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Equivalence of the Input/output model to a Markov pro-
cess

In this section, we prove the equivalence of the stationary
probabilities that result from an irreducible and aperiodic dis-
crete Markov process and the input/output model introduced
in the Materials and Methods section.

Irreducible and aperiodic discrete Markov process. Let P be
the transition probability matrix of a discrete Markov process
which is irreducible (all the states are reachable from any state)
and aperiodic (the return period to a given state can occur at
di�erent time steps),

P =
)

pij

*
NxN

. [1]

P is an N x N square matrix, being N the number of states,
and pij the probability of transition from state j to state i at
each time step. Then, we can define a stationary probability
distribution fi:

P fi = fi, [2]

where fi = {fii}Nx1 is a column vector, whose entries corre-
spond to the stationary probability distribution of each state i.
Therefore, fii are non-negative values, satisfying

qN

i=1 fii = 1.
For a given directed acyclic graph, such as the ones we used

to represent delta channel networks, if we assume conservation
of mass, the dynamics of the system can be modelled by a
Markov process where the outlets of the graph are reconnected
to the apex with transition probability one. Thus, the tran-
sition probability matrix is equal to the weighted adjacency
matrix of the graph, W , if the entries wij corresponding to
transition outlets to the apex are substituted by ones.

Equivalence of the Input/output model and Markov process
solutions. We have shown in the Materials and Methods sec-
tion that for a delta conceptualized as a directed acyclic graph
fed from the most upstream node (apex) with a constant unit
flux, we can compute the steady-state flux distribution F as:

F = (I ≠ W )≠1
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ddddb
. [3]

We prove in this section that the stationary distributions ob-
tained from an irreducible and aperiodic Markov process, fi,
and an input/output model, F , are equivalent (up to a normal-
ization factor). To prove this statement, we can decompose

the transition probability matrix of the Markov process P as
P = W + R, R is called the recirculation matrix and it is
defined as follows:

R =
)

rij = ”i1”j{k}
*

NxN
. [4]

where ” represents the Kronecker delta; and therefore, all
the entries of matrix R are zeros, except for the entries of
the first row (apex has been indexed with i = 1 without loss
of generality) that correspond to {k}-columns indexing the
outlets.

Proof: If F = fi, then F must be an eigenvector of the
probability transition matrix P , and therefore P F = F .
Given, Y
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[5]

then,

(W + R)(I ≠ W )≠1
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By multiplying both sides of Eq. 6 from the left by (I ≠ W ),

(I ≠ W )(W + R)(I ≠ W )≠1
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Expanding the left side of Eq. 7,
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Simplifying and rearranging Eq. 8,
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Defining B = R(I ≠ W )≠1,
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Considering the structure of matrix R (see Eq. 4), then B is
also a sparse matrix with the following entries:

B =
)

bij

*
NxN

; bij =
Nÿ

l=1

ril(I ≠ W )≠1
lj ”1i”l{k}, [13]

where the only non-zeros entries of the B matrix are in the
first row (the apex has been indexed with i = 1 without loss
of generality). Thus, the condition needed to satisfy Eq. 13 is
simply that the entry b11 = 1. Therefore,

b11 =
Nÿ

l=1

r1l(I ≠ W )≠1
l1 ”l{k} =

Nÿ

l=1

(I ≠ W )≠1
l1 ”l{k} = 1. [14]

In other words, the sum of the entries of the first column of
(I ≠ W )≠1 that corresponds to the outlets, {k}, must be equal
to one.

Given the definition of the input/output model (see Eq. 3),
the first column of (I ≠ W )≠1 stores the values of the fluxes,
F . Assuming conservation of mass, and that the input of the
model is set to 1, the sum of the fluxes of the outlets must
be one also, proving that the Markov model based on the
idea of recirculating the flux and Input/Ouput model provide
consistent stationary probability distributions.
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Fig. 1. Graph representation of a delta and nonlocal Entropy Rate (nER) for deltas.
(a) A river delta channel network topology can be represented by a graph where
channels correspond to links in the graph, and junctions and bifurcations are internal
nodes (blue circles). Delta outlets are represented as external nodes (red squares).
The graphs used in this paper to model delta channel networks are directed graphs
(link direction corresponds to the direction of the flow in the channel) and acyclic (no
cycles, i.e., water recirculation). All the information in the graph can be stored in a
sparse matrix called Adjacency matrix (see text in Tejedor et al. (1) and supporting
information for further details). (b) The topologic representation of a delta channel
network does not contain any relevant information (besides flux directionality) about
flux dynamics, and more specifically about flux partition in the bifurcations. Thus, for
the same topologic configuration, such a bifurcation can exhibit very different flux
partition depending on its physical attributes. Here, we use downstream channel
width as a proxy of the flux partition in bifurcations. This graph representation allows
us to compute algebraically different properties of the graph, including the stationary
flux distribution when a constant flow input is supplied through the delta apex. One of
the magnitudes that we can compute is what we define as nER. Intuitively, nER
can be understood as the average amount of information (or uncertainty) needed to
track packages of flux in their journey from an internal node (blue circle in a) to the
outlet (red square) where it is delivered. We hypothesized that nER is maximized by
delta self-organization, adjusting flux partition to maximize this uncertainty metric. To
test this hypothesis, we compare the value of nER computed using channel width as
proxy for flux partition, with values of nER computed when the flux partition in each
bifurcation is randomized, i.e., the channel network structure (topology) is preserved
but the flux partition changes at the bifurcation scale as is exemplified in b.

Physical characteristics of the ten deltas analyzed

In this section, we summarize the physical characteristics of
the ten deltas selected for analysis namely: Niger, Parana,
Yukon, Irrawaddy, Colville, Wax Lake, Mossy, Fraser, Danube
and Mekong (Fig. 2). Extracting the channel networks from
an air photo or satellite image of a delta is not an easy task.
For this reason, we have adopted here for our preliminary
analysis the exact five traced deltas in the study of Smart and
Moruzzi (2) – Niger, Parana, Yukon, Irrawaddy, and Colville
– and have added the Wax Lake and Mossy deltas for which
channel networks have been extracted in previous studies (3).
We also added the channel networks of Fraser, Danube and
Mekong extracted from Google Earth satellite images.

Niger Delta: The Niger delta is located in the West coast
of Nigeria (latitude 4.95¶, longitude 6.18¶). It receives input
from the Niger River with an average water discharge of 6,130
m3s≠1 and sediment discharge of 3.97 x 107 tons yr≠1 (4).
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Fig. 2. Field deltas and their channel network structure. Clockwise starting from top left: Yukon, Colville, Danube, Mekong, Irrawaddy, Niger, Parana, Wax Lake, Mossy,
and Fraser. Satellite images provided by Landsat/Copernicus, NASA, Digital Globe and CNES/Airbus were extracted from Google Earth. We acknowledge their respective
copyrights.

Niger delta is the largest delta in Africa covering an area of
24,508 km2, sediment is mostly fine sand (5) and the tidal
range is 3.0 m. The origin of the delta is estimated to be
80 - 35 million years BP during the Late Cretaceous (6). It
is classified as tide and wave dominated (4). By using the
channel network extracted by Smart and Moruzzi (2), we
identified 181 links, 130 vertices and 15 shoreline outlets.

Parana Delta: The Parana delta is located North of Buenos
Aires, Argentina (-33.80¶, -59.25¶). It is fed by the Parana
River, which delivers an average water discharge of 13,600
m3s≠1 and sediment discharge of 7.75 x 107 tons yr≠1 (4).
Parana delta covers an area of 15,463 km2 and sediment are
mostly fine sand, silt and clay (8), and the tidal range is 4.0
m. Delta genesis was estimated during the Middle Holocene
(6,000 years BP) (7). It is classified as a river and geology
dominated delta (4). By using the channel network extracted
by Smart and Moruzzi (2), we identified 86 links, 69 vertices
and 18 shoreline outlets.

Yukon Delta: The Yukon Delta, located in the West coast of
Alaska, USA (63.05¶, -164.05¶) receives input from the Yukon
River with an average water discharge of 6,620 m3s≠1 and
sediment discharge of 5.97 x 107 tons yr≠1 (4). It has an area
covering 8,313 km2 with mainly fine-grained sediments (10)
and the tidal range is 1.5 m. Delta genesis is estimated to
be during the Middle Holocene (5,000 years BP) (9). It is
classified as a wave dominated delta (4). By using the channel
network extracted by Smart and Moruzzi (2), we identified
169 links, 126 vertices and 24 shoreline outlets in the delta.

Irrawaddy Delta: The Irrawaddy delta is located in the
Southernmost coast of Myanmar (16.20¶, 95.00¶). It is fed by
the Irrawaddy River at an average water discharge of 13,558
m3s≠1 and sediment discharge of 2.60 x 108 tons yr≠1 (4). The
delta covers an area of 6,438 km2 with the deposited sediment
composed of mostly mixed mud and silt (5), and the tidal

range is 4.2 m. It is estimated that the delta began to form
around 8,000-7,000 years BP together with most of the deltas
in Southeast Asia (11). It is classified as a tide dominated
delta (4). By using the channel network extracted by Smart
and Moruzzi (2), we identified 100 links, 71 vertices and 6
shoreline outlets in the delta.

Colville Delta: The Colville delta, located in the Northern
part of Alaska, USA (70.40¶, -150.65¶), receives input from
the Colville River with an average water discharge of 491.7
m3s≠1 (5) and sediment discharge of 1.16 x 108 tons yr≠1 (12).
With an area of 240 km2, it is relatively small compared to
other polar deltas. Sediment is mostly composed of gravel
and sand (5). The tidal range is 0.2 m. The delta began to
develop during the Middle Holocene (4,000 years BP) (13).
It is classified as a river dominated delta (4). By using the
channel network extracted by Smart and Moruzzi (2), we
identified 140 links, 107 vertices and 20 shoreline outlets in
the delta.

Wax Lake Delta: The Wax Lake delta, located in the coast
of Louisiana, USA (29.51¶, -91.44¶), receives input from the
Wax Lake outlet, a channel that was dredged in the early
1940s to mitigate flooding risk in the nearby Morgan City,
at an average water discharge of 2,900 m3s≠1 and sediment
discharge of 2.35 x 107 tons yr≠1 (14). The slope of the
Wax Lake delta from the delta apex to the Gulf of Mexico
is 5.8 x 10≠5 (15). Subaerial land only developed after the
1970s flood and has been experiencing rapid growth in the last
two decades doubling to more than 100 km2 today (16, 17).
Sediment deposit in the delta is composed of approximately
67% sand (16), and the tidal range is 0.40 m (18). It is
classified as a river dominated delta. We utilized the outline of
the Wax Lake delta channel network processed by Edmonds et
al. (3) containing 59 links, 56 vertices and 24 shoreline outlets.
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Mossy Delta: The Mossy delta is located in Saskatchewan,
Canada (54.07¶, -102.35¶). It is fed by the Mossy River with
an average water discharge of 300 m3s≠1(3) and sediment
discharge of 2.20 x 106 tons yr≠1 (19). The delta was formed
as a result of the avulsion of the Saskatchewan River in the
1870s (20). Progradation of the delta resulted in an area of
14 km2 in the early 1940s (19) and after the construction of a
spillway dam in the 1960s, the delta ever since slowly evolved
with a current area of approximately 17 km2. Sediment in
the delta is roughly 50% fine-grained sand (3). Since the
delta drains into a lake (Lake Cumberland), the e�ect of tides
is insignificant. It is classified as a river dominated delta.
We have extracted the channel network of Mossy delta and
identified 67 links, 61 vertices and 23 shoreline outlets.

Danube Delta: The Danube delta is located in Romania
(45.2¶, 29.4¶) and receives input from the Danube River with
an average water discharge of 6,420 m3s≠1 and sediment dis-
charge of 6.72 x 107 tons yr≠1 (4). It has an area of 6,468 km2.
Main control of the delta is waves (southern part) although
the northern part is river-dominated (21). Recent studies show
that the intensification of land use in the watershed as the
population increased and land use technology has increased
sedimentation in the delta (22).

Fraser Delta: The Fraser delta is located in Canada (49.18¶,
-122.95¶) and receives input from the Fraser River with an
average water discharge of 3,560 m3s≠1 and sediment discharge
of 2.00 x 107 tons yr≠1 (4). It has an area of 876 km2. Main
control of the delta is river and tide. Recent studies show that
the delta is experiencing more human intervention.

Mekong Delta: The Mekong delta is located in Vietnam
(10.1¶, 150.6¶) and receives input from the Mekong River with
an average water discharge of 14,770 m3s≠1 and sediment
discharge of 1.60 x 107 tons yr≠1 (4). It has an area of 91,789
km2. Main control of the delta is river and wave.

Delft3D Numerical Simulations

We use Delft3D to simulate the self-formed evolution of delta
distributary networks. Delft3D is a physics-based morpho-
dynamic model that has been validated for morphodynamics
applications (23). We employ the depth-averaged version of
Delft3D, which solves the unsteady shallow water equations in
the horizontal dimension and assumes hydrostatic pressure in
the vertical. Specifically, in this paper, we use model runs from
Caldwell and Edmonds (24), which simulate a sediment-laden
river entering a standing body of water that is devoid of waves,
tides, and buoyancy forces. The river has an upstream water
discharge boundary condition (steady flow of 1000 m3s≠1) and
carries sediment fluxes in equilibrium with the flow field. The
downstream water surface boundary conditions are fixed at
sea level. The flow field is coupled to the sediment transport
equations (25, 26) and bed surface equations so it dynami-
cally evolves in response to sediment transport gradients. The
incoming sediment consists of grain sizes, D, lognormally dis-
tributed with a median size, D50, and standard deviation ‡(„)
(in „ space, where „ = log2 D). We note that cohesiveness
(defined as the percent of sediment with grain size D Æ Dc

= 0.064 mm) and dominant grain size (D84) can be uniquely
determined as a function of D50 and ‡(„) when the sediment
size is lognormally distributed. Notice that other variables
that can a�ect directly or indirectly the bulk cohesion of the
system (e.g., vegetation, flow variability, and spatial hetero-

D50 = 0.01 mm

D50 = 0.05 mm

D50 = 0.10 mm

= 0.25 mmD50 

= 0.50 mmD50 

= 1.00 mmD50 

Fig. 3. Numerical deltas and their channel network structure. Six river dominated
deltas (no wave or tidal energy) are displayed where the only difference is the median
of the incoming grain size distributions D50 = 0.01 mm, 0.05 mm, 0.10 mm, 0.25 mm,
0.50 mm, and 1.00 mm.

geneities from apex to shoreline) have not been considered
here. Specifically, we compare six runs where the only di�er-
ence is the median of the incoming grain size distributions
D50, while the standard deviation is fixed to ‡(„) = 1. The
distributions have median sizes of 0.01 mm, 0.05 mm, 0.1 mm,
0.25 mm, 0.5 mm, and 1 mm, respectively (Fig. 3). These
simulations are identical to runs B1a1, B1c1, B1e1, B1h1,
B1m1, and B1o1 in Table 2 of Caldwell and Edmonds (24),
exploring the whole range of cohesiveness (from 0% to 100%)
and values of dominant grain size from 0.014 to 1.896 mm.
For more discussion on the morphodynamics of these deltaic
simulations, see Caldwell and Edmonds (24).

We utilized the capability of numerical simulations to in-
vestigate the change in nER during an avulsion cycle. Fig. 4
shows the avulsion cycle analyzed in this paper obtained from
the run with D50 = 0.10 mm.

Channel Network Extraction and Analysis. The analysis con-
ducted in this paper relies on spectral graph theory, which
requires transforming each delta channel network into a graph.
Graphs are mathematical objects composed of vertices and
edges. For delta channel networks, the edges represent chan-
nels, and vertices correspond to the locations where one chan-
nel splits into new channels (bifurcation) or two or more chan-
nels merge into a single channel (junction). In pre-processing
the gridded data produced by the simulations, we perform the
following steps:

1. Classify pixels as Land/Channels/Ocean: First, we define
a shoreline with the opening angle method (27) on a
binarized image where bed elevations below sea level were
considered water and above sea level were considered land.
We use an opening angle of 70¶. All pixels not within
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Fig. 4. Avulsion cycle. Five instances in an avulsion cycle of a Delft3D simulated delta where the main channel shifts, draining from the left (I) to the right (V) part of the delta
shoreline. Intermediate stages of the avulsion cycle are also displayed: (II) the new path is created, (III) fluxes are equally divided between both paths, and (IV) the new path
carries most of the flux. Top (bottom) panels are characterized by high (low) nER. Each panel is labelled with its corresponding time of simulation in hours (1 hr = 7.3 days
morphodynamic time).

the shoreline are defined as ocean. Within the enclosed
shoreline, pixels are defined as channels if depth > 0.25
m, velocity > 0.2 m s≠1, and sediment transport rate >
2.25 x 105 m3s≠1. Everything else within the shoreline is
defined as land.

2. Eliminate disconnected channels: From all the channel
pixels, we only consider those ones that belong to channel
pathways that eventually drain from the apex to the
shoreline, removing isolated pixels and paths.

3. Extract skeleton network: We use an algorithm (28) to
define the centerline of each channel, taking into account
that channels can have a large range of variation in widths
(from one pixel to several). From the resulting skeleton
structure and flow directions, we define the vertices and
edges that uniquely determine the directed graph corre-
sponding to the delta channel network [e.g., see Tejedor
et al. (1), Figure 7].

4. Compute adjacency matrix: All information about the
network connectivity can be stored in a sparse matrix
called adjacency matrix. The element of the matrix aij

is di�erent from zero if the vertex j is directly connected
to downstream vertex i, and zero otherwise.

5. Extract channel widths: The width of channels measured
directly downstream of each bifurcation is stored and used

as a proxy for flux partition [see Tejedor et al. (1), section
2.2].
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