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Abstract Meandering river planform evolution is driven by the interaction of local nonlinear processes
and cutoff dynamics. Despite the known nonlinear dynamics governing the evolution of meandering
rivers, previous attempts have found at most a weak signature of these process nonlinearities within the
meander planform morphologies (form nonlinearities). In this work, we present a framework to measure
form nonlinearity from centerline curvature signals and unambiguously quantify its presence in both a
numerically simulated meandering river and three natural rivers. The degree of nonlinearity (DNL) metric is
introduced to measure the strength of form nonlinearities embedded in the centerlines. The DNL’s evolution
through time is computed for annual observations over 30 years of an active, tropical meandering river
and for the simulated centerline to understand how cutoffs and bend growths affect form nonlinearity. We
find that although cutoffs reduce the overall form nonlinearity, they also act as a source of nonlinearity
themselves by creating scales that contribute disproportionately to DNL.

1. Introduction

The relationship between process and form is at the heart of many problems in geomorphology and holds
particular intrigue in meandering rivers [e.g., Lane and Richards, 1997; Güneralp and Marston, 2012;
Legleiter, 2014; Schwenk et al., 2015]. Meandering river planform morphology arises from the interaction of
nonlinear local fluid and sediment dynamics along its course which typically act to grow, migrate, and/or
deform bends. Cutoff dynamics also play an important role in shaping meander planform structure by imme-
diately disconnecting meander bends and perturbing the local dynamics [Hooke, 2004; Camporeale et al.,
2008; Schwenk and Foufoula-Georgiou, 2016]. The expression of formative meander dynamics through river
morphology has received considerable attention via numerical experimentation wherein channel centerline
characteristics such as sinuosity, wavelength, and average curvature depend on the implemented model
dynamics [Sun et al., 2001; Camporeale et al., 2007;Motta et al., 2012; Schwenk et al., 2015]. On the other hand,
empirical studies of meander morphodynamics approach the process-form link inversely by inferring mean-
der dynamics from analyses of centerline structure under the assumption that the spatial structure somehow
encodes properties of the governing dynamical system [Montgomery, 1993; Frascati and Lanzoni, 2010;
Gutierrez and Abad, 2014; Zolezzi and Güneralp, 2015]. In this study, we investigate the validity of this assump-
tion by determining whether nonlinearities known to be present in the deterministic dynamics of meander
evolution are also expressed through the spatial centerline structure.

Physically based, reductionist theory of long-term meander evolution developed over the past four decades
has identified process nonlinearities in the essential deterministic dynamics of meander evolution. We define
process nonlinearities as those arising from process interactions (hydrodynamics, sediment dynamics, lateral
migration, etc.) within a time-evolving, deterministic system and differentiate these from form nonlinearities
which are expressed through the spatial structure of centerline morphologies formed by the evolving
system. The existence of process nonlinearity was noted by Ikeda et al. [1981] who considered the equations
of motion for treatment of finite-amplitude bends in intrinsic coordinates. This process nonlinearity of
geometric origin (called herein a geometric process nonlinearity) is expressed through the development
of higher-order modes of sine-generated curves [Parker et al., 1982; Seminara et al., 2001] by fattening
and skewing meander bends. Seminara et al. [2001] later generalized this notion via geometrical arguments
(their Figure 2) showing that any curve evolving through time is governed by
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where ζ is the rate of lateral movement at some distance s along the curve, t is time, and θ represents the
angle of the curve with respect to the horizontal, and ∂θ/∂s is the curvature. This equation demonstrates a
geometric process nonlinearity inherent in evolving meanders due to the quadratic form of ∂θ/∂s in the inte-
gral term evident from the evaluation of the integral at its upper limit. In addition to the geometric process
nonlinearity of meander evolution, equation (1) may also include process nonlinearities arising from hydro-
dynamics, sediment dynamics, and/or their interaction expressed through the formulation of the lateral rate
of migration (ζ ). The earliest hydrodynamic models of flow through meander bends were achieved through
perturbation analyses wherein the higher-order, nonlinear terms were discarded under the assumption of
small centerline curvatures [e.g., Callander, 1969; Ikeda et al., 1981]. Eventually, 2-D depth-averaged nonlinear
hydrodynamic models were developed that included the discarded nonlinear terms that capture the non-
linear coupling of downstream velocity with secondary cells that deform the vertical flow profile [Smith
and McLean, 1984; Imran et al., 1999; Blanckaert and de Vriend, 2010]. The retention of these nonlinear terms
in the governing hydrodynamic equations was shown to result in significantly different planform morpholo-
gies [Camporeale et al., 2007]. Although not yet applicable to the large spatial and temporal scales of meander
migration considered here, three-dimensional, eddy-resolving models that explicitly capture rather than
parameterize nonlinear physics have explicated further the complex and nonlinear hydrodynamics within
meander bends [Keylock et al., 2012; Blanckaert et al., 2013; Constantinescu et al., 2014].

Nonlinearities associated with sediment dynamics have similarly been gradually included in models of
meander evolution, though to a lesser extent than hydrodynamics. The nonlinear Exner equation account-
ing for conservation of mass is typically linearized [e.g., Seminara et al., 2001] and closed with (a) a
nonlinear expression for bed load transport in the downstream direction; i.e., qs,s ~(Τ � Τc)

m where Τc is
critical bed shear stress, where qs,s is sediment flux in the downstream direction, Τ is bed shear stress, Τc
is critical bed shear stress, and m is a typically-non-unity exponent, and (b) an assumed transverse bed pro-
file that is related either linearly [Johannesson and Parker, 1989], sinusoidally [Struiksma et al., 1985], or
exponentially [Blanckaert and de Vriend, 2010] to local curvature. The observation of longer time scales
of bed adjustment relative to the time scales of hydrodynamic forcings (i.e., floods) is often used to justify
decoupling the hydrodynamics and morphodynamics [Pittaluga and Seminara, 2011], but the resulting
sediment dynamics may still be forced with a nonlinear flow field through τ = f(u) for a velocity field u.
Of course, 3-D modeling using computational fluid dynamics (CFD) techniques includes the full coupling
of the nonlinear hydrodynamics and morphodynamics and includes additional nonlinearities associated
with turbulence [Rüther and Olsen, 2007; Kang and Sotiropoulos, 2012] and the expansion of the nonlinear
terms of the Navier-Stokes and Exner equations into the third dimension. Computational costs prohibit CFD
simulations of meander trains over long times, but fully characterizing the effects of deterministic nonlinea-
rities on planform morphology would require no less.

In addition to the local deterministic nonlinear processes driving meander evolution, the cutoff process
introduces a planform-scale threshold form nonlinearity through the sudden removal of bends. Cutoffs have
been argued to reduce overall form nonlinearity by removing older bends that have had more time to
express the deterministic nonlinear dynamics of meander evolution [Perucca et al., 2005; Seminara, 2006;
Camporeale et al., 2008]. However, local dynamics see cutoffs as perturbations to the system’s state variables
(e.g., slope, sediment flux, and flow velocity) which may be magnified through the driving nonlinear
dynamics and manifest through the planform morphology.

A handful of studies have suggested that meandering river planform morphodynamics exhibit chaotic beha-
vior and self-organized criticality (SOC), both concepts requiring nonlinear system dynamics. Montgomery
[1993] found evidence supporting a chaotic model for the curvature series of at least one natural river,
although chaos was not similarly detected in simulated rivers [Frascati and Lanzoni, 2010]. The conceptuali-
zation of meandering rivers as SOC systems [Bak et al., 1987] was developed by Stolum [1997, 1998] and
includes evidence from the power law size-frequency distribution of oxbow lakes created by a simulated river
[Stolum, 1996] and avalanching cutoff dynamics along the Ucayali River [Schwenk and Foufoula-Georgiou,
2016]. Such phenomenological models require as a necessary condition a nonlinear dynamical system, but
despite both theoretical justification for nonlinear processes driving planform evolution and empirical
descriptions of planform morphodynamics by models requiring nonlinearity, direct attempts to detect
and quantify form nonlinearity have been unsuccessful in both real [Perucca et al., 2005] and simulated
[Frascati and Lanzoni, 2010] meandering centerlines. These studies cast signals of the spatial series of
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curvature into a phase space in order to test their trajectories for nonlinear and/or deterministic structure and
found at most weak evidence of nonlinearity, suggesting that process nonlinearities do not necessarily man-
ifest as form nonlinearities in meandering river planform morphology.

In this work, we similarly investigate phase-space representations of curvature series but employ a less
restrictive and more robust metric of nonlinearity. In section 2, we establish that the nonlinearities in the
underlying meander evolution dynamics (process nonlinearities) are indeed manifest through the center-
line curvature series of meandering rivers (form nonlinearity) in section 2. The effects of bend growth
and cutoffs on form nonlinearity are investigated for evolving centerlines: first using a long-time simulation
of a meandering river where the underlying deterministic dynamics are exactly known, and then for annual
realizations of an actively migrating, tropical meandering river over 30 years (section 3). The sources of
form nonlinearity are further interrogated by identifying scales that disproportionately contribute to
nonlinearity using wavelet-based techniques (section 4). Implications of these results on the relationship
between form and process in meandering rivers are discussed, as well as the caveats of interpretation
(section 5), and future research directions are identified (section 6).

2. Is Form Nonlinearity Present in Natural Rivers?

The degree of nonlinear structure in a stationary signal, such as the curvature series of a river centerline, can
be measured by comparing the signal with a surrogate of itself wherein its nonlinear structure has been
destroyed, but its linear properties remain intact [Theiler et al., 1992; Schreiber and Schmitz, 2000]. The signal
and its surrogate are cast into a phase space where their (possibly) nonlinear structure is unfolded, and their
difference is measured by the transportation distance (TD). Multiple surrogates may be generated of the
same original signal to test whether a signal is significantly nonlinear and, if so, assess its degree of nonlinear-
ity (DNL, Figure 1). In this section, the details of surrogate generation (section 2.1.1), embedding in a phase
space (section 2.1.2), and computing the TD and DNL (section 2.1.3) are given, followed by the application
of these techniques to two meandering rivers in Minnesota, USA (section 2.2).

2.1. Method for Detecting Nonlinearity
2.1.1. Generating Completely Linearized Surrogates
Linear signals have statistical properties that are independent of their Fourier phases. For example, randomiz-
ing the Fourier phases of a signal has no effect on its autocorrelation structure yet destroys its nonlinear
structure [Theiler et al., 1992; Schreiber and Schmitz, 2000]. A signal is therefore considered nonlinear if the
randomization of its Fourier phases results in a significantly “different” signal [Kantz and Schreiber, 2004].
Such modified signals, called surrogates, were introduced by Theiler et al. [1992] and have since been widely
applied [see Schreiber and Schmitz, 2000].

A modified iterated amplitude adjusted Fourier transform (IAAFT) was used to generate a linear surrogate
_

C
sð Þ from a spatial series of curvatures C(s) in four steps [see Keylock, 2007, 2008]. Our procedure for computing
curvature series from centerlines is laid out in Appendix A. First, the Fourier transform decomposed the signal
C(s) into a series of various-frequency sinusoids, each with an associated amplitude and phase. Second, the
phases of the component sinusoids were randomized, but the amplitudes were preserved. Third, the inverse

Fourier transform returns a signal
_

C sð Þwith the same power spectrum. Finally, the values of
_

C sð Þare replaced
by those in C(s) via a rank-order matching process in order to ensure the same distribution of the original and
surrogate series. This final step may cause minor mismatching between the original and surrogate spectra,
and thus, the entire procedure is iterated until a convergence criterion is met [Schreiber and Schmitz, 1996;
Venema et al., 2006]. The surrogate ultimately has the same values (probability distribution) and Fourier spec-
trum (autocorrelation) as the original signal. Multiple surrogates may be generated from the same original
signal by performing different phase randomizations.
2.1.2. Casting Signals and Surrogates Into Embedding Space
When a system’s evolution equations are known a priori, it can be projected into a phase space whose axes
are the independent variables of the system, and the system’s evolution through time is represented by a tra-
jectory through the phase space. In many systems, including meandering rivers, the complete set of evolu-
tion equations are unknown, but time or space series of one or more system variables are available. In
these cases, Takens theorem [Takens, 1981] provides a method of reconstructing a trajectory of the dynamic
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system from a single measurement (i.e., a time or space series) on the system via a technique termed delay
embedding, provided that the measurement is fully coupled to the system dynamics.

We assume the spatial series of curvatures as a measurement coupled to the complete dynamic system and
construct an m-dimensional embedding space with delay vectors of the curvature series:

C
!

m ¼ Cn� m�1ð Þτ; Cn� m�2ð Þτ ;…;Cn
� �

; (2)

where m is the dimension of the embedding space and τ is the lag. For a given series of length n, a total of
n-(m-1)τ points will be contained in each of them vectors. The embedding dimensionm should roughly cor-
respond to the number of independent variables in the dynamic system. Selection of m was guided by an
evaluation of “false nearest neighbors,” which are points in phase space that are nearby in lower dimensions
but separate when cast into a higher-dimensional phase space [Abarbanel and Kennel, 1993]. In practice, the
selection of m is constrained by the length of the signal, and large m vectors are computationally infeasible.
We tested m = 2,3,4 and found the results insensitive in agreement with others [e.g., Moeckel and Murray,
1997; Basu and Foufoula-Georgiou, 2002] and thus used m = 3 for all analyses herein. The lag τ should be
large enough to remove significant linear correlation between subsequent points inC

!
m, which we estimated

as the lag of the zero crossing of the series’ autocorrelation function.

We note that delay embedding to reconstruct system trajectories is typically performed using a dynamic
measurement on the system, i.e., a variable changing in time [e.g., Hegger et al., 1999], although spatial
embedding has been performed as well [e.g., Keylock et al., 2014]. The degree to which processes may be

Figure 1. The procedure for testing centerlines for nonlinearity and computing the degree of nonlinearity (DNL) is shown.
First, the curvature series is computed (see Appendix A). N surrogates of the curvature series are generated (only two
are shown) by randomizing their Fourier phases. The curvature series and its surrogate are embedded in phase space and
the difference between original-surrogate trajectories (OSTD,1) is measured by the transportation distance (TD). This
procedure is repeated N times, resulting in the OSTD distribution. The same procedure is used to generate the SSTD
distribution except that surrogate-surrogate pairs are compared in the embedding space. A t test is performed to test the
hypothesis (Ho) that the mean of OSTD (μOS) and SSTD (μSS) are drawn from the normal distributions with equivalent
means at a 99% confidence level. If Ho is rejected, nonlinearity (NL) is inferred and the DNL is computed as the absolute
difference between μOS and μSS.
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inferred from form depends entirely on the validity of the assumption that the spatial series of curvatures is a
sufficient measurement on the dynamical system governing meander evolution. This assumption is physi-
cally justifiable, in that a centerline curvature series integrates dynamics of local processes driving channel
migration, cutoffs, and the feedbacks between them, but it also requires that established process nonlinea-
rities (i.e., those discussed in section 1) must be detectable in the phase space representations. The following
section describes our method for detecting nonlinearity of signals cast into a phase space.
2.1.3. Computing Transportation Distance and Degree of Nonlinearity
The trajectories of each original curvature series and its linearized counterpart were reconstructed in phase
space via delay embedding, and the difference between the signals was estimated as the “distance” between
the density distribution of the two trajectory geometries within the embedding space. This measure was
developed by Moeckel and Murray [1997] as the transportation distance (TD) and is equivalent to the more
intuitive Earth mover’s distance [Rubner et al., 2000] which simply measures the minimum amount of work
required to transform one pile of dirt into another pile, where work is the amount of dirt to be moved times
the shortest distance it must be moved [Kantorovich, 1942; Ning et al., 2015]. In our case, the piles of dirt are
the densities of each trajectory within the embedding space, and the minimum amount of work required is
the TD [Moeckel and Murray, 1997]. The details of computing the TD are given in Appendix B. Larger TD indi-
cates a greater difference between the structure of the two trajectories and implies a greater dissimilarity
between their underlying dynamic systems. Because distances are measured in an embedding space whose
axes are defined by lagged vectors of the original signals, TD has units of the input signals. Other nonlinear
metrics (e.g., Lyapunov exponents) are notoriously difficult to measure in real systems due to noise and
insufficient signal length, but the TD has been shown to be more robust and revealing [Basu and Foufoula-
Georgiou, 2002].

Next, we test statistically whether the original signal is significantly different from its linearized surrogates.
The uncertainty of TD was estimated by generating N surrogates for each original signal. The TD was
measured between each original-surrogate pair (OS) and N surrogate-surrogate pairs (SS), resulting in two
distributions of TD: OSTD and SSTD. Given N surrogates, there are N(N� 1)/2 possible unique surrogate-
surrogate pairs. Of these, N surrogate-surrogate pairs were randomly selected by ensuring that each
surrogate was compared exactly twice and never against itself. We adopted a t test statistic to test the null
hypothesis that μOS and μSS, where μOS (μSS) denotes the mean of the OS (SS) distribution, are drawn from
normal distributions with the same mean at a 99% confidence level. If the null hypothesis were rejected,
the signal was considered to be nonlinear. A demonstration of the ability of the TD to discriminate between
linear and nonlinear signals is given in Appendix B. If a signal is found to be nonlinear, its degree of nonlinear-
ity (DNL) may be measured as

DNL ¼ ∣μOS � μSS∣: (3)

The DNL provides a measure of the degree of difference in the nonlinear structure of a signal and its linear
counterpart. Confidence intervals were computed for each DNL according to

CIUL ¼ DNL ± z:99
σOSffiffiffiffi
N

p þ σSSffiffiffiffi
N

p
� �

; (4)

where CIU is the upper confidence bound, σOS is the standard deviation of the OSTD distribution, and z.99
refers to the number of standard deviations extending from the mean of a normal distribution to account
for 99% of its probability of nonexceedance.

2.2. Nonlinearity in Two Meandering Rivers

The single-threaded, meandering Blue Earth and Watonwan Rivers in Minnesota, USA, were mapped at two
times from aerial photography taken in 1938 and 2008 (Figure 2). The Watonwan is a tributary to the Blue
Earth, and both rivers flow through a watershed dominated by row crop agriculture (80% coverage). The
hydrologic regime shifted substantially around the 1970s due to a combination of anthropogenic and climate
changes [Foufoula-Georgiou et al., 2015]. Migration rates along both rivers were highly spatially variable
between 1938 and 2008, but the Blue Earth migrated an average of 0.26 m/yr compared with the
Watonwan’s 0.15 m/yr. Over the 70 year period, the Blue Earth underwent 22 cutoffs but grew 1.1 km
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longer, while 14 cutoffs occurred along the Watonwan, and its length was reduced by 2.0 km. The Watonwan
widened by 19%, and the Blue Earth by 11% over the same period. Planform and migration characteristics for
both rivers are given in Table 1.

The centerlines of the Blue Earth and Watonwan Rivers in both 1938 and 2008 exhibited significant form
nonlinearity, evident from the nonoverlapping OSTD and SSTD distributions in Figure 3. For both rivers, the
degrees of nonlinearity (DNLs) decreased over the 70 year period: 4.0% for Watonwan and 12% for
Blue Earth. The larger reduction of DNL in the Blue Earth River may reflect the 22 cutoffs that occurred
between 1938 and 2008, compared with the Watonwan’s 14. Migrated area maps show that the planform
morphology of both rivers changed significantly, but the reaches’ sinuosities changed only 3% and 0.6%
for the Watonwan and Blue Earth, respectively.

3. The Evolution of Nonlinearity

A meandering river’s degree of nonlinearity depends on the evolution of its bends and their removal
through cutoff. Understanding the relative importance of bend evolution and removal to the overall

Table 1. Characteristics of the Analyzed Minnesota Rivers

River

Width (m) Length (km) Sinuosity

Slope

Mr
a

Cutoffs

Acutoff/Ariver
b

1938 2008 1938 2008 1938 2008 m/yr %

Watonwan 24.5 29.1 61.3 59.3 2.28 2.21 5.2 × 10�4 0.15 14 15.8
Blue Earth 45.4 50.4 165.5 166.6 2.94 2.96 5.2 × 10�4 0.26 22 8.9

aMigration rate (Mr) is computed as Amig/ length/1 year, where Amig is the area the centerline traversed between two
realizations in time.

bAcutoff is the area encompassed by a cut off portion of centerline, and Ariver is the planform area of the channel.

Figure 2. The locations of the Blue Earth (in red) and Watonwan (in blue) rivers are shown within the Greater Blue Earth
Basin (a) in Minnesota, USA. (c and d) The 2008 Watonwan River and 2008 Blue Earth centerlines are shown in more
detail along with their curvature series. As shown, both rivers flow to the same location but note the different scales
for each.

Journal of Geophysical Research: Earth Surface 10.1002/2016JF003929

SCHWENK AND FOUFOULA-GEORGIOU MEANDER PLANFORM NONLINEARITY 1539



DNL requires observations with sufficient temporal resolution to capture these effects. To this end, we
analyze the time evolution of the centerline DNL from a simple numerical long-time model of meander
migration (section 3.1). Additionally, annual observations of the dynamic, meandering Ucayali River over
a 30 year period give insight into the relationship between centerline growth, cutoffs, and DNL in a natural
setting (section 3.2).

3.1. Evolving Nonlinearity in a Simulated Planform

We used a simple, long-time numerical simulation of a constant-width, migrating, meandering channel with a
linearized solution for the flow field and a linear migration rule [Ikeda et al., 1981]. Sediment dynamics are
decoupled from hydrodynamics, and the transverse bed profile is computed as a linear function of the local
curvature. The curvature-driven model, including parameters and boundary conditions, is described in detail
and offered as downloadable MATLAB scripts in Schwenk et al. [2015]. The centerline is initially straight with
small Gaussian perturbations that evolve into somewhat uniform bends until cutoffs begin. Cutoffs introduce
discontinuities in the centerline which are expressed as high-frequency (small wavelength) perturbations in
curvature that drive initial rapid bend migration and growth. Over time the planform dynamics through the
occurrence of cutoffs give rise to a rich assortment of bend morphologies and lower frequency centerline
excursions. That is, as the model progresses from the initially straight centerline, the channel develops
large-scale features due to its lateral wandering throughout the domain. The linearization of the hydrody-
namics and sediment dynamics and decoupling of the fluid and sediment interactions implies that any
observed form nonlinearities must arise from process nonlinearities which are either geometric in nature
(i.e.. equation (1)) or due to cutoff dynamics.

Wemeasured the DNL of the evolving curvature signal from the initially straight centerline for 39,000 years of
simulatedmeander evolution (Figure 4). The centerline was initially 56 km and eventually fluctuated around a
mean value of 190 km, although low-frequency periodicities are present due to the development of meander
trains in the cross-valley direction. A slight tendency for centerline length to grow through time (1 km/
20,000 years) results from a freely migrating downstream centerline node. Figure 4b shows that in the precut-
off state, DNL grew nearly monotonically as the planform developed meander trains populated by individual

Figure 3. The distributions of transportation distances (TDs) between the original centerline curvature series and their
surrogates (OSTD) and between surrogates and surrogates (SSTD) are shown for the Blue Earth River, (a) 1938 and
(b) 2008 and theWatonwan River, (c) 1938 and (d) 2008. The degree of nonlinearity (DNL) is shown as the distance between
the means (vertical black lines) of the OSTD and SSTD distributions. Units of DNL are the same as TD (m�1 × 103).
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bends that became larger and more asymmetric. After cutoffs began occurring, the DNL continued to
increase for a short period of 250 years before attaining a maximum value. During this period, the effect
of cutoffs to reduce the DNL was weaker than the contributions of bend growth to bolster the DNL.
Both length and DNL also exhibited sustained increases and decreases of approximately 2–5000 years
throughout the simulation (Figure 4a). Generally, periods of longer centerlines corresponded to periods
of larger DNL, but the occurrence of individual cutoffs did not necessarily result in an immediate reduction
in the DNL.

3.2. Evolving Nonlinearity of the Ucayali River

The Ucayali River in Peru is a highly active, sand-bedded, predominantly meandering channel originating in
the Andes Mountains and flowing through the Amazon before joining the Amazon River. Using Landsat
imagery, annual realizations of Ucayali centerlines were obtained from 1984 to 2015 (see Schwenk et al.
[2016] for processing methods). Over this 30 year period, the 700 km study reach of the Ucayali (Figure 5)
underwent 42 cutoffs while migrating an average of 51 m/yr. With an average bankfull width of 825 m, the
Ucayali’s width-normalized migration rate is an order of magnitude larger than the Minnesota rivers’, permit-
ting a faster planform response to flow and sediment pulses and perturbations due to cutoff. The Ucayali
widened by 20% between 1985 and 2015.

The Ucayali River underwent significant planform change in the observed 30 year period (Figure 5).
In particular, in 1997 a major 73 km triple-lobed cutoff near Masisea set off an avalanche of smaller

Figure 4. (a) The evolution of the degree of nonlinearity (solid black line) is shown for 39,000 years of the simulated
centerline, and the centerline length is shown as a dotted blue line. (b) A closer view of the initial evolution and the
transitional period is shown. The 99% confidence bounds for DNL are shown in orange. An arrow denotes the year (480)
when cutoffs began. A precutoff centerline from year 450 and postcutoff centerline from year 4000 are shown. Flow is
from left to right. (c–e) The OSTD and SSTD distributions are shown to verify that significant nonlinearity is present in
precutoff, transitional, and postcutoff conditions. Figure 4c marks a precutoff centerline, Figure 4d represents the
maximum DNL, and Figure 4e shows a local minimum of the DNL. DNL has the same units as TD (m�1 × 103).
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cutoffs, accelerated migration rates,
and channel elongation both
upstream and downstream of
the Masisea cutoff [Schwenk and
Foufoula-Georgiou, 2016]. From 1985
until the occurrence of the 1997
Masisea cutoff, the DNL of the
Ucayali River grew in conjunction
with net centerline growth over the
period (Figures 6a and 6b). The
Masisea cutoff resulted in the largest
net shortening of the reach over the
30 year period and corresponded to
the largest single-year decrease of
the DNL over the same period.
From 1997 to 2006, the Ucayali
River underwent a series of cutoffs
resulting in a net shortening of its
centerline. This period corresponded
to a reduction in the DNL as well,
until it attained its minimum value
in 2006. From 2006 to 2015, the
Ucayali centerline experienced net
growth, and the DNL again rose dur-
ing this period. These observations
agree with those of the simulation
in that cutoffs tend to decrease the
DNL, but a single cutoff event may
not result in a lower DNL. For exam-
ple, in 2002 the second-largest
net reduction in channel length
occurred, but the DNL increased
slightly. Conversely, bend growth
enhanced the DNL, as observed in
Figure 6 where periods of reach
lengthening generally correspond to
periods of increasing DNL. However,
this relationship does not hold across
all years; for example, in 2004 the
reach shortened by 17 km but the
DNL nearly doubled. The DNL only
slightly responded to the Masisea
cutoff event itself but changed more
drastically as subsequent accelerated
bend growth and cutoffs occurred,
apparently somewhat independently
of their size. It is interesting to
note that while the DNL eventually
returned to pre-Masisea cutoff mag-
nitudes (by 2014), the reach length
remains 11% shorter than pre-
Masisea cutoff and is “recovering” at
a much slower pace than DNL.

These results suggest that DNL is not strictly related to the magnitude of bend removal through cutoff or
elongation due to bend growth. Because DNL measures the complete centerline structure, the location of

Figure 5. The reach of the Ucayali River, Peru, analyzed in this study is
shown. (a) Map of Peru showing the analyzed reach of the Ucayali. (b) A
zoom view of the green box, where annual centerlines from 1984 to 2015 are
plotted atop aerial imagery from 2013. Details of centerline extraction are
given in Schwenk et al. [2016]. (c) The effects of the 1997 cutoff of the triple
lobed, 73 km bend on channel morphodynamics, are shown at a closer
view. Pre-Masisea cutoff centerlines are blue; postcutoff red. (d) Planform
centerlines for an active southern portion of the reach are shown in more
detail. Aerial imagery is from Google Earth.
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the cutoff may also play an important primary role, along with cutoff-induced accelerated planform changes.
That is, both the simulation and the Ucayali suggest that a centerline’s degree of nonlinearity is not merely a
function of the balance between bend growth and bend removal but may also be modulated by centerline
features larger and smaller than the meander bend. In the following section, we investigate this possibility via
a multiscale analysis.

4. The Effect of Cutoffs on
Form Nonlinearity

Before the occurrence of cutoffs in
our simulation, the source of form
nonlinearity measured by the DNL is
wholly attributed to the geometric
process nonlinearity of equation (1).
Before the DNL achieved an approxi-
mate steady state, cutoffs’ overall
effect was a reduction of the DNL.
However, cutoffs themselves are a
planform dynamic that might impose
form nonlinearity onto the centerline
structure. The normalized wavelet
power spectrum (Figure 7) demon-
strates how cutoffs “spread” the spec-
tral energy of centerline curvatures
through the introduction of new
scales. Immediately before cutoffs,

Figure 6. (a) Degree of nonlinearity (DNL) is shown by black points with 99% confidence intervals for annual realizations
of the actively migrating Ucayali River. The red line shows the evolution of the reach length. (b) The annual balance
between reach elongation (green bars) and cutoffs (tan bars) is shown with the net annual change shown by black bars.
(c and d) The OSTD and SSTD distributions and their means (μOS and μSS) for the highest (1994) and lowest (2006)
DNL over the 30 year period are shown. For both years, μOS and μSS are significantly different, i.e., drawn from different
distributions, at the 99% significance level.

Figure 7. A normalized wavelet power spectrum for the precutoff (red) and
postcutoff (blue) centerline curvatures is shown. Each distribution represents
the summation of wavelet coefficients across all locations normalized by
the total energy.
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the scales corresponding to fully developed individual meander bends (34W–137W for channel width W), i.e.,
those shown by the t = 450 year centerline in Figure 4b, dominated the spectrum. Immediately following
cutoffs, the smallest scale features (2.1W–4.3W) were born and grew to fully developed meander bends
(34W–137W). Scales larger than the fully developedmeander bends (137W–1097W) also developed as mean-
der trains grew in the cross-valley direction. To assess how this cutoff-induced spectral spreading contributed
to DNL, a localized space-frequency analysis of the curvatures series was needed to decompose them into a
local (e.g., wavelet) rather than a global (e.g., Fourier) basis (section 4.1). This analysis is performed on precut-
off and postcutoff centerlines to further unravel the role of cutoffs and bend growth on the degree of non-
linearity (section 4.2).

4.1. Linearizing Surrogates Partially With Gradual Wavelet Reconstruction

Fourier-based linearization provides a way to measure a signal’s degree of nonlinearity relative to its fully lin-
earized counterpart, but it does not give insight into which features of the signal (i.e., scales and/or locations)
contribute most to its nonlinearity. For that, a localized space-frequency analysis is needed that decomposes
the signal into a local (e.g., wavelet) rather than a global (e.g., Fourier) basis. Gradual wavelet reconstruction
(GWR) was introduced by Keylock [2010] as a surrogate generation method that allows partial linearization of
the original signal.

To perform GWR, a signal was decomposed with a maximal overlap discrete wavelet transform (MODWT)
[Percival and Walden, 2006], resulting in J × K coefficients wj,k, where J is the number of scales of decomposi-
tion and K is the length of the signal. The MODWT is advantageous to use for GWR primarily because it allows
the preservation of the power spectrum and autocorrelation function at each scale while providing K coeffi-
cients at each level of decomposition, but see Keylock [2008] for a discussion of its other desirable properties.
The total energy E of the signal is the sum of the squared wavelet coefficients:

E ¼
XJ

j¼1

XK
k¼1

w2
j;k : (5)

A desired fraction of wavelet energy to retain in the surrogate was selected as ρ (0< ρ< 1). The squared coef-
ficientsw2

j;k were sorted from largest to smallest, and the largest-energy coefficients accounting for ρE of the

total energy were fixed in place. The IAAFT was applied to each scale of the transform, shuffling the nonfixed
wavelet coefficients while preserving the wavelet spectrum. The MODWT was finally inverted to recover a
surrogate signal that fixed in place a ρth fraction of the energy of the original signal. Further details of
GWR can be found in Keylock [2007, 2010].

The systematic variation of ρ allows identification of the wavelet coefficients most important to the nonlinear
structure of the signal. Consider generating a surrogate for ρ = 1. In this trivial case, all the energy of the
original signal is fixed in place and the surrogate is therefore no different than the original signal (so the
DNL is necessarily zero). Now we proceed to generate surrogates for incrementally reduced values of ρ; we
used increments of 0.1 herein. Each time ρ is reduced, additional wavelet coefficients are randomized.
Therefore, changes in ρ correspond to specific coefficients in the wavelet domain which provide scale
and/or location information. By measuring the DNL of surrogates generated by incrementally decreasing ρ,
large changes in DNL with respect to ρ can then be attributed to the specific wavelet coefficients (and hence
scales) that were unfixed for that ρ increment, thus identifying the scales and locations that contribute
disproportionately to the signal’s nonlinear structure. For ρ = 0, all coefficients are randomized to create
a completely linearized surrogate, and in these cases the Fourier-based surrogate generation method
was used.

4.2. Contribution of Cutoffs to DNL

GWR was applied to two curvature signals from the simulated centerline: one immediately before cutoffs
began (t = 450 years, Figure 4) and the other once an approximate steady state DNL had been achieved
(t = 7000 years). The DNL was measured for both centerlines as ρ was varied in constant increments of 0.1,
or 10% of the total wavelet energy, and the resulting DNL(ρ) curves in Figure 8 agree with the results of
Figure 4 insofar as the total DNL was higher for centerlines immediately preceding cutoff than those during
the postcutoff state. Indeed, total DNL (i.e., DNL(ρ = 0)) is nearly twice as high for the precutoff centerline.
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Confidence intervals for each value
of ρ indicate that significant differ-
ence between precutoff and postcut-
off centerlines emerges at ρ = 0.8.

The slopes of the DNL(ρ) curves in
Figure 8 indicate which ρ increments
and, therefore, which wavelet coeffi-
cients are most important in account-
ing for total DNL. These slopes can be
written as d(DNL)i ⁄ dρi for the ith
increment of ρ, where dρi = 0.1 for
all i. In other words, for each incre-
mental reduction of ρ, 10% less of
the total wavelet energy from the ori-
ginal signal is fixed in place in the sur-
rogates. The three steepest slopes
(shown by bold line segments) corre-
spond to the three largest d(DNL)I
increments, i.e., those that contribu-
ted the most to the total DNL. Recall
that total DNL is measured against
surrogates that have ρ = 0. Total
DNL may also be written as the sum
of the contributing increments: total

DNL = DNL(ρ = 0) =
PN

i¼1 d DNLð Þi
for N = 10 increments. The wavelet
energy accounted for by the three

bold segments of each centerline accounts for 30% of the total energy, while the DNL contributed by the

three bold segments is
P

i¼4;8;9d DNLð Þi=
PN

i¼1 d DNLð Þi = 63.4% of the total DNL for the precutoff andP
i¼1;8;10d DNLð Þi=

PN
i¼1 d DNLð Þi = 62.3% for the postcutoff centerlines. The coefficients from the three lar-

gest contributing increments to DNL were summed across all locations in the wavelet transform to identify
those scales of the original signal that were most important to the overall nonlinearity. In Figure 9, these
scales are shown on top of the wavelet power spectrums of the original signals. The postcutoff spectrum indi-
cates that the scales created by cutoff activity (<8.6°W and >137°W) are significant contributors to the total

Figure 9. The normalized wavelet power spectra are shown for (a) precutoff (dark bars) and (b) postcutoff (dark bars)
centerlines, as in Figure 7. The lighter bars in Figures 9a and 9b represent the most energetic 30% of the total wavelet
energy and account for 63% (precutoff) and 62% (postcutoff) of the total DNL. Total DNL is much higher in precutoff
(1.3 km � 1) than postcutoff (0.72 km � 1) centerlines. The lighter bars represent the scales that contribute disproportio-
nately more to the total DNL and correspond to the summation of the scales of the bold line segments in Figure 8. The
lighter colors represent 30% of the total energy of the original centerline signals but account for 63% and 62% of the total
DNL in the precutoff and postcutoff centerlines, respectively.

Figure 8. The degree of nonlinearity (DNL) is shown as a function of ρ for
precutoff (red) and postcutoff (blue) centerline curvatures, where ρ is a
parameter controlling the amount of nonlinearity preserved in the surro-
gates. For ρ = 1, all nonlinearity is preserved, while for ρ = 0, all nonlinearity is
destroyed. With decreasing ρ, fewer original wavelet coefficients are fixed in
place. The trends of these lines indicate that as surrogates become more
linear, the difference between the original signal and the surrogates (i.e.,
DNL) increases. For both the precutoff and postcutoff curvatures, three bold
line segments highlight the three largest increments of ρ that contributed
most to the total DNL. The definitions of dρi and d(DNL)i are shown for i = 4.
Total DNL corresponds to ρ = 0. Confidence intervals at the 99% level are
shown at each point by black lines.
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DNL. The energy contained at scales representing fully developed meander bends (>17°W and <137°W)
decreased from 95% of the total energy for the precutoff centerline to 87% of the postcutoff total energy.
That is, only 8% of the total energy was lost from the meander bend scale after cutoffs began. Yet the relative
contributions of these scales to the DNL decreased from 95% (precutoff) to 54% (postcutoff). In other words,
although developed meander bends scales were still abundant after cutoffs occurred, their contributions to
the DNL were significantly diminished.

5. Discussion

Significant form nonlinearity was identified in all the of centerline curvature series we analyzed, including
three natural rivers and one simulated. Previous attempts to quantify form nonlinearity from meandering
river centerlines found no compelling evidence for its presence [Perucca et al., 2005; Frascati and Lanzoni,
2013]. These studies similarly cast centerline curvature series into phase space and performed various tests
of nonlinearity on the reconstructed trajectories. The transportation distance (TD) we employed measured
significant difference between the trajectory densities of each original signal and their corresponding linear
surrogates, indicating that a nonlinear system generated the original signals’ trajectory geometries. The dis-
covery of form nonlinearities presented in this paper (Figures 3 and 4) establishes for the first time that pro-
cess nonlinearities are indeed encoded in the meander planform structure. Identified form nonlinearities also
lend credence to conceptual models of meandering river morphodynamics, including chaos [Montgomery,
1993; Frascati and Lanzoni, 2010] and self-organized criticality [Stolum, 1996, 1998; Fonstad and Marcus,
2003] that arise from nonlinear dynamical systems.

5.1. Process Nonlinearity Expressed Through Form Nonlinearity in Meandering Rivers

Measuring the evolution of the DNL in natural rivers and synthetically generated centerlines provides insight
into how nonlinear processes contribute to form nonlinearity. Only two sources of process nonlinearity acted
on the simulated centerline, which evolved under linearized and decoupled treatments of hydrodynamics
and sediment dynamics. The first is the geometric process nonlinearity evident from equation (1), and the
second is the action of cutoffs. Before cutoffs began, the DNL grewmonotonically as bends became enlarged
and skewed. As the precutoff centerline evolved, the expression of the process nonlinearity through the form
nonlinearity became stronger, suggesting that the inference of process nonlinearity from form nonlinearity
depends somewhat on the duration over which the process nonlinearities act. Only after cutoffs began did
the DNL decrease due to the sudden removal of the fully developed bends that had sufficient time to express
the underlying geometric process nonlinearity in their morphologies. Cutoffs therefore weakened the expres-
sion of process nonlinearity through planform structure. However, even after the inception of cutoffs the DNL
continued to increase until a balance was eventually achieved between the expression of process nonlinear-
ity and the action of cutoffs to erase its manifestation in the planform.

Previously, cutoffs had been argued to reduce the overall nonlinearity in meandering river spatial structure
through the removal of bends that had sufficient time to express inherent deterministic (process) nonlinea-
rities [Perucca et al., 2005; Camporeale et al., 2008]. Our analysis with gradual wavelet reconstruction (GWR)
suggests a more subtle reasoning; the degree to which cutoffs destroy planform nonlinearity depends also
on the position of the removed bend(s) relative to its neighbors in a meander train. The power spectra of pre-
cutoff and postcutoff centerlines showed that cutoffs spread the spectral energy of the curvature signal into a
wider range of scales. However, cutoffs reduced the energy contained by scales representing fully developed
bends by only 8% of the total spectral energy, yet the relative contributions of these scales to the total DNL
decreased by 41%. In other words, although the emergent bend scales were still present in the meander
train after cutoffs were active, they were significantly less effective in expressing form nonlinearity. This
discrepancy is attributable to cutoffs breaking the nonlinear patterns of bend arrangement within a mean-
der train that is expressed through an altered topological structure in the embedding space. The transpor-
tation distance, and therefore the DNL, measures differences between trajectories that are reconstructed
via lagged vectors of the input signals (equation (2)). A cutoff can therefore remove a portion of the
curvature signal such that trajectories that were locally dense in the phase space before cutoff become
dispersed due to a discontinuous shift in the lagged vectors. This hypothesis that the effect of a cutoff
on form nonlinearity depends on its location is supported by the evolution of DNL for simulated center-
lines, where initially meander trains were somewhat synchronized but became more fragmented as the
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simulation progressed (Figure 4b). Despite the occurrence of cutoffs, the DNL remained above its long-
term average for approximately 1500 years.

5.2. What Does DNL Measure?

Two Minnesota rivers, the Ucayali River in Peru, and analysis of the simulated river suggest that bend growth
promotes DNL, while cutoffs generally act to reduce DNL despite the additional nonlinearity imposed by
cutoffs. However, the reduction in length due to cutoff did not simply relate to a corresponding decrease
in DNL. Predicting how an individual cutoff event affects overall form nonlinearity is not straightforward.
The difficulty in determining the degree to which a particular cutoff will affect the DNL can be attributed
to both the dependence of DNL on the location of the cutoff within the meander train and the simultaneous
evolution of the rest of the centerline. Following a major, triple-bend cutoff, the Ucayali River showed that the
planform evolution of the entire meander train responded rapidly enough to return to precutoff DNL levels
although the river’s length (or sinuosity) remained substantially lower than before the cutoff. The magnitudes
of and changes in DNL were not significantly correlated with cutoff lengths, elongation lengths, or net
change in length. These results are not entirely unexpected, as the DNL measures nonlinear structure within
the phase space making the interpretation of DNL in terms of physical system characteristics nontrivial.
Interpretation of DNL requires developing a refined understanding of how centerline evolutions and cutoffs
are manifest within the phase space constructed via delay embedding made possible through Takens’ theo-
rem [Takens, 1981].

Although our analysis does not provide how individual cutoffs or bend growths and deformations affect
form nonlinearity, it does suggest that the steady state DNL characterizes the local processes driving a
meandering river’s evolution. The steady state DNL should thus distinguish between simulations that
incorporate process nonlinearities associated with hydrodynamics or sediment dynamics from those with
linearized dynamics.

5.3. Scale Dependence and (Non)normalization of the DNL

The magnitude of DNL is a function of the scale of the TD distributions, and TD is a function of the scale of
the input data. The DNL is therefore generally not comparable between various systems without carefully
selected normalizations. In our case, the DNL contains some scale dependence due to the dependence of
the curvature signal statistics on centerline sampling density and smoothing techniques [Crosato, 2007;
Güneralp and Rhoads, 2007]. The problem of scale dependence of sampling and smoothing of centerlines
on curvature signals is beyond the scope of this work and requires further investigation, especially consid-
ering the widespread use of curvature signals to characterize aspects of meandering river planforms.
However, a consistent basis for obtaining comparable curvatures derived from different data sources
and rivers of various scales is a prerequisite for comparing DNL between rivers. We chose not to normalize
DNL measures by a characteristic reach scale (e.g., channel width or dominant wavelength) for two rea-
sons. First, because meander train planforms are multiscale features, selecting a single characteristic value
may bias the normalized DNL, although promising recent research has grappled with the multiscale struc-
ture of meandering rivers using wavelets [Gutierrez and Abad, 2014; Vermeulen et al., 2016; Zolezzi and
Güneralp, 2015]. Second, the classic normalization constants may not actually be constant nor stationary.
Average width for both the Ucayali and Blue Earth Rivers increased nearly 20% over the relatively short
periods of our analysis. The spatial variations in width along the centerline may also be significant. For
example, the Ucayali’s channel width varied from 400 to over 1300 m along its course [Schwenk et al.,
2016, Figure 14].

Normalization may also be performed using variables specific to the analysis itself. For example, the DNL
could be normalized by properties of the OSTD and/or SSTD distributions. However, the statistics of these
distributions nontrivially depend on the original signal structure and the parameterizations of the surrogate
generation and embedding techniques. Without a full understanding of this dependence, we found normal-
ization with such variables to obscure rather than clarify interpretation of our results. The decision not to
normalize means that degrees of nonlinearity measured by the DNL for different rivers are not directly
comparable. Ultimately, however, the observed presence (or absence) of nonlinearity is unaffected by
normalization, and changes in DNL in time for the same river are also comparable since biases due to sam-
pling and smoothing techniques are consistent.
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6. Conclusions and Future Directions

In this work we developed a framework for identifying form nonlinearities from the centerline configuration
of meandering rivers. We relied on Takens’ theorem to reconstruct trajectories of the dynamical systems gov-
erning meandering river evolution under the assumption that the spatial structure of the centerline acts as a
sufficient measurement on the system dynamics. To assess whether known process nonlinearities (due to
hydrodynamics, sediment dynamics, cutoffs, and migration dynamics) are indeed manifest as form nonlinea-
rities (those contained in centerline morphologies), curvature series were compared against linearized
versions of themselves in phase space. Significant difference between the two implied nonlinearity of the
underlying meandering dynamics and the magnitude of their difference was measured by the degree of
nonlinearity (DNL). Investigation of the effects of meander growth and cutoffs on form nonlinearity via the
DNL found that

1. Form nonlinearities were clearly identified in three natural rivers and one simulated meandering center-
line, partially validating the assumption that meandering river centerline geometries encode process
nonlinearities.

2. In agreement with previous findings, process nonlinearities acting to grow and deform bends contribute
to form nonlinearity, while cutoffs tend to erode form nonlinearity.

3. Cutoffs also act as sources of form nonlinearity themselves by creating high-frequency scales within cen-
terlines and interacting with local process nonlinearities to allow low-frequency centerline wandering.
These new scales contributed disproportionally to DNL.

4. The magnitude of form nonlinearity measured by the DNL is not simply related to centerline growths and
cutoffs but also depends on the spatial arrangement of bends and location of growth or cutoff within a
meander train, highlighting the importance of understanding the whole-system dynamics in addition
to individual bends

Our model featured linearized flow and sediment dynamics and a linear bank erosion law. While this model
was appropriate for isolating the effects of cutoffs and the inherent geometric process nonlinearities of
meander evolution, detailed nonlinear process models should be implemented to quantify the effects of
local, nonlinear hydrodynamics, and sediment dynamics. Such modeling efforts could determine if different
process nonlinearities leave unique signatures on the planform spatial structure, and the steady state DNL
could then potentially isolate and identify nonlinear processes from observations of planform morphology
alone. We detected nonlinear structure from trajectory densities in phase space, confirming that process non-
linearity in the underlying deterministic dynamics of meandering river evolution indeed leaves its signature
on the resulting planform, but we made no attempt to model the trajectories themselves. Our establishment
of form nonlinearities in meandering river centerlines calls for renewed attempts to exploit this nonlinear
structure by further analysis of trajectory structure within the phase space and development of phase space
models. Finally, deeper physical intuition of the DNL should be developed through numerical experimenta-
tion to establish it as a metric that connects both form and process.

Appendix A: Obtaining the Centerline Curvature Signal

The spatial series of centerline curvatures used here to characterize meandering river planform morphology
is given by

C sð Þ ¼ dθ sð Þ=ds (A1)

where C is the curvature, s is the along-stream distance, and θ is the channel direction defined discretely as
θi= tan�1(yi + 1� yi/xi + 1� xi) for any two adjacent x,y centerline nodes. As the derivative of the channel
angle, the curvature removes linear trends imposed by nonstationarities due to valley forcing or large-scale
heterogeneity in floodplain resistance, vegetation, etc. while capturing bend planform structure.

Meandering river centerlines may either be digitized directly by hand from aerial imagery or maps [Hooke,
1977] or calculated somewhat indirectly from digitization of banklines which may also be obtained by
hand [Bevis, 2015] or through image processing. The choice of technique ultimately determines the sampling
resolution and error. For measurements made directly on the centerline, such as meander wavelength and
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amplitude, errors associated with the digitization process are usually negligible. However, because curvature
is a derivative measurement, errors in the original centerline discretization are magnified in the curvature
signal and smoothing is required. The techniques presented here for acquiring curvature series with
fidelity to the observed centerlines were developed using both hand-delineated (Minnesota rivers) and
image processed centerlines (Ucayali River).

After the centerlines were digitized, their x and y coordinates were smoothed with a Savitzky-Golay filter. A
“temporary” curvature signal was computed according to equation (A1), and the number of bends Nb in
the reach was estimated as the number of times this curvature signal crossed zero. A bend therefore was
defined as a reach of river between two inflection points. The number of bends was verified by eye and
was noted to vary depending on the strength of the Savitzky-Golay smoothing filter due to the multiscale
nature of meandering planforms [Gutierrez and Abad, 2014]. The smoothed centerline was then resampled
with evenly spaced nodes with a density of 25Nb such that each bend contained 25 nodes on average.
New nodes were interpolated by fitting piecewise parametric cubic splines to the smooth centerline
[Güneralp and Rhoads, 2007] and integrating along the splines every L ⁄ 25Nb, where L is the length of the
reach. Finally, the curvature series was computed on the smoothed, evenly spaced centerline according
to equation (A1).

Appendix B: Computing the Transportation Distance

Given two series in an embedding space (in our case an original signal and its surrogate), the transportation
distance (TD) metric [Moeckel and Murray, 1997] was used to compute their difference. Two series F and G
were embedded within a phase space according to equation (2). The domain occupied by F and G was dis-
cretized into B boxes by dividing each mi axis into B1/m intervals. The probability that series F occupies any
box Bi was estimated as fi(Bi) = N(F, Bi) ⁄ N(F), where N(F, B) is the number of points in series F that lie within
box Bi and N(F) is the length of series F. The discretization of each mi axis intervals may be performed such
that either (a) each interval is the same size (equally spaced bins) or (b) each interval contains the same prob-
ability (equal probability bins). We employed the latter method herein as it added robustness against outliers.

Figure B1. Distributions are shown for surrogate surrogate (SSTD, in orange) TDs and original surrogate (OSTD, in blue) TDs
for four series: (a) the Lorenz “butterfly” attractor, (b) a linear ARMA(1,1) series [Granger et al., 1978], (c) time series from a
chaotic laser provided as part of the Santa Fe Institute competition series, and (d) a linear random-walk process. The
degree of nonlinearity (DNL) is measured as the difference between the means of the OSTD and SSTD distributions.
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Now let μij > 0 represent the amount of probability transported from box Bi to Bj according to transportation

plan μ. To preserve initial and final distributions of F and G, the following conditions must be met:
PN

j¼1 μij ¼
f i and

PN
i¼1 μij ¼ gi . Finally, let M(f, g) represent all transportation plans meeting these requirements, and

then the transportation distance (TD) may be defined as the minimized transportation cost:

TD g; hð Þ ¼ infμ ∈ M g;hð Þ
X

i; j¼1

N
μijδij (B1)

where δij is a distance metric normalized to the embedding dimension between the centers of Bi and Bj. Thus,
the TD effectively measures the least amount of work required to ensure equal probability of both series F
and B in all Bi boxes. We also note that since the axes of the embedding space have the units of the input data,
the distance traveled by shipped probabilities and therefore the TD are computed in units of the input data.
The number of intervals used to discretize each axis of the phase space was chosen according to the follow-
ing formula:

B1=m ¼ min 8; floor N⁄5ð Þ1⁄m � 1
� ��

(B2)

The ability of the TD to discriminate between some common linear and nonlinear signals is shown in
Figure B1, and a more detailed development of TD is given by Moeckel and Murray [1997].
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