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Abstract Accounting for the burial of tracer particles during bedload transport is an important
component in the formulation of tracer dispersal in rivers. Herein we propose a modified active layer
formulation, which accounts for the effect of burial and admits analytical solutions, enabling insightful
exploration of the phenomenon of superdiffusion of bedload tracers at the intermediate timescale. This
phenomenon has been observed in recent numerical results using the 2-D Exner-Based Master Equation. By
assuming that tracers in the active layer can exchange with nontracer particles in the substrate layer to
preserve mass, and that tracers entering the substrate layer get permanently trapped during the timescale of
analysis, we are able to deduce governing equations for the tracer concentration in both layers. The active
layer tracer concentration is shown to be governed by an advection-diffusion equation with a sink term,
and the increase of tracers in the substrate layer is driven by a corresponding source term. The solution for
the variance of tracer population is analytically determined and can be approximated by the sum of a
diffusion-induced scaling (∝t1) and an advection-induced scaling (∝t3) terms at the intermediate timescale,
which explains the phenomenon of superdiffusion. The proposed formulation is shown to be able to capture
the key characteristics of tracer transport as inferred by comparison with available results of
numerical simulations.

1. Introduction

Deployment of tracer particles to explore the transport, erosion, and deposition of bedload material has been
extensively conducted in the course of laboratory and field experiments recently. Such deployments can pro-
vide essential information on the role of bedload transport with regard to aquatic life and water quality, for
example, through the interactions of physical, chemical, and biological processes with dissolved contami-
nants, sediment particles, and aquatic habitat (Ferguson & Hoey, 2002; Hassan et al., 1991, 2013; Martin
et al., 2012; Ng & Yip, 2001; Schwendel et al., 2011; Singh et al., 2009; Wong et al., 2007). Typical field studies
seed tracer particles at different positions along the river (e.g., Ferguson et al., 2002), and the virtual velocity
and dispersion of the entire tracer population can be computed by recording the streamwise travel distances
of these tracers at a range of timescales. The theoretical basis of such explorations can be dated back to the
classical work of Einstein (1950), who proposed a statistical description of bedload transport. The motion of
bedload particles was formulated as a series of alternating steps and waiting periods, which were further
quantified in terms of statistics (Einstein, 1937, 1950). This formulation has been widely followed and further
developed (Ancey et al., 2008; Charru et al., 2004; Cheng & Chiew, 1998; Furbish et al., 2012; Ganti et al., 2010;
Hassan et al., 1991; Hill et al., 2010; Nelson et al., 1995; Paintal, 1971; Parker et al., 2000; Pelosi et al., 2014;
Singh et al., 2009; Tsujimoto, 1978).

The gradual separation of bedload tracer particles from each other during the transport process, which we
term as “diffusion”, can be mathematically characterized (Bouchaud & Georges, 1990; Metzler & Klafter,
2000) by the scaling of the variance σ2 of the displacement of the ensemble of particles as a function of time
t, that is, as σ2 ∝ tγ, where γ is a constant. Transport processes that are governed by a diffusion equation (e.g., a
Brownian motion) whose fundamental solution is a Gaussian distribution with variance growing linearly with
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time (γ = 1) are referred to as normal diffusion. If γ ≠ 1, which means that particles in the ensemble separate
from each other at a rate either faster or slower than a normal diffusion process, the bedload transport is
regarded as anomalous, specifically, superdiffusion (γ > 1; with a special case of γ = 2, ballistic diffusion) or
subdiffusion (γ < 1).

Einstein’s formulation suggests a normal diffusion regime for the transport of bedload particles; this is under-
stood by the assumption of thin-tailed step length and waiting time distributions (Ganti et al., 2010; Schumer
et al., 2009). However, there have been both experimental and field observations (Bradley et al., 2010; Drake
et al., 1988; Martin et al., 2012; Nikora et al., 2002; Roseberry et al., 2012) confirming various anomalous diffu-
sion regimes during bedload transport. Supported by disparate data sets, a conceptual model has been pro-
posed (Nikora et al., 2002) for transitions from ballistic to normal and finally to subdiffusion as characterized
by different timescales, qualitatively taking into account the effects of particle inertia, infinite resting periods,
and other system properties for explaining the underlying mechanisms (Martin et al., 2012; Nikora et al.,
2002). It has been argued that particle size heterogeneity, that is, a broad distribution of particle sizes, is a
possible reason for anomalous diffusion (Ganti et al., 2010). This was theoretically interpreted as the superpo-
sition of thin-tailed (exponential) step length distributions for each particle size leading to a heavy-tailed form
of the distribution (power law; e.g., Hill et al., 2010). Suggesting that heavy-tailed step length and/or waiting
time distributions can be the cause of anomalous diffusion, fractional advection-diffusion equations have
been introduced and applied in the mathematical formulation of bedload tracer transport (Bradley et al.,
2010; Ganti et al., 2010; Pelosi et al., 2016; Schumer et al., 2009; Voller & Paola, 2010). Following these leads,
a number of authors have directly focused on the waiting time distribution for bedload particles, for example,
using sonar- and lidar-tracked bed elevation to calculate waiting times at each elevation level in flume experi-
ments (Voepel et al., 2013) and modeling bed evolution by the mean-reverting random walk process (Martin
et al., 2014).

All the abovementioned research is focused on explaining the emergence of anomalous diffusion in the con-
text of heavy-tailed step length/or waiting time distributions, the theoretical basis of which can be credited to
the systematic exploration of Weeks et al. (1996) on the biased random walk model. However, we note that
the approach of attributing the various anomalous diffusion regimes to different combinations of heavy or
thin tailed distributions (of step lengths and waiting times) is valid only for long-term asymptotic processes
(Weeks et al., 1996). Thus, the mechanism of anomalous diffusion of bedload transport before this limit is
reached remains unclear. It can be a challenge to distinguish the associated physical timescales for a specific
process (Martin et al., 2012; Phillips et al., 2013). One interesting example in this respect that we can consider
is the numerical simulation of Pelosi et al. (2016) revealing a streamwise superdiffusion of tracer particles
within the time span of ~102 hr. The purpose of their study is to model the phenomenon of advective slow-
down observed in field experiments (Ferguson et al., 2002; Ferguson & Hoey, 2002; Haschenburger, 2013),
which characterizes the gradual decrease of mean values of streamwise virtual velocity (traveled distance
divided by the flow duration) of the tracer population. The long-term asymptotic transport of tracer particles
for such a system is indicated by the approach to a constant virtual velocity (Ferguson & Hoey, 2002), which is
not reached in the results of Pelosi et al. (2016); thus it may not be appropriate to resort to the tail character-
istics (of waiting time distribution) for interpretation of the emergent superdiffusion of the tracers.

Conversely, the physical process of gradual burial of tracer particles is key to the observed advective slow-
down of bedload transport (Ferguson et al., 2002) and might also be responsible for the superdiffusion
observed in numerical simulations (Pelosi et al., 2016). Basically, during bedload transport a moving particle
can be deposited when it gets trapped in a hole associated with the microstructure of the riverbed surface
and then may (a) be buried due to the deposition of bedload particles on top of it as well as in adjacent loca-
tions, or alternatively (b) be re-entrained into motion due to scour at an appropriate depth. The deeper the
tracer particle gets buried, the harder it is to be re-entrained and to participate again in streamwise transport,
thus affecting dispersion of the tracer population. Based on the 2-D Exner-Based Master Equation (2-D EBME;
Pelosi et al., 2014), Pelosi et al. (2016) consider different probabilities for a particle to jump downstream at
different vertical positions in the riverbed, so taking into account the effect of vertical exchange of particles
(i.e., both burial and exhumation of particles) during streamwise transport. However, the 2-D EBME has to be
solved numerically, a feature which limits the potential of obtaining physical insight into bedload transport
(e.g., revealing the mechanism of intermediate timescale superdiffusion). As a comparison, analytical consid-
erations are possible for the most simplified active layer formulation (Ganti et al., 2010; Parker et al., 2000).
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Here the active layer formulation is used for the approach of EBME based on the concept of an active layer,
which is a thin layer on top of the riverbed where bedmaterial exchanges with bedload, which can be further
characterized as a dynamical active layer associated with a characteristic length scale of bedload grain size
(Church & Haschenburger, 2017). Under steady and uniform transport conditions, an advection-diffusion
equation (ADE) has been deduced governing the streamwise transport of tracers in the active layer (Ganti
et al., 2010), which however is incapable of capturing the key features of advective slowdown and superdiffu-
sion, at least in the case of uniform sediment (Pelosi et al., 2016). This is due to the oversimplification of the
active layer formulation by discarding any vertical structure within the active layer, and neglecting particle
exchange with the substrate layer underneath (Ganti et al., 2010; Parker et al., 2000; Pelosi et al., 2014). We
expect that a formulation accounting for a simplified version of vertical exchange of tracers between the
active layer and the substrate would enable an insightful theoretical study regarding bedload transport at
the intermediate timescale.

To this end, in this paper we explicitly incorporate the process of gradual burial of tracer particles into the
active layer formulation for bedload transport, enabling a convenient analytical treatment of the burial effect.
In section 2, we present a new formulation and use it to deduce the governing equations for tracer particle
concentration distributions in both the active and substrate layers. Then we solve the governing equations to
obtain detailed information about transport processes in each layer and also the total concentration distribu-
tion for the whole tracer population. In section 3, we analytically obtain the moments of the concentration
probability density function, and in particular the time evolution of the variance of the tracer population.
This dependence of variance on time allows the determination of the different anomalous regimes of bed-
load diffusion that may arise. Through comparison with existing numerical results, we demonstrate that even
this simplified model that admits analytical solutions can well capture the key characteristics of the tracer
particle transport in terms of the advective slowdown and superdiffusion features. The limitations and
strengths of the present model are discussed in the last subsection.

2. Formulation
2.1. Shallow Burial and Exhumation of Particles in the Active Layer Formulation

In the original active layer formulation (Ganti et al., 2010; Parker et al., 2000; Pelosi et al., 2014), it is assumed
that only a thin top layer (the active layer, with a thickness La [L]) of the bed material can exchange with the
moving bedload particles through entrainment (measured by E, the mean volume rate per unit area of par-
ticles entrained into transport [L/T]) and deposition (measured by D, the mean volume rate per unit area at
which particles cease motion and enter the active layer [L/T]). Below the active layer, there is a so-called sub-
strate layer with a thickness of Ls, thematerial of which does not exchange with the active layer (no net aggra-
dation or degradation under the equilibrium transport conditions). Thus, what is described by the active layer
formulation for the transport of a single tracer particle is as follows. The tracer may initiate its transport from
this top layer of riverbed, the active layer, by performing a jump (entrainment into flow) with a random length
to a downstream location (deposition back into active layer) and temporarily staying there, until it starts the
next jump after a random time interval (waiting time). This process is characterized by the jump length and
waiting time distributions of the tracer particles, which are in turn related to the physical transport environ-
ment, including flow conditions and particle size. We note that physically, a tracer should stay on top of the
riverbed at the very beginning of the waiting period, but it can be buried by other particles arrived at some
later time (burial), before it is entrained to move again (exhumation). It is seen that by specifying this one-
dimensional (streamwise) travel-and-stop behavior of tracers in the active layer, the relatively frequent burial
and exhumation of particles (i.e., at a relatively short timescale characterized by a couple of successive jumps
andwaiting periods of a tracer) in a shallow layer of the riverbed during streamwise transport can be analyzed.

2.2. Deep Burial of a Small Portion of Particles

In contrast to the relatively frequent vertical exchange of tracers in a shallow upper layer of the riverbed adja-
cent to flowing water, during longer times of transport consisting of many successive jumps and waiting
periods of a particle, the ensemble of tracers can gradually move deeper and deeper downward into the
bed, which may cause a very small portion of the particles to be buried deep enough to become effectively
immobile for later transport (at the timescale of consideration). Such behavior has been found in field
measurements (Ferguson et al., 2002; Hassan & Church, 1994). In this paper, to model this deep burial and
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near-immobilization of tracer particles during the bedload transport process, but at the same time maintain
mass balance, we modify the active layer formulation and assume that there is an even exchange of tracer
particles (from the active layer) with nontracer particles (from the substrate layer) at a frequency Js [1/T]
(Figure 1, and Js ≪ D for the deep burial), such that the thickness of both layers remains constant. The
assumption could be justified in terms of negligible upward movement of deeply buried tracers from the
substrate to the active layer, due to the facts that (1) deep burial of tracers is a very slow process (Js ≪ D)
and (2) the number of tracer particles in the substrate is orders of magnitude smaller than that of
nontracer particles, which may be roughly related to the fact that La ≪ Ls with La/Ls of the order of 10�2

(Hassan & Church, 1994). Under this assumption of our simplified formulation, once the tracer particles
enter the substrate layer, they become permanently trapped and cannot be entrained into transport again,
at least during the timescale of consideration. However, we note that this assumption provides a first
estimate of the actual vertical exchange of bedload particles; deeply buried tracers may still move upward
and participate again in the streamwise transport, although at a much smaller probability compared with
that for deep burial. Furthermore, we emphasize that our approach mimics a pseudopermanent or
quasipermanent trapping, in that particles in the substrate may be exhumed and re-entrained at large
timescales. Using our simplification of permanent trapping, we can see how (and to what extent) the
resulting model can reproduce the actual bedload transport in terms of capturing the key features of
advective slowdown and superdiffusion for the ensemble of tracer particles at intermediate timescales.

We start from the classical entrainment form of the Exner equation of sediment conservation (Ganti et al.,
2010; Parker et al., 2000; Pelosi et al., 2014):

1� λp
� � ∂η x; tð Þ

∂t
¼ �E x; tð Þ þ D x; tð Þ; (1)

where λp is the bed porosity, η is the mean bed elevation [L], and t is the time [T]. Following Pelosi et al. (2014),
we introduce the particle entrainment frequency J [1/T] in the definition of the sediment entrainment rate:

E x; tð Þ ¼ 1� λp
� �

DpJ x; tð Þ; (2)

where Dp is particle size [L]. We also relate the deposition rate at point x to the entrainment rates upstream in
terms of the following convolution integral (Ganti et al., 2010; Parker et al., 2000):

Figure 1. Schematic of the formulation of a riverbed with bedload particles moving in the water, an active layer that
exchanges with the moving bedload particles, and a substrate layer of material. In this paper, the tracers (red circles) in
the active layer can be entrained (with a volume rate per unit area per unit time E) into motion and deposited (with a
volume rate per unit area per unit time D) somewhere downstream back into the active layer, or alternatively, become
permanently trapped (characterized by a frequency Js), at the middle-range timescales considered here, in the substrate
layer.
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D x; tð Þ ¼ ∫
∞

0
E x � r; tð Þps rð Þdr; (3)

where ps(r) is the probability density function (PDF) of step length. Neglecting the travel time of particle step
during transport, equation (3) accounts for deposited particles at a given streamwise location coming from all
the upstream locations, with a specific step length for each particle equal to the distance between its entrain-
ment and deposition. We then rewrite equation (1) in the form

∂η x; tð Þ
∂t

¼ �DpJ x; tð Þ þ Dp ∫
∞

0
J x � r; tð Þps rð Þdr: (4)

We denote by fa the fraction of tracer particles in the active layer. Considering the simplified case of equili-
brium transport, for which η, La, J, and the PDF of ps(r) are all constant with respect to time t and streamwise
position x, the active layer formulation (equation (4)) without considering the burial effect is

La
∂f a x; tð Þ

∂t
¼ �DpJ f a x; tð Þ þ Dp ∫

∞

0
J f a x � r; tð Þps rð Þdr; (5)

which indicates the conservation of tracer particles in the active layer. Thus, the time variation of tracers (the
term in the LHS of equation (5)) is caused by the combined action of entrainment (tracers leaving the active
layer, the first term in the RHS of equation (5)) and deposition (tracers entering the active layer, the second
term in the RHS of equation (5)).

Particle burial basically corresponds to another process under which the tracers leave the active layer at rate
Js, which is here taken as a constant, indicating a constant fraction of active layer tracers that are removed per
unit time. When considered in the governing equation, the term to account for the burial effect is similar in
form with that for entrainment:

La
∂f a x; tð Þ

∂t
¼ �DpJ f a x; tð Þ � DpJsf a x; tð Þ þ DpJ ∫

∞

0
f a x � r; tð Þps rð Þdr: (6)

Correspondingly, tracers leaving the active layer enter the substrate layer as a result of the burial effect,
leading to an increase of the fraction of tracer particles fs in the substrate layer:

Ls
∂f s x; tð Þ

∂t
¼ DpJsf a x; tð Þ; (7)

where the constant Ls is the thickness of the substrate layer.

Proceeding under the assumption of a thin-tailed step length distribution, we apply the Fourier transform
(Ganti et al., 2010; Pelosi et al., 2016)

_

f a k; tð Þ ¼ ∫
∞

�∞
exp �ikxð Þf a x; tð Þdx (8)

to equation (6), obtaining

La
∂

_

f a k; tð Þ
∂t

¼ �DpJ
_

f a k; tð Þ þ DpJ
_

f a k; tð Þ _

ps kð Þ � DpJs
_

f a k; tð Þ; (9)

We then introduce a Taylor series expansion for the transformed step length PDF, keeping only the first
three terms:

_

ps kð Þ ¼ 1� ikμ1 þ
1
2

ikð Þ2μ2 þ⋯; (10)

where
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μp ¼ ∫
∞

�∞
rpps rð Þdr (11)

is the pth order moment of the step length PDF.

Substituting equation (10) into equation (9) and performing an inverse Fourier transform leads to an ADE
(with sink term) for tracers in the active layer:

∂f a x; tð Þ
∂t

¼ �c
∂f a x; tð Þ

∂x
þ Dd

∂2f a x; tð Þ
∂x2

� χf a x; tð Þ; (12)

and a corresponding result for tracers in the substrate layer (from equation (7)):

Ls
La

∂f s x; tð Þ
∂t

¼ χf a x; tð Þ; (13)

where

c ¼ DpJμ1

La
; Dd ¼ DpJμ2

2La
; χ ¼ DpJs

La
: (14)

Here c is the virtual velocity by which the centroid of the tracer population in the active layer travels down-
stream, Dd is the diffusion coefficient characterizing the diffusion of the tracer population in the active layer,
and χ is the scaled burial frequency [1/T] (constant fraction of active layer tracers that are removed per
unit time).

Note that equations (12) and (13) are all linear equations, so we can define the nondimensionalized bedload
tracer concentrations in the active and substrate layers, respectively, as

Ca x; tð Þ ¼ Laf a x; tð Þ
M

; Cs x; tð Þ ¼ Lsf s x; tð Þ
M

; (15)

where M ¼ ∫
þ∞

�∞
Laf a x; tð Þ þ Lsf s x; tð Þ½ � dx is determined by the initially released (t = 0) total amount of tracer

particles, which does not change with time (thus a constant) due to conservation of tracers in the system.
This leads to the governing equations

∂Ca x; tð Þ
∂t

¼ �c
∂Ca x; tð Þ

∂x
þ Dd

∂2Ca x; tð Þ
∂x2

� χCa x; tð Þ; (16)

and

∂Cs x; tð Þ
∂t

¼ χCa x; tð Þ; (17)

with the total dimensionless tracer concentration being

Ctot x; tð Þ ¼ Ca x; tð Þ þ Cs x; tð Þ: (18)

Compared with the ADE for bedload tracers derived by Ganti et al. (2010), it is seen in equation (16) that an
additional sink term is present in the governing equation for tracer particle concentration within the active
layer, indicating a gradual decrease of tracer mass remaining in this layer as time passes. Equation (16) is con-
sistent in form with the result deduced under the framework of birth-death Markov processes for active bed-
load particles (Ancey et al., 2015; Ancey & Heyman, 2014), the exchange of which with nonactive particles by
entrainment and deposition is represented by a source term in the governing equation (the source term here
captures both burial and exhumation of particles). In comparison, the sink term in equation (16) represents a
simplified process (only the burial effect for active tracers), which can be seen as a permanent sink for tracers
during the timescale under consideration.

10.1029/2018JF004654Journal of Geophysical Research: Earth Surface

WU ET AL. 6



3. Results and Discussion

When focusing on the transport process of bedload tracers, not only must the active tracer particles in the
active layer be considered, but also the tracer particles trapped in the substrate layer should be accounted
for (Ganti et al., 2010; Parker et al., 2000; Pelosi et al., 2014). Thus, the discussion here with regard to tracer
concentration distribution and its variance will be based on total concentration, as defined by equation (18).

3.1. Particle Concentration Distribution and Evolution

The technique of exponential transformation is a standard method for solving the ADE with a sink term like
equation (16) (Ancey & Heyman, 2014; Zeng & Chen, 2011). Here we rewrite the active-layer tracer concentra-
tion Ca(x, t) into the form of a product involving an exponential term:

Ca x; tð Þ ¼ Ca
0
x; tð Þ exp �χ tð Þ; (19)

which can be used to eliminate the sink term in equation (16) with Ca
0
(x, t), as well as the scaled burial

frequency χ is defined in equation (14). Substituting equation (19) into equation (16) yields

∂Ca
0
x; tð Þ

∂t
¼ �c

∂Ca
0
x; tð Þ

∂x
þ Dd

∂2Ca
0
x; tð Þ

∂x2
; (20)

which turns out to be a conventional ADE.

Consider the case for which all the tracer particles are released within the active layer of the riverbed at the
very beginning of the observation period (t = 0) at the origin (x = 0). Then, the initial condition is a Dirac delta
function for the active layer:

Ca x; tð Þjt¼0 ¼ δ xð Þ;

Cs x; tð Þjt¼0 ¼ 0:

(21)

Under the given initial condition, equation (20) can be easily solved to give

Ca
0
x; tð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πDd t
p exp � x � ctð Þ2

4Dd t

 !
; (22)

and the tracer concentration distribution in the active layer is obtained from equation (19) as

Ca x; tð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDd t

p exp � x � ctð Þ2
4Dd t

� χ t

 !
: (23)

Based on equations (17), (18), and (23), we obtain

Ctot x; tð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDd t

p exp � x � ctð Þ2
4Dd t

� χ t

 !

þ ∫
t

0

χffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDd t

p exp � x � ctð Þ2
4Dd t

� χ t

 !
dt:

(24)

Equation (22) is the solution for the conventional ADE, indicating that at a given time, the streamwise
distribution of the tracer concentration forms a Gaussian distribution. As time passes, the center of the
Gaussian distribution moves downstream with virtual velocity c, while the spreading of the distribution is
characterized by the diffusion coefficient Dd. With the burial effect incorporated, the evolution of the tracer
concentration in the active layer is additionally affected by an exponential decay term (see equation (23)). As
shown in Figure 2, compared with the distributions in the absence of the burial effect, the total mass of
tracer particles in the active layer (i.e., the area under the curve) gradually decreases. In addition, the area
difference between each pair of curves at a given time represents the tracer mass trapped in the
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substrate layer. The concentration distribution of tracer particles in the
substrate layer is determined by the second term in the RHS of equa-
tion (24), which also reflects the fact that nontracer particles in the sub-
strate layer move into the active layer (mass conservation for each
layer). The integral cannot be expressed in explicit form, but it can be
easily evaluated numerically.

The total concentration distribution is obtained by accounting for tracer
particles in both the active and substrate layers, as specified by equa-
tion (24) and illustrated in Figure 3. It is obvious that immobile tracers bur-
ied in the substrate layer introduce an upstream tail in the concentration
distribution, and the downstream peak of the distribution corresponds
to the central location of the tracers within the active layer. Also, since
the buried tracers in the substrate layer are immobile, the shape of the
upstream tail remains invariant, in comparison with the peak of the con-
centration distribution traveling downstream at constant velocity c.

3.2. Analytical Solution for Tracer Concentration Variance

Since we have already obtained the total concentration distribution
describing the bedload tracer particles transported as a virtual plume
(equation (24)), we can now directly calculate the variance of the distribu-

tion to distinguish different regimes of bedload diffusion. We do this as an alternative to resorting to the
Einstein-Smoluchowski description (Fathel et al., 2016), which requires information on the trajectories of
the particles. In order to obtain the analytical solution for the variance of the bedload tracer concentration,
we first define the pth order concentration moment

mp tð Þ ¼ ∫
∞

�∞
xpCtot x; tð Þdx: (25)

The relation between the variance and the moments can be expressed as

σ2 tð Þ ¼ ∫
∞

�∞
x �m1ð Þ2Ctot x; tð Þdx ¼ m2 �m2

1: (26)

We can easily calculate the first three concentration moments m0, m1 and m2 by substituting equation (24)
into equation (25):

m0 ¼ 1; (27)

m1 tð Þ ¼ c
χ

1� e�χ tð Þ; (28)

and

m2 tð Þ ¼ 2Dd 1� e�χtð Þ
χ

þ 2 1� e�χt � e�χtχtð Þc2
χ2

: (29)

The zeroth-order concentration moment m0 stands for the normalized total mass of bedload tracers in the
river. As expected from the mass conservation of tracers, m0 = 1; that is, the initially released tracers either
stay in the active layer and gradually travel downstream, or become permanently buried somewhere (in x
direction) in the substrate layer and cannot be entrained anymore.

The first-order concentration moment m1 describes the streamwise displacement of the centroid of the tra-
cer particle population (or the mean travel distance of the virtual plume). If we calculate the downstream tra-
vel velocity of the centroid by

Figure 2. Spatial distribution of the active-layer tracer concentration (Ca) at
three different times: with (red solid line, characterized by equation (23))
and without (black dashed line) the effect of permanent burial of tracers in
the substrate layer. The parameters chosen to show the evolution are as
follows: Dd = 0.01 m2/s, c = 0.005 m/s, χ = 5 × 10�6 s�1.
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v ¼ dm1

dt
¼ c e�tχ ; (30)

it is seen that when considering all the tracer particles, the velocity in equation (30) decreases with time,
which agrees with the results of Pelosi et al. (2016) indicating an advective slowdown of the mean streamwise
velocity of the tracer population. Although the centroid of the active tracers (tracers in the active layer) con-
tinues to move downstream at constant velocity c (Figure 2), the velocity for the whole population slows
down because more and more particles become permanently trapped (Figure 3). Asymptotically all tracers
get trapped in the substrate layer, so that v in equation (30) converges to zero for a large time, the scale of
which is dependent on the parameter of the scaled burial frequency χ. For example, for the case t = 3/χ, v
drops to ~5% of its initial value, and v can be considered as asymptotically approaching zero when t is an
order of magnitude greater than 1/χ (~0.0045% of the initial value), that is, following the criterion t ≫ 1/χ.

Finally, we deduce the analytical solution for the variance of the tracer particle population according to equa-
tions (26)–(29):

σ2 tð Þ ¼ 2Dd 1� e�χtð Þ
χ

þ 1� e�χt � 2e�χtχtð Þc2
χ2

: (31)

Understanding how σ2(t) evolves with time allows us to determine the diffusion regimes for the released
bedload tracers during transport. In order to do this, it is useful to analyze the following two parts of the
expression in the RHS of equation (31):

Figure 3. Spatial distribution of total (active layer + substrate, by equation (24)) concentration (Ctot) of tracer particles at different times. The parameters adopted are
Dd = 0.01 m2/s, c = 0.005 m/s, χ = 5 × 10�6 s�1, the same as those for Figure 2.
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A tð Þ ¼ 1� e�χt (32)

and

B tð Þ ¼ 1� e�2χt � 2e�χtχt: (33)

As a result of the exponential decay with time in equations (32) and (33), it
is clear that after sufficiently long time (t ≫ 1/χ), both A(t) and B(t) approach
constants. This means that there is no tracer dispersion because when all
the particles have been buried, no tracer transport is possible. We expand
equations (32) and (33) into a Taylor series to obtain information about
their short-term behavior. Neglecting the higher-order terms, equa-
tions (32) and (33) simplify to

A tð Þ≈χt; (34)

and

B tð Þ≈ χ
3t3

3
: (35)

According to the results, both A(t) and B(t) start evolving linearly in the
log-log plots shown in Figure 4, although each has a different slope.
Each curve gradually flattens out to a constant value at large t. Note from

equations (31), (32), and (33) that σ2(t) is a linear combination of A(t) and B(t) and that for short-time evolution,
σ2(t) scales as t, indicating a normal diffusion regime for the tracer particles. This is because at the very begin-
ning, the fraction of trapped particles is so small that the burial effect can be neglected and the transport can
be described by the conventional ADE without the sink term (Ganti et al., 2010). This formulation dictates a
normal diffusion process.

It should be noted that there exists a prenormal diffusion stage (e.g., ballistic diffusion) before tracer transport
can be governed by an ADE. This is mathematically revealed in Ganti et al. (2010) in the course of the deduc-
tion of the ADE, where the higher-order terms in the step length expansion are neglected, thus correspond-
ing to a long time approximation for the process. This long time can be short in value for practical cases of
bedload transport; for example, it can be of the order of only a few seconds (Fathel et al., 2015; Nikora
et al., 2002) and so should be distinguished from the asymptotic timescale (t ≫ 1/χ) we mentioned previously
for most of the tracers getting buried during transport. This prenormal diffusion stage is also qualitatively
explained as an inertial effect (Martin et al., 2012; Nikora et al., 2002). Thus, the appearance of the short-time
normal diffusion regime as discussed based on equation (34) depends on the value of the scaled burial fre-
quency χ, which determines the time for the onset of the later anomalous diffusion regimes.

3.3. Diffusion Regimes for the Tracer Population

To further reveal the physical meaning of the two defined functions A(t) and B(t), we first substitute their
short-term approximations (equations (34) and (35)) into equation (31):

σ2 tð Þ≈2Ddt þ χc2

3
t3; (36)

which can be compared with the variance for the bedload transport described by the conventional ADE with-
out the sink term (i.e., without burial effect):

σ2ADE tð Þ ¼ 2Ddt: (37)

Basically, the first term in the RHS of equation (36) is the same as that of equation (37), indicating the
particle diffusion induced by the diffusion term of the ADE. For the case of equation (37), the advection
effect does not cause particle diffusion because every particle virtually travels downstream at the same
constant velocity c. However, considering that particles are getting buried, and thus their distances with

Figure 4. Evolution of the diffusion- and advection-induced scaling para-
meters A(t) and B(t), respectively (according to equations (32) and (33))
with time. The scaled burial frequency is χ = 0.1 s�1. When t is an order of
magnitude greater than 1/χ (102 s in the figure), both A(t) and B(t) approach
constants.
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respect to the rest of the moving particles increase all the time, the case
of equation (36) suggests a new mechanism of superdiffusion as revealed
by the second term in the RHS of equation (36). Thus, physically, A(t) is a
diffusion-induced scaling (∝t1), and B(t) is an advection-induced
scaling (∝t3).

It should be noted that the term burial effect describes one of the physical
processes of tracer transport. According to the above analysis, this physical
process explains superdiffusion at intermediate timescales by the
advection-induced scaling term, highlighting the accelerated streamwise
dispersion of particles contributed by advective scattering among the
group of traveling tracers and those trapped in the substrate. In explaining
anomalous diffusion, the alternative approach of looking at the tail charac-
teristics (Bradley, 2017; Phillips et al., 2013) only applies to asymptotic pro-
cesses (i.e., t → ∞; Weeks et al., 1996), and the timescale at which
asymptotic behavior is reached can be difficult to determine for practical
cases (Bradley, 2017; Martin et al., 2012). Additionally, it may be proble-
matic when there exists a transition in the slope of the power law tail of
the waiting time distribution (Voepel et al., 2013) as the observation period
increases. Conversely, regarding field and laboratory experiments for

studying anomalous diffusion of bedload transport, the identification and characterization of the tracer burial
process (which can be related to advective slowdown according to equation (30)) may be easier to monitor as
to directly quantify the form of the heavy-tailed waiting time distribution during tracer transport.

Again, because σ2(t) is a linear combination of A(t) and B(t),

σ2 tð Þ ¼ 1
χ2

2DdχA tð Þ þ c2B tð Þ� �
; (38)

at an intermediate timescale before both A(t) and B(t) decay to constants (t< 1/χ), the time evolution of σ2(t)
is determined by the relative magnitude of the diffusion-induced term and the advection-induced term on
the RHS of equation (38). This leads to a useful relation involving Ddχ and c2 (the coefficients of A(t) and
B(t) according to equation (38)).

One of the simplest cases would be such that either Ddχ or c
2 dominates, resulting in a scaling characterized

by either A(t) (the diffusion-induced scaling) or B(t) (the advection-induced scaling). For example, if the pro-
cess is diffusion-dominated, that is, Ddχ ≫ c2, the second term at the RHS of equation (31) can be neglected
and the diffusion regimes for the tracer particles during the transport become consistent with that of A(t), as
shown in Figure 5. With σ2(t) increasing linearly with time at an early stage, but with the rate of increase
gradually decreasing to zero, we find in the log-log plot of Figure 5 a transition from normal diffusion to
subdiffusion. Also in this figure we can see that as the scaled burial frequency χ decreases, the onset of
the transition time is delayed, and the overall time for the transport increases, which agrees with the under-
standing that the slower the burial process, the longer the time needed to break the normal diffusion regime,
and also to have an effect on the great majority of the tracer particles, which are initially concentrated in the
active layer.

Conversely, if the process is advection-dominated, that is, Ddχ ≪ c2, the first term at the RHS of equation (31)
can be neglected and the diffusion regimes (both superdiffusion and subdiffusion) are dominated by B(t), as
shown in Figure 6. We note that there will always be a regime of normal diffusion when time is sufficiently

short (t≪
ffiffiffiffiffiffi
Dd

p
=c=

ffiffiffi
χ

p
). This is because when the value of t decreases, the advection-induced scaling term

(∝t3) can decrease much faster than the diffusion-induced scaling term (∝t1). After the initial normal diffusion
stage, the regime gradually transforms to superdiffusion with the scaling of t3 at the intermediate timescale

(
ffiffiffiffiffiffi
Dd

p
=c=

ffiffiffi
χ

p
< t < 1=χ ). Finally, at large timescales (t ≫ 1/χ), it will transform back to subdiffusion as the

time-dependent terms in σ2(t) converge to zero.

In more complicated situations with Ddχ comparable to c2, which means that each of the terms A(t) and B(t)
plays an important role in the result, it is shown in Figure 7 that the evolution of the variance σ2(t) shares great

Figure 5. Variance of the bedload tracer concentration σ2(t) as a function of
time (equation (38)) under the condition Ddχ ≫ c2 (diffusion-dominated
process) and for parameters Dd = 1 cm2/s, c = 0.1 cm/s.
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similarity with the superdiffusion case shown in Figure 6, except that the
slope of the curves during the intermediate timescale can vary from 1 to
3, depending on the specific parameters. We summarize different diffusion
regimes under different conditions in Table 1.

3.4. Comparison With Existing Numerical Results Based on
Experimental Data

The 2-D EBME (by Pelosi et al., 2016) takes into account the fact that bed-
load particles buried deeper have a lower possibility to be entrained and
accounts for not only streamwise but also vertical transport of tracers,
representing a more complicated treatment compared with our simplified
model in this paper. In order to examine how well the present approach
can capture the key characteristics of the bedload transport process, in this
section we compare the analytical solutions with existing numerical results
of the 2-D EBME.

The experimental results of Wong et al. (2007) were used to determine the
parameters needed for the numerical simulation (Pelosi et al., 2016). The
uniform particle size is Dp = 7.1 mm, the jump frequency is J = 0.013 s�1,
and the PDF of step lengths is the exponential distribution

ps rð Þ ¼
1
rh i exp � r

rh i
� �

(39)

with the mean step length 〈r〉 = 1.08 m.

Based on equations (39) and (11), we obtain μ1 = 1.08 m and μ2 = 2.33 m2. We also adopt the thickness of the
active layer to be La = 1.5Dp (Parker, 2008; Pelosi et al., 2016), so that by equation (14) we can calculate
c = 0.009 m/s and Dd = 0.01 m2/s.

The initial condition of the numerical simulation is a 50-m-long patch of tracer particles (Pelosi et al., 2016):

Ca x; 0ð Þ ¼ 1=50; 0m ≤ x ≤ 50m
0; elsewhere

	
; (40)

which is different from what we considered in equation (21). Considering
that the fundamental solution of equation (23) is for a point-source initial
release of particles at x = 0, the corresponding solution for the initial
release at an arbitrary streamwise location x0 is given by

Ca x; t; x0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDd t

p exp � x � ct � x0ð Þ2
4Dd t

� χ t

 !
: (41)

Thus, the total concentration distribution given the initial condition of
equation (40) can be obtained as the integration of solutions under differ-
ent point-source initial conditions:

Ctot x; tð Þ ¼ ∫
50

0
Ca x; t; x0ð Þ þ ∫

t

0
χCa x; t; x0ð Þdt


 �
dx0: (42)

Following again the procedure of obtaining the concentration moments
and the variance based on equations (41) and (42), we have

m0 ¼ 1; (43)

m1 ¼ 25þ c
χ

1� e�χtð Þ; (44)

Figure 6. Variance of the bedload tracer concentration σ2(t) as a function of
time (equation (38)) under the condition Ddχ ≪ c2 (advection-dominated
process) and for parameters Dd=10

�3 cm2/s, χ = 10�4 s�1, c = 0.1 cm/s.

Figure 7. Variance of the bedload tracer concentration σ2(t) as a function of
time (equation (38)) under the condition that both the diffusion-induced
scaling A(t) and the advection-induced scaling B(t) play a role in the result
and for parameters Dd = 1 cm2/s, χ = 10�4 s�1.
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m2 ¼ 2Dd 1� e�χtð Þ
χ

þ 2c2 1� e�χt � e�χtχtð Þ
χ2

þ 50c 1� e�χtð Þ
χ

þ 2500
3

; (45)

and

σ2 tð Þ ¼ m2 �m2
1 ¼

2Dd 1� e�χtð Þ
χ

þ c2 1� e�2χt � 2e�χtχtð Þ
χ2

þ 625
3

: (46)

The first-order concentration momentm1 characterizes the mean travel distance of the tracer population. It is
obvious from equation (44) that the advective slowdown is mathematically characterized by an exponential
decay process with the scaled burial frequency χ. This also provides a way to determine the parameter χ using
numerical or experimental data. In Figure 8 we fit the numerically obtained mean travel distances to equa-
tion (44), demonstrating a key feature captured by the analytical treatment. It is seen that equation (44) better
fits the numerical results than the power law relation Pelosi et al. (2016) applied. Using this fit we can obtain
the parameters as χ = 3 × 10�6 s�1 and c = 0.006 m/s, the latter of which agrees reasonably with the pre-
viously obtained value (0.009 m/s) calculated through equation (14) based on the experimental data.

In Figure 9 we show that the analytical approach can also capture the simulated anomalous diffusion regime.
Based on the relation between Ddχ and c2 that we suggested in section 3.3, the specific case considered here
using the experimental data of Wong et al. (2007) agrees with the result of Figure 7, which indicates the exis-
tence of the intermediate timescale superdiffusion regime and the variance scaling as tγ, where γ ∈ (1, 3).

Another interesting feature revealed by Figure 9 is the emergence of an
initial subdiffusion regime, which was not discussed by Pelosi et al.
(2016). Comparison between equations (46) and (31) shows the difference
of a constant (625/3), introduced by the different initial condition of equa-
tion (40). Although having a negligible effect on the intermediate- and
long-time scaling, this added constant changes the scaling of the variance
at short times.

3.5. Limitations and Strengths of the Model

Based on the analysis presented in previous sections, we can see that the
present model may be applied for bedload transport processes across a
range of timescales depending on how quickly the tracer particles can
be permanently buried. This speed is characterized by the key parameter
χ, the information about which we need to extract from the physical sys-
tem under investigation. The variety of timescales presented here is asso-
ciated with distinct physical transport environments, and also relates to
the processes under consideration. For example, in laboratory experi-
ments, the process of interest can be as short as seconds (Fathel et al.,
2015) or minutes (Martin et al., 2012): some traveling particles (sand or
gravel) may be seen as permanently buried after one or two jumps because
they will not be re-entrained in a short period at the timescale of consid-
eration, although they may still rest on top of the bed. Conversely, long-
term field measurements (Ferguson et al., 2002) of tracer pebbles in the

Table 1
Diffusion Regimes Under Different Conditions

Criterion
Short timescale Intermediate timescale Large timescale
t≪

ffiffiffiffiffiffi
Dd

p
=c=

ffiffiffi
χ

p ffiffiffiffiffiffi
Dd

p
=c=

ffiffiffi
χ

p
< t < 1=χ t ≫ 1/χ

Ddχ ≫ c2 Normal diffusion

Ddχ ∼ c2 Normal diffusion (neglect ballistic regime) Superdiffusion (∝tγ, γ ∈ (1, 3)) Subdiffusion (may deviate from reality due
to the assumption of permanent burial)

Ddχ ≪ c2 Superdiffusion (∝t3)

Figure 8. Mean travel distance as a function of time. A fit by equation (44) to
the numerically obtained data by the 2-D Exner-Based Master Equation (2D-
EBME) is used to determine the parameters χ = 3 × 10�6 s�1 and
c = 0.006 m/s. The results demonstrate that the analytical consideration
captures well the advective slowdown of the tracer population. The power
law fit (dashed line) by Pelosi et al. (2016) is also shown for reference.
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natural environment have focused on processes that last years, during
which time the tracers were gradually buried ever deeper, with significant
reduction of their mobility during the process. In either case, the re-
entrainment of permanently buried tracers can be expected to start to play
a role in streamwise transport as the observation period increases.

A major limitation of the present model is introduced by a key assumption
of the formulation: deeply buried tracer particles cannot be re-entrained to
participate again in streamwise transport. This may not be the case for
large timescale transport of tracer particles (as discussed above). Thus, it
is vital to first determine what this large timescale is for the specific bed-
load transport process, and then to see how well the model can perform
at the corresponding intermediate timescale. According to section 3.2, this
large timescale corresponds to when most of the tracers are permanently
buried with almost no movement of the entire tracer population, and is
mathematically characterized by t ≫ tc = 1/χ. According to the results in
section 3.4, we demonstrate that at the corresponding intermediate time-
scale (t< 5 tc~10

2 hr for this case), the model can capture the key features
of advective slowdown and superdiffusion.

The present model is based on the active layer formulation (Ganti et al.,
2010; Pelosi et al., 2016) and is thus subject to corresponding idealized
transport conditions (single particle size, mobile-bed equilibrium, tempo-
rally constant active layer thickness, etc.). However, instead of just reveal-
ing physical insights including the mechanism of superdiffusion (the

merit of the theoretical analysis), it can also demonstrate its strength in application to the field process with
a much more complicated transport environment. For example, for the tracer tracking field work done along
Allt Dubhaig, a bar-riffle-pool headwater stream in Scotland, Ferguson et al. (2002) observed that the mean
value of virtual velocity of the tracers during a period of 8.5 years can be ~40% slower compared with that
of the first 2 years. Using this information alone and using equation (30) for the virtual velocity, we can
approximate the parameter χ ≈ 0.4 year�1. The result indicates a large timescale of t > 5 tc~10

1 year for this
specific process, which agrees with the time needed for the virtual velocity of the tracer population to
approach a constant value (Ferguson & Hoey, 2002; Pelosi et al., 2016). Thus, the advective slowdown
observed for this field case at the intermediate timescale (t < 101 year) can be described by the
present model.

4. Conclusions

It has been observed in numerical simulations that the gradual burial of bedload tracer particles can cause
superdiffusion during streamwise transport. The underlying mechanism for this anomalous diffusion process
at intermediate timescales remains unclear because it may not be appropriate to refer to the tail character-
istics of the waiting time distribution of tracers, which only applies to long-term asymptotic processes.

In this paper we have incorporated the particle burial effect into the active layer formulation by considering a
constant frequency for tracer particles (from the active layer) to exchange with nontracer particles in the
underlying substrate layer, where the tracers then get permanently trapped. This treatment introduces a sim-
ple vertical structure to distinguish between active and trapped tracer particles. It captures the mechanism of
burial, while being sufficiently simple to enable an analytical study of the transport process. This is in contrast
to the 2-D EBME approach previously applied by Pelosi et al. (2016), which must be solved numerically.
However, we note that the assumption of permanent trapping is a first-order approximation of the vertical
exchange of bedload particles in a riverbed, which may correspond to a major limitation of the resulting
model in describing large timescale tracer transport.

In the governing equations obtained herein, the burial effect is represented by a sink term in the advection-
diffusion equation (ADE) for tracers in the active layer, which also results in the increase of tracer particle con-
centration with time in the substrate layer. After solving the governing equations for the concentration

Figure 9. Variance of the bedload tracer concentration σ2(t) as a function of
time. The analytical solution captures well the emergent superdiffusion
regime obtained from numerical simulation of the 2-D Exner-Based Master
Equation (2D-EBME) with parameters χ = 3 × 10�6 s�1, c = 0.006 m/s, and
Dd = 0.08 m2/s. A subdiffusion regime at short timescales (red line) is attri-
butable to the initial condition of the numerical simulation of Pelosi et al.
(2016; a 50-m-long patch of tracers), which is different from that used in this
paper for equation (31) (a point-release of tracers at the origin of x = 0).
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distribution, we have analytically deduced a relation for the variance of the tracer population based on con-
centration moments. According to its mathematical structure, we show that the variance is the sum of a
diffusion-induced scaling (∝t1, governing the normal diffusion regime) and an advection-induced scaling
(∝t3, governing the superdiffusion regime) for both short and intermediate timescale transport processes.
It should be noted that the term burial effect characterizes a major physical process of tracer transport.
When translated into our understanding of the source of anomalous diffusion, we note that for intermediate
timescale superdiffusion, it is more appropriate to refer to the advection-induced scaling identified herein for
accelerated streamwise dispersion associated with the coexistence of traveling particles and the remaining
immobile tracers. The alternative approach of looking at the tail characteristics only applies to asymptotic pro-
cesses (i.e., t→ ∞), and the timescale of reaching such asymptotic behavior can be difficult to determine for
practical cases. In addition, it may be complicated when there exists a transition in the slope of the power law
tail of the waiting time distribution as the observation period increases. Conversely, the identification and
characterization of the tracer burial process may be easier to monitor and parameterize based on the analy-
tical solution deduced in this paper. This solution captures the important feature of advective slowdown,
which can be compared with direct attempts to characterize a heavy-tailed waiting time distribution based
on field or laboratory experiments.

Compared to the single normal diffusion regime for bedload transport without considering loss of tracers
from the active layer by burial, our results show the following:

1. There always exists a normal diffusion regime at short timescales (t≪
ffiffiffiffiffiffi
Dd

p
=c=

ffiffiffi
χ

p
, the case of no burial of

particles).
2. There always exists a transition to a subdiffusion regime at sufficiently large timescales (t ≫ 1/χ), after most

of the tracers get buried. However, this model is not applicable asymptotically, because it neglects the
very small possibility that the deeply buried particles can still be re-entrained into streamwise transport.
We note that it is important to first distinguish the applicable large timescale by the criterion t ≫ 1/χ.
The relevant timescale for practical cases (i.e., application to natural rivers) can vary depending on the
corresponding physical transport environment (section 3.5). The analytical solutions obtained in this
paper work well before reaching the asymptotic limit (section 3.4).

3. At intermediate timescales, the appearance and characteristics of a superdiffusion regime depend on the
relation between the product of the particle diffusion coefficient and the burial frequency, that is,Ddχ, and
the square of the virtual streamwise velocity c2 for the tracer population.

(a) If Ddχ ≫ c2, there will be no superdiffusion regime.
(b) If Ddχ ≪ c2, there will be a superdiffusion regime with the variance scaling as t3.
(c) If Ddχ is comparable to c2, there will be a superdiffusion regime with the variance scaling as tγ, where

γ ∈ (1, 3).

We have shown through comparison of the results between the obtained analytical solutions and the exist-
ing numerical simulation of Pelosi et al. (2016) using the 2-D EBME that the simplified formulation proposed
herein can capture the key characteristics of bedload tracer transport in terms of appropriately revealing the
features of advective slowdown and the superdiffusion regime. We also demonstrate how the analytical
results obtained under idealized transport conditions can be extrapolated to a natural setting by adaptation
to incorporate field processes in a much more complicated transport environment.

Notation

σ2 bedload tracer concentration variance [L2]
t time [T]

La active layer thickness [L]
Ls substrate layer thickness [L]
λp bed porosity [1]
η mean bed elevation [L]
E mean volume rate per unit area of bedload entrainment into transport [L/T]
D mean volume rate of bedload deposition per unit area [L/T]
J particle entrainment frequency [1/T]
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Js burial frequency [1/T]
Dp particle size [L]
x streamwise coordinate [L]

ps(r) probability density function of step length [1/L]
fa fraction of tracer particles in the active layer [1]
fI fraction of tracer particles that exchange between active and substrate layers when aggradation and

degradation occur [1]
fs fraction of tracer particles in the substrate layer [1]
μp pth order moment of the step length probability density function [Lp]
c virtual velocity [L/T]

Dd particle diffusion coefficient [L2/T]
χ scaled burial frequency [1/T]
Ca tracer concentration in active layer [1/L]
Cs tracer concentration in substrate layer [1/L]

Ctot total tracer concentration [1/L]
δ(x) Dirac delta function [1/L]
mp pth order moment of tracer concentration [Lp]
ν virtual velocity with advective slowdown [L/T]

A(t) diffusion-induced scaling parameter [1]
B(t) advection-induced scaling parameter [1]
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