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Abstract Hourly precipitation extremes are crucial in hydrological design. Their frequency and magnitude
is encapsulated in the probability distribution tail. Traditional extreme-analysis methods rely on theorems,
like the Pickands-Balkema-de Haan, indicating specific type of tails assuming asymptotic convergence—a
questionable assumption for real-world samples. Moreover, popular stochastic models for hourly
precipitation presume light-tailed distributions to facilitate their mathematical formulation. In practice,
limited information on hourly precipitation extremes makes identifying and quantifying their tail highly
uncertain, especially on a station-by-station basis. Yet no comprehensive regional analysis of tails has been
undertaken to quantify a climatology of tails for diagnostic and prognostic purposes. Here we undertake such
an analysis for the conterminous United States. We introduce a novel Bayesian-adjustment approach to
assess the best model between power-type and stretched-exponential tails showing that the latter performs
better. We present climatology of the tail and quantify its heaviness in over 4,000 hourly precipitation
records across the United States and present three main conclusions. First, we show that hourly precipitation
tails are heavier than those commonly used with important implications including underestimation of
extremes. Second, we provide spatial maps of the tail behavior which reveal some strikingly coherent spatial
patterns that can be used for inference in the absence of local observations. Third, we find a nonlinear
increase in the tail heaviness with elevation and we formulate parametric functions to describe this law.
These results can improve the accuracy of frequency analysis, probabilistic prediction, rainfall-runoff
modeling, and downscaling of historical observations and climate model projections.

1. Introduction and Motivation

The National Weather Service of the United States reports a recent 30-year average flood loss of $7.96 billion
per year and 82 fatalities per year (Downton et al., 2005; see also Pielke et al., 2002), naming flash floods as the
No. 1 weather-related hazard. Flash floods result from heavy storm events lasting several minutes to a few
hours (e.g., Brooks & Stensrud, 2000; Georgakakos, 1986) highlighting the importance of studying extreme
precipitation intensities and their related probabilities at subdaily timescales, such as hourly. Moreover, the
output of rainfall-runoff models typically forced with hourly or subhourly precipitation series for decision sup-
port and operation depends on the quality of the precipitation input (e.g., Beven, 2012; Moradkhani &
Sorooshian, 2009).

Over the recent years, predictive studies on future trends of hourly precipitation have mainly focused on the
Clausius-Clapeyron relation and how hourly precipitation scales with air temperature, suggesting in some
cases higher increases than the theoretically predicted Clausius-Clapeyron value of 7% per degree Celsius
(Berg et al., 2009; Formayer & Fritz, 2017; Lenderink et al., 2011; Lenderink & van Meijgaard, 2008, 2010;
Mishra et al., 2012; Shaw et al., 2011). Trends in hourly precipitation extremes have been investigated in only
a few studies over the United States, for example, Muschinski and Katz (2013) analyzed a limited number of
United states stations, and Yu et al. (2016) compared hourly and daily precipitation extremes and reported
larger increases at the hourly scale; however, another study reported similar increases for daily and hourly
scales in North America (Barbero et al., 2017).

Typically, stochastic modeling of hourly precipitation is mainly based on point process models like the
Bartlett-Lewis and Neyman-Scott (Foufoula-Georgiou & Guttorp, 1987; Onof & Wheater, 1993; Rodriguez-
Iturbe et al., 1987; Verhoest et al., 1997; Wheater et al., 2005). These models, however, are based on
Exponential and Gamma distributions for nonzero hourly precipitation, that may underestimate return
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levels, an acknowledged fact that led to model alternatives trying to improve extremes’ behavior (see e.g.,
Onof et al., 2005). Additionally, simulations from climate models, used for assessing future climate under dif-
ferent emission scenarios, are typically too coarse to be used directly as inputs into hydrologic/land-surface
models. Thus, despite recent significant advances in regional climate modeling that can provide more reliable
climate information, for example, convection-permitting models (Kendon et al., 2012; Prein et al., 2015), a rea-
listic representation of precipitation still remains a challenge. For this reason, over the recent decades, many
different downscaling schemes have been developed (e.g., regression and weather pattern methods, stochas-
tic weather generators), several of which, however, acknowledge the underestimation of extreme precipitation
(see e.g., Bárdossy & Pegram, 2011; Benestad, 2010; Fatichi et al., 2013; Foufoula-Georgiou et al., 2014; Hanel &
Buishand, 2010; Maraun et al., 2010; Mezghani & Hingray, 2009; Perica & Foufoula-Georgiou, 1996; Venugopal
et al., 1999; Vrac & Naveau, 2007; Wilby et al., 1998; Wilby &Wigley, 1997). Recent advances on stochastic mod-
eling and disaggregation, however, make feasible to easily generate time series preserving any desired mar-
ginal distribution and correlation structure (including features like intermittency), allowing thus, realistic
modeling of precipitation at any timescale including the hourly (Papalexiou, 2018; Papalexiou et al., 2018).

A systematic and extensive probabilistic investigation of hourly extremes is still an issue of theoretical and
practical significance for improving probabilistic prediction, rainfall-runoff simulation of extremes, and
downscaling of satellite precipitation products and outputs of climate model projections with emphasis on
hazard-causing extreme events. While there are a number of studies on tail behavior of daily precipitation,
a comprehensive study on hourly extremes is lacking. Here we analyze 4,137 hourly precipitation records
across the United States exploring the behavior of hourly extremes. Our aim is threefold: (a) to outline a
Bayesian-adjustment approach understanding and diagnosing the climatology of tail including the type of
distribution that better describes hourly precipitation extreme; (b) to assess the tails’ index values (or else
shape parameters) across different climate/geographical regions quantifying the degree of heaviness, and
thus the likelihood to generate extreme events; and (c) to investigate the spatial pattern of tail behavior
across the United States trying to reveal their climatology.

2. Hourly Precipitation Data

We use the largest database of hourly precipitation records, available from NOAA, comprising 7,127 United
states stations (for detailed information see Hammer & Steurer, 1997). Since we study the tail behavior, we
need records with sufficiently large number of nonzero hourly precipitation values. Records vary in length
ranging from 1 to 112 years but the total number of nonzero values depends also on the probability of dry
hours and the percentage of missing values. Thus, we select stations having at least 3,000 nonzero values,
a number we deem is large enough to study the tail behavior. Screening with this criterion results in a set
of 4,316 stations; we show the selected station locations in Figure 1 (the set includes 16 and 105 stations
not shown in the map, which are located, respectively, in Alaska and Hawaii). The average record length of
the selected stations is approximately 43 years, while the average number of nonzero values is as high as
13,160 values. Note that several hourly records show inhomogeneities and changes in measurement resolu-
tion that have been acknowledged also in other studies (e.g., Barbero et al., 2017). These quality data issues
may lead to inconsistencies when the whole sample is analyzed, yet they do not affect the results when the
focus is on the extremes. Particularly, we used a subset of 1,684 records which do not show the aforemen-
tioned quality issues and the results were almost identical. Therefore, we used the whole data set to obtain
a more robust representation of the spatial pattern of the tails.

3. Methods
3.1. Types and Definition of Tail

The tail function is typically defined as FX xð Þ ¼ 1� FX xð Þ, which is the complementary cumulative distribu-
tion function, also known as the survival function (e.g., Klüppelberg, 1988). The term tail, however, is linked
with extremes or large values and refers to complementary cumulative distribution function’s upper part,
that is, it quantifies the likelihood for extremes to occur. Regions with heavy tails should expect more fre-

quent and larger extremes in relation to their mean or anticipated precipitation values. As a function, F xð Þ
expresses how fast the exceedance probability tends to zero and depends on its mathematical form.
Several attempts have been made to group tails according to their general properties and limiting
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behavior (El Adlouni et al., 2008; Goldie & Klüppelberg, 1998; Werner & Upper, 2004). A major classification
results by comparing a tail with the exponential one, characterizing slower or faster decreasing tails as
subexponential or hyper-exponential, respectively. Also, many tails can be identified as equivalent, that is,

the tails F xð Þ and G xð Þ are equivalent if limx→∞F xð Þ=G xð Þ ¼ c; where c is a constant. Here we use and
compare two major types of tails based on their vast popularity across many scientific fields, that is,
power-type, or else Pareto tails (e.g., Newman, 2005; Schroeder, 1991) and Weibull tails (e.g., Laherrère &
Sornette, 1998) which include stretched-exponential, exponential, and hyper-exponential tails. Lognormal
(LN) and Gamma (G) distributions are also popular models in hydrology, yet the LN distribution tail is
similar to a power-type tail (Mitzenmacher, 2004) and the G distribution has essentially an exponential tail,
and thus, can be obviously approximated very well by the Weibull tail which includes as special case
(shape parameter equal to 1) the exponential.

Power-type tails (also known as algebraic tails) are mathematically defined by the tail of the Pareto II (PII) dis-
tribution (also known as Lomax)—the simplest power-type distribution defined in (0,∞). Its tail function is

FPII xð Þ ¼ 1þ γ
x
β

� ��1
γ

; (1)

where β > 0 and γ > 0 are scale and shape parameters, respectively, with the latter also known as the tail
index (for γ → 0 the tail becomes exponential). Note that the classical Pareto distribution (a straight line in
log-log plot) is inconsistent with hydroclimatic positive variables as it cannot be defined in (0,∞), yet as x gets
very large the PII tail gets equivalent to the classical Pareto tail, that is, x�1/γ. Many well-known distributions
are tail equivalent to the PII distribution, for example, the Generalized Beta of the second kind (Mielke Jr &
Johnson, 1974); the Burr type III (known also as Dagum) and type XII (known also as Singh-Maddala) distribu-
tions (Burr, 1942; Papalexiou & Koutsoyiannis, 2012; Tadikamalla, 1980); the Beta of the second kind
(McDonald & Xu, 1995); the log-logistic; the inverse generalized Gamma; the inverse Gamma; and others.

The Weibull (W) tail is of exponential form and defined by

FW xð Þ ¼ exp � x
β

� �γ� �
; (2)

with scale parameter β > 0 and tail index γ > 0. The W tail is subexponential (or else stretched-exponential),
exponential, and hyper-exponential for tail index γ> 1, γ = 1, and γ< 1, respectively. Weibull tails are popular

Figure 1. Location of the hourly precipitation stations; a total of 4,137 records having more than 3,000 nonzero values.
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as the W distribution is extensively used in statistical and engineering lit-
erature as well as in other fields, for example, life sciences (Laherrère &
Sornette, 1998). Popular distributions like Gamma (G) and Generalized
Gamma (GG; Papalexiou & Koutsoyiannis, 2012; Stacy, 1962) are not
exactly tail equivalent with the Weibull, yet inspection of their probability
density functions, that is, fG(x)∼x

γ�1 exp (�x) and fGG xð Þ∼xγ1�1 exp �xγ2ð Þ
reveals their structural similarity with the Weibull probability density func-
tion fW(x)∼x

γ�1 exp (�xγ); note also that the exponential term quickly dom-
inates the polynomial part.

The empirical tail cannot be uniquely defined and different approaches
exist, for example, peak above threshold definitions using a percentage
of the largest sample values or using a fixed number of peaks, for example,
m largest values in anm-year sample (Buishand, 1989). Here we define the
empirical tail, or the tail sample Sp%, for tail level p% as

Sp% ¼ xijxi ≥ QN 1� pð Þf g; (3)

where QN uð Þ ¼ F�1
N uð Þ is the empirical quantile function. For example, the

S10% tail sample comprises the largest 10% nonzero values of an hourly
precipitation record.

To investigate how the empirical tail affects the underlying tail assessment,
we form for each precipitation record tail samples Sp% for

p = {10, 5, 2, 1, 0.5} and fit PII and W tails by minimizing the probability ratio mean square error (PRMSE; see
Papalexiou et al., 2013, for a detailed assessment of the PRMSE norm) defined by

PRMSE ¼ 1
n

∑
xi∈Sp%

F xið Þ
FN xið Þ � 1

� �2

; (4)

where the sum is over xi values forming the tail sample Sp%; n is the sample size of Sp%; F xið Þ is the excee-
dance probability of xi according to the theoretical tail (PII or W); FN xið Þ ¼ 1� R xið Þ= N þ 1ð Þ is the empirical
exceedance probability (according to the Weibull plotting position) with R(xi) indicating the rank of xi in the
ascending ordered sample of all nonzero values; and N is the sample size of all nonzero values. Note that the
PRMSE norm, which is a function of the parameters β and γ of the theoretical tail, uses relative errors
between theoretical and empirical values, and thus, each point contributing in the sum is equally weighted.

Finally, we note that the analysis performed here can be also implemented seasonally, for example, investi-
gating and comparing the tails in a monthly basis. However, here we studied the whole tail, as for many
practical applications, we are not interested on the season that an event might occur. For example,
Intensity-Duration-Frequency-Curves, probably the most commonly applied tool in hydrological design,
are rarely developed in a seasonal basis.

3.2. Bayesian Adjustment Method

We assess the precision of the tail-fitting method to discriminate between PII and W tails through Monte
Carlo (MC) simulations as described in the following steps: (a) we generate 1,000 random samples from
each distribution with sample size, scale, and shape parameters varying randomly according to the
observed empirical distributions, for example, using the distributions of tail indices given as box plots in
Figure 5 (section 4.1 describes the details of results shown in Figure 5); and (b) we fit and compare the two
tails according to the tail-fitting method applied to the observed hourly precipitation tails.

To clarify further the step (a) we note that in order for the MC simulation to be as realistic as possible, we stu-
died the bivariate distribution of the estimated scale parameter and tail index, for example, Figure 2 depicts

the estimated bβ;bγ� �
points of the PII tail for the S10% precipitation samples, as well as various contour lines

indicating the frequency of the points; red colored points mark a region comprising 90% of the points.
Clearly, the two parameters are correlated with a correlation coefficient equal to �0.46 in this case. This

Figure 2. Estimated bβ;bγ� �
parameters for the Pareto II tail and for tail sample

S10%. The contour lines indicate frequency; the red shaded region contains
90% of the points and is used to create the sampling distribution for the
Monte Carlo simulations.
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implies that the (β, γ) points should be randomly sampled from a bivariate distribution. Here we use the 90%
of central points (red-colored in Figure 2) to construct a smoothed nonparametric bivariate distribution that is
used for random sampling. The same process, that is, of forming the nonparametric bivariate distribution,
was applied for the parameters of both tails and for each of the five tail levels as parameter estimates
differ among the different tail levels; in total, 10 sampling bivariate distributions were formed. We chose
the 90% of central points to form the sampling distribution, instead of all the points, as the a posterioribβ;bγ� �

point estimates will generate a more dispersed distribution than the sampling one.

We present the MC results in Table 1 and depict success rates of each distribution tail in Figure 3. For example,
for the S5% case there is 80.6% probability to identify correctly a PII tail given that the true tail is PII, and 74.6%
to identify correctly a W tail given that the true tail is W. There are two noteworthy findings in these results:
first, the precision to identify a PII and a W tail differs with the PII tail having in general a higher probability to
be identified correctly (exception is only the S10% sample), and second, as we move from large tail samples to
smaller ones, that is, from S10% to S0.5%, the precision decreases for both tails.

Once the success/failure probabilities are known, we can correct the estimated percentage values given in
Figure 4a based on Bayes formula which for two events A and B is given by

Pr AjBð Þ ¼ Pr Að Þ Pr BjAð Þ= Pr Bð Þ: (5)

The results presented in Figure 4a are percentage estimates, or else, probability estimates of an empirical tail

to be PII or W; we denote these estimates (using hat notation) by bpPII ¼ Pr bPII� �
and bpW ¼ Pr bW� �

, for exam-

ple, for the S10% samplebpPII ¼ 0:326andbpW ¼ 0:263. Let us denote the true probabilities that we are trying to
estimate with pPII = Pr (PII) and pW = Pr (W). Also, we denote the results of the MC simulation given in Table 1

with the standard conditional notation, that is,

p11 ¼ Pr bPIIjPII� �
p12 ¼ Pr bWjPII

� �
p21 ¼ Pr bPIIjW� �

p22 ¼ Pr bWjW
� � ; (6)

so that, for example, p11 ¼ Pr bPIIjPII� �
denotes the probability of an

empirical tail to be identified as a PII given that the true tail is PII. If we
assume that the real tail is either PII or W then it is obvious that

Pr PIIj bPII� �
þ Pr Wj bPII� �

¼ 1

Pr PIIj bW� �
þ Pr Wj bW� �

¼ 1
; (7)

as for any given outcome (either bPII or bW) the true tail is either PII or W since
these are the only options, and thus these conditional events are clearly
complementary. Now, if we replace the terms in equation (7) using
Bayes formula and the definitions given in equation (6) we get

Table 1
Success and Failure Probabilities of the True Tail to be Identified Correctly and Erroneously, Respectively, Based on Monte
Carlo Simulations

Success and failure rates of the outcome

10 5 2 1 0.5

p% bPII bW bPII bW bPII bW bPII bW bPII bW
PII 88.9 11.1 80.6 19.4 75.5 24.5 70.1 29.9 66.5 33.5

W 12.4 87.6 25.4 74.6 34.4 65.6 45.5 54.5 52.9 47.1

Note. True tails are in the first column. PII = Pareto II; W = Weibull.

Figure 3. Success and failure probability for a tail to be identified correctly.
PII = Pareto II; W = Weibull.
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pPII
p11bpPII þ pW

p21bpPII ¼ 1

pPII
p12bpW þ pW

p22bpW ¼ 1:

(8)

Solving this linear system, we obtain the equations

pPII ¼
p22bpPII � p21bpW
p11p22 � p12p21

pW ¼ p11bpW � p12bpPII
p11p22 � p12p21

; (9)

which are used to adjust the initial estimates given in Figure 4a.

4. Results
4.1. Fitting Results

We compare the fitted tails in terms of the resulting PRMSE, that is, for a given tail level (e.g., 10%) we fit in
every tail sample the PII and W tails identifying as better fit the tail with the smaller PRMSE. Eventually, we
calculate how many times (percentage of stations) each tail performed better than the other, repeating this
process for the five tail levels p we study; see Figure 4a for the estimated percentages. We observe a change
in the tails’ fitting performance among tail levels. There is a systematic trend indicating that the PII tail
increases its performance from 28.4% to 52.2% as we move from S10% to S0.5%. One could rationally

Figure 4. (a) Percentage of better-fitted tails to hourly precipitation extremes for various empirical tail samples;
(b) Bayesian adjusted values. PII = Pareto II; W = Weibull.
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assume that the PII tail would increase further its fitting performance if additional data were available and the
study of empirical tails at levels smaller than 0.5% was meaningful. Given this, and combined with the fact
that lower level tail samples are, at least theoretically, more representative of the true tail as they can
provide a clearer picture of tail’s behavior, one may draw the conclusion that the PII tail is a better model
(compared to the W tail) for the description of extreme hourly precipitation.

We stress that identifying correctly the type of tail is not trivial and any method used to compare and
assess which model is better cannot be absolutely precise. Knowing the success/failure identification

Figure 5. Box plots of the estimated (a) Pareto II and (b) Weibull tail indices as well as the resulting (c) fitting error. The whis-
kers define the 95% empirical confidence interval.
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rates of a method may significantly alter the results. In MC simulations we know a priori the true tail, that
is, the model used to generate a random sample, yet if we fit and compare two models, the true model is
not always identified as the best in terms of fitting due to sample variations. In section 3.2 we estimate the
success/failure identification rates based on MC simulations and we adjust the empirical results based on
the Bayesian framework described. We find that the adjusted results, given in Figure 4b, provide a differ-
ent picture than the results in Figure 4a. Particularly, the adjusted results show that the performance of the
PII tail actually decreases as lower tail levels are considered, leading eventually to complete domination of
the W tail at the 0.5% level. Note that to estimate the success/failure rate of the method we performed
simulations where we assumed that the underlying true tail of the empirical samples is either PII or W
and not of any other type (see section 3.2). This assumption could be modified, for example, by including
additional models like the LN or G tails, yet here we restricted our choice between the PII and W tails
which performed well in our preliminary fitting. We note that both models fit equally well (especially
for S1% and S0.5%; see Figure 5c), supporting both PII and W tails as good tail choices.

These results are enhanced by studying the estimated tail indices presented in the box plots of Figure 5. As
we move from S10% to S0.5% the PII shape parameters constantly decrease, for example, the median values
decrease from 0.24 to 0.19 (see Figure 5a). This implies that the Pareto tail is not a robust choice for hourly
precipitation (at least for this data set), as up to the 0.5% tail level we cannot assess the tail index, or the value
it converges to, or if it converges at all. The conditional Pareto distribution for x> xp (where xp is the quantile
value for probability p) is also Pareto with the same tail index, and thus, the tail index should be the same at all
tail levels (expecting of course a larger variance in lower tail levels due to smaller samples). In contrast, the W
tail index has a constant median equal to 0.56 at all tail levels (see Figure 5b) and a very narrow interquartile
range. The upper limit of the 95% empirical confidence intervals, expressed by the outer box-plot fences, is
less than 0.9, implying that almost all samples analyzed have a stretched-exponential tail, that is, heavier than
the exponential.

4.2. Spatial Variation of Tails and Relation With Elevation

We present the spatial variability of the estimated PII and W tail indices at the 0.5% tail level (Figure 6)—we
chose the 0.5% level as it is closer to the true tail and offers better assessment of the PII tail index (see the
convergence issue of PII in Figure 5a). Both maps (created by applying ordinary kriging with spherical semi-
variogram and search radius five points, and Gaussian smoothing taking into account the eight neighboring
pixels) show the same spatial pattern revealing strong spatial coherence but also large variability. Three
major regions emerge: the first, comprising the heaviest tails (0.26 ≤ γPII < 0.33 and 0.38 ≤ γW < 0.50), is
located at the mountainous regions of the United States, that is, it includes Sierra Nevada and Cascade
Mountains, the Great Basin, the Rocky Mountains, and the northernmost part of the Great Plains; relatively
heavy tails are also observed in the Appalachian Mountains and the state of Maine. The second region, with
relatively thin tails (0.10 ≤ γPII< 0.18 and 0.60 ≤ γW < 0.74), is located in the Southern United States, spanning
the Gulf Coastal Plains and including parts of the Atlantic Coastal Plains from Florida to North Carolina; other
regions with relatively thin tails are located in most of the Pacific Coast and all over California. The third
region, with relatively moderate tails (0.18 ≤ γPII < 0.26 and 0.50 ≤ γW < 0.60), starts from south Arizona
and New Mexico extends across the Great Plains and continues in most parts of the Midwest and
Northeast regions around the AppalachianMountains. This first analysis of the spatial pattern of the tail’s hea-
viness seems to reveal a relation with elevation. Heavy tails are noted in high elevations, however, this does
not indicate the extent to which elevation is a determinant of the tails of the distribution as many other inter-
acting factors (e.g., synoptic conditions, vertical stability, and moisture convergence) contribute to the inten-
sity of rainfall. A relatively thin tail is observed in southeastern United States where rainfall is mainly
convective (short-term intense rain over a smaller spatial extent compared to a typical stratiform event).
However, different regions receive various types of storms throughout the year. For example, the southeast-
ern United States receives heavy rainfall through short-term convective storms, tropical cyclones, and large
scale frontal systems. For this reason, the tail parameter cannot be simply attributed to a particular storm type
or a single regional physical process. The tail parameter represents the overall behavior of extremes consid-
ering samples from different storms over a long period of time. A discussion on extreme rainfall and flood
peaks mechanisms over the United States can be found, respectively, in Barbero et al. (2018) and Villarini
and Smith (2010).
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It is noteworthy that a comparison between the spatial variation of the tail indices (Figure 6) and the main
climate classes of the Köppen-Geiger classification system (e.g., Kottek et al., 2006) reveals some similarities.
For example, the south-eastern part of the United States which is classified as Warm Temperate shows thin-
ner tails, while heavier tails are observed in regions classified as Arid and Snow. However, the pattern is not
clear, for example, regions classified in the Snow class over the United States show different tail heaviness. Of
course, some similarities between the spatial pattern of the tail’s heaviness and the Köppen-Geiger classes
are anticipated. Particularly, the relation of tail’s heaviness with elevation is expected to create a link with
temperature, as higher elevation typically implies lower temperatures. This in turn could create relations with
the Köppen-Geiger classes as this classification system uses temperature values, among other variables like
precipitation, to define the climatic class of a region.

The previous comparison of the tail indices indicates a strong relationship with elevation, and yet
Pearson’s ρ and Kendall’s τ correlation coefficients between elevation H and γPII or γW (calculated using
all 4703 (H, γPII) and (H, γW) points) show low correlation, that is, ρ(H, γPII) = 0.30, τ(H, γPII) = 0.22, and

Figure 6. Spatial variation of Pareto II and Weibull tail indices indicating the heaviness of the tail for hourly precipitation.
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ρ(H, γW) = � 0.27, τ(H, γW) = � 0.21. This fact is not surprising as the tail
indices are strongly affected by random sample variations that blur the
spatial or elevation-dependent patterns. To reveal the relationship of
the tail index with elevation, we sort the 4073 (H, γPII) and (H, γW)
points in ascending elevation order and create consecutive blocks of
n-points (with n varying from 10 to 400 increasing in steps of 10) and

estimate each block’s mean elevation H and mean γPII or γW . For

example, for n = 100, 40 blocks are formed resulting in 40 H; γPII
� �

or

H; γW
� �

points (see Figure 7). This averaging process increases vastly

the correlation coefficient values, as the block size increases (see
Figure 8), from low to very high values above 0.9.

This increase in correlation (especially in Pearson’s ρ) does not necessarily
imply a linear relationship between tail indices and elevation. Actually, the
cloud of points (see Figures 7a and 7b depicting the points for block size
n = 100) indicate concave increase and convex decrease, respectively, for
γPII and γW over elevation. We deem a function g(x) interpolating these
points should be real at H = 0 and tend to a constant as H→ ∞ (very large
values) given that an infinite increase of the tail index with elevation is
physically inconsistent. One function with these properties is
g(H) = a + b exp (�cH), with a ∈ ℝ and c > 0; g(x) is concave for b > 0
and convex for b < 0, while g(0) = a + b and limH → ∞g(H) = a.

We estimate the parameters a, b, and c, by least square fitting, yet for dif-

ferent block sizes different clouds of H; γPII
� �

and H; γW
� �

points are formed

potentially affecting the estimated parameters. Selecting a unique block
size cannot be theoretically justified, thus, we fit g(x) to all clouds of points
for n = {10, 20,…, 400}, that is, a total of 40 different clouds. We show the
ensemble of fitted curves in Figures 7a and 7b as gray shaded areas
(remarkably narrow) revealing that block size does not affect significantly
the estimated parameters. We provide characteristic curves for the tail
indices γPII and γW versus elevation by calculating the median values of
the 40 estimated a, b, and c, parameters, resulting in

γPII Hð Þ ¼ 0:30þ 0:14 exp �0:0009Hð Þ
γW Hð Þ ¼ 0:46� 0:16 exp �0:0011Hð Þ ; (10)

where elevation H is in meters. The curves are shown in Figures 7a and 7b
and for H = 0 m the tail-index values are γPII = 0.16 and γW = 0.62, while
their maxima for H → ∞ are γPII = 0.30 and γW = 0.46.

As an example, we use a 50-year hourly record from Lake Charles regional
Airport in Louisiana to fit the Gamma, the Burr type XII (BrXII; three-
parameter generalization of the PII), and the Generalized Gamma (GG;
three-parameter generalization of Weibull or Gamma) distributions using
fixed PII and W tail indices for the latter two, selected from the maps of
Figure 6. In this way we avoid the uncertainty to assess the tail index of
a three-parameter distribution while the remaining two parameters are
estimated to preserve the mean and standard deviation of the empirical
sample (of course maximum likelihood, L-moments, or other methods
can be used to estimate the remaining two parameters). The mean
and standard deviation of nonzero values are, respectively, 3.29 and
5.83 mm, with probability of dry hours 95.1%. According to the maps
the PII and W tail indices in this area are, respectively, 0.12 and 0.7 (we
use the mean of the class). The fitted BrXII and GG distributions (see

Figure 7. (a) Pareto II and (b) Weibull tail indices versus elevation. The gray
shaped areas result from ensemble curves; the colored curves within the
gray areas are themedian curves given in equation (10); the cloud of points is
for block size n = 100.

Figure 8. Pearson’s and Kendall’s correlation coefficients of Pareto II and
Weibull tail indices versus elevation for various block sizes.
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Figure 9a) predict for T = 100 years, respectively, 75% and 25% larger
precipitation than the fitted G distribution, while for T = 1,000 years the
corresponding values are 111% and 33% larger.

A more general demonstration of the implication that a misjudged tail
might have on the estimation of design rainfall amounts is shown by the
relative difference of predicted amounts by three-parameter distributions
with a fixed tail compared to predicted amounts by a light-tailed Gamma
distribution (Figure 9b). Particularly, we consider a characteristic hourly
precipitation sample with coefficient of variation CV = σ/μ ≅ 1.8 and prob-
ability of dry hours p0 = 0.90. Assuming an arbitrary mean value μ (results
do not change with different μ as long as CV remains the same), we fit the
G, GG, and BrXII distributions by preserving the mean and standard devia-
tion (obviously σ = μ × CV) and using as tail index for the Generalized
Gamma and BrXII the corresponding median values, that is, 0.56 and
0.19, respectively. Specifically, we show (Figure 9b) the relative differences
of GG and BrXII predictions to G predictions defined, respectively, as
ΔQGG(T) = QGG(T)/QG(T) � 1 and ΔQBrXII(T) = QBrXII(T)/QG(T) � 1. We show
that for a typical hourly precipitation record and for T = 1000 years the
GG and the BrXII predict approximately 50% and 150% more precipitation
than the G estimates.

From the previous analysis, it is clear that models like the G distribution
can underestimate return levels since they cannot adapt their tail to the
behavior of observed extremes, as quantified and shown in the maps. On
the other hand, two parameter models like the PII or the LN, although
having a shape parameter to adjust the tail’s heaviness, are not flexible
enough. More specifically, a two parameter model fitted using the
method of moments (either product or L-moments) preserves two

moments which usually are the first and second as they represent important location and dispersion
measures. Thus, the heaviness of the tail emerges as a byproduct of the estimated parameters without
explicitly taking into account the behavior of extremes. Certainly, the information summarized in statistics
like the mean and variance is not sufficient to characterize either the general shape or the distribution
tail. Other generic fitting methods like maximum likelihood or least squares do not preserve any moment,
but rather try to determine the best distribution describing the data by maximizing or minimizing, respec-
tively, a specific norm. Again, these approaches (unless special modifications are considered, e.g., adding
weights in data values) tend to express the majority of the data which clearly are not the extreme values.
Thus, two-parameter models do not offer the desired flexibility to describe in general the plethora
of observed distribution shapes. Actually, regarding precipitation at daily scale, a global investigation showed
clearly that two-parameter models cannot adequately reproduce its statistical properties (Papalexiou &

Koutsoyiannis, 2016).

Of course three-parameter models are less parsimonious, increasing the
parametric uncertainty in estimating the tail index. We can improve the
accuracy of this estimation, however, by using regionalized values of tail
indices instead of the station ones. Regionalized tail indices are estimated
focusing only on extreme values while the regional average is more robust
than single-station estimates when clear spatial patterns emerge (as we
show in this case) that imply the existence of spatial homogeneity in the
behavior of extreme rain. This increased robustness in estimation is
expected, as regionalization increases the sample size by substituting
space for time. We demonstrate this by a MC experiment, that is, we gen-
erate samples from a W distribution with tail index γ = 0.56 and we calcu-
late the probability of a posteriori estimating γ with error less than 5%
assuming the estimates are from a single station (n = 1) or from the

Figure 10. Distribution of the tail index estimated from random samples
from a Weibull distribution with theoretical tail index γ = 0.56 (equal to the
observed one for hourly precipitation). Highlighted areas and labels show
the probability to estimate γ with error less than 5% based on single station
estimates or on regional values by averaging estimates in 2, 5, and 10
stations.

Figure 9. (a) Fitted G, BrXII, and GG distributions for an hourly precipitation
record of Lake Charles regional Airport in Louisiana. Tail indices of BrXII
and GG distributions were fixed from the maps of Figure 6. (b) Prediction
difference of the GG and the BrXII distributions compared to a G distribution
for a typical hourly precipitation record in the United States. G = Gamma;
BrXII = Burr type XII; GG = Generalized Gamma.
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average value of n = {2, 5, 10} stations. We form the distribution of the estimator for each n and calculate the
corresponding probabilities (Figure 10). For example, the probability when n = 1 is just 34.6% and doubles for
n = 5. In this way we can simplify and make more robust the estimation process of fitting a three-parameter
distribution by aligning the parameter controlling the tail with the regional tail index and estimate the rest
two parameters using any method, for example, we can use the method of moments to preserve the mean
and standard deviation of the observed data. Of course, it should be clear that this MC experiment demon-
strates the gain in estimation accuracy assuming that stations are independent. In the presence of spatiotem-
poral correlations this increase in the estimation accuracy is expected to be smaller depending of course on
the strength of the correlations (e.g., Douglas et al., 2000).

5. Summary and Conclusions

We analyzed the largest available database of hourly precipitation records in the United States investigating
the behavior and climatology of tails of extreme hourly precipitation. From 7,127 stations we selected 4,316
stations with more than 3,000 nonzero values. In this paper, we outlined a novel Bayesian-adjustment
approach for understanding and diagnosing the tails of hourly precipitation extremes. We explored three
questions: (a) which distribution tail between power-type and Weibull tails better describes hourly precipita-
tion extremes and how we can create accurate diagnostics, (b) what is the range of the tail-index values, and
(c) what is their spatial variation, or else their climatology.

Both tails performed well especially for empirical tail samples comprising the most extreme values, that is, for
S1% and S0.5% (see Figures 4a and 5c), yet a comparison after adjusting the results based on a Bayesian frame-
work indicated the Weibull tail as a more robust model for hourly precipitation extremes over the United
States. The Weibull tail index γW is remarkably stable across all tail samples studied with a median value equal
to 0.56 (Figure 5b). The PII tail index γPII is affected by the empirical tail sample, with a median value of 0.24 at
S10% constantly decreasing to 0.19 at S0.5% (Figure 5a), indicating that the Pareto tail may not be a robust
choice since the value at which it converges (if it does) is unknown. Both the PII and W tail-index values
showed that hourly precipitation has a heavy (subexponential) tail, much heavier than exponential or
Gamma tails that would significantly underestimate precipitation over large return periods. The spatial varia-
tion of both tail indices shows a coherent pattern (see Figure 6) with mountainous areas exhibiting heavier
tails. We revealed a nonlinear increase of the tail’s heaviness with elevation and we provided corresponding
functions for the PII andW tail indices (see equation (10) and Figure 7). However, we stress that elevation can-
not be the sole determinant of the tail’s heaviness as regional precipitation characteristics and physical
mechanisms also affect extremes’ behavior. These functions as well as the spatial variation maps in
Figure 6 can be used as guidelines, or as a first choice, in selecting tail index values for probabilistic and sto-
chastic modeling of hourly precipitation, which in turn can lead to improved rainfall-runoff modeling. Finally,
the spatial patterns of tail’s heaviness shown here can also be used to improve downscaling of historical
observations and climate model projections.
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