapin 2020, Sect. 2.1). The models

discussed in this work do not deal with planar embedding of trees, which is an important

separate problem. We notice, at the same time, that a suitable (non-physical) planar

embedding of a given tree can be readily developed. One such embedding approach is used

to illustrate synthetic HBP trees in Fig. 4.

3.2 Horton–Strahler Orders

The importance of vertices and their parental edges is measured by the Horton–Strahler

order K � 1 (Horton 1945; Strahler 1957). We agree that each vertex and its parental edge

(the unique edge that connects this vertex to its parent, or the immediate downstream edge)

have the same order. The order assignment is done in a hierarchical fashion, from the

leaves towards the root (that is, from the sources downstream). Specifically, each leaf (and
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its parental edge) is assigned order K ¼ 1. When two edges of the same order K merge at a

vertex, the vertex is assigned order K þ 1. When two edges with different orders K1 [K2

merge at a vertex, the largest order prevails and the vertex is assigned order K1. The

connected sequence of vertices and their parental edges of the same order K is called a

branch of order K. The Horton–Strahler orders are illustrated in Figs. 1, 2. We denote by

NK ¼ NK ½T� the number of branches of order K in a finite tree T.

The Horton–Strahler order of a tree is that of its root, or equivalently, the maximal order

of its vertices (edges, branches). We show below that multiple fundamental regularities in

the structure and dynamics of river networks are expressed in terms of the Horton–Strahler

orders.

3.3 Horton’s Laws

The observed stream counts NK in a large basin are closely approximated by Horton (1945)

NK

NKþ1

¼ RB , NK / R�K
B ð8Þ

for some Horton exponent RB � 2. The lower bound on RB follows immediately from the

definition of Horton–Strahler orders, since it takes at least two branches of order K to

create a single stream of order K þ 1. It has been noticed by Strahler (1957, p. 914) that

the value of the empirical ratio RB in river streams is between 3 and 5, and is usually close

to 4. This has been strongly corroborated in numerous observational studies, e.g., Kirchner

(1993), Shreve (1966), Leopold et al. (1992), Peckham (1995), Tarboton (1996), Turcotte

(1997), Gupta and Waymire (1998), Zanardo et al. (2013), Rodriguez-Iturbe and Rinaldo

(2001), and Mesa (2018).

In hydrogeomophology, a geometric scaling of any branch attribute with order, similar

to that of Eq.(8), is called Horton’s law. Horton’s laws are documented for multiple

physical and combinatorial quantities, including upstream area, magnitude (number of

upstream sources), the total channel lengths, link slope, mean annual discharge, energy

expenditure, etc. (Rodriguez-Iturbe and Rinaldo 2001). These quantities often increase

with order (unlike the branch counts NK that decrease with order), which justifies a slightly

different form of the respective Horton’s laws. Specifically, consider the values ZK

obtained by averaging a selected attribute Z over branches of order K. Horton’s law with

exponent RZ � 1 states that ZK scale as

ZKþ1

ZK
¼ RZ , ZK / RK

Z : ð9Þ

In both cases (8) and (9), the law is formulated in such a way that the Horton exponent is

greater than unity. Informally, ZK may represent a particular way to measure the branch

‘‘size,’’ and the law (9) states that the order K of a branch is proportional to its logarithmic

size lnðZKÞ.
Horton’s laws play an elemental role in statistical modeling of river basins, which rests

upon empirical regularities that describe the frequencies of and relations among the key

geometric and physical characteristics of individual streams. Remarkably, many such

regularities heuristically follow from Horton’s laws and are parameterized by the

respective Horton exponents. Below we discuss several key power laws that are commonly

observed in river networks.
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3.4 Power-Law Relations Between Attributes

Suppose a stream attribute Z satisfies the Horton’s law (9) with exponent RZ , and the

branch counts NK satisfy the Horton’s law (8) with exponent RB. Then, using each of the

laws to express K and equating these expressions, we find

ZK / N�a
K ; with a ¼ ln RZ

ln RB
: ð10Þ

Similarly, suppose that the Horton’s law (9) holds for selected river attributes Z and Y, with

exponents RZ and RY , respectively. Then, ZK and YK are connected via a power-law

relation

ZK / Ya
K ; a ¼ log RZ

log RY
: ð11Þ

Equations (10), (11) are a punctuated (by discrete orders) version of a general power-law

relation Z / Ya that is abound among hydrologic quantities.

It is common to relate an attribute of interest to the basin area A. A well-studied

example is Hack’s law that relates the length L of the longest stream in a basin to the basin

area A via L / Ah with h � 0:6 (Hack 1957; Rigon et al. 1996; Rodriguez-Iturbe and

Rinaldo 2001). Assuming Horton’s laws for the area and length of the longest stream, the

parameter h is expressed via the respective Horton exponents as in Eq. (11):

h ¼ log RL

log RA
: ð12Þ

3.5 Power-Law Frequencies of Link Attributes

Consider empirical frequencies of an attribute Z calculated at every edge (link) in a large

tree (basin). We write ZðiÞ for the value of Z calculated at the ith edge. Assume that

Horton’s law holds (i) for the examined attribute Z, with exponent RZ and (for simplicity)

proportionality constant equal to one; (ii) for the average number SK of edges within a

branch of order K, with exponent RS; and (iii) for branch counts NK with exponent RB as in

(8). The number of edges of order K in such a tree is given by NKSK . One can now

heuristically approximate the expected frequencies of ZðiÞ by using the same value ZK for

any edge of order K and considering a limit of an infinitely large tree:

#fi : ZðiÞ �RK
Z g �

X1

j¼K

NjSj /
X1

j¼K

RS

RB

� �j

/ RS

RB

� �K

:

As before, this is a punctuated (by discrete order) version of a general power-law relation

#fi : ZðiÞ � zg / z�b; b ¼ log RB � log RS

log RZ
: ð13Þ

Such power laws are reported for the upstream contributing area, stream lengths to the

divide, water discharge, or energy expenditure. For example, analyses of Tarboton et al.

(1989), Rodriguez-Iturbe et al. (1992), and Maritan et al. (1996) on river basins extracted

from digital elevation models (DEM’s) suggest
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#fi : AðiÞ � xg / x�bA with bA � 0:45; ð14Þ

#fi : KðiÞ � xg / x�bK with bK � 0:8; ð15Þ

where AðiÞ is the area upstream of link i and KðiÞ is the distance from link i to the furthest

source (or, equivalently, to the basin divide) measured along the channel network. Our

analysis below shows that these power laws hold in self-similar trees and their exponents

found via (13) fit the empirical exponents found in observations.

3.6 Modeling Physical Characteristics of a Stream

Classical hydrologic and geomorphologic studies of the mid-twentieth century revealed

that the key physical characteristics of streams—such as stream width, depth, slope, and

flow velocity, can be modeled as power functions of the stream magnitude (Leopold and

Miller 1956; Leopold et al. 1992; Dodov and Foufoula-Georgiou 2004a, b, 2005),

(Rodriguez-Iturbe and Rinaldo 2001, Chapter 1). Specifically, data analysis suggests that

physical characteristics of streams scale with the stream discharge Q defined as the volume

of water flowing through a river stream. Such scalings are called hydraulic–geometric
relations. For example, the velocity v through the stream can be approximated by v / Qa,

etc. The discharge Q, in turn, is a power-law function of the basin area: Q / Ab (see

Sect. 3.4). The value of exponent b depends on a precise definition of discharge (bankful,

mean annual, etc.) Finally, the basin area A is closely approximated by the basin magnitude

M, since it is natural to think of a stream network as a space-filling tree (see Sect. 7 for a

formal treatment). Combining these observations, we find that the stream velocity can be

modeled as a power-law function of the stream magnitude:

v / Mab:

Hydraulic–geometric relations exist for other physical characteristics of a stream, including

the average link slope s (e.g., Gupta and Waymire 1989):

s / A�h / M�h; h � 0:5:

In summary, rather unexpectedly, essential physical characteristics of a river network (e.g.,

stream velocity or link slope) can be estimated from purely combinatorial statistics of its

tree representation (e.g., magnitude). Gupta (2017) asserts that ‘‘Self-similarity in channel
networks plays a foundational role in understanding the observed scaling, or power-law
relations, between peak flows and drainage areas’’. For example, the emergent scaling

behavior opens up the opportinity to circumvent a large number of parameters governing

production and transport of runoff along the stream channels and use basin’s combinatorial

characteristics for developing flood frequency relations and flood forecasting in ungauged

basins (Gupta et al. 1994, 1996, 2010, 2007; Gupta 2017). Accordingly, the results pre-

sented in this survey can inform modeling efforts aimed at physical quantities of the

streams and the related processes and hazards. Gupta and Mesa (2014) discussed an

alternative approach for establishing Horton’s laws for river physical attributes (hydraulic–

geometric variables) based on the Buckingham p theorem and asymptotic self-similarity of

first and second kinds (Barenblatt 1996).
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3.7 Beyond Heuristics

We observe that the above discussion in Sects. 3.3, 3.4, and 3.5 is heuristic, only main-

taining a physical (but not mathematical) level of rigor. The very definition of Horton’s law

via Eqs.(8) and (9) is not instrumental for developing a useful theory. Indeed, since it is

hard to expect that the exact equalities would hold in a range of practically interesting

situations, one should accept an approximate nature of these statements and, hence, define

what is meant by ‘‘approximate.’’

The approach adopted in this survey (and in most of the studies reviewed herewith)

asserts that, for any fixed k, the branch number ratios Nk=Nkþ1 converge to the Horton’s

exponent RB when the tree size increases. Similarly, the other branch attribute ratios

Zkþ1=Zk converge to the appropriate Horton exponents when both k and the tree size

increase. These convergences involve random variables Nk and Zk and hence should be

understood in a proper probabilistic sense (Bhattacharya and Waymire 2007). The dif-

ference between the treatment of the branch numbers Nk and other branch attributes Zk is

explained by the observation that Nk decreases with k, while all other branch attributes

(examined here) increase with k.

As an intermediate step, we consider the mean values of the examined attributes with

respect to the examined distribution of trees. Such a mean value should not be confused

with the average value that is calculated over a collection of branches within a single

random tree. For example, we consider below a random length L½i� of the ith branch. One

can average the observed random lengths over the Nk branches of a given order k in a

single tree T to obtain the empirical average of the branch lengths:

Lk ¼
1

Nk

XNk

i¼1

L½i�:

Importantly, Lk is a random variable that takes on a new value for each realization of a

random tree. Finally, we consider the mean branch length

Lk ¼ E½L½i�� for any i because of coordination;

which is a constant that only depends on the examined tree distribution.

Most of our results are formulated for the mean branch attributes. Importantly, the

respective results for the random attributes readily follow from these mean results. To

illustrate this implication, let Z½i� denote a random value of the examined attribute calcu-

lated for branch i of order k in a random tree T, Zk denote the empirical average of the

attribute over the branches of order k in T, and Zk denote the mean value of the attribute for

a random branch of order k. Horton’s law for the deterministic mean attribute is defined as

a limit statement:

lim
k!1

Zkþ1

Zk
¼ RZ : ð16Þ

Section 5 discusses this and two other (weaker and stronger) forms of Horton’s law that

can hold in deterministic sequences of branch attributes. We have

E Zk

� �
¼ E E ZkjNk

� �� �
¼ E Z½i�

� �
¼ Zk:

In a tree T of order K, the branch numbers are bounded from below by Nk � 2K�k for any

k 	K, so K ! 1 implies Nk ! 1 for any fixed k with probability one. Hence, the Weak
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Law of Large Numbers (Bhattacharya and Waymire 2007) asserts that

Zk!
p

Zk for any k as K ! 1; ð17Þ

where !p denote convergence in probability. Accordingly,

Zkþ1

Zk

!p Zkþ1

Zk
for any k as K ! 1; ð18Þ

where the (deterministic) fraction in the right-hand side converges to RZ as in (16).

Practically, statements (16) and (18) suggest that the empirical averages Zk satisfy Hor-

ton’s approximation of (9) in a sufficiently large tree (or a finite collection of such trees).

The above discussion applies to the branch magnitudes Mk, combinatorial and metric

branch lengths Sk and Lk, branch contributing areas Ak, and the length of the longest stream

to the divide (height) Kk. At the same time, the probabilistic limit results for the random

branch counts Nk require more sophisticated techniques that are outside of the scope of this

survey. Section 9.2 reviews limit laws for the random branch numbers in the critical

Tokunaga model of Sect. 9.

4 Self-Similarity of River Networks

4.1 Tokunaga Coefficients

The Tokunaga coefficients complement the branch counts NK ½T � in describing the structure

of a tree T. The empirical Tokunaga coefficient ti;j½T � with i\j is the average number of

branches of order i that merge with a branch of order j in a finite tree T:

ti;j½T� ¼
Ni;j½T�
Nj½T �

; ð19Þ

where Ni;j½T � is the number of instances when an order-i branch merges with an order-

j branch within T. The merging of branches of distinct orders is referred to as side
branching, and a branch that merges into a branch of a higher order is called a side branch.

Merging of two branches of the same order is called principal branching.

Assume that we fix a distribution l on the space T of finite rooted binary trees. For

example, one might consider a uniform distribution among trees with a given number of

leaves, leading to the critical binary Galton–Watson random tree (Burd et al. 2000; Pitman

2006). Then one can define the Tokunaga coefficient Ti;j as the expected number of side

branches of order i per a randomly selected branch of order j (Dodds and Rothman 1999;

Tokunaga 1966, 1978; Burd et al. 2000). This definition serves well the purpose of our

study; we refer to Kovchegov and Zaliapin (2020) for a more general approach.

We can arrange the Tokunaga coefficients for trees of a given order K in an upper

triangular matrix
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TK ¼

0 T1;2 T1;3 . . . T1;K

0 0 T2;3 . . . T2;K

0 0 . .
. . .

. ..
.

..

. ..
. . .

.
0 TK�1;K

0 0 . . . 0 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

: ð20Þ

For example, the Tokunaga coefficients calculated for the Beaver Creek basin illustrated in

Figs. 2, 5 are given by

T6 ¼

0 1:06 2:40 8:91 15:33 44:00

0 0 0:92 3:64 8:67 20:00

0 0 0 2:00 4:00 9:00

0 0 0 0 0:33 4:00

0 0 0 0 0 1:00

0 0 0 0 0 0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð21Þ

4.2 Coordination

We assume that the structure of a river basin is determined by its order. This means, for

example, that a basin with outlet of order three and a sub-basin of order three within a

larger basin of order nine have, statistically, the same structure. This assumption is in the

heart of the Horton–Strahler orders, and is imposed, explicitly or implicitly, in the

mainstream studies of river networks (Shreve 1966, 1969; Peckham 1995; Rodriguez-

Iturbe and Rinaldo 2001). We refer to this assumption as coordination. Under the

assumption of coordination the Tokunaga matrix TK of Eq. (20) coincides with the upper

left K � K submatrix of the Tokunaga matrix TM for any M �K, which explains the

assumption name.

4.3 Tree Self-Similarity

Most generally, self-similarity is understood as statistical invariance of a river basin under

rescaling Mandelbrot (1982); Turcotte (1997); Dodds and Rothman (2000); Rodriguez-

Iturbe and Rinaldo (2001). A fundamental specific way to downscale a river basin of order

K is to only consider its branches with highest orders between K � k þ 1 and K for a given

k\K. This results in a coarser basin, whose order (being computed according to the rules

of Sect. 3.2) is k.

Formally, we consider the operation of Horton pruning R : L ! L that removes the

leaves from a tree T together with their parental edges, followed by a series reduction that

eliminates all degree two non-root vertices by merging the edges adjacent to them. It is

readily seen that the Horton pruning reduces the tree order by 1. Moreover, the order of

each branch is also reduced by 1 (with understanding that branches of order 1 are elimi-

nated). We refer to Peckham (1995), Burd et al. (2000), and Kovchegov and Zaliapin

(2016) for a comprehensive discussion.
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A coordinated distribution l on the space T of combinatorial trees is called self-similar
if it is invariant with respect to the Horton pruning (Burd et al. 2000; Kovchegov and

Zaliapin 2016):

l R�1ðTÞjT 6¼ /
� �

¼ lðTÞ for any T 2 T : ð22Þ

Informally, consider a forest of trees, where each tree T occurs multiple times according to

its probability lðTÞ. The forest is self-similar if after pruning each tree by R we obtain the

same forest. This definition can be extended to trees with edge lengths from space L. In

this case, we allow the edge lengths to scale by a scaling constant f[ 0 after pruning. We

refer to (Kovchegov and Zaliapin 2020, Sect. 3) for a formal treatment.

We use a conventional abuse of terminology by saying that a tree T is self-similar; this

means that T is a random tree drawn from a self-similar distribution l.

4.4 Tokunaga Sequence

A coordinated self-similar measure necessarily satisfies the following Toeplitz property

(Kovchegov and Zaliapin 2016, 2020): there exists a Tokunaga sequence fTkgk¼1;2;... such

that

Ti;iþk ¼ Tk for all i; k [ 0: ð23Þ

In this case, the Tokunaga matrix (20) is a Toeplitz matrix:

TK ¼

0 T1 T2 . . . TK�1

0 0 T1 . . . TK�2

0 0 . .
. . .

. ..
.

..

. ..
. . .

.
0 T1

0 0 . . . 0 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

: ð24Þ

Sometimes we refer to Tk as Tokunaga indices, which creates no confusion with Ti;j of

Sect. 4.1. A comprehensive discussion of this approach can be found in the works of

Kovchegov and Zaliapin (2016) and Burd et al. (2000). The Tokunaga indices Tk for the

Beaver Creek of Figs. 2, 5 can be approximated by averaging the values along the diag-

onals of the initial Tokunaga matrix (21):

T1 ¼ 1:06; T2 ¼ 3:51; T3 ¼ 8:86; T4 ¼ 17:665; T5 ¼ 44:00: ð25Þ

We emphasize that self-similarity (Sect. 4.3) is a property of a distribution of trees on T or

L and hence, formally, cannot be applied to a single tree. In applied analysis, however, one

works with a single basin, or a finite sample of basins. The Tokunaga sequence Tk provides

a fundamental connection between the properties of a distribution on an infinite collection

of trees and easily computed attributes of a single tree.

We show below that the Tokunaga indices Tk provide enough information to find the

mean values of all other branching attributes in random self-similar trees.
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4.5 Tokunaga Two-Parameter Model

The first model for river networks that explicitly describes the network structure in terms of

side branch counts is due to Eiji Tokunaga (1978). It postulates

Tk ¼ ack�1; a; c[ 0: ð26Þ

The observed river networks are closely approximated by the Tokunaga model (Tokunaga

1978; Peckham 1995; Kovchegov et al. 2021). The estimated parameters a � 1:1 and

c � 2:5 of this model have shown to be independent of (or only weakly dependent on)

river’s geographic location (Peckham 1995; Dodds and Rothman 2000; Zanardo et al.

2013).

McConnell and Gupta (2008) have shown that the Tokunaga model obeys the quotient

Horton’s law for stream numbers (when tree size increases) with

RB ¼
ða þ c þ 2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða þ c þ 2Þ2 � 8c

q

2
:

ð27Þ

This result revealed, for the first time, the emergence of Horton’s law from the tree side

branch structure. Our Theorem 1 below establishes the most general statement of this type,

showing that (almost) any Tokunaga sequence implies the geometric Horton’s laws for

branch numbers and mean magnitudes. A detailed treatment of the two-parameter Toku-

naga model (26) is given in Appendix E.

Burd et al. (2000) demonstrated that the Shreve’s random topology model (Shreve

1966, 1969), equivalent to the critical binary Galton–Watson tree with a fixed progeny, is a

special case of the Tokunaga model with ða; cÞ ¼ ð1; 2Þ:

Tk ¼ 2k�1 for k � 1:

Accordingly, it satisfies the geometric Horton’s law for mean branch numbers with RB ¼ 4.

For a long time, the critical binary Galton–Watson tree has remained the only well-

studied probability model for which self-similarity was rigorously established, and whose

Horton–Strahler ordering has received attention in the literature (Shreve 1966, 1969; Kemp

1979; Tarboton et al. 1988; Wang and Waymire 1991; Barndorff-Nielsen 1993; Yekutieli

and Mandelbrot 1994; Peckham 1995; Devroye and Kruszewski 1994; Burd et al. 2000).

Scott Peckham has explicitly noticed, by performing a high-precision extraction of river

channels for Kentucky River, Kentucky and Powder River, Wyoming, that the Horton

exponents and Tokunaga parameters for the observed rivers significantly deviate from

those in the Galton–Watson model (Peckham 1995). He reported values RB � 4:6 and

ða; cÞ � ð1:2; 2:5Þ and emphasized the importance of studying a broad range of Horton

exponents and Tokunaga parameters.

The general interest in fractals and self-similar structures in natural sciences during the

1990s resulted in a quest, mainly inspired and led by Donald Turcotte, for Tokunaga self-

similar trees of diverse origin (Gabrielov et al. 1999; Newman et al. 1997; Ossadnik 1992;

Pelletier and Turcotte 2000; Turcotte 1997; Turcotte et al. 1999, 1998; Yakovlev et al.

2005; Zanardo et al. 2013). As a result, the Tokunaga model and respective Horton’s laws,

with a broad range of parameters, have been empirically or rigorously found in numerous

observed and modeled systems, well beyond river networks.
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5 Generating Functions: A Tool for Establishing Horton’s Laws
for Mean Attributes

This section summarizes the basic facts about generating functions that are used below to

derive asymptotic behavior and Horton’s laws for the mean branch attributes in a self-

similar tree.

The generating function f(z) of a sequence ak � 0, k ¼ 0; 1; . . ., of nonnegative real

numbers is defined as a formal power series

f ðzÞ ¼
X1

k¼0

ak zk; ð28Þ

where z is a complex number, z 2 C. It is known (Wilf 1992) that there exist such a real

number r � 0 that the series in the right-hand side (rhs) of (28) converges (to the function

f(z)) for any jzj\r and diverges for any jzj[ r. The number r (which can be infinite) is

called the radius of convergence of the sequence ak. The value of r puts notable constraints

on the asymptotic behavior of ak. In general, the smaller the radius of convergence, the

faster the growth of the coefficients. Roughly speaking, 0\r\1 implies that the coeffi-

cients ak increase geometrically, r [ 1 that the coefficients decrease geometrically, and

r ¼ 1 that the coefficient vary at a rate slower than geometric (e.g., polynomially). The

values r ¼ 0 and r ¼ 1 imply a faster than geometric growth or decay, respectively.

The Cauchy-Hadamard theorem expresses the radius of convergence in terms of the

series coefficients (Wilf 1992):

1

r
¼ lim sup

k!1
a

1=k
k : ð29Þ

We consider the following, consecutively stronger, forms of geometric growth (r [ 1) or

decay (r\1) of the sequence ak:

1

r
¼ lim

k!1
a

1=k
k ; ðRÞ

lim
k!1

ak

akþ1

¼ r; ðQÞ

lim
k!1

ak rk ¼ a: ðGÞ

The three limits are related as follows:

(G) ) (Q) ) (R); ð30Þ

which means that the existence of (G) implies the existence of (Q), etc. In hydrogeo-

morphology, the familiar quotient limit (Q) is referred to as Horton’s law for coefficients ak

with Horton exponent r. We also consider a weaker root limit (R) and a stronger geometric

limit (G), and refer to them as the root and geometric Horton’s laws, respectively. The

limits (R), (Q), and (G) may or may not exist, but if either of them does, then it has the

same Horton exponent r as in (29) and ensures the existence of the weaker limit(s),

according to (30), with the same Horton exponent. As has been mentioned above, we use a

convention that Horton exponents are greater than or equal to unity. Hence, if r\1, we
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consider the reciprocal quotient in (Q), lim akþ1=ak ¼ r�1, and change the other limits

accordingly to make the Horton exponent equal to r�1.

Often, the radius of convergence for ak can be easily found from an explicit form of f(z).

Indeed, if r [ 0, then the function f(z) is analytic within the disk jzj\r and has at least one

singularity on the circle jzj ¼ r; that is, it has to diverge for at least one point on that circle

(Wilf 1992, Thm. 2.4.2). Thus, the radius of convergence equals to the modulus of a

singularity closest to the origin. Furthermore, recalling that ak � 0 we have

jf ðzÞj ¼
X1

k¼0

ak zk

	
	
	
	
	

	
	
	
	
	
	
X1

k¼1

ak jzjk ¼ f ðjzjÞ; ð31Þ

where the equality is only achieved for z ¼ jzj. This means that the singularity closest to

the origin lies on the real axis (although there might be other singularities with the same

modulus.) This makes the search for such a singularity much easier: One can only consider

the restriction of the function f(z) to the real axis. In other words, despite the use of

complex analysis in establishing some of our results, the applied examination of suit-

able generating functions can be done in the real domain.

One can examine the function f(z) in (28) to obtain more precise information about the

coefficients ak. If f(z) has no singularities inside the circle jzj ¼ q, then (Ahlfors 1953)

ak ¼
1

2pi

I

jzj¼q

f ðzÞdz

zkþ1
: ð32Þ

We have mentioned that in general neither of the limits (R), (Q), and (G) must exist.

However, if the singularity of f(z) nearest to the origin is simple enough, then these

properties are satisfied.

Proposition 1 (Geometric Horton’s Law for a Simple Pole Sequence) Suppose f ðzÞ ¼
P1

k¼1 akzk with ak � 0 is analytic in the disk jzj\q except for a single singularity that

occurs at a positive real value r\q, which is a pole of multiplicity one (simple pole). Then
the geometric Horton’s law (G), and hence the quotient Horton’s law (Q) and the root
Horton’s law (R), are satisfied for the coefficients ak with Horton exponent r. Furthermore,
if we define gðzÞ ¼ f ðzÞðz � rÞ, then the coefficient in the geometric Horton’s law is
a ¼ �gðrÞ=r.

Proof See Appendix A. h

Another useful result states that if we can write f ðzÞ ¼ gðzÞhðzÞ, and the radius of con-

vergence of g(z) is smaller than that of h(z), then the coefficients of f(z) satisfy the same

Horton’s laws as those of g(z). A formal statement is given below.

Proposition 2 (Horton’s Laws for Product Sequence) Consider complex valued functions
f(z), g(z), and hðzÞ 6
 0 that are analytic around the origin with the following series
expansions

f ðzÞ ¼
X1

k¼0

akzk; gðzÞ ¼
X1

k¼0

bkzk; and hðzÞ ¼
X1

k¼0

ckzk;
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where ak; bk 2 ½0;1Þ and ck 2 R for all k. Denote by ra, rb, and rc the radii of conver-

gence of the sequences ak, bk, and ck, respectively.

(i) Suppose that

f ðzÞ ¼ gðzÞhðzÞ and rc [ rb [ 0:

Then, any of the Horton’s laws (R), (Q), and (G) for the sequence bk implies the
same law for the sequence ak, with Horton exponent R ¼ 1=rb ¼ 1=ra [ 0.

(ii) Suppose, in addition, that hðzÞ 6¼ 0 for jzj 	 rb. Then any of the Horton’s laws (R),

(Q), and (G) for the sequence ak implies the same law for the sequence bk, with

Horton exponent R ¼ 1=ra ¼ 1=rb [ 0.

Proof See Appendix B. h

Below, we find the generating functions for the sequences of mean branching attributes

relevant to our study. The respective radii of convergence provide information on the

asymptotic behavior of the examined sequences. In particular, the generating function M(z)

for the mean branch magnitudes Mk has a simple pole closest to the origin, and hence it

satisfies the geometric Horton’s law by Proposition 1.

6 Self-Similar Trees: Main Attributes and Their Relations

We assume that a river basin is represented by a self-similar tree T with a Tokunaga

sequence Tk. This means, in particular, that each branch of Horton–Strahler order j pro-

duces an mean of Tj�i side branches of order i for each i such that 1	 i\j. In this section,

we state the recursive relations for the essential branch attributes: the mean number N k of

branches of order k, the mean number Sk of edges in a branch of order k, the mean

magnitude (number of descendant leaves) Mk of a branch of order k, the mean length Lk of

a branch of order k, and the mean contributing area Ak of a branch of order k. These

relations are mostly due to straightforward applications of the Wald’s formula (Bhat-

tacharya and Waymire 2007); it asserts that for a random sum of N independent identically

distributed (i.i.d.) random variables Xi we have

E X1 þ . . .þ XN½ � ¼ E½X1�E½N�:

The expectations are taken with respect to a self-similar measure l on L.

Let Sk denote the mean number of edges (or vertices) within a branch of order k. This

attribute is also known as the mean number of links in a Strahler stream of order k (e.g.,

Peckham 1995). It equals the mean number of side branches that join this branch plus the

branch starting vertex:

Sk ¼ 1 þ T1 þ . . .þ Tk�1; k � 1: ð33Þ

The mean magnitude Mk is the mean number of leaves descendent to an order k branch. It

can be represented as the sum of magnitudes of two order k�1 branches that created this

branch (called principal branches), plus the magnitudes of all the side branches. Hence

M1 ¼ 1, and

Mk ¼ 2 Mk�1 þ
Xk�1

i¼1

Mi Tk�i; for k [ 1: ð34Þ
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The mean number N k½K� of branches of order k in a tree of order K, also known as the

mean total number of Strahler streams (Peckham 1995), equals twice the number of

branches of order kþ1 plus the number of instances when a branch of rank k joins a branch

of a higher rank. Thus, for a tree of order K we have N K ½K� ¼ 1 and

N k½K� ¼ 2N kþ1½K� þ
XK

i¼kþ1

N i½K� Ti�k; for any k\K: ð35Þ

Comparing Eqs. (34) and (35), we find

N K�kþ1½K� ¼ Mk for all orders 1	 k 	K: ð36Þ

Notice that we explicitly indicate the tree order K when working with the mean number of

branches N k½K�, and do not do that for Sk and Mk. This is because the initial terms of the

increasing sequences Mk and Sk coincide for different values of K, which is not the case for

N k½K� (e.g., M1½4� ¼ M1½5� but N 1½4� 6¼ N 1½5�).
Let ‘k denote the mean length of an edge of order k. Then the mean length Lk of an order k

branch equals Lk ¼ Sk‘k. By the differential contributing area (as is opposed to the total
contributing area) of an edge we understand the area that drains directly to the edge (not via its

upstream vertex). Assume that the mean differential contributing area of an edge of order k
equals ak. Then, for the total mean contributing area AK of a tree of order K � 1, we have

AK ¼
XK

k¼1

akSkN k½K�; ð37Þ

where SkN k½K� is the number of edges of order k in a tree of order K.

Another important product that appears in (37) is dk ¼ akSk, which is the mean dif-

ferential contributing area of a branch of order k. The total contributing area Ak can be

expressed recursively by noticing that A1 ¼ a1 and

Ak ¼ 2Ak�1 þ akSk þ
Xk�1

i¼1

Ai Tk�i for k� 2: ð38Þ

7 Horton’s Laws in a Self-Similar Tree

This section establishes the main theoretical result of our work: geometric Horton’s laws

for the mean branch numbers N k½K� and mean magnitudes Mk in a self-similar tree

(Sect. 7.1). Next, we show (Sect. 7.2) how Horton’s laws for other mean attributes follow

from these ones under additional assumptions.

7.1 Geometric Horton’s Law for Mean Branch Numbers and Magnitudes

Consider a Tokunaga sequence Tk and its generating function TðzÞ ¼
P1

k¼1 Tk zk. If we let

t1 ¼ T1 þ 2, and tk ¼ Tk for k � 2, then tk takes into account the side branching and

principal branching. Let

t̂ðzÞ ¼ �1 þ
X1

k¼1

tk zk ¼ �1 þ 2z þ TðzÞ:

123

Surveys in Geophysics



Observe that t̂ð0Þ ¼ �1, and since Tk � 0 we have t̂ð1=2Þ ¼ Tð1=2Þ� 0. Furthermore,

since

d

dz
t̂ðzÞ ¼ 2 þ

X1

k¼1

kTk zk�1 [ 0

for all positive real values of z, the equation t̂ðzÞ ¼ 0 has a unique real root w0 of multi-

plicity one in the interval (0, 1/2]. Let rT be the radius of convergence for T(z) and define

RT ¼ r�1
T . We notice that rT [w0. The following result of Kovchegov and Zaliapin (2016)

ensures that w0 is the root of t̂ðzÞ closest to the origin; this fact will be used below.

Lemma 1 Suppose lim sup
k!1

T
1=k
k \1 and let w0 be the only real root of t̂ðzÞ in the interval

(0, 1/2]. Then, for any other root w 2 C of t̂ðzÞ, we have jwj[w0.

The generating function for the magnitudes Mk is obtained by multiplying both sides in

(34) by zk and summing over all k � 1:

MðzÞ ¼
X1

k¼1

Mk zk ¼ z þ 2zMðzÞ þ MðzÞ TðzÞ:

Thus,

MðzÞ ¼ z

1 � 2z � TðzÞ ¼ � z

t̂ðzÞ : ð39Þ

The function M(z) is analytic with the exception of zeroes and singularities of t̂ðzÞ.
Lemma 1 asserts that w0 2 ð0; 1=2� is the closest to the origin root of t̂ðzÞ; recall that it has

multiplicity one. Hence, w0 is a simple pole of M(z) and the only singularity of M(z) within

a disk jzj\w0 þ � for a small enough �[ 0. Consequently, the radius of convergence for

M(z) is rM ¼ w0. We define RM ¼ r�1
M . Proposition 1 implies that the geometric Horton’s

law holds for Mk. We formulate this result in the following theorem.

Theorem 1 (Geometric Horton’s Law for Mean Branch Magnitudes) Suppose that rT [ 0,

that is lim sup
k!1

T
1=k
k \1. Then, the geometric Horton’s law for mean branch magnitudes

Mk holds with Horton exponent RM ¼ 1=w0, where w0 is the only real root of the function

t̂ðzÞ ¼ �1 þ 2z þ
P1

j¼1

zjTj in the interval 0; 1
2

� �
. Specifically, the geometric Horton’s law

states that

lim
k!1

Mk R�k
M

� �
¼ M\1; ð40Þ

where M is a positive real constant given by

M ¼ � 1

w0

lim
z!w0

zðz � w0Þ
t̂ðzÞ : ð41Þ

The geometric Horton’s law implies the quotient Horton’s law
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lim
k!1

Mkþ1

Mk
¼ RM : ð42Þ

Recalling (36), we notice that N 1½K� ¼ MK and hence obtain the asymptotic behavior for

N k½K�.

Corollary 1 (Geometric Horton’s Law for Mean Branch Numbers) Under the assumption
of Theorem 1, the geometric Horton’s law holds for the mean branch numbers N k½K� with
Horton exponent RB ¼ RM ¼ 1=w0. Specifically, the geometric Horton’s law states that

lim
K!1

N 1½K�R�K
B

� �
¼ M\1; ð43Þ

where M is the same as in Thm. 1. This implies the quotient Horton’s law: For each

positive integer j, we have

lim
K!1

N j½K�
N jþ1½K� ¼ RB or lim

K!1

N j½K�
N 1½K� ¼ R1�j

B : ð44Þ

Informally, Theorem 1 and Corollary 1 ensure that the geometric Horton’s laws for mean

branch magnitudes and mean branch counts hold with the same Horton exponent in ‘‘any’’

self-similar tree, that is in any coordinated tree with a well-defined Tokunaga sequence Tk.

The assumption of nonzero radius of convergence in T(z) eliminates obscure cases of

super-exponential growth of Tk, such as Tk ¼ k! or Tk ¼ kk.

7.2 Horton’s Laws for Other Mean Branch Attributes

Horton’s laws for other mean branch attributes are obtained by examining the generating

functions for the respective sequences and using the properties of the series Tk, ‘k, and ak.

The most general results that examine each type of the Horton’s law (root, quotient, and

geometric) under the assumption lim sup
k!1

T
1=k
k \1 are formulated in Appendix C. This

section illustrates a particular case of the quotient Horton’s law (Q) for selected branch

attributes under the following more stringent yet practically appealing assumption.

Informally, it suggests that sequences Tk, ‘k and ak behave ‘‘nicely.’’

Assumption 1 (Quotient Horton’s law for Tk, ‘k, ak) Assume that the quotient Horton’s

law holds for Tk, ‘k and ak:

lim
k!1

¼ Tk

Tkþ1

¼ c�1 [ 0; lim
k!1

¼ ‘k

‘kþ1

¼ k�1 [ 0;

and lim
k!1

¼ ak

akþ1

¼ a�1 [ 0:
ð45Þ

123

Surveys in Geophysics



Assumption 1 is satisfied for a multitude of natural choices for Tk, ‘k, and ak, including

inverse polynomial, constant, polynomial, and geometric series. The inequality rT [w0

implies that c�1 [w0.

The asymptotic behavior for the mean total contributing areas Ak follows from that for

Mk. First, we write the generating function for Ak via (38):

AðzÞ ¼
X1

k¼1

Akzk ¼ 2zAðzÞ þ
X1

k¼1

akSkzk þ AðzÞTðzÞ;

which yields, by (39),

AðzÞ ¼

P1

k¼1

akSkzk

1 � 2z � TðzÞ ¼ MðzÞ
X1

k¼1

akSkzk�1

 !

¼ �DðzÞ
t̂ðzÞ :

ð46Þ

Here D(z) is the generating function for the differential contributing areas dk ¼ ak Sk of

branches of order k. The radius of convergence of D(z) and the asymptotic behavior of dk

can be examined using Propositions 5,8 where ‘k need to be replaced with ak.

Equation (46) implies the following convolution expression for Ak (Wilf 1992):

Ak ¼
Xk

i¼1

akþ1�iSkþ1�iMi: ð47Þ

Observe that comparing equations (47) and (37) we arrive at N K�kþ1½K� ¼ Mk that was

first established in Eq. (36). We denote by rA and rD the radii of convergence of A(z) and

D(z), respectively, and let RA ¼ r�1
A , RD ¼ r�1

D .

Proposition 3 (Quotient Horton’s law for Ak) Suppose that Assumption 1 holds. Then

rA ¼ min rM; rDf g ¼ min rM; a
�1 minf1; rT ¼ c�1g


 �
:

The quotient Horton’s law holds with the Horton exponent

RA ¼ max RM; RDf g ¼ max w�1
0 ; amaxf1; cg


 �
;

that is

lim
k!1

Akþ1

Ak
¼ RA: ð48Þ

We next examine the mean number Sk of edges within a branch of order k. The most

straightforward practical way to obtain the asymptotic of Sk is via direct application of

(33). The generating function approach clarifies the origin of the respective Horton’s laws.

Multiplying both sides in (33) by zk and summing over k ¼ 1; 2; . . ., we obtain the gen-

erating function S(z) of Sk:

SðzÞ ¼
X1

k¼1

Sk zk ¼
X1

k¼1

zk þ
X1

k¼1

Xk�1

i¼1

Ti

 !

zk ¼ z ðTðzÞ þ 1Þ
1 � z

: ð49Þ
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The function S(z) may become singular because of a singularity of T(z) or the vanishing

denominator ð1 � zÞ. The singularity of S(z) closest to the origin is the smallest of z ¼ 1

and the (only) singularity of T(z). Let rT , rS denote the radiuses of convergence for the

series T(z) and S(z), respectively, and define RT ¼ r�1
T , RS ¼ r�1

S .

Proposition 4 (Quotient Horton’s law for Sk) Suppose that Assumption 1 holds. Then

rS ¼ minf1; rT ¼ c�1g and the quotient Horton’s law holds with the Horton exponent
RS ¼ maxf1; cg� 1:

lim
k!1

Skþ1

Sk
¼ RS: ð50Þ

Next, consider the generating function of Lk denoted by L(z):

LðzÞ ¼
X1

k¼1

Lkzk ¼
X1

k¼1

Sk‘kzk:

Let rL denotes the radius of convergence for the series L(z), and define RL ¼ r�1
L .

Proposition 5 (Quotient Horton’s law for Lk) Suppose that Assumption 1 holds. Then

rL ¼ k�1 minf1; rT ¼ c�1g and the quotient Horton’s law holds with the Horton exponent
RL ¼ kmaxf1; cg:

lim
k!1

Lkþ1

Lk
¼ RL: ð51Þ

7.3 Quotient Horton’s Laws in a River Basin

Here we use the results of Sect. 7.2 to formulate Horton’s laws for branch attributes taking

into account empirical constraints established for the observed river basins.

Observational studies suggest that the link lengths distribution in real rivers is inde-

pendent of the position of the link within a basin (Tarboton et al. 1989; Rodriguez-Iturbe

and Rinaldo 2001). This corresponds to the assumption that the edge lengths are i.i.d.

random variables with the same mean. We substantially relax this constraint in the fol-

lowing assumption.

Assumption 2 (Unit Quotient Horton’s law for ‘k) Assume that the quotient Horton’s law

with exponent of unity holds for the mean edge lengths ‘k:

lim
k!1

‘k

‘kþ1

¼ 1: ð52Þ

Assumption 2 is trivially satisfied in the case of independent and identically distributed

(i.i.d.) edge lengths, where ‘k ¼ ‘kþ1 for all k. It also allows much wider variability of the
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edge lengths, including, for example, different length distribution for different orders and

polynomial variation of the means ‘k � kConst:.

Assumption 2 strongly supports the existence of the unit quotient Horton’s law for the

mean differential contributing areas ak of edges. Specifically, let nk and mk be random

variables that represent, respectively, the length and differential contributing area of a

randomly selected edge of order k. We have E½nk� ¼ ‘k and E½mk� ¼ ak. Suppose there exist

scalars b[ 0 and r[ 0 such that

mk ¼ b nrk ð53Þ

with r and b being the same for all orders k � 1. Suppose, furthermore, that the random

variables nk scale with order, that is

nk

‘k
¼d n1

‘1

; ð54Þ

where ¼d denotes equality of distributions. This gives, in particular,

nkþ1¼
d ‘kþ1

‘k
nk: ð55Þ

Then

akþ1 ¼ E½mkþ1� ¼ E½bnrkþ1� ¼ E b
‘kþ1

‘k

� �r

nrk

� 

¼ ‘kþ1

‘k

� �r

ak; ð56Þ

which implies

lim
k!1

ak

akþ1

¼ lim
k!1

‘k

‘kþ1

� �r

¼ 1: ð57Þ

The asymptotic of ak without the scaling assumption (55) is examined in Appendix C.

Example 1 (Exponential edge lengths) Suppose that the random edge length nk is an

exponential random variable with parameter 1=‘k so that E½nk� ¼ ‘k. The scaling

assumption (55) is satisfied and the expected differential contributing area mk of an order k
edge is given by

ak ¼ bE½nrk � ¼ b

Z1

0

1

‘k
xre�x=‘k dx ¼ bCðrþ 1Þ‘rk :

Accordingly, the relation (57) holds.

The relation (53) between edge length and differential contributing area and the scaling

assumption (55) are sufficient but not necessary to obtain the quotient Horton’s law for ak

under Assumption 2. To make our results applicable to a range of specific situations, where

these assumptions may or may not hold, we make the following general assumption.

Assumption 3 (Unit Quotient Horton’s law for ‘k, ak) Assume that the quotient Horton’s

law holds for Tk and the quotient Horton’s law with exponent of 1 holds for the mean edge

lengths ‘k and mean differential edge contributing areas ak:
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lim
k!1

Tk

Tkþ1

¼ c�1 [ 0; lim
k!1

‘k

‘kþ1

¼ lim
k!1

ak

akþ1

¼ 1: ð58Þ

Proposition 6 (Quotient Horton’s laws in a River Basin) Suppose that Assumption 3
holds. Then the radii of convergence for the branch attributes are related as

w0 ¼ rM ¼ rA\rL ¼ rS ¼ c�1;

and, accordingly,

c ¼ RL ¼ RS\RB ¼ RM ¼ RA ¼ w�1
0 :

In particular, the following quotient Horton’s laws hold

lim
K!1

N j½K�
N jþ1½K� ¼ lim

k!1

Mkþ1

Mk
¼ lim

k!1

Akþ1

Ak
¼ RB ¼ w�1

0 [ 1; ð59Þ

lim
k!1

Lkþ1

Lk
¼ lim

k!1

Skþ1

Sk
¼ RL ¼ c: ð60Þ

Proof Observe that Assumption 1 is satisfied with k ¼ a ¼ 1, recall that w0\c�1, and

apply Theorem 1, Corollary 1, and Propositions 3,4,5. In particular,

rA ¼ min rM ; rDf g ¼ min w0; minf1; rT ¼ c�1g

 �

¼ w0;

rL ¼ minf1; c�1g[w0; rS ¼ minf1; c�1g[w0:

h

Finally, we observe that the total length Ltot
K of a tree of order K is treated similarly to the

contributing area AK , with ak replaced by ‘k in definition (37). This means that under the

hydrology-motivated Assumption 3 of this section, the sequence Ltot
K has the same Horton’s

law as AK .

8 Self-Similar Hierarchical Branching Processes (HBP)

A flexible model that generates trees with arbitrary Tokunaga sequences Tk has been

introduced and discussed by Kovchegov and Zaliapin (2018, 2020) and Kovchegov et al.

(2021); it is called hierarchical branching processes (HBPs). Here we describe a self-

similar version of the HBP.

Definition 1 (Self-similar Hierarchical Branching Process) We say that S(t) is a self-

similar hierarchical branching process with a Tokunaga sequence fTkg, and parameters

p 2 ð0; 1Þ, c[ 0 and f[ 0 if S(t) is a multi-type branching process that develops in

continuous time t[ 0 according to the following rules:
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(i) The process S(t) starts at t ¼ 0 with a single progenitor (root branch) whose

Horton–Strahler order (type) is K � 1 with probability pK ¼ pð1 � pÞK�1
.

(ii) Every branch of order j	K produces offspring (side branches) of every order i\j

with rate c f1�jTj�i.

(iii) A branch of order j terminates with rate c f1�j.

(iv) At its termination time, a branch of order j� 2 splits into two independent

branches of order j � 1.

(v) A branch of order j ¼ 1 terminates without leaving offspring.

(vi) Generation of side branches and termination of distinct branches are independent.

8.1 Properties of Self-Similar HBP Trees

The trajectories of the HBP are random trees from the space L of binary trees with edge

lengths. A random tree generated by an HBP is called an HBP tree. Each process parameter

completely specifies a particular attribute of a random HBP tree: the Tokunaga sequence Tk

specifies the combinatorial structure of a tree of a given order; the probability p specifies

the frequencies of trees of different orders; the constant f specifies the ratio of the mean

lengths of branches of consecutive orders; and the rate c specifies a unit of measurement

for the tree edges. It has been shown by Kovchegov and Zaliapin (2018) that a random

HBP tree T has the following properties:

Self-similarity: T is a self-similar tree with the Tokunaga sequence Tk and scaling

constant f. This means that the distribution of T is invariant with respect to the Horton

pruning as in (22), and the edge lengths of the random tree scale by f�1 after each Horton

pruning.

Side branching: The number N½b� � 0 of side branches within a branch b of order K has

geometric distribution

PðN½b� ¼ kÞ ¼ qð1 � qÞk; with q ¼ S�1
K ; ð61Þ

where SK is defined in (33). This implies, in particular, E½N½b�� ¼ SK � 1.

Side branch orders: Let Ni½b� � 0 be the number of side branches of order i within branch

b. Conditioned on the total number N[b] of side branches, the distribution of vector

ðN1½b�; . . .;NK�1½b�Þ is multinomial with N[b] trials and success probabilities

Pðside branch has order iÞ ¼ TK�i

SK � 1
: ð62Þ

Branch and edge lengths: The length of an order K branch has exponential distribution

with rate cf1�K . The corresponding edge lengths nK are i.i.d. exponential random

variables with rate

cf1�KSK : ð63Þ

Accordingly,

E½nkþ1�
E½nk�

¼ ‘kþ1

‘k
¼ f

Sk

Skþ1

: ð64Þ
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This means that the quotient Horton’s law holds for Sk if and only if the quotient

Horton’s law holds for ‘k, and in this case RS ¼ fk�1: The same equivalence holds for

the root and geometric Horton’s laws.

Geometric Horton’s law for branch lengths: Definition 1(iii) implies the geometric

Horton’s law for the branch lengths Lk with RL ¼ f. In fact, here we have a stronger

statement that holds for any k � 1 (not only in the limit of large k):

LkR�k
L ¼ fk�1

c
f�k ¼ 1

fc
: ð65Þ

It follows, in particular, that

Lkþ1

Lk
¼ f foranyk � 1:

Distribution of subtrees: Consider a random HBP tree T and fix K such that K [ 1 and K
is less than or equal to the order of T. Select a uniform random vertex v 2 T of order K,

and consider two planted trees Ta and Tb descendant to v in T that have v as their root.

Informally, we consider the pair of sibling trees at a random vertex of order K. It has

been shown by (Kovchegov and Zaliapin 2020, Lem. 16) that the joint distribution of the

ordered statistics ðK1;K2Þ of the orders ðKa;KbÞ of these trees is given by

P K1 ¼ j;K2 ¼ mjKð Þ ¼
S�1

K if j ¼ m ¼ K � 1;

TK�jS
�1
K if j\m ¼ K:

(

ð66Þ

Moreover, the trees Ta and Tb are also HBP trees with the same parameters ðc; fÞ as

T and orders given by (66). This result is essential for a fast recursive construction of

T described in Sect. 8.2.

Independence of branches: Distinct branches have independent structure.

8.2 Simulation of Self-Similar HBP Trees

This section describes three algorithms for constructing HBP trees that do not involve

time-dependent simulations. Each algorithm constructs a tree of a given order K. To

construct a random HBP tree, one first generates a random order K � 1 according to pK of

Definition 1(i) and then constructs a tree of order K using either of the algorithms.

Examples of HBP trees are shown in Fig. 4.

8.2.1 Algorithm A: Recursion by Tree Depth

This is the most straightforward algorithm that relays on the property (66) of subtree

distributions described above in Sect. 8. The tree is constructed recursively, starting from

the root and adding two principal subtrees at every recursion step.

Formally, a tree of order K ¼ 1 consists of two vertices (root and leaf) connected by an

edge of exponential length with rate c. To construct a tree of a given order K � 2 we first

use (66) to obtain the orders of its two principal subtrees Ta and Tb rooted at the stem

vertex farthest from the root. The stem edge has exponential length with parameter

cf1�KSK . To this stem we attach two trees, each of which is generated using the same

approach via recursion.
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Observe that the main branch of order K consists of a finite number of edges with

probability one, meaning that after a finite number of recursion steps the two principal trees

Ta and Tb will both have order K � 1. Extending this argument to consequently smaller

orders we find that this recursive procedure does stop at a finite number of steps.

The algorithm is linear with respect to the tree size N (number of tree vertices)—it takes

O(N) time units to generate a tree of size N, or, equivalently, OðRK
B Þ time units to generate

a tree of order K. Figure 8 illustrates the relations among the tree size N, order K, and

generation timing t in seconds for the critical Tokunaga trees with c ¼ 2 and orders

2	K 	 10. This corresponds to sizes between N ¼ 4 and N ¼ 1 266 454. We generated

100 trees of each order. The time to create the largest trees using a 3.5 GHz desktop is

about 100 sec.

For example, a tree of order K ¼ 8 has theoretical mean size 2N 1½8� ¼ 21; 846

according to (73). In our simulations the mean size of order-8 trees is �N ¼ 21 445, and the

mean running time is �t ¼ 0:78 sec.

It is clear from the algorithm description that the running time only depends on the

Tokunaga sequence Tk and order K via the tree size, and is independent of the parameters c
and f.

8.2.2 Algorithm B: Recursion by Tree Order

This algorithm is given in Kovchegov and Zaliapin (2020). It uses a recursion by tree

order—we start with a perfect binary tree of order K and add its side branches of smaller

orders.

Formally, a tree of order K ¼ 1 consists of two vertices (root and leaf) connected by an

edge of exponential length with rate c. Assume now that we know how to construct a

random tree of any order below K � 2. To construct a tree of order K, we start with a

perfect (combinatorial) planted binary tree of depth K, which we call skeleton. The

combinatorial shapes of such trees is illustrated in Fig. 7. All leaves in the skeleton have

the same depth K, and all vertices at depth j such that 1	 j	K have the same Horton–

Strahler order K � jþ 1. The root (at depth 0) has order K. Next, we assign lengths to the

branches of the skeleton. Observe that each branch in a perfect tree consists of a single

edge. To assign length to a branch b of order j, with 1	 j	K, we generate a geometric

number N[b] according to (61) with parameter q ¼ S�1
j and then N½b� þ 1 i.i.d. exponential

lengths nj;i, i ¼ 1; . . .;N½b� þ 1, with the common rate cf1�jSj according to (63). The total

length of the branch b is nj;1 þ . . .þ nj;N½b�þ1. The branch b has N[b] side branches that are

attached along b with spacings nj;i, starting from the branch point closest to the root. The

K = 4 K = 3 K = 2 K = 1

Fig. 7 Examples of perfect planted binary trees of orders K ¼ 1; . . .; 4:
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order assignment for the side branches is done according to (62). We generate side

branches (each has order below K) independently and attach them to the branch b. This

completes the construction of a random tree of order K.

8.2.3 Algorithm C: Random Attachment Model

Here we construct a Markov tree process f!KgK¼1;2;... corresponding to the HBP S(t)

following (Kovchegov and Zaliapin 2020, Sect. 7.6). Each tree !K is distributed as a tree

generated by the self-similar HBP with Tokunaga sequence fTkg and parameters ðc; fÞ,
conditioned on its Horton–Strahler order being equal to K, and with its edge lengths scaled

by f1�K . This scaling is needed to ensure that !K � !Kþ1, when we consider each tree as a

metric space of points connected by paths along the tree edges (Kovchegov and Zaliapin

2020, Sect. 2.2). Accordingly, there exists the limit space, which informally can be con-

sidered an ‘‘infinite tree’’:

!1 ¼ lim
K!1

!K ¼
[1

K¼1

!K :

Section 10 uses this construction to find the fractal dimension of !1.

Let !1 be an I-shaped tree of Horton–Strahler order one, with the edge length dis-

tributed as an exponential random variable with parameter c. Conditioned on !K , the tree

!Kþ1 is constructed according to the following transition rules. We attach new leaf edges

to !K at the points sampled by an inhomogeneous Poisson point process with the intensity

qj;K ¼ cfK�jTj along the edges of order j	K in !K . We also attach a pair of new leaf

edges to each of the leaves in !K . The lengths of all the newly attached leaf edges are i.i.d.

exponential random variables with parameter cfK that are independent of the combinatorial

shape and the edge lengths in !K . Finally, we let the tree !Kþ1 consist of !K and all the

attached leaves and leaf edges.

By construction, a branch of order j in !K becomes a branch of order j þ 1 in !Kþ1 after

the attachment of new leave edges. The length of order j branch in !K (and therefore, the

length of order j þ 1 branch in !Kþ1) is exponential random variable with parameter cfK�j.

Therefore, in a tree !Kþ1, the number n1;jþ1ðK þ 1Þ of side branches of order one in a

branch of order j þ 1 has geometric distribution:

P
�
n1;jþ1ðK þ 1Þ ¼ r

�
¼ cfK�j

cfK�j þ qj;K

qj;K

cfK�j þ qj;K

 !r

¼ 1

1 þ Tj

Tj

1 þ Tj

� �r

; r ¼ 0; 1; 2; . . .

ð67Þ

with the mean value

E
�
n1;jþ1ðK þ 1Þ

�
¼

qj;K

cfK�j ¼ Tj:

Therefore, after i� 1 rounds of attachments the mean number ni;jþiðMÞ of side branches of

order i in a branch of order j þ i in a tree !M (where M ¼ K þ i and K � j) is

E
�
ni;jþiðMÞ

�
¼ Tj:

123

Surveys in Geophysics



8.2.4 Comparison of the Algorithms

The Algorithms A and B are best suited for numerical simulations of HBP trees, while the

Random Attachment Model of Algorithm C has mainly a theoretical value. The Algorithm

A (Sect. 8.2.1) is slightly simpler than the Algorithm B (Sect. 8.2.2), as it only involves

generating a single edge length and merging two trees. However, the recursion by tree

depth used in Algorithm A could make it computationally prohibitive. Heuristically, the

expected value of the tree depth depthðTÞ can be approximated by the sum of combina-

torial lengths (number of edges) of all orders:

E½depthðTÞ� �
XK

k¼1

Sk �Const:� cK as K ! 1:

The expression ak � bk as k ! 1 means that lim
k!1

ak=bk ¼ 1. This gives a coarse estimate

on the recursion depth that is required to successfully use Algorithm A in generating large

trees. For example, a critical binary Galton–Watson tree corresponds to c ¼ 2. Hence, the

depth of a tree of order K ¼ 10 is about 210 ¼ 1 024. The mean size of such a tree is

349 525. All simulations in this work have been done using Algorithm A.

9 Critical Tokunaga Tree: A Model for River Networks

Recall that the analysis of the observed river networks suggests that the distribution of edge

lengths is independent of their position within a tree (see Sect. 7.3). Formally, this cor-

responds to the assumption that the edge lengths nk are i.i.d. random variables. For the

HBP model, this assumption is satisfied only for a particular one-parameter class of trees,

called critical Tokunaga process, that we describe in this section. The critical Tokunaga

trees enjoy many additional symmetries as discussed by Kovchegov and Zaliapin

(2018, 2019, 2020). The class is sufficiently broad and includes the critical binary Galton–

Watson process with exponential edge lengths as a special case. Table 2 summarizes the

main findings for the critical Tokunaga process and lists the values of its essential expo-

nents fit to the observed river networks. Several examples of critical Tokunaga trees are

shown in Fig. 4.

Definition 2 (Critical Tokunaga process) For given c[ 0 and c� 1, we say that a self-

similar hierarchical branching process S(t) is a critical Tokunaga process with parameters

(c, c) if

p ¼ 1

2
; f ¼ c; and Tk ¼ ðc � 1Þ ck�1: ð68Þ

Similarly to the general HBP, we call a random tree generated by the critical Tokunaga

process a critical Tokunaga tree. The parameter c completely determines the combinatorial

structure of a random critical Tokunaga tree of a given order and scaling of the mean

branch lengths. The rate c specifies a unit of measurement.

It has been shown by (Kovchegov and Zaliapin 2020, Thm. 14) that the critical

Tokunaga process has the unit mean progeny, which explains the name critical, as in

critical Galton–Watson process. These authors also have shown (Kovchegov and Zaliapin
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2020, Thm. 15) that the critical Tokunaga process with parameters (c, c ¼ 2) is equivalent

to the critical binary Galton–Watson process with edge lengths distributed as independent

exponential random variables with rate c. One can also observe that c ¼ 1 corresponds to

Tk ¼ 0, which results in a perfect binary tree (no side branching).

9.1 Horton’s Laws for Mean Attributes

According to Def. 2, the distribution of orders in the critical Tokunaga process is

pK ¼ 2�K . The mean number of edges within a branch of order K is

Sk ¼ 1 þ T1 þ . . .þ Tk�1 ¼ ck�1. The edge lengths are i.i.d. exponential variables with

common rate c. Accordingly, ‘k ¼ c�1 and Lk ¼ c�1Sk ¼ c�1ck�1. While the HBP does not

have formally defined areas, the discussion in Sect. 7.3 and Example 1 suggest that one

can set ak ¼ bCðrþ 1Þc�r for some b[ 0 and r[ 0.

The generating function t̂ðzÞ is given by

t̂ðzÞ ¼ �1 þ 2z þ
X1

k¼1

ðc � 1Þck�1zk ¼ ð1 � 2czÞðz � 1Þ
1 � cz

: ð69Þ

The real root of t̂ðzÞ nearest to the origin is w0 ¼ ð2cÞ�1
. Assumption 3 trivially holds, and

Proposition 6 implies the existence of the quotient Horton’s laws for N k½K�, Mk, Ak, Lk,

and Sk, with Horton exponents

c ¼ RL ¼ RS\RM ¼ RN ¼ RA ¼ 2c: ð70Þ

Stronger results are readily obtained by examining the generating functions.

The generating function for the mean branch magnitudes Mk is

MðzÞ ¼ � z

t̂ðzÞ ¼ � zð1 � czÞ
ð1 � 2czÞðz � 1Þ ; ð71Þ

and by Theorem 1

N K�kþ1½K� ¼ Mk ¼
ð2cÞk

4c � 2
þ o ð2cÞk
� �

: ð72Þ

An exact expression has been obtained using more powerful martingale techniques by

Kovchegov and Zaliapin (2020), Eq. (133) of Cor. 4:

N K�kþ1½K� ¼ Mk ¼
ð2cÞk þ 2c � 2

4c � 2
: ð73Þ

The generating function D(z) for the mean differential contributing areas is

DðzÞ ¼
X1

k¼1

akSkzk ¼ d0

X1

k¼1

ck�1zk ¼ d0z

1 � cz
; ð74Þ

with d0 ¼ bCðrþ 1Þc�r. This leads to

AðzÞ ¼ �DðzÞ
t̂ðzÞ ¼ � d0z

ð1 � 2czÞðz � 1Þ : ð75Þ

Proposition 1 gives the asymptotic form of Ak:
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Ak ¼
d0ð2cÞk

2c � 1
þ o ð2cÞk
� �

: ð76Þ

Fig. 8 Time t (in seconds) taken to generate HBP trees using the recursive Algorithm A of Sec. 8.2.1. The
time t is shown as a function of tree size (number of vertices) N. Color represents the tree order K (see
colorbar). This experiment corresponds to the critical Tokunaga process with c ¼ 1 and c ¼ 2, which is
equivalent to critical binary Galton–Watson tree with exponential edge lengths. We generated 100 trees of
each order 2	K 	 10. The computations were performed in Matlab on an Apple Desktop 3.5 GHz 6-Core
Intel Xeon E5 with 32GB memory

Fig. 9 Relation between vertex contributing area AðiÞ and vertex magnitude MðiÞ in a critical Tokunaga tree

with c ¼ 2:5 of order K ¼ 10. a AðiÞ as a function of MðiÞ. The theoretical asymptotic relation (77), A ¼ 4M,

is shown by black line. Colorcode corresponds to vertex order (see colorbar). The vertical axis is trimmed at

10�2, although the minimal area is 3 � 10�13. b Multiplicative error AðiÞ=ð4MðiÞÞ of the asymptotic

approximation: unity corresponds to a perfect fit. The horizontal coordinates are given with a uniform jitter.
Colorcode is the same as in panel (a), it duplicates the horizontal coordinate
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According to this discussion, the geometric Horton’s law (not only the quotient Horton’s

law) holds for N k½K�, Mk and Ak.

Comparing (72) and (76) we find

Ak � 2d0Mk as k ! 1: ð77Þ

Figure 9(a) shows the relation among the contributing areas and magnitudes of vertices in

a critical Tokunaga tree with c ¼ 2:5 of order K ¼ 10. This tree has 2 440 508 vertices. The

asymptotic relation (77), which becomes in this case A ¼ 4M, is closely followed for the

high-order vertices, K � 6. At the same time, the low-order vertices may show pre-

asymptotic behavior that results in substantial deviations from the asymptotic approxi-

mation A ¼ 4M. Panel (b) shows the multiplicative error A/(4M) as a function of the vertex

order. One notices extreme errors, up to several orders of magnitude, for the orders below

K ¼ 5. This experiment shows that the conventional approximation A / M has a sub-

stantial error at low orders and may be misleading.

Fig. 10 Horton’s laws in critical Tokunaga trees (Sect. 9). The figure illustrates three cases: a perfect binary
tree, c ¼ 1 (blue circles); a critical binary Galton–Watson tree, c ¼ 2 (red squares); and c ¼ 3 (green
triangles). Symbols correspond to the average attributes estimated in a single realization of a tree. Lines
correspond to theoretical predictions (see below). a Branch counts Nk½T �. Lines start at N1½T � and have the
theoretical slopes � log10ð2cÞ of (72). b Average branch magnitudes Mk . Lines show the theoretical means
of (73). c Average contributing areas Ak . Lines show the theoretical means of (76). d Average number of
edges Sk . Lines show the theoretical means of (33)
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Figure 10 illustrates Horton’s laws for Nk½T �, Mk, Ak, and Sk in three critical Tokunaga

trees or order K ¼ 9 with c ¼ 1. We consider the perfect binary tree (c ¼ 1, blue circles), a

critical binary Galton–Watson tree (c ¼ 2, red squares), and a tree with c ¼ 3 (green

triangles). Panel (a) illustrates Horton’s law for the branch counts Nk½T �. Here the fitting

lines start at N1½T � and have a constant slope of � log10ð2cÞ suggested by (78). We notice a

very close fit for all examined orders.

Panel (b) refers to Horton’s law for the average magnitudes Mk. The fitting lines are

taken from (73)—the fit is ideal for the deterministic perfect binary tree (blue) and is very

close for the two random trees (red and green). The only visible deviations from the

theoretical quantities are observed for the high-order branches (K [ 6) that correspond to

small-sample averaging. For instance, recall from panel (a) that we only have an average of

3 branches of order K ¼ 8 and 11 branches of order K ¼ 7 in a critical binary Galton–

Watson tree (red squares).

Panel (c) illustrates Horton’s law for the average contributing areas Ak. We assume here

that the differential contributing areas mk of edges are determined by the edge lengths nk via

mk ¼ nrk with r ¼ 2 and the contributing area of a branch is the sum of the differential

contributing areas of all its descendant edges; see Sect. 7.3 for a discussion and examples of

this approach. The fitting lines here correspond to the asymptotic expression (76) with

d0 ¼ c�rCðrþ 1Þ ¼ Cð3Þ ¼ 2. We expect them to fit the observed values for the interme-

diate range of orders—when the asymptotic approximation already works yet the sample size

(number of branches of a given order) is still large enough. In random trees (red and green),

the fitting lines provide almost perfect fit to the data for orders 2	K 	 6 and show very small

deviations at the higher orders. For the perfect binary tree (with random edge lengths and

areas), where c ¼ 1, the best fit is for the largest orders K [ 5. The discrepancy at the low

orders K\4 is related to the fact that the asymptotic expression (76) suggests

A1 � 2d0c=ð2c � 1Þ ¼ 4, while the actual mean here (for any c) is A1 ¼ E½n2� ¼ 2, with n
being an exponential random variable with rate c ¼ 1. In general, observe that

A1 � d0

2c

2c � 1
! d0; as c ! 1;

so the asymptotic expression (76) does provide a good fit to the data at low orders for large

enough c, which we do observe for c ¼ 2; 3 (red and green).

Panel (d) refers to Horton’s law for the average number of edges Sk. The fitting lines

show the theoretical values Sk ¼ 1 þ T1 þ . . .þ Tk�1. It follows from the properties of the

HBP model that this is merely an exercise in sampling from the geometric distribution. The

fit quality depends on the sample size and is very good for orders K\7. The deviations at

higher orders are due to small sample size. The perfect binary tree (c ¼ 1, blue) has all

branches consisting of a single edge.

The condition Ti;iþk ¼ Tk ¼ a ck�1, which is slightly more general than that of (68), was

first introduced in hydrology by Eiji Tokunaga (1978) in a study of river networks, hence

the process name. In the present work, the constraint a ¼ c � 1 is necessitated by the

equality of the mean edge lengths, which requires the sequence kj to be geometric. The

sequence of the Tokunaga coefficients then also has to be geometric, and satisfy a ¼ c � 1.

Interestingly, the constraint a ¼ c � 1 appears in the random self-similar network (RSN)

model introduced by Veitzer and Gupta (2000), which uses a purely topological algorithm

of recursive local replacement of the network generators to construct random self-similar

trees. Results of Chunikhina (2018a, b) imply that the critical Tokunaga model with c ¼ 2

maximizes the entropy rate among the trees that satisfy the quotient Horton’s law of stream
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numbers, and that the critical Tokunaga model with a fixed c maximizes the entropy rate

among the trees that satisfy the quotient Horton’s law for stream numbers with RB ¼ 2c.

9.2 Limit Laws for Random Branch Numbers

While this review mainly focuses on the mean branch numbers N k½K�, much stronger,

distributional, results are available for the random branch numbers Nk½T � in critical

Tokunaga trees. This section assumes that we consider a critical Tokunaga tree with

parameter c. The results refer to the combinatorial tree structure, and hence hold for an

arbitrary measurement unit c[ 0.

Let DK be a critical Tokunaga tree of order K, then the following Weak Law of Large

Numbers holds (Kovchegov and Zaliapin 2020, Sect. 7.6.3, Cor. 5): for any k� 1 we have

Nk½DK �
Nkþ1½DK �

!p RB ¼ 2c as K ! 1; ð78Þ

where !p denotes convergence in probability. Moreover, using the notations of Sect. 8.2.3

one can establish the following Strong Law of Large Numbers (Kovchegov and Zaliapin

2020, Sect. 7.6.3, Thm. 16): for any k � 1 we have

Nk½!K �
Nkþ1½!K �

�!a:s: RB ¼ 2c as K ! 1; ð79Þ

where �!a:s: denotes convergence with probability one (almost sure convergence). The

difference between these two laws is that (78) considers a sequence of independent trees

DK , while (79) refers to a sequence of trees !K related such that Rð!KÞ ¼ !K�1. The

following distributional geometric Horton’s law also holds (Kovchegov and Zaliapin 2020,

Sect. 7.6.3, Cor. 16):

R1�K
B N1½!K ��!

a:s:
V1ð!1Þ as K ! 1; ð80Þ

where V1ð!1Þ is a finite and positive value that depends on a particular realization of the

Markov process !K . This random value allows different random trees to have very dif-

ferent sizes, while preserving the relative frequencies of branches of different orders.

Specifically, the frequencies of branches of different orders in a tree of order K are

approximated by a geometric distribution:

# branches of order kf g
# branchesf g ¼ ðRB � 1ÞR�k

B ð1 þ oð1ÞÞ ð81Þ

for any k� 1 as K ! 1.

Finally, one can prove the following Central Limit Theorem:

Theorem 2 (CLT for Branch Numbers in Critical Tokunaga Trees) Let DK be a critical
Tokunaga tree of order K [ 0 with parameter c� 1. Then, for every integer k� 1,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1½DK �

p Nkþ1½DK �
Nk½DK �

� 1

2c

� �

!d N
�

0; ðc � 1Þð2cÞk�3
�

as K ! 1; ð82Þ
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where Nðl; r2Þ denotes a Normal distribution with mean l and variance r2, and !d denotes

convergence in distribution.

In a special case of the critical Tokunaga tree with c ¼ 2, which is equivalent to the critical

Galton–Watson process, similar limit results were established by Wang and Waymire

(1991), Yamamoto (2017), and Kovchegov and Zaliapin (2020). These authors considered

a random tree conditioned on the number N1 of leaves and established the conditional

limits of Nkþ1=Nk as N1 ! 1. We notice that, trivially, K ! 1 implies N1 ! 1 since a

binary tree of order K has at least 2K�1 leaves. Hence, the limit results for an increasing

order K follow from those for an increasing tree magnitude N1. Vice versa, it can be shown

that increasing N1 implies an increasing order K. In summary, the above limit laws are

equivalent under both forms of increasing tree size in critical Tokunaga trees. This

equivalence issue will be treated formally elsewhere.

10 Fractal Dimension of Self-Similar HBP Trees

Consider a self-similar HBP S(t) (Def. 1) with a Tokunaga sequence fTkg satisfying

lim supk!1 T
1=k
k \1, and parameters c[ 0 and f[ 1. We use here the Random

Attachment Model representation of the HBP process discussed in Sect. 8.2.3. The self-

similarity of the HBP process (Sect. 8) suggests that the limit space !1 does not change its

statistical properties after rescaling, which corresponds here to the Horton pruning. Let d
denote its fractal dimension. That the limit space includes at least the root branch !1

suggests d� 1. Assume that d[ 1. Then, denoting the mean d-dimensional volume of !1
by vol, we have

vol ¼
X1

k¼1

tk
vol

fdk
: ð83Þ

This equation is obtained by splitting a tree !1 into the subtrees attached to its highest

order branch !1. There is an average of t1 ¼ T1 þ 2 subtrees distributed as !1 scaled by

Fig. 11 Fractal dimension d ¼ maxf1; log RB

log RL
g (panel a) and Hack’s exponent h ¼ d�1 (panel b) of self-

similar HBP tree in the limit of infinite size as a function of the Horton exponents RB and RL. Selected levels
of d and h are shown by marked black lines. Green line corresponds to the critical Tokunaga process of
Sect. 9, for which RB ¼ 2RL. Blue circles depict the pairs ðRB;RLÞ estimated in nine real river basins by
Tarboton et al. (1988), see also (Rodriguez-Iturbe and Rinaldo 2001, Table 2.1)
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f�1. In general, for each k, there will be an average of tk subtrees distributed as !1 scaled

by f�k. Scaling the lengths by f�k in the d-dimensional space results in scaling the volume

by f�dk. The vol term in (83) can be cancelled out, yielding

t̂
�
f�d
�
¼ 0; ð84Þ

and hence, f�d ¼ w0 ¼ R�1
B . Finally, we find:

d ¼ maxf1; d0g; d0 ¼ � log w0

log f
¼ log RB

log f
¼ log RB

log RL
: ð85Þ

This expression has been first obtained for river networks by La Barbera and Rosso

(1989). Figure 11(a) illustrates the fractal dimension of self-similar HBP trees for RB 2
½2; 6� and RL 2 ½1; 3�, which are the ranges suitable for the studies of the observed river

Fig. 12 Fractal dimension d ¼ maxf1; log RB

log c g (panel a) and Hack’s exponent h ¼ d�1 (panel b) in the two-

parameter Tokunaga model of Appendix E with parameters (a, c). Here RB ¼ RBða; cÞ according to (120).
Selected levels of d and h are shown by marked black lines. Green line corresponds to the critical Tokunaga
process of Sect. 9, for which a ¼ c � 1 and RB ¼ 2c. Blue circles depict the pairs (a, c) that correspond to
the values ðRB;RLÞ estimated in nine real river basins by Tarboton et al. (1988), see also (Rodriguez-Iturbe
and Rinaldo 2001, Table 2.1)

Fig. 13 Horton exponent RB and the radius of convergence w0 ¼ R�1
B for M(z) in the two-parameter

Tokunaga model of Appendix E with parameters (a, c). Other notations are the same as in Fig. 12
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networks (Tarboton et al. 1988; Rodriguez-Iturbe and Rinaldo 2001). The figure also

shows the values ðRB;RLÞ estimated for nine river basins by Tarboton et al. (1988). We

notice the tendency of the estimated Horton exponents to cluster around the critical

Tokunaga model for which RB ¼ 2RL (green line). Figure 12(a) illustrates the fractal

dimension for the two-parameter Tokunaga model (Appendix E) with parameters (a, c).

Here d ¼ log RB

log c and RB is given by (120). To add to this plot the values from the observed

river basins, for which the pairs ðRB;RLÞ are known, we use c ¼ RL and find a by solving

(120):

a ¼ RB � c � 2 þ 2c

RB
: ð86Þ

Again, we see a tendency for the real basins to cluster around the critical Tokunaga model

(green line) for which a ¼ c � 1. Figure 13 shows the value of the Horton exponent

RB ¼ RBða; cÞ and its reciprocal value w0 ¼ w0ða; cÞ according to (120).

Recalling that RB � 2 and f[ 1 we find that the dimension d can take any value d� 1.

There exists an infinite collection of self-similar HBPs with a given value of d, since there

are infinitely many ways to select a Tokunaga sequence Tk with a given w0. Recalling (70)

we find the dimension of a critical Tokunaga tree with parameter c[ 1 illustrated in

Fig. 14(a):

d ¼ log 2c

log c
¼ 1 þ logc 2: ð87Þ

For the limit space !1 to be embedded into a plane, one need to ensure that d	 2, which is

equivalent to w0 � f�2 or RB 	 f2, and in the family of critical Tokunaga trees to c� 2.

We also observe that the condition w0 ¼ f�2 corresponds to the space-filling tree with

d ¼ 2 (see Newman et al. 1997) and in the critical Tokunaga family this corresponds to

c ¼ 2 (see Kovchegov and Zaliapin 2018), which is the critical binary Galton–Watson tree.

Fig. 14 Fractal dimension d ¼ log 2c
log c (panel a) and Hack’s exponent h ¼ d�1 (panel b) in the critical

Tokunaga model with parameter c[ 1
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11 Hack’s Law in Self-Similar HBP Trees

One of the fundamental scaling laws of hydrology in the Hack’s law (Hack 1957; Mesa and

Gupta 1987; Rigon et al. 1996; Rodriguez-Iturbe and Rinaldo 2001) that relates the lengths

L of the longest stream in a river basin to the basin contributing area A:

L / Ah; h � 0:6: ð88Þ

If T is the tree representing the stream network, then the length of the longest stream is the

height of the tree T, denoted by heightðTÞ (Pitman 2006; Kovchegov and Zaliapin 2020).

This section establishes the mean Hack’s law in self-similar HBP trees.

Consider a tree T generated by a self-similar HBP with a Tokunaga sequence fTkg
satisfying lim supk!1 T

1=k
k \1, and parameters c[ 0 and f[ 1. Let

Kk ¼ E heightðTÞ
	
	
	ordðTÞ ¼ k

h i
ð89Þ

that represents the mean length of the longest river stream in a basin with the Horton–

Strahler order k. Notice that, since height

�
RðTÞ

�
	 heightðTÞ,

fKk�1 ¼ E height

�
RðTÞ

� 		
	ordðTÞ ¼ k

h i
	E heightðTÞ

	
	
	ordðTÞ ¼ k

h i
¼ Kk: ð90Þ

Hence, since K1 ¼ c�1, we have Kk � c�1fk�1. Next, let

Y1; Y2; . . .; YN1½T �

denote the leaf lengths in the tree T. Then, since

heightðTÞ	 height

�
RðTÞ

�
þ max

j¼1;...;N1½T �
Yj;

we have,

Kk 	E height

�
RðTÞ

� 		
	 ordðTÞ ¼ k

h i
þ E max

j¼1;...;N1½T �
Yj

	
	
	 ordðTÞ ¼ k

� 

¼ fKk�1 þ c�1E
XN1½T �

j¼1

1

j

	
	
	 ordðTÞ ¼ k

" # ð91Þ

	 fKk�1 þ c�1E 1 þ log
�
N1½T �

� 		
	ordðTÞ ¼ k

h i

	 fKk�1 þ c�1 þ c�1 log E
�
N1½T �

	
	ordðTÞ ¼ k

�� � ð92Þ

by Wald’s equation, the Coupon Collector Problem, and finally, the Jensen’s inequality

(Bhattacharya and Waymire 2007). Recall the geometric Horton’s law (43) for the leaf

count in a self-similar process

N 1½k� ¼ Mk ¼ M Rk
B þ o Rk

B

� �
:

Hence, Eqs. (90) and (91) imply

0	Kk � fKk�1 	 c�1k log RB þ b
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for some constant b, and

0	 Kk

Kk�1

� f	 c�1 k log RB þ b
Kk�1

	 k log RB þ b

fk�2
! 0 as k ! 1: ð93Þ

Accordingly,

logKk ¼
Xk

j¼2

log
Kk

Kk�1

� �

þ logK1 ¼ ðk � 1Þ log fþ
Xk

j¼2

logð1 þ E jÞ � log c; ð94Þ

where 0	 E j 	ðk log RB þ bÞf1�k, and therefore,
P1

j¼2

logð1 þ E jÞ converges to a constant.

We therefore conclude that the geometric Horton’s law holds for Kk with Horton exponent

RK ¼ RL ¼ f:

Kk �Const:� fk: ð95Þ

This and the geometric Horton’s law for the mean branch magnitudes Mk implies the

Hack’s law for self-similar HBP:

Kk �Const:�
�
Mk

�h
; where h ¼ log f

log RB
: ð96Þ

An asymptotic equivalence Ak �Const:� Mk would imply the mean Hack’s law in its

classical form, relating the longest river channel to the basin’s area:

Fig. 15 Hack’s law in critical Tokunaga trees with parameters c ¼ 1:5; 2; 2:5 and c ¼ 1. Symbols
correspond to individual simulated trees. Lines show theoretical slopes h ¼ logðcÞ= logð2cÞ. The differential

contributing area m of an edge is calculated via the edge length n as m ¼ n2. For each ðc; cÞ we simulated 100
independent trees of different orders: 11	K 	 14 for c ¼ 1:5, 9	K 	 11 for c ¼ 2, and 8	K 	 10 for
c ¼ 2:5. In each simulated tree, the area AðiÞ and height KðiÞ are reported for a random vertex from the stream

of the highest order
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Kk �Const:�
�
Ak

�h
; where h ¼ log f

log RB
: ð97Þ

Our analysis in Sect. 7.2 asserts that such equivalence holds as soon as rD [ rM ¼ w0. This

is so, for example, in the critical Tokunaga process of Sect. 9, or more generally under the

hydrologic Assumption 3. The reciprocity of the Hack’s law exponent h and the fractal

dimension d has been heuristically established by Peckham (1995), La Barbera and Rosso

(1989). Figures 11b and 12b show the exponent h in the self-similar HBP as a function of

ðRB;RLÞ and in the two-parameter Tokunaga model as a function of (a, c), respectively.

The nine observed river basins from Tarboton et al. (1988) (blue dots) have the Hack’s

exponent within the range 0:39\h\0:6.

The Hack’s law for the critical Tokunaga processes with parameter c[ 1 takes the form

Kk �Const:�
�
Ak

�h
; where h ¼ log c

logð2cÞ ¼
1

1 þ logc 2
: ð98Þ

The value of h ¼ hðcÞ is illustrated in Fig. 14b for 1\c\5. Here, for c ¼ 2:5,

h � 0:57. . .. Figure 15 illustrates the Hack’s law in simulated critical Tokunaga trees with

c ¼ 1:5; 2; 2:5 by showing the scatter between the tree contributing area A and height K.

12 Scaling Laws in Self-Similar Trees

We have discussed in the Introduction that Horton’s laws imply a variety of power laws for

the frequencies of edge attributes in a large tree and power-law relations between different

attributes. This section illustrates these general observations with specific selected exam-

ples. We make here the hydrologic assumption of equality of the mean edge length ‘k for

all k and equality of the differential edge contributing areas ak for all k. We also assume a

geometric Horton’s law for Tk with rT\1. These assumptions are conventionally accepted

in the hydrologic literature and are justified by field observations (Rodriguez-Iturbe and

Rinaldo 2001). The assumptions can be relaxed (with more technical work) if needed.

We observe that by Proposition 9 the areas Ak in this case satisfy geometric Horton’s

law with Horton exponent RA such that RA ¼ RB ¼ RM . Moreover, by Propositions 7,8 the

combinatorial branch lengths Sk and metric branch lengths Lk also satisfy geometric

Horton’s laws with Horton exponents RS and RL such that RS ¼ RL\RB ¼ RM .

12.1 Power Laws for Edge Attributes

Recall (Sect. 3.5) that the geometric Horton’s laws for branch counts Nk½T �, edge counts

Sk, and an arbitrary branch attribute Zk imply a power-law frequency distribution for the

edge attribute ZðiÞ with power index given by (13). Section 7 establishes a variety of

Horton’s laws for a self-similar tree, including those for branch counts Nk½T � and edge

counts Sk. This means that any attribute that satisfies the geometric Horton’s law is

expected to have a power-law frequency distribution when examined on individual edges.

The well-studied hydrological examples are power-law frequency statistics for link con-

tributing areas (14) and distance to the divide (15); see Tarboton et al. (1989), Rodriguez-

Iturbe et al. (1992), and Maritan et al. (1996).

Consider a critical Tokunaga HBP with parameters c ¼ 1 and c[ 1 (Sect. 9).

According to (70) we have RB ¼ RA ¼ 2c and RS ¼ c, hence establishing
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#fi : AðiÞ � xg / x�bA ð99Þ

with

bA ¼ log RB � log RS

log RA
¼ logð2cÞ � log c

logð2cÞ ¼ 1 � log c

logð2cÞ ¼ 1 � h: ð100Þ

Here, c ¼ 2:3 corresponds to bA � 0:45 reported in analyses of river networks (Rodriguez-

Iturbe et al. 1992; Rodriguez-Iturbe and Rinaldo 2001). The last equality, bA ¼ 1 � h,

holds in a general self-similar HBP tree under the assumptions listed in the beginning of

Sect. 12. This relation is well known in the analysis of river basins (Rodriguez-Iturbe and

Rinaldo 2001, Eq. (2.215)).

Figure 16a shows empirical exceedance frequencies for edge areas AðiÞ calculated in

three critical Tokunaga trees with c ¼ 1; 2; 3 and c ¼ 1. The distributions have power-law

tails (seen as linear segments in the double logarithmic plot) with power indices given by

bAðcÞ ¼ 1 � hðcÞ, according to (100).

Similarly, the geometric Horton’s law (95) for tree heights Kk implies a power-law

distribution of the distances KðiÞ from link i to the most distant source along the tree (i.e.,

heights of the edges using the graph-theoretic terminology):

#fi : KðiÞ � xg / x�bK ð101Þ

with

bK ¼ log RB � log RS

log RK
¼ d� 1 ¼ bA

h
: ð102Þ

This distribution can be alternatively derived by writing the Hack’s law (97) on individual

edges:

#fi : KðiÞ � xg ¼ #fi : Ah
ðiÞ �Const:� xg / x�bA=h: ð103Þ

Fig. 16 Power laws in critical Tokunaga trees with parameters c ¼ 1; 2; 3 and c ¼ 1. Symbols refer to the
empirical counts. Lines show theoretical slopes. a Power law for the exceedance frequencies of edge
contributing areas AðiÞ. The lines show the theoretical slope bA ¼ �ð1 � hðcÞÞ, with convention hð1Þ ¼ 0. b

Power law for the exceedance frequencies of branch lengths K½i�. The lines show the theoretical slope �dðcÞ

123

Surveys in Geophysics



The relation (102) is well documented in the analysis of natural river basins as discussed by

(Rodriguez-Iturbe and Rinaldo 2001, Sect. 2.9.3, Eq. (2.185)). In a critical Tokunaga tree

with parameter c we have

bK ¼ logð2cÞ � log c

log c
¼ logc 2: ð104Þ

Here for c ¼ 2:3 we have bK � 0:83.

12.2 Power Laws for Branch Attributes

Tree self-similarity, and associated Horton’s laws, also imply power laws for attributes

calculated for random branches. The argument is very similar to that used to establish

power laws for the edge attributes. We consider here the branch lengths L½i�, where the

lower bracketed index [i] indicates that we calculate the length of a uniformly randomly

selected branch (and distinguishes this attribute from the mean length LK of an order-K
branch). In the limit of a large tree,

#fi : L½i� �RK
L g /

X1

j¼K

NK ¼
X1

j¼K

R�j
B / R�K

B :

This is a punctuated (by discrete order) version of a general power-law relation

#fi : L½i� � zg / z
�log RB

log RL ¼ z�d: ð105Þ

Appendix H shows a rigorous derivation of the relative frequencies of branch lengths L½i� in

a critical Tokunaga tree, which leads to essentially the same result. Figure 16b shows the

exceedance frequency for branch lengths L½i� calculated in two critical Tokunaga trees with

c ¼ 2; 3 and c ¼ 1. The distributions have power-law tails (expressed as linear segments in

the double logarithmic plot) with power indices given by �dðcÞ.

13 Discussion

A solid body of observational, modeling, and theoretical studies ascribe Horton’s laws,

power-law distributions of tree attributes, and power-law relations between attributes to the

self-similar structure of a tree that represents the examined system (Gupta and Waymire

1989; Peckham 1995; Gupta et al. 1996; Tarboton 1996; Gupta and Waymire 1998;

Cieplak et al. 1998; Peckham and Gupta 1999; Turcotte 1997; Dodds and Rothman 2000;

Pelletier and Turcotte 2000; Veitzer and Gupta 2000; Gupta et al. 2007; Rodriguez-Iturbe

and Rinaldo 2001; Mesa 2018). Here we review a recently formulated theory of random

self-similar trees (Kovchegov and Zaliapin 2020; Kovchegov et al. 2021) that suggests a

rigorous treatment of the emergence of Horton’s laws and related scalings in river net-

works and other dendritic systems.

Self-similarity is defined here (Sect. 4) as invariance of a coordinated tree distribution

with respect to the operation of Horton pruning (cutting the source streams); this definition

is justified by the empirical and modeling evidence of the past decades. Horton’s laws are

rigorously defined as limit statements about random or mean values of the examined

branch attributes (Sects. 3.7, 5, 9.2). We show that self-similarity guarantees the (stron-

gest) geometric Horton’s laws for mean branch numbers and mean magnitudes (Theorem 1
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and Corollary 1). Horton’s laws of different strengths for multiple other mean attributes

follow under additional natural assumptions (Sect. 7). Each Horton’s law for a mean

attribute (e.g., mean branch number N 1½K�) implies the respective Horton’s law for its

random counterpart (e.g., random branch number N1½T �). We have examined several

commonly studied branch attributes (Table 1) whose scaling laws are well documented in

the literature and have shown that the proposed self-similar model closely reproduces the

scalings and exponents reported in observational studies (Table 2).

Our definition of tree self-similarity unifies several alternative definitions that have been

introduced in studies of dendritic systems. Burd et al. (2000) define self-similarity in

Galton–Watson trees as the Horton prune invariance. This is a special case of our definition

since the Galton–Watson trees are coordinated (Kovchegov and Zaliapin 2020). Peckham

(1995) and Newman et al. (1997) define self-similarity as Toeplitz property for the

Tokunaga coefficients. This property, which only considers the Tokunaga coefficients and

not the entire tree distribution, follows from and is weaker than our definition (Sect. 4.4).

Moreover, Kovchegov and Zaliapin (2020) showed that the Toeplitz property alone,

without coordination (Sect. 4.2), allows for a multitude of obscure measures that are hardly

useful in practice. Gupta and Waymire (1989) and Peckham and Gupta (1999) suggested a

concept of statistical self-similarity that requires a random stream attribute Z to have

distribution that scales with order. It can be shown (Kovchegov and Zaliapin 2020, Sect. 7)

that (i) statistical self-similarity for some attributes (e.g., for any discrete attribute) may

only hold asymptotically, and (ii) multiple attributes, including stream length, magnitude,

and total basin length, are statistically self-similar in the limit of an infinitely large basin

that is self-similar according to our definition.

The results reviewed herein contribute to a long-standing debate on the ‘‘inevitability’’

of Horton’s laws in river networks (Shreve 1966, 1969; Kirchner 1993; McConnell and

Gupta 2008), and suggest that Horton prune invariance is a useful paradigm for systems

that exhibit such laws. The family of self-similar distributions is extremely rich and

flexible. It includes the famous random topology model of Shreve (1966), which is

equivalent to the critical binary Galton–Watson process with given progeny (Burd et al.

2000; Pitman 2006), and closely fits the multitude of existing hydrologic observations

summarized by Maritan et al. (1996), Turcotte (1997), Dodds and Rothman (1999), Dodds

and Rothman (2000), Rodriguez-Iturbe and Rinaldo (2001), and Gupta et al. (2007); see

Table 2. The self-similar family extends way beyond the hydrological constraints, allowing

one to study self-similar trees with edge lengths that depend on the position within the

hierarchy, having arbitrary fractal dimension d 2 ð1;1Þ, and Horton branch exponent

RB 2 ð2;1Þ. For instance, the HBP (Sect. 8) might be a suitable model for phylogenetic

trees (Aldous 2001; Blum and François 2006) or dendritic structures generated by Dif-

fusion Limited Aggregation (DLA) (Vicsek 1984; Ossadnik 1992; Newman et al. 1997).

While this survey focuses on binary trees, the self-similarity definition and main results are

readily extended to trees with multiple branching. The proposed approach emphasizes the

importance of Tokunaga coefficients Tk that have been well known in the literature

(Tokunaga 1978; Ossadnik 1992; Peckham 1995; Newman et al. 1997; Gabrielov et al.

1999; Turcotte 1999; Pelletier and Turcotte 2000; Holliday et al. 2008; Yoder et al. 2013)

and which also play a distinct role in the presented theory. Namely, each self-similar

measure is characterized by an infinite sequence fT1; T2; T3; . . .g of Tokunaga coefficients,

and each such sequence corresponds to an infinite number of self-similar measures, which

gives an idea of the richness of the self-similar family.
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Notwithstanding this richness, the essential scalings established in the hydrological

literature are closely fit by a one-parameter family of critical Tokunaga trees with Tk ¼
ðc � 1Þck�1 (Table 2). This empirical constraint has been known for long time (Tokunaga

1978; Peckham 1995; Veitzer and Gupta 2000), with the special case c ¼ 2 corresponding

to the Shreve’s random topology model (Burd et al. 2000). However, only very recently a

rigorous understanding has been gained of its theoretical importance. For example, this

sequence is necessary to generate tree distributions that are time-invariant, critical, and

having i.i.d. edge lengths (Kovchegov and Zaliapin 2018, 2019, 2020; Kovchegov et al.

2021).

The critical Tokunaga model presents an ultimately symmetric class of trees charac-

terized by coordination, Horton prune invariance, criticality, time invariance, and identi-

cally distributed link lengths (and hence local contributing areas). Despite these multiple

constraints, this class is surprisingly rich, extending from perfect binary trees (c ¼ 1) to the

famous Shreve’s random topology model (c ¼ 2) to the structures reminiscent of the

observed river networks (c � 2:3) and beyond. While offering a convenient theoretical and

modeling paradigm, the critical Tokunaga model is merely a subclass of a much broader

family of self-similar trees that might better accommodate various problem-specific data

features. An applied study can use the self-similar theory to either focus on the symmetries

of the critical Tokunaga family, or explore deviations from this stiff parameterization, both

of which may have physical underpinnings.

This survey focuses on the results that concern the static structure of examined systems

(e.g., river networks). Self-similarity of this structure might provide tangible constraints on

the additional geometric attributes (e.g., channel slopes, junction angles, etc.) (Stark et al.

2009; Devauchelle et al. 2012), the dynamical processes that evolve along its static fabric

(Mesa and Mifflin 1986; Gupta et al. 1994, 1996; Menabde et al. 2001; Mantilla et al.

2006; Lashermes and Foufoula-Georgiou 2007; Zaliapin et al. 2010; Gupta et al. 2010;

Ramirez 2012; Czuba and Foufoula-Georgiou 2014) or control its formation and evolution

(Seybold et al. 2007; Singh et al. 2015; Ranjbar et al. 2018).

The goal of this work was to review the recent results concerning tree self-similarity and

present a simple model that explains a variety of scaling laws that are central for the studies

of dendritic systems of diverse origin. Our prime illustration of the power of the proposed

approach (Table 2, Fig. 5) uses empirical scaling laws of hydrogeomorphology that have

been established and independently verified by multiple researchers since the 1940s.

Accordingly, we intentionally avoided new data analyses and took all empirical constraints

from the existing literature. An original data analysis performed through the prism of the

proposed modeling approach is a topic of future research.

The proposed approach to modeling dendritic systems based on random self-similar

trees is subject to further testing and verification using data from diverse fields (see

Sect. 1). There are several avenues for approaching such testing. One can test the foun-

dational principle of the theory—tree self-similarity—that combines the tree coordination

and Horton prune invariance. The coordination property can be either rigorously verified

(as in Galton–Watson trees) or heuristically accepted (as in river networks). The self-

similarity is then tested either by checking the Horton prune invariance property, which

might be more suitable for theoretical models, or by verifying the Toeplitz property of the

Tokunaga coefficients, which can be readily done for the empirical Tokunaga coeficients

ti;j of (19) via the ANOVA framework (Scheffe 1999). Independently, one can check the

theory’s predictions. This includes (i) Horton’s laws (e.g., Horton’s law for branch num-

bers); (ii) power-law distribution of attributes calculated at individual vertices (e.g., vertex
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magnitudes); (iii) power-law relation between distinct attributes (e.g., Hack’s law); and (iv)

system’s fractal dimension. Specifically, one would check whether the above laws hold and

whether their scaling exponents are related in the way predicted by the theory (e.g., in

critical Tokunaga trees the key exponents take only two distinct values). Finally, one can

directly test whether an observed tree (or forest of trees) can be approximated by a self-

similar model. A likelihood approach to such direct statistical testing is being developed by

the authors and will be presented elsewhere.

Appendices

A Proof of Proposition 1

We have, for any D 2 ð0; rÞ (Ahlfors 1953):

ak ¼
1

2pi

I

jzj¼D

f ðzÞdz

zkþ1
: ð106Þ

By the Residue Theorem (Ahlfors 1953), we obtain, for any c 2 ðr; qÞ

1

2pi

I

jzj¼c

f ðzÞdz

zkþ1
¼ Res

f ðzÞ
zkþ1

; 0

� �

þ Res
f ðzÞ
zkþ1

; r

� �

ð107Þ

¼ ak þ Res
f ðzÞ
zkþ1

; r

� �

: ð108Þ

Therefore,

ak ¼
1

2pi

I

jzj¼c

f ðzÞdz

zkþ1
� Res

f ðzÞ
zkþ1

; r

� �

; ð109Þ

where

I

jzj¼c

f ðzÞdz

zkþ1

	
	
	
	
	

	
	
	
	
	
	

maxjzj¼c f ðzÞ
ck

¼ o r�k
� �

: ð110Þ

Consider gðzÞ ¼ ðz � rÞf ðzÞ. It is known that (Ahlfors 1953)

Res f ðzÞ; rð Þ ¼ gðrÞ; ð111Þ

and hence,

Res
f ðzÞ
zkþ1

; r

� �

¼ gðrÞ
rkþ1

¼ gðrÞ
r

r�k: ð112Þ

Accordingly, we obtain

ak ¼ � gðrÞ
r

r�k þ oðr�kÞ; ð113Þ

which completes the proof.
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B Proof of Proposition 2

First, we prove statement (i).

We begin with the root Horton’s law (R). Suppose lim
k!1

�
bk

�1=k ¼ R[ 0, then for a

given � 2 ð0; 1=rcÞ � ð0;RÞ, there exist C0;C1 [ 0 such that

C0ðR � �Þk 	 bk 	C1ðR þ �Þk
for all k ¼ 0; 1; . . .:

Then,

R � �	 lim inf
k!1

Xk

j¼0

bk�j cj

 !1=k

¼ lim inf
k!1

�
ak

�1=k

and

lim sup
k!1

�
ak

�1=k ¼ lim sup
k!1

Xk

j¼0

bk�j cj

 !1=k

	R þ �

since there exists D[ 0 such that ck 	Dð1=rc þ �Þk
for all k. Hence, since � can be taken

arbitrarily small, lim
k!1

�
ak

�1=k ¼ R.

Next, we consider the quotient Horton’s law (Q). Suppose lim
k!1

bkþ1

bk
¼ R. Then, by the

Dominated Convergence Theorem,

lim
k!1

ak

bk
¼ lim

k!1

Xk

j¼0

bk�j

bk
cj ¼

X1

j¼0

R�j cj\1

as R�1 ¼ rb\rc. Hence, lim
k!1

akþ1

ak
¼ R.

Finally, we consider the geometric Horton’s law (G). Suppose lim
k!1

bkR�k ¼ b for some

b[ 0. Then, by the Dominated Convergence Theorem,

lim
k!1

akR�k ¼ lim
k!1

Xk

j¼0

Rj�kbk�j R�jcj ¼ b
X1

j¼0

R�j cj ¼ a:

Statement (ii) follows form (i) if we write gðzÞ ¼ f ðzÞ ~hðzÞ with ~hðzÞ ¼ 1
hðzÞ analytic for

jzj 	 rb þ � for some �[ 0.

C Horton’s Laws for Mean Branch Attributes Sk,Lk , and Ak

Recall that the mean branch length Sk is expressed via the Tokunaga coefficients as

Sk ¼ 1 þ
Xk�1

i¼1

Ti; k � 1; ð114Þ

and the generating function for this sequence is given by (49). The following statement is

proved using Proposition 2.
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Proposition 7 (Asymptotic behavior of Sk) (a) If rT [ 1 then rS ¼ 1 and

Sk � 1 þ Tð1Þ ¼ t̂ð1Þ ¼ 1 þ
P1

k¼1 Tk . Accordingly, the geometric Horton’s law (G) holds.

(b) If rT\1 then rS ¼ rT and Sk have the same asymptotic as Tk. Namely, the same Horton’s laws hold for
Tk and Sk , with the same Horton exponent. In particular, if lim

k!1
ðTkþ1=TkÞ ¼ RT [ 1, then

lim
k!1

ðSkþ1=SkÞ ¼ RT .

(c) If rT ¼ 1 then rS ¼ 1. In this case the sequence Sk increases to infinity at a subexponential rate. The
geometric Horton’s law (G) does not hold. The quotient Horton’s law (Q) and root Horton’s law (R) may or
may not hold depending on the form of Tk . See examples below.

Example 2 (Relation between Tk and Sk)

(a) Finite Tokunaga sequence: Suppose T1 [ 0 and Tk ¼ 0 for any k [ 1. Then TðzÞ ¼
T1 z and rT ¼ 1 as in Prop. 7(a). According to (49), SðzÞ ¼ zðT1 z þ 1Þð1 � zÞ�1

and

rS ¼ 1. In this case S1 ¼ 1 and Sk ¼ T1 þ 1 for any k [ 1.

(b) Harmonic Tokunaga sequence: Suppose Tk ¼ 1=k for any k. Then

TðzÞ ¼
X1

k¼1

k�1zk ¼ � lnð1 � zÞ

and rT ¼ 1 as in Prop. 7(c). According to (49), SðzÞ ¼ zð1 � lnð1 � zÞÞð1 � zÞ�1

and rS ¼ 1. In this case Sk ¼ 1 þ
Pk�1

i¼1 k�1 � lnðkÞ as k ! 1. The quotient Hor-

ton’s law (Q) holds with RS ¼ 1.

(c) Constant Tokunaga sequence: Suppose Tk ¼ 1 for any k. Then TðzÞ ¼
P1

k¼1 zk ¼
zð1 � zÞ�1

and rT ¼ 1 as in Prop. 7(c). According to (49), SðzÞ ¼ zð1 � zÞ�2
and

rS ¼ 1. In this case Sk ¼ k. The quotient Horton’s law (Q) holds with RS ¼ 1.

(d) Linear Tokunaga sequence: Suppose Tk ¼ k for any k. Then TðzÞ ¼
P1

k¼1 k zk ¼
zð1 � zÞ�2

and rT ¼ 1 as in Prop. 7(c). According to (49), SðzÞ ¼ zðz2 � z þ 1Þð1 �
zÞ�3

and rS ¼ 1. In this case Sk ¼ kðk�1Þ
2

. The quotient Horton’s law (Q) holds with

RS ¼ 1.

(e) Tokunaga sequence that does not satisfy Horton’s law: Let Tk ¼ 2�k if k is not a full

square, and Tk ¼ 2
ffiffi
k

p
otherwise. Here rT ¼ 1 and even the root Horton’s law (R)

does not hold for Tk. We have Sj2 � 2 j and so Tj2=Sj2 ! 1. At the same time,

Tj2�1=Sj2�1 ! 0. This means that the limit of Tk=Sk does not exist, and so the limit of

Skþ1=Sk ¼ 1 þ Tk=Sk, which is equivalent to quotient Horton’s law (Q), does not

exist. The root Horton’s law (R) also does not hold since 2
ffiffi
k

p� �1=k

! 1, while

2�k
� �1=k¼ 2�1.

(f) Geometric Tokunaga sequence: Suppose Tk ¼ ðc � 1Þck�1 for any k with some

c[ 1. Then TðzÞ ¼ ðc � 1Þ
P1

k¼1 ck�1 zk ¼ ðc � 1Þzð1 � czÞ�1
and rT ¼ c�1 as in

Prop. 7(b). According to (49), SðzÞ ¼ zð1 � czÞ�1
and rS ¼ c�1. In this case

Sk ¼ ck�1.
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The generating function of the mean branch lengths Lk is given by

LðzÞ ¼
X1

k¼1

Lkzk ¼
X1

k¼1

Sk‘kzk:

If we assume root Horton’s law (R) for ‘k with Horton exponent k�1, then as Lk ¼ Sk‘k, we

have rL ¼ k�1rS whenever k[ 0, and rL ¼ 1 if k ¼ 0.

Proposition 8 (Asymptotic behavior of Lk) Suppose the root Horton’s law holds for ‘k with Horton exponent

k�1, k 2 ð0;1Þ.
(a) If rT [ 1 then rL ¼ k�1. The same Horton’s laws hold for ‘k and Lk.

(b) If rT\1 then rL ¼ k�1rT . If some Horton’s laws hold for Tk and ‘k, then the weakest of those holds for
Lk .

(c) If rT ¼ 1 then rL ¼ k�1. The geometric Horton’s law (G), the quotient Horton’s law (Q) and the root
Horton’s law (R) may or may not hold for Lk .

Example 3 (Relation between Tk and Lk)

If ‘k scales geometrically with k, i.e., there is a scalar k[ 0 such that ‘k ¼ ‘1k
k�1, then

LðzÞ ¼ ‘1k
�1
X1

k¼1

Skk
kzk ¼ ‘1k

�1 S
�
kz
�
:

Here, if rT [ 1, and therefore T(z) converges to a finite value T(1) at z ¼ 1, we have

Lk ¼ Sk‘k � ‘1k
k�1
�
1 þ Tð1Þ

�
¼ ‘1k

k�1 t̂ð1Þ:

In this case, the geometric Horton’s law (G) holds with Horton exponent k�1. If Tk ¼
ðc � 1Þck�1 for some c[ 1, then rT ¼ c�1\1 and Sk ¼ ck�1. Hence, Lk ¼ ‘1ðk cÞk�1

and

the geometric Horton’s law (G) holds for Lk with Horton exponent ðk cÞ�1
.

The generating function A(z) for the contributing areas is given by

AðzÞ ¼

P1

k¼1

akSkzk

1 � 2z � TðzÞ ¼ MðzÞ
X1

k¼1

akSkzk�1

 !

¼ �DðzÞ
t̂ðzÞ :

ð115Þ

Proposition 9 (Asymptotic behavior of Ak) Suppose the root Horton’s law holds for ak with Horton

exponent a�1, a 2 ð0;1Þ. Recall that dk ¼ akSk.

(a) If rT [ 1 then rD ¼ a�1. The same Horton’s laws hold for ak and dk. If a�1\w0 then rA ¼ a�1 and

Ak �Const:� ak. If a�1 [w0 then rA ¼ w0 and Ak �Const:� Mk .

(b) If rT\1 then rD ¼ a�1rT . If rD\w0 then rA ¼ rD and Ak �Const:� dk . If rD\w0 and some of the
Horton’s laws hold for Tk and ak , the weakest of those holds for dk and Ak . If rD [w0 then rA ¼ w0 and
Ak �Const:� Mk .

(c) If rT ¼ 1 then rD ¼ a�1. The geometric Horton’s law (G), the quotient Horton’s law (Q) and the root

Horton’s law (R) may or may not hold for dk. If a�1\w0 then rA ¼ a�1 and Ak �Const:� dk . If a�1 [w0

then rA ¼ w0 and Ak �Const:� Mk .
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D Relation Between Edge Lengths and Differential Contributing Areas

Consider a random variable nk representing the length of a randomly selected edge of order

k � 1. Suppose there exists C � 0 such that for all k� 1, the expectation E½nk� ¼ ‘k and the

standard deviation SDðnkÞ satisfy

SDðnkÞ
‘k

	C:

Let mk be a random variable representing the differential contributing area of the edge, and

suppose there exist scalars b[ 0 and r[ 1 such that dk ¼ b nrk with r and b being the

same for all orders k � 1. Then, by Jensen’s inequality and the size biasing method

(Bhattacharya and Waymire 2007), we have

‘rk 	E½nrk � ¼ ‘kE½fr�1
k � 	 ‘kE½fk�r�1

¼ ‘k
E½n2

k �
‘k

� �r�1

¼ ‘rk 1 þ VarðnkÞ
‘2

k

� �r�1

	ð1 þ C2Þr�1‘rk ;
ð116Þ

where fk is a random variable distributed as Pðfk 2 AÞ ¼ 1
‘k
E
�
nk 1AðnkÞ

�
.

Hence, the expected contributing area ak ¼ bE½nrk � of an order k link satisfies

b‘rk 	 ak 	 bð1 þ C2Þr�1‘rk :

Accordingly, the root Horton’s law holds for the lengths implies that for the areas:

lim
k!1

‘
1=k
k ¼ k�1 ) lim

k!1
a1=k

k ¼ k�r:

Our analysis does not establish the quotient Horton’s law, since

ð1 þ C2Þ1�r ‘kþ1

‘k

� �r

	 akþ1

ak
	ð1 þ C2Þr�1 ‘kþ1

‘k

� �r

:

At the same time, the gap between the low and upper bounds above can be small, hence

implying the quotient Horton’s law with a practical level of accuracy. For instance, if

r ¼ 2 and C ¼ 1, then that gap is [1/2, 2]. One also can add to that the observation that

increasing/decreasing sequence of lengths corresponds to the increasing/decreasing

sequence of areas, which bounds the Horton exponent by 1 from below of above.

E Tokunaga Two-Parameter Model

This section discusses a slight relaxation of the critical Tokunaga process constraint

Tk ¼ ðc � 1Þck�1. Specifically, we consider the sequence of Tokunaga coefficients that has

been introduced in river studies by Tokunaga (1966, 1978, 1984):

Tkþ1

Tk
¼ c or Tk ¼ a ck�1 for a; c[ 0: ð117Þ

The trees satisfying (117) are usually called Tokunaga trees. The Tokunaga trees have been

shown to closely approximate multiple observed branching structures beyond river net-

works (Peckham 1995; McConnell and Gupta 2008; Zanardo et al. 2013; Dodds and

Rothman 2000; Gabrielov et al. 1999; Kovchegov and Zaliapin 2016; Newman et al. 1997;
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Ossadnik 1992; Pelletier and Turcotte 2000; Turcotte et al. 1998). A perfect binary tree is a

Tokunaga tree with a ¼ 0 and arbitrary c. The critical binary Galton–Watson tree corre-

sponds to ða; cÞ ¼ ð1; 2Þ (Burd et al. 2000). The critical Tokunaga process of Sect. 4.1

corresponds to a special case a ¼ c � 1. The geometric behavior of the Tokunaga’s indices

allows one to find an explicit form of the generating function T(z) and makes the branching

analysis particularly straightforward.

If c ¼ 1, then Sk ¼ 1 þ
Xk�1

j¼1

a ¼ 1 þ aðk � 1Þ. If c 6¼ 1, then

Sk ¼ 1 þ
Xk�1

j¼1

Tj ¼ 1 þ
Xk�1

j¼1

acj�1 ¼ 1 þ a
ck�1 � 1

c � 1

¼ aðc � 1Þ�1ck�1 þ Oð1Þ; c[ 1

1 þ að1 � cÞ�1 þ OðckÞ; c\1

( ð118Þ

Next, we have

t̂ðzÞ ¼ �1 þ 2z þ az

1 � cz
¼ �1 þ ða þ c þ 2Þz � 2cz2

1 � cz
; ð119Þ

whose two real roots are

w1;0 ¼
ða þ c þ 2Þ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða þ c þ 2Þ2 � 8c

q

4c
;

with w1 [w0. The smallest root w0 has been reported in multiple works (e.g., Peckham

1995; McConnell and Gupta 2008). Here we have

RB ¼ w�1
0 ¼ 2 c w1 ¼

ða þ c þ 2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða þ c þ 2Þ2 � 8c

q

2
:

ð120Þ

Accordingly,

MðzÞ ¼ � z

t̂ðzÞ ¼
zð1 � czÞ

2cðz � w0Þðz � w1Þ
; ð121Þ

and, by Theorem 1,

N K�kþ1½K� ¼ Mk ¼
1

wk
0

ð1 � cw0Þ
2cðw1 � w0Þ

þ o
1

wk
0

� �

¼ 1

wk
0

ð2 � c � aÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 þ c þ aÞ2 � 8c

q

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 þ c þ aÞ2 � 8c

q þ o
1

wk
0

� �

;

ð122Þ

The exact expression is derived in Appendix F:

N K�kþ1½K� ¼ Mk ¼ w�kþ1
0 1 þ ð1 � c w1Þ

Xk�1

i¼1

w0

w1

� �i
" #

: ð123Þ

To examine the branch contributing areas Ak one need to make additional assumptions

about the process. We adopt here the hydrological constraint of Assumption 2 of Sect. 7.3:
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lim
k!1

‘kþ1

‘k
¼ 1: ð124Þ

Combining this with (64) gives

lim
k!1

‘kþ1

‘k
¼ f lim

k!1

Sk

Skþ1

¼ 1: ð125Þ

The geometric form (117) of the Tokunaga coefficients implies that the quotient Horton’s

law holds for Tk. Proposition 4 then ensures that the quotient Horton’s law also holds for Sk

with Horton exponent RS ¼ maxf1; cg� 1. Hence, RS ¼ f and f� 1, which implies that

the mean branch length is non-decreasing with order. The field observations (Rodriguez-

Iturbe and Rinaldo 2001) strongly suggest that the stream length increases geometrically

with order. This implies f[ 1 and hence f ¼ c[ 1, which also means geometric growth

of Tk.

The edge lengths in the HBP have exponential distribution. We use Example 1 to find

lim
k!1

akþ1

ak
¼ lim

k!1

‘kþ1

‘k

� �r

¼ 1: ð126Þ

Accordingly, Assumption 3 is satisfied here with c[ 1, and Proposition 6 guarantees the

existence of the quotient Horton’s law for Ak.

One can obtain a stronger result by recalling

AðzÞ ¼ �DðzÞ
t̂ðzÞ : ð127Þ

Proposition 8 applied to ak states that the radius of convergence for D(z) is

rD ¼ rT ¼ c�1 [w0. This means that the asymptotic behavior of Ak is determined by the

simple pole of t̂ðzÞ�1
. In other words, Ak �AMk, where the proportionality constant is

given by

A ¼ Dðw0Þð1 � cw0Þ
2w0cðw1 � w0Þ

: ð128Þ

Accordingly, the geometric Horton’s law holds for N k½K�, Mk, and Ak with the Horton

exponent RB ¼ RM ¼ RA ¼ w�1
0 .

F Exact Form of Mean Magnitudes Mk in Tokunaga Two-Parameter
Model

If Tk ¼ a ck�1, equation (34) implies

Mk ¼ 2 Mk�1 þ a
Xk�1

i¼1

ck�i�1Mi ðk � 2Þ ð129Þ

and therefore,

Mkþ1 ¼ ð2 þ aÞMk þ a
Xk�1

i¼1

ck�iMi ðk � 2Þ: ð130Þ
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Equations (129) and (130) yield the following recursion

Mkþ1 � c Mk ¼ ð2 þ aÞMk � 2c Mk�1

which simplifies to

Mkþ1 � ð2 þ a þ cÞMk þ 2c Mk�1 ¼ 0: ð131Þ

The recurrence relation (131) is solved by finding the roots of its characteristic equation

x2 � ð2 þ a þ cÞx þ 2c ¼ 0: ð132Þ

The roots of (132) equal RB and 2 þ a þ c � RB. See (120). Therefore,

Mk ¼ c1Rk�1
B þ c2ð2 þ a þ c � RBÞk�1;

where the initial conditions M1 ¼ 1 and M2 ¼ 2 þ T1 ¼ 2 þ a yield

c1 ¼ RB � c

2RB � 2 � a � c
and c2 ¼ RB � 2 � a

2RB � 2 � a � c
:

Hence,

N 1½K� ¼ MK ¼ RB � c

2RB � 2 � a � c
RK�1

B þ RB � 2 � a

2RB � 2 � a � c
ð2 þ a þ c � RBÞK�1: ð133Þ

Notice that, by (120),

RB [ 2 þ a þ c � RB [ 0:

Recall that 2 þ a þ c ¼ 2cðw0 þ w1Þ and RB ¼ w�1
0 ¼ 2cw1. Thus, 2 þ a þ c � RB ¼ w�1

1 ,

and (133) can be rewritten as follows

MK ¼ 2w1 � 1

2ðw1 � w0Þ
w1�K

0 þ 1 � 2w0

2ðw1 � w0Þ
w1�K

1 :

Finally, for 1	 j	K, (133) yields

N j½K� ¼ N 1½K � j þ 1� ¼ RB � c

2RB � 2 � a � c
RK�j

B þ RB � 2 � a

2RB � 2 � a � c
ð2 þ a þ c � RBÞK�j:

ð134Þ

G Exact Quotient Horton’s Law for Mean Branch Counts, Magnitudes

Assume that the quotient Horton’s law for the mean branch counts N 1½K�, and hence for

the mean magnitudes MK , holds exactly, that is (using the fact that M1 ¼ 1):

MK ¼ RK�1
M : ð135Þ

Then,

MðzÞ ¼ z

1 � RMz

which leads to
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tðzÞ ¼ � z

MðzÞ ¼ �1 þ RMz and TðzÞ ¼ ðRM � 2Þz:

This implies that the only self-similar model with exact quotient Horton’s law for the mean

branch counts and magnitudes corresponds to the Tokunaga sequence

T1 ¼ RM � 2; Tk ¼ 0 for k [ 1:

H Power-Law Frequency for Branch Lengths in Critical Tokunaga Trees

Here we examine the frequencies of branch lengths L½i� in critical Tokunaga trees. First, we

prove the following technical lemma that establishes a power-law decay of a function that

later will be interpreted as the survival function of the branch lengths.

Lemma 2 Define

/ðxÞ ¼
X1

k¼0

a�k exp �b�kx
� �

; x[ 0

for some constants a[ 1 and b[ 1. Then,

/ðxÞ ¼ bðxÞx�
log a
log b; ð136Þ

where b(x) is a function bounded from above and from below by positive constants.

Proof Consider

/ðxÞ ¼
X1

k¼0

a�ke�b�kx; x[ 0:

Let

rðxÞ ¼
X1

k¼�1
a�ke�b�kx; x[ 0:

Since lim
x!1

/ðxÞ
rðxÞ ¼ 1, we have

/ðxÞ ¼ rðxÞ
�
1 þ oð1Þ

�
as x ! 1:

Next, observe that

rðxÞ ¼ a rðbxÞ;

and therefore

�
rðbxÞ

��log b
log a

bx
¼

�
rðxÞ

��log b
log a

x
:
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Hence,

pðyÞ ¼ e�y
�
rðeyÞ

��log b
log a

is a positive continuous periodic function with period log b that is bounded away from þ1
and from 0. Observe that

rðxÞ ¼
�

xpðlog xÞ
��log a

log b
:

Accordingly, /ðxÞ can be expressed as

/ðxÞ ¼ rðxÞ
�
1 þ oð1Þ

�
¼ bðxÞx�

log a
log b;

where

bðxÞ ¼
�
pðlog xÞ

��log a
log b�

1 þ oð1Þ
�

is a positive function, bounded from above and from below, by positive quantities. This

completes the proof. h

Recall from Sect. 9.2, Eq. (81) that the empirical frequencies of branch orders in a critical

Tokunaga tree of order K are approximately geometric:

proportion of branches of order kf g ¼ ðRB � 1ÞR�k
B ð1 þ oð1ÞÞ ð137Þ

for any k� 1 as K ! 1. The lengths of branches of order k are i.i.d. exponential random

variables with rate cf1�k. Accordingly, the relative proportion of the lengths of order-k

branches that exceed a given value x[ 0 is expð�cf1�kxÞ. Taking into account the relative

proportions of branches of different orders, we find the relative proportion of branches with

length exceeding x:

#fi : L½i� � xg
total no. branches

¼
X1

k¼1

ðRB � 1ÞR�k
B expð�cf1�kxÞ

¼ð1 � R�1
B Þ
X1

k¼0

R�k
B expð�cf�kxÞ

¼ð1 � R�1
B ÞbðcxÞðcxÞ�

log RB
log f

/bðcxÞx�
log RB
log f ;

where b(x) is a positive function bounded from zero and infinity. Here the next to the last

step uses Lemma 2 with a ¼ RB and b ¼ f.
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