
Chapter 29
Multiscale Evaluation of Satellite
Precipitation Products: Effective Resolution
of IMERG

Clément Guilloteau and Efi Foufoula-Georgiou

Abstract Satellite precipitation products are essential for global analysis of water
cycle dynamics as well as for regional analyses in regions where no ground obser-
vations are available. For any climatic or hydrologic application, it is important to
know down to which scale a gridded satellite precipitation product can accurately
resolve the spatial patterns of precipitation. This scale, which we call “effective
resolution”, is a complex combination of the instrument resolution (especially so for
multisensor products such as IMERG), the multi-sensor retrieval or merging algo-
rithm, and the type of the precipitating system, and it can differ substantially from the
grid size of the satellite product. Here, we use a wavelet-based framework to
quantitatively define the effective resolution of the IMERG multi-satellite product
by comparison with the MRMS ground radar product at the hourly time scale over
the continental United States. Our findings show that the effective resolution varies
across geographical areas, seasons and types of precipitation and provide insight for
the use of those products in hydrologic applications and for algorithmic
improvements.

Keywords Precipitation · Rainfall · Evaluation · Validation · Error modeling ·
GPM · Raingauges · Nominal resolution · Effective resolution · Spectral analysis ·
Wavelets

C. Guilloteau (*)
Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA
e-mail: cguillot@uci.edu

E. Foufoula-Georgiou
Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA

Department of Earth Science, University of California, Irvine, CA, USA

© Springer Nature Switzerland AG 2020
V. Levizzani et al. (eds.), Satellite Precipitation Measurement, Advances in Global
Change Research 69, https://doi.org/10.1007/978-3-030-35798-6_5

533

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-35798-6_5&domain=pdf
mailto:cguillot@uci.edu
https://doi.org/10.1007/978-3-030-35798-6_5


29.1 Introduction

IMERG (Integrated Multi-Satellite Retrievals for GPM, Huffman et al. 2015) is the
operational quasi-global multi-satellite quantitative precipitation estimation product
(QPE) of the NASA Global Precipitation Measurement (GPM) program. IMERG
V05 is provided on a spatial grid covering the globe from latitude 60�N to latitude
60�S with a 0.1� latitude and longitude increment, and a temporal sampling of
30 min. It strives to resolve the sub-mesoscale patterns of precipitation, which
typically requires a resolution of a few km or a few dozen km. Obviously, a fine
grid increment is necessary for such purpose. But in fact, although the grid increment
is often referred to as the product’s “resolution” (or “nominal resolution”), there is no
guarantee that the precipitation patterns are actually resolved down to the finest scale
allowed by the grid. The IMERG estimates rely on the measurements of a dozen
different instruments in the microwave and infrared domains. The spatial resolution
of these instruments varies from 70 km (SSM/I at 19 GHz) to 2 km (Himawari-
8 infrared channels). Given this, it is a-priori uncertain which scales can be resolved
by the IMERG algorithm. Moreover, the performance of IMERG at various scales is
expected to vary because of the irregular temporal sampling from the different
instruments, the evolving configuration of the GPM constellation and the climatic
spatial and temporal variability. One must also consider the potential filtering effects
associated with the retrieval procedure of each instrument and with the merging
procedure.

The question of the “effective resolution” of numerical weather prediction models
has been raised several times in the literature (e.g., Pielke 1991; Grasso 2000) and is
typically assessed by comparison with observations in the Fourier spectral domain
(Skamarock 2004; Frehlich and Sharman 2008; Wong and Skamarock 2016), or in a
wavelet spectral domain (Bousquet et al. 2006; Vasić et al. 2007). For numerical
models, the assessment of the effective resolution consists of verifying if the output
fields show the right spectral energy at all frequencies or scales. The effective
resolution is quantified as the finest scale (or highest frequency) for which the
power spectrum of the modelled field matches the power spectrum of the observed
field. However, the agreement of the power spectra does not guarantee the agreement
of the two fields in terms of the spatial location of the observed patterns. In this
paper, the effective resolution of IMERG is assessed by comparison with the MRMS
gauge-adjusted radar QPE over the Contiguous United States (CONUS) in the
wavelet scale domain, which in contrast to the Fourier analysis provides a localised
assessment. Moreover, in addition to the wavelet power spectra of the two fields, the
spectrum of their difference and the correlation of the local wavelet coefficients of
the two fields at various scales are analysed and used in defining the effective
resolution.
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29.2 Data

29.2.1 IMERG

IMERG is the quasi-global time-continuous precipitation product of the NASA
GPM program. To allow time-continuous coverage IMERG combines the observa-
tions of a dozen passive microwave and infrared sensors. The algorithm implements
the CMORPH Kalman filter approach (Joyce and Xie 2011) to dynamically merge
the various instantaneous passive microwave and infrared precipitation fields. It is
therefore labelled as a level-three product. The PERSIANN-CCS (Hong et al. 2004)
and GPROF (Kummerow et al. 2015) algorithms are used to respectively retrieve the
instantaneous infrared and microwave precipitation fields (level two products) on
which IMERG relies. The product’s grid resolution is 0.1� and the temporal sam-
pling is 30 min. In this study, the Final IMERG product (v5), which includes model-
based corrections and gauge adjustment is evaluated at the hourly scale.

29.2.2 MRMS Gauge-Adjusted Radar QPE

The NOAAMulti-Radar Multi-Sensor system (Zhang et al. 2016) integrates the data
from 176 radars and more than 7000 automatic rain gauges over CONUS and
Southern Canada to generate a suite of precipitation estimation products. The
product used in this study as a reference for the evaluation of IMERG is the 1-h
MRMS gauge-adjusted radar QPE. The MRMS gauge-adjusted QPE has a native
grid increment of 0.01�. It is aggregated here at 0.1� to be compared with IMERG. In
spite of the large number of radars composing the MRMS network, some areas
remain poorly covered. Figure 29.1 shows the MRMS radar quality index, which is a
function of the distance to the closest radar and also takes into account the beam
blockage from the relief (Zhang et al. 2016). In this study, only the pixels (at 0.1�) for
which the quality index is higher than 0.5 are retained. For the computation of some
specific scores a higher threshold is retained (e.g., Fig. 29.4).

29.3 Method: Spectral Analysis in the Wavelet Domain

29.3.1 Rationale

Many studies have demonstrated that the performance of satellite estimation prod-
ucts strongly depends on the spatial and temporal scales at which they are evaluated
(Hossain and Huffman 2008; Turk et al. 2009; Sohn et al. 2010; Scheel et al. 2011).
When evaluated at spatio-temporal scales approaching their full nominal resolution,
finely-gridded products may show mediocre performances, to the point that the
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variance of the retrieval error may be in the same order of magnitude as the statistical
variance of the reference precipitation (Shen et al. 2010; Haile et al. 2013; Rios
Gaona et al. 2016). Under the hypotheses that the retrieval error is purely random,
has a zero expected value and is independent from one pixel to another (i.e., is
spatially and temporally independent), its variance naturally decreases through
spatial and temporal averaging with a N�1 decrease rate, where N is the number of
averaged individual estimates (i.e., number of averaged pixels). However, these
hypotheses, are generally not verified, particularly the hypothesis of spatial and
temporal independence of the error. With correlated errors, the decrease rate of the
error variance is significantly slower (von Storch 1999; Hossain and Anagnostou
2006). This makes necessary to evaluate precipitation products at multiple scales.

The validation of satellite products is typically performed by comparison with a
trusted reference dataset. The most straightforward way to perform the multiscale
evaluation is to coarsen the compared fields by aggregation at multiple scales and to
perform a complete analysis at each scale (Turk et al. 2009; Sohn et al. 2010; Scheel
et al. 2011). However, this analysis is highly redundant: all the information
contained in the coarse-resolution fields is necessarily present in the fine-resolution
fields too. This can make the interpretation of the multiresolution scores ambiguous.
For example, if the retrieval performance appears to be identical at all scales there
may be two different explanations: (1) The product performs identically well at
capturing fine-scale and coarse-scale variations. (2) The fine-scale (high-frequency)
variations are negligible compared to the coarse-scale (low-frequency) variations in
both the evaluated product and the reference dataset; in that case the high-resolution
fields and low-resolution fields are in fact very similar (the high-resolution fields
being simply “oversampled” versions of the low-resolution ones) and the retrieval of
the fine-scale variations is not really evaluated.

Fig. 29.1 MRMS radar quality index. The quality index considers the distance to the closest radar
and the beam blockage by the relief (see Zhang et al. 2016 for the definition of the quality index)
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The spectral analysis in the Fourier domain or wavelet domain allows us to
decompose the fields into several frequency bands or several scales and to analyse
them independently. While the multi-resolution analysis by successive coarsening
can be seen as equivalent to analysing the fields through a suite of low-pass spatial
filters, the spectral analysis can be seen as equivalent to analysing the fields through a
suite of band-pass filters. The essential question we want to answer through the
spectral analysis is: “what supplementary information does the fine-resolution fields
contain relatively to the coarse resolution fields?”. We chose here to perform the
spectral analysis in the wavelet scale domain, using the two-dimensional discrete
orthogonal Haar wavelet decomposition. This choice is guided by the fact that:
(1) The wavelet coefficients are interpretable as local differences or as local gradi-
ents. In particular, the Haar wavelet coefficients are simply computed as the differ-
ence between the spatially averaged values of the analysed variable (here
precipitation rate) in two adjacent rectangular areas. (2) Unlike the Fourier coeffi-
cients, the wavelet coefficients are spatially localised, allowing to study the spatial
variations of the spectral properties of the fields. This in particular overcomes the
issue of spatial and temporal non-stationarity of the precipitation fields. (3) With the
discrete orthogonal wavelet decomposition, the wavelet coefficients are spatially
uncorrelated and uncorrelated across scales. Because of this, the wavelet power
spectrum, which is simply the statistical variance of the wavelet coefficients as a
function of the scale, is unambiguous. Weniger et al. (2017) provides a review on the
use of wavelet transforms for spatial verification.

The discrete orthogonal wavelet decomposition is performed as an iterative
process over a finite number of levels corresponding to dyadically increasing spatial
scales. At the first level, the original field is decomposed into one coarse-scale
component (smoothing coefficients) obtained by convolution of the field with a
low-pass spatial filter, and three fine-scale components (wavelet coefficients)
obtained by convolution of the field with high-pass directional filters (see Appen-
dix). The fine-scale components are retained and the coarse-scale component is
further decomposed at the second level, etc. At the end, since the decomposition
has a finite number of levels, one residual coarse-scale component must be retained
along with the wavelet coefficients at all scales to allow the reconstruction of the
original field. The low-pass filter used for the Haar decomposition is a simple
rectangular averaging filter (see Appendix A). Consequently, analysing the Haar
smoothing coefficients would be strictly equivalent to a multi-resolution analysis by
successive aggregations. Instead, we analyse the high-pass wavelet coefficients at
each scale. In fact, the Haar wavelet coefficients at scale λ contain exactly the
information that is lost when the field is coarsened by averaging from the resolution
λ to the resolution 2� λ. Because there is no redundancy of information across scales
in the wavelet coefficients space, the spatial variations at each scale can be evaluated
independently. We can therefore actually estimate the added value of a high-
resolution field relatively to the same field at a coarser resolution in terms of
information content.

In this article, the “information content” is quantified through the statistical
variance or energy (i.e., sum of the squared values) of the original fields and of the
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wavelet coefficients. In information theory, the “information content” is classically
quantified through the Shannon entropy. One could analyse the Shannon entropy
and mutual information of the wavelet coefficients (Starck et al. 1998; Labat 2005;
Labat et al. 2005). However, we chose here to rather use the variance and covariance
metrics because we also analyse the error field and its wavelet decomposition. The
Shannon entropy depends of the probability of observing a given value in the field
but ignores the numerical value itself. Therefore, the Shannon entropy of the error
field would ignore the amplitude of the errors (Petty 2018).

29.3.2 Implementation

The IMERG and MRMS hourly precipitation fields at 0.1� (about 10 km) are
decomposed through a two-dimensional discrete orthogonal decomposition with
the Haar wavelet. The decomposition is performed at six levels, with resulting
dyadic scales being 10, 20, 40, 80, 160 and 320 km. The residual low-pass compo-
nent of this decomposition is the original field smoothed at the 640 km spatial
resolution. We analyse the wavelet coefficients of IMERG and MRMS at each
scale in terms of their variance (or energy) and covariance as well as the variance
of their difference. The orthogonal wavelet decomposition is energy conservative,
i.e. the sum of the energy of the wavelet coefficients at all dyadic scales plus the
energy of the residual low-pass component equals the energy of the original field.
Because the wavelet decomposition is a linear operation, the wavelet coefficients
coming from the decomposition of the difference of the two fields are equal to the
difference of the wavelet coefficients of the two fields. Consequently, the squared
difference between the two fields equals the sum of the spectral energy of the
difference of their wavelet coefficients at all scales plus the energy of the difference
of their low-pass components.

We noted previously that, in two dimensions, three series of directional wavelet
coefficients are produced at each scale. The first two series of coefficients encode the
variation of the field along the vertical (North-South) and horizontal (East-West)
direction. The third series of coefficients, sometimes referred to as the “diagonal”
coefficients encodes the coupling between the horizontal and vertical variations (see
appendix). One can analyse the three series independently, which allows
characterising anisotropic features in the fields (Kumar and Foufoula-Georgiou
1993; Kumar 1995; Perica and Foufoula-Georgiou 1996). Here, the three series of
coefficients are not differenced, and the spectral energy at each scale is computed as
the sum of the energy of the three series of coefficients. The discrete wavelet energy
spectrum (or power spectrum) S(y,λ) of the field y shows the energy (or variance) of
the wavelet coefficients as a function of the scale λ.

Besides comparing the energy spectra of MRSM and IMERG and analysing the
spectrum of their difference, we also analyse the linear correlation and covariance
between the wavelet coefficients of the two precipitation fields. We note that at each
scale λ, the correlation of the wavelet coefficients is related to the spectral energies:

538 C. Guilloteau and E. Foufoula-Georgiou



Wcor y1, y2, λð Þ ¼ CS y1, y2, λð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S y1, λð Þ S y2, λð Þp ð29:1Þ

and

2� CS y1, y2, λð Þ ¼ S y1, λð Þ þ S y2, λð Þ � S y2 � y1, λð Þ ð29:2Þ

whereWcor(y1, y2, λ) is the linear correlation between the wavelet coefficients of the
y1 and y2 fields as a function of the scale λ; and CS(y1, y2, λ) is the cross-spectrum of
y1 and y2, i.e. co-spectral energy (sum of the products of the wavelet coefficients) of
y1 and y2 as a function of λ.. The first relation is true because the expected value of
the wavelet coefficients at any scale is equal to zero.

Our analysis aims at determining at which scales the spatial variations of precip-
itation are actually resolved by the IMERG product. The following criterion is
chosen to assess the effective resolution. The scale λ is considered resolved if:

S yretr � yref , λ
� �

< 0:5� S yref , λ
� � ð29:3Þ

i.e. if the spectral energy of the error is less than half the spectral energy of the
reference field. Here, yretr denotes the evaluated retrieved precipitation field (IMERG
in our case) and yref the reference precipitation field (MRMS in our case). The
effective resolution is the finest resolved scale.

29.3.3 Illustrative Case Study

Figure 29.2 shows the 1-h cumulative IMERG and MRMS precipitation fields over
the South-Eastern part of CONUS on 30 Nov. 2016 from 0400 to 0500 UTC, along
with the error field (IMERG-MRMS). The Haar wavelet power spectrum of the three
fields is shown on the last panel. One can see that the IMERG precipitation field is
smooth compared to the MRMS field, specifically, it does not reproduce the fine-
scale structures and sharp transitions observed in the MRMS field. Small very active
cells, showing precipitation rates between 35 and 50 mm h�1 are observed in the
MRMS field but not in the IMERG field. Consequently, while the two fields have
about the same average hourly precipitation amount (0.60 mm for MRMS and
0.57 mm for IMERG), for the MRMS field, precipitation is concentrated in a smaller
area (in the MRMS field, 60% of the precipitation is concentrated in a 50,000 km2

area, while in the IMERG field, 60% of the precipitation is concentrated in an
80,000 km2 area). These characteristics are reflected on the wavelet power spectrum:
the IMERG field shows a deficit of energy (i.e., spatial variability) at scales finer than
160 km. The wavelet coefficients are also poorly correlated at fine scales. For
example, at scales of 10 and 20 km the linear correlations between IMERG and
MRMS wavelet coefficients are 0.15 and 0.36, respectively. One direct consequence
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of this is the high spectral energy of the error at these scales. The spectrum of the
error reveals that 94% of the squared error is explained by the misrepresentation of
the spatial variations at scales finer than 160 km (and 58% only for the scales finer
than 40 km). Applying criterion (29.3), the effective resolution is found to be close to
80 km for this case study.

29.4 Results

The approach described previously is extended over CONUS to analyse the perfor-
mance of IMERG over a complete year (November 2016 to October 2017). The cold
season (November–April) and warm season (May–October) are separated for the
analysis. Figure 29.3 shows the cumulative precipitation of IMERG and MRMS for
both periods. The cumulative precipitation fields are smoothed using a 640 km
sliding window averaging to preserve only the coarse-scale patterns. One can see
that IMERG and MRMS show similar patterns, but also that IMERG notably
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Fig. 29.2 (a) MRMS hourly precipitation over South-Eastern US, on 30 Nov. 2016 from 0400 to
0500 UTC. (b) Corresponding IMERG hourly precipitation. (c) IMERG error relative to MRMS.
(d) Wavelet energy spectra of MRMS (thick black line with circles), IMERG (thick blue line with
triangles) and of the error IMERG-MRMS (dashed red line with crosses). The energy spectra are
normalised by the total energy (sum of squared values) of the MRMS field
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(relatively) overestimates the cumulative precipitation amount in the North-West
region along the Pacific Coastline during the cold season. For each period, the
wavelet power spectra of the hourly IMERG and MRMS fields and of the error
field are cumulated at every time step. Figure 29.4 shows the cumulative spectra.
One can see that, the power spectra of IMERG and MRMS are relatively close even
if IMERG slightly overestimates the amplitude of the spatial variations at the
80–160 km scales for the cold season, and underestimates the amplitude of the
spatial variations at scales finer than 80 km during the warm season. The MRMS
cold season and warm season spectra show notable differences. The spectral energy
of MRMS is maximal around 40~80 km during the cold season and around
20~40 km during the warm season. These scales correspond to the typical dimension
of the most prominent structures observed in the MRMS hourly precipitation fields
during the two periods. For IMERG, the maximum of energy is found consistently
around 80 km for both seasons: the IMERG spectrum shows less seasonal variations
than the MRMS spectrum.

The mean squared difference between IMERG andMRMS fields is 1.16 times the
mean squared value (power) of MRMS during the cold season and 0.83 times the
mean squared value of MRMS during the warm season. These numbers may appear
very high; however, Fig. 29.4 shows that the ratio of the spectral energy of the error
over the spectral energy of the MRMS reference varies considerably across scales.
During the warm season, the spectral energy of the error increases with finer scales.
During the cold season, the spectral energy of the error peaks at the 40 km scale. At
the 10 and 20 km scales, the spectral energy of the error is systematically higher than
the spectral energy of MRMS, meaning that erasing the fine-scale variation in

Fig. 29.3 Seasonal cumulative precipitation from Nov. 2016 to Apr. 2017 (cold season) and May –
Oct. 2017 (warm season) for MRMS and IMERG. The fields are spatially smoothed through sliding
window averaging with a 640 km wide window (corresponding to the smoothing function associ-
ated with the Haar wavelet)
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IMERG (e.g., using a sliding window averaging to smooth the field) would reduce
the mean squared difference between IMERG and the 10 km resolution MRMS
fields. The scales 10 and 20 km contribute together 40% of the total squared error
during the cold season and 53% during the warm season. The scales 40 and 80 km
contribute together 40% of the total squared error during the cold season and 35%
during the warm season. Applying the criterion (29.3), we find an effective resolu-
tion around 160 km over CONUS during the warm season. During the cold season,
the spectral energy of the error is relatively high at all scales, and not even the
320 km scale is resolved according to criterion (29.3). However, the spectra in
Fig. 29.4 are averaged over various climatic zones, including mountainous areas,

Fig. 29.4 Average wavelet energy spectra of MRMS (black line with circles), and IMERG (blue
line with triangles) hourly precipitation fields and of the error IMERG-MRMS (dashed red line with
crosses), computed over CONUS Nov. 2016 – Apr. 2017 (cold season) and May – Oct. 2017 (warm
season). The spectra are computed at each time step and summed over the analysed period. The
energy spectra are normalised by the total energy (sum of squared values) of the MRMS fields. Only
the pixels with a MRMS radar quality index >0.9 are retained for the computation of the spectra
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and over 6-month periods during which various types of precipitation systems occur
(including snow storms and hail which are known to be challenging in terms of
satellite retrieval). A local precipitation feature can significantly affect the CONUS-
averaged spectra. For example, the overestimation of precipitation in the North-West
is essentially the reason why IMERG shows more spectral energy than MRMS at all
scales during the cold season. The energy spectra, because they are quadratic
measures are strongly influenced by extreme values in the fields (same is true for
the mean squared error and the linear correlation), and consequently a few extreme
precipitation events may have a strong influence on the computed statistics. A more
detailed analysis is therefore necessary.

The spatial localisation of the wavelet coefficients allows to study the spatial
variations of the spectral properties of the fields, and to perform a detailed
regionalised analysis over CONUS. Figure 29.5 shows as a map the local ratio of
IMERG spectral energy over MRMS spectral energy for all dyadic scales between
10 and 320 km. Overestimation by IMERG of the spectral energy at scales finer than
320 km is observed in particular in the North East during the cold season. During the
warm season, IMERG overestimates the spatial variability at all scales along the
Pacific Coast. The ratio between IMERG and MRMS spectral energy is close to 1 at
all scales in the East during the warm season and in the South East during the cold
season, demonstrating the agreement between MRMS and IMERG energy spectra in
these regions. Strong underestimation by IMERG of the spatial variability at scales
finer than 80 km is observed around �100�W and 30�N (between Texas and New
Mexico) during the cold season, over the South-West (excluding coastal areas)
during the warm season and locally along the Canada-US border during both
seasons. For the 80 km scale and finer scales, a dependence on the distance to the
closest ground radar can be observed: the apparent underestimation of the spatial
variability by IMERG increases when the distance to the radar decreases. This is
explained by the fact that the radar can better capture the fine-scale variability at
shorter ranges. For Fig. 29.4 only the pixels with a quality index higher than 0.9 (i.e.,
pixels close to a ground radar) have been retained to mitigate this effect.

Figure 29.6 shows the regionalised ratio between the spectral energy of the error
and the spectral energy of the MRMS reference. For the scales 40 km and coarser, a
ratio lower than 1 is found in most areas (except locally, along coastal areas and
along the US-Canada border) during the warn season. This is also true in the South-
East during the cold season. In contrast, the spectral energy of the error is larger than
the spectral energy of the reference at all scales in the North and over the Rocky
Mountains for the cold season. This is likely related to the presence of frozen
precipitation during winter in these regions, which is challenging for both the
radar reference and the satellite retrieval. During the warm season, the highest
relative error is found at all scales along the Pacific coastline. However, one must
note that the Pacific coastline (and in particular its southern portion) is exposed to an
extremely low amount of precipitation during the warm season (Fig. 29.3); therefore,
even if the relative errors are large their absolute amplitude is very low. Figure 29.7
shows the local linear correlation coefficients between IMERG and MRMS wavelets
coefficients at all scales. The patterns mostly follow the patterns shown in Fig. 29.6,
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high correlation of the wavelet coefficients corresponding to low spectral energy of
the error. Nevertheless, one will note that, particularly during the cold season, the
spectral energy of the error at scales 320 and 160 km along the north part of the
Pacific coastline is high in spite of the relatively good correlation of the wavelet
coefficients at these scales. This shows that, in this region, the error mostly comes
from a systematic bias: the amplitude of the spatial variations of the precipitation
fields is systematically overestimated, which comes directly from the overestimation
of the cumulative precipitation in winter in this region. Figure 29.8 shows the local
effective resolution of IMERG, estimated using criterion (29.3). During the cold
season, the effective resolution is generally found between 80 and 320 km in the

Fig. 29.5 Ratio of the spectral energy of IMERG hourly precipitation fields over the spectral
energy of MRMS hourly precipitation fields during the cold and warm seasons. The spectral
energies are computed at each time step and summed. A ratio close to one at all scales indicates
the agreement of the IMERG and MRMS wavelet energy spectra
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South-East and in the southern part of California, and locally between 40 and 80 km.
In contrast, an effective resolution coarser than 320 km is found in the northern
regions and over the mountains. During the warm season, the effective resolution is
found finer than 160 km over most of CONUS, between 160 and 320 km in North-
West and over the mountains, and coarser than 320 km in the northernmost regions.
Coastal areas appear to be challenging, with an effective resolution generally coarser
than 320 km during both seasons, except for the Northern coastline of the Gulf of
Mexico where the performance of IMERG is remarkably good even at the 40~80 km
scales.

Figure 29.9 shows the averaged spectra of IMERG, MRSM and of the error
during the cold season computed only over the South-Eastern region where the
effective resolution is finer than 160 km. The cold-season spectra in the South-East
are similar to the all-CONUS warm season spectra. During the warm season and also

Fig. 29.5 (continued)
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during the cold season in the South-West IMERG slightly underestimates the spatial
variability of precipitation at scales finer than 80 km but the IMERG spectrum still
shows substantial spectral energy at scales 10–40 km. This shows that IMERG
hourly precipitation fields are not dramatically smoother than the MRMS hourly
precipitation fields. Consequently, the high value of the spectral energy of the error
at scales finer than 80 km is not caused by the absence of information in the IMERG
fields at these scales but is rather due to the fact that this information does not match
the information in the MRMS fields at the same scales. Both IMERG and MRMS
fields show substantial fine-scale patterns but these patterns are different: they may
be spatially shifted, oriented in different directions or completely independent.

Fig. 29.6 Ratio of the spectral energy the IMERG hourly error (i.e., IMERG-MRMS) over the
spectral energy of MRMS hourly precipitation during the cold and warm seasons. The spectral
energies are computed at each time step and summed. A low spectral energy of the error indicates
the agreement between IMERG and MRMS spatial patterns (gradients) at the corresponding scale
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29.5 Conclusions

The performed spectral comparison of IMERG and MRMS hourly cumulative
precipitation reveals that over the continental United States IMERG can resolve
scales down to 40~80 km. However, in certain areas, and particularly where frozen
precipitation is present, the retrieval of spatial variations of precipitation at scales
between 80 and 320 km can be challenging for IMERG. The spatial variability a
scales 640 km and larger scales was not evaluated against the radar because only a
few geographical areas with such large dimensions are continuously covered by the
MRMS radar network.

The wavelet energy spectra of IMERG and MRMS show generally little differ-
ence. IMERG shows a maximum of energy at a coarser scale than MRMS (around
80 km for IMERG and around 20 or 40 km for MRMS depending on the season). For
regions and seasons dominated by frozen precipitation, IMERG appears to slightly

Fig. 29.6 (continued)
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overestimate the amplitude of the spatial variation of the precipitation rates at scales
between 80 and 320 km. When liquid precipitation is dominant, IMERG tends to
slightly underestimate the spatial variability of precipitation at scales finer than
80 km, producing marginally smoother fields than MRSMS. The error field system-
atically shows high spectral energy at scales finer than 80 km, sometimes higher than
the spectral energy of the radar reference. This is caused by the fact that the fine-scale
variations of the IMERG fields do not match the variations of MRMS as revealed by

Fig. 29.7 Linear correlation between the wavelet coefficients of the IMERG and MRMS hourly
precipitation fields. A high correlation of the wavelet coefficients indicates the agreement between
IMERG and MRMS spatial patterns (gradients) at the corresponding scale. Contrary the spectral
energy of the error, the correlation is not sensitive to potential biases in the magnitude of the wavelet
coefficients
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the low correlation of the wavelet coefficients. During the warm season, the spectral
energy of the error is more concentrated in the fine scales than during the cold
season: scales coarser than 40 km account for only 25% of the total squared error
during the warm season (against 40% during the cold season).

We note that, while the gradients of IMERG and MRMS at scales finer than
80 km do not generally match, they are still statistically similar (in terms of variance
of the wavelet coefficients). Considering that the IMERG merging algorithm relies
on Kalman filtering, one could have expected IMERG retrievals to be dramatically
smoother than the radar reference at fine scales. Moreover, a similar analysis
performed on the GPROF passive microwave instantaneous retrievals on which
IMERG partially relies revealed that GPROF retrievals are significantly smoother
than radar observations (Guilloteau et al. 2017). In contrast, only a marginal deficit
of spectral energy is observed at scales 10 km–40 km for IMERG compared to

Fig. 29.7 (continued)
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MRMS. This may be partially due to the sampling variance introduced by the limited
temporal frequency of the satellite observations. Indeed, while each MRMS hourly
precipitation field is computed as the average of 30 instantaneous precipitation fields
(one observation every 2 min), IMERG hourly precipitation is derived from only a
few instantaneous satellite observations (2 infrared observations and no more than
one or two microwave observations in 1 h).

In terms of mean squared error, it is more penalising to retrieve variations
uncorrelated with the reference than to retrieve no variation at all at a given scale.
This can be related to the concept of “double penalty” (Rossa et al. 2008;
Mittermaier 2014), which states that mislocating a feature is more penalising than
not detecting it in terms of mean squared error. Consequently, a filtering operation

Fig. 29.8 Effective resolution of IMERG hourly precipitation evaluated against MRMS during the
cold and warm seasons. The criterion (29.3) is used to define the effective resolution
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reducing the fine-scale variability of IMERG would reduce the mean squared error
(relatively to the MRMS reference) (Turner et al. 2004). However, this would
produce unrealistically smooth fields. The suitability of such a filtering procedure
depends of the targeted application; some applications such as, for example, rainfall-
runoff modelling over a large basin, may tolerate mislocated fine-scale features
better than others. Moreover, the smoothing of the fields would necessarily reduce
the statistical variance and erase local extremes, which may have a considerable
effect on the computed rainfall-runoff values for example (Harris et al. 2001; Smith
et al. 2004; Nikolopoulos et al. 2010; Vergara et al. 2014).

The analysis of the spatial patterns is performed here at the hourly temporal scale.
The poor ability of IMERG to resolve scales finer than 80 km at the hourly time scale
does not mean that this product cannot resolve fine-scale patterns at longer time
scales or resolve the fine-scale climatology. Indeed, the effective spatial resolution is
expected to vary with the desired temporal resolution. Sampling-related noise in
particular is expected to decrease at coarse time scales (Nijssen and Lettenmaier
2004; Gebremichael and Krajewski 2004). Figure 29.10 shows the effective resolu-
tion of IMERG evaluated against MRMS at the daily scale; the effective resolution is
generally found to be improved by a factor of about two compared to the hourly
scale. A comprehensive assessment would require performing the analysis at more
temporal scales. Temporal averaging generally tends to reduce the fine-scale spatial
variability, giving rise to smoother fields. However, some regions may still show
strong climatic gradients at scales of a few km or a few dozen km (Hirose and Okada
2018). We note that, as well as for the spatial variations, a (one-dimensional) wavelet
spectral analysis can be performed to assess the ability of a product to capture the

Fig. 29.9 Same as Fig. 29.4 for the cold season, but computed only over the South-Eastern region
where the effective resolution is found finer than 160 km
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temporal variations of precipitation at a given location (Whitcher et al. 2000; De
Jongh et al. 2006). One can also study the coupling between the temporal and spatial
variations by performing successively the spatial and temporal wavelet decomposi-
tions (Guilloteau et al. 2016).
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Program under Grants 80NSSC19K0684 and NNX16AO56G, and by NSF grants DMS-1839336
and ECCS-1839441. The wavelet decomposition procedure was implemented in R distributed
under GNU General Public License, using the Waveslim 1.7.5 package (Whitcher 2015).

Fig. 29.10 Effective resolution of IMERG daily precipitation evaluated against MRMS during the
cold and warm seasons. The criterion (29.3) is used to define the effective resolution

552 C. Guilloteau and E. Foufoula-Georgiou



Appendix: Two-Dimensional Discrete Orthogonal
Decomposition with the Haar Wavelet

Wavelets Functions in One Dimension and N Dimensions

In one-dimensional or multi-dimensional spaces, the wavelet transform is obtained
through the convolution of the analysed signal with specific analysing functions
called wavelets. Wavelets are locally oscillating functions; to be admitted as a
wavelet a given function must meet several requirements such as having a zero
mean and being square integrable (Kumar and Foufoula-Georgiou 1997; Mallat and
Peyré 2008).

The function obtained by the dilation and/or translation of a wavelet is also a
wavelet; multiple “daughter wavelets” can then be generated from a “mother wave-
let”, allowing multiscale analyses. In one dimension:

ψa,b xð Þ ¼ a�
1
2 ψ

x� b
a

� �
ð29:4Þ

where ψa, b is the daughter wavelet, ψ is the mother wavelet, a 2 ℝ is the dilation
coefficient (or scale factor) and b 2 ℝ is the translation coefficient.

In N dimensions:

ψ
a,B

! X
!� �

¼ a�
1
2N ψ

X
! � B

!

a

 !
ð29:5Þ

where B
!
is the translation vector belonging to ℝN.

The wavelet transform of the analysed function y X
!� �

is obtained by computing

the inner products with the wavelets:

T a,B
!� �

= y,ψ
a,B
!

D E
=
Z
ℝN

y X
!� �

ψ
a,B

!� X
!� �

dX
! ð29:6Þ

where T is the wavelet transform of y, * denotes the complex conjugate operator and
h i denotes the canonical inner product of L2(ℝN).
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The Haar Discrete Orthogonal Wavelets in One and Two
Dimensions

In one dimension, the Haar mother wavelet is defined as:

ψ xð Þ ¼
1 if 0 � x < 0:5

�1 if 0:5 � x < 1

0 otherwise

8>><
>>: ð29:7Þ

The Haar wavelet is associated to the smoothing function (or scaling function) ϕ:

ϕ xð Þ ¼
1 if 0 � x < 1

0 otherwise

(
ð29:8Þ

ψ and ϕ are orthogonal functions as their inner product equals zero. As for the
wavelet function, multiple smoothing functions ϕa, bcan be generated by dilatation
and translation of ϕ (Eq. 29.4). While the wavelet ψ is a high-pass (H) convolution
filter, the smoothing function ϕ is a low-pass (L) convolution filter.

By discretising the scaling and translation coefficients a and b, such as a 2 {2i,
i 2 ℤ} and b 2 {k � a, k 2 ℤ} the ensemble of the Haar daughter wavelets {ψa, b}
forms an orthogonal basis of L2(ℝ).

In two dimensions, the Haar wavelet and scaling functions are defined as follows:

ϕ2D x1, x2ð Þ ¼ ϕ x1Þϕ x2ð Þð
ψH x1, x2ð Þ ¼ ψ x1Þ,ϕ x2ð Þð
ψV x1, x2ð Þ ¼ ϕ x1Þ,ψ x2ð Þð
ψD x1, x2ð Þ ¼ ψ x1Þ,ψ x2ð Þð

ψH, ψV and ψD are the horizontal (HL), vertical (LH) and diagonal
(HH) two-dimensional Haar wavelets. ϕ2Dis the two-dimensional Haar smoothing
(LL) function. The four functions are graphically represented in Fig. 29.11.

The ensemble of the two-dimensional Haar wavelets ψH

a,B
!,ψV

a,B
!,ψD

a,B
!

	 

with

a 2 {2i, i 2 ℤ} and B
! 2 k

! � a, k
! 2 ℤ2

n o
forms an orthogonal basis of L2(ℝ

2). The

decomposition of a two-dimensional precipitation field in this basis is illustrated in
Fig. 29.12.
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Fig. 29.11 Representation of the spatial convolution filters used to perform the two-dimensional
Haar wavelet decomposition. A and B and C are the wavelet functions ψH, ψV and ψD used to
compute the horizontal (HL), vertical (LH) and diagonal (HH) wavelet coefficients. D is the
smoothing function ϕ2D used to compute the smoothing (LL) coefficients. The four functions are
orthogonal, meaning that the scalar product of one with any of the other three equals zero

Fig. 29.12 Illustration of the discrete wavelet decomposition process of a two-dimensional field
(using the Haar wavelet)
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