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Abstract Bed load transport is a highly stochastic, multiscale process, where particle advection and diffu-
sion regimes are governed by the dynamics of each sediment grain during its motion and resting states.
Having a quantitative understanding of the macroscale behavior emerging from the microscale interactions
is important for proper model selection in the absence of individual grain-scale observations. Here we
develop a semimechanistic sediment transport model based on individual particle dynamics, which incor-
porates the episodic movement (steps separated by rests) of sediment particles and study their macroscale
behavior. By incorporating different types of probability distribution functions (PDFs) of particle resting
times Tr , under the assumption of thin-tailed PDF of particle velocities, we study the emergent behavior of
particle advection and diffusion regimes across a wide range of spatial and temporal scales. For exponential
PDFs of resting times Tr , we observe normal advection and diffusion at long time scales. For a power-law
PDF of resting times (i.e., f Trð Þ�T2m

r ), the tail thickness parameter m is observed to affect the advection
regimes (both sub and normal advective), and the diffusion regimes (both subdiffusive and superdiffusive).
By comparing our semimechanistic model with two random walk models in the literature, we further sug-
gest that in order to reproduce accurately the emerging diffusive regimes, the resting time model has to be
coupled with a particle motion model able to produce finite particle velocities during steps, as the episodic
model discussed here.

1. Introduction

The nature of bed load transport is highly stochastic and complex, even under steady state conditions,
involving a wide range of spatiotemporal scales, from grain-scale kinematics to bed form-scale migration
[Sekine and Parker, 1992; Papanicolaou et al., 1999; Ancey et al., 2006; Ancey, 2010; Hill et al., 2010; Singh
et al., 2009, 2011, 2012; Ramesh et al., 2011; Furbish et al., 2012a; McElroy and Mohrig, 2012; Julien and Bounvi-
lay 2013; Guala et al., 2014; Keylock et al., 2014; Cristo et al, 2015]. This inherent stochasticity is mostly a result
of the particle-fluid interactions and particle-particle interactions, leading to diffusion (also referred to as dis-
persion) of particles during their movement [Martin et al., 2012].

Particle diffusion, based on individual tracing particles, has been studied by several researchers [e.g., see
Sayre and Hubbell, 1965; Yang and Sayre, 1971; Todorovic, 1982; Drake et al., 1988; Ferguson and Wathen,
1998 for some early studies]. However, following the seminal work of Nikora et al. [2001, 2002], studies of
anomalous diffusion have recently blossomed from flume experiments [e.g., Martin et al., 2012; Ballio et al.,
2013; Campagnol et al., 2015], field investigations [e.g., Hassan et al., 2013; Phillips et al., 2013; Haschenbur-
ger, 2013], and numerical simulations [e.g., Bradley et al., 2010; Bialik et al., 2012; Zhang et al., 2012, 2014;
Pelosi et al., 2014].

While field investigation in natural rivers can provide large-scale characteristics of sediment motions, it faces
limitation in revealing particle-scale dynamics [Hassan et al., 1991, 2013; Haschenburger, 2013]. On the con-
trary, flume experiments, especially with the deployment of new optically based observational techniques,
could reveal detailed information at the particle scale, but face difficulty in capturing particle transport
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characteristics across a large enough spatial and temporal range of scales, e.g., due to the limitation of
the sampling size window [Furbish et al., 2012a; Martin et al., 2012; Campagnol et al., 2015]. As a result,
simulating particle trajectories by employing physically informed models, calibrated on experimental
data, could be a promising avenue to study the emergent macroscale behavior of particle advection and
diffusion.

Bed load particles move episodically, through discrete steps separated by rests, as depicted in Figure 1, sug-
gesting that step lengths Ls (also referred to as jump lengths or hop distances), step times Ts, resting times
Tr (also referred to as waiting times or residence times), and velocities of active particles up, can be all
treated as stochastic variables. It has been suggested that, if the probability density functions (PDFs) of
these variables, namely, up, Ls, Ts, and Tr are all thin tailed, the resulting particle diffusion regime is always
normal for all scales [Han and He, 1980], except for superdiffusion (ballistic) at very short initial time scales
due to particles’ inertia [Nikora et al., 2002]. In contrast, anomalous diffusion (super or subdiffusion) can
result from the heavy-tailed PDFs of, at least one, of those variables (up, Ls, Ts , and Tr ). Both Schumer et al.
[2009] and Weeks et al. [1996] used a random walk models (RWM) to simulate the episodic motion of par-
ticles, combining discrete steps separated by rests. They also illustrated how normal or anomalous diffusion
could result from different types of PDFs of step lengths Ls and resting times Tr , based on the PDF-tail thick-
ness. However, the Schumer et al. [2009] model (hereafter referred to as S-RWM) and the Weeks et al. [1996]
model (hereafter referred to as W-ARWM, ‘‘A’’ refers to asymmetric) predict different diffusion regimes under
similar initial conditions. It is still an open question of great interest to study how the diffusion regime is
controlled by the (joint) distributions of up, Ls, Ts, and Tr [Martin et al., 2012; Hassan et al., 2013], potentially
including also the effect of particle-size heterogeneity [Ganti et al., 2010; Hill et al., 2010].

For bed load particles, several studies considered the PDF of step lengths Ls as thin tailed, including the
exponential distribution [e.g., Einstein, 1937; Sayre and Hubbell, 1965; Schmidt and Ergenzinger, 1992; Haber-
sack, 2001; Wu and Yang, 2004] or the gamma distribution [e.g., Yang and Sayre, 1971; Lajeunesse et al.,
2010], whereas Bradley et al. [2010] treated it as a heavy-tailed distribution. Generally, the number of step
lengths Ls extracted from experiments is often relatively small, preventing a robust analysis on the tails of
the distribution [Martin et al., 2014]; besides, large step lengths Ls might also be missed due to limitations in
the sample size window [Phillips et al., 2013], implying that the tails of the PDFs of Ls from the previous stud-
ies might not be so clear to interpret. Similar to step lengths Ls , the PDFs of resting times Tr have not been
consistently quantified by several studies [see Zhang et al., 2014 for a review]. For example, both exponen-
tial distributions [Einstein, 1937; Yang and Sayre, 1971; Schmidt and Ergenzinger, 1992; Habersack, 2001; Wu
and Yang, 2004; Valyrakis et al., 2011; Furbish et al., 2012b], and heavy-tailed distributions (power-law, Martin
et al. [2012; 2014] or tempered Pareto, Voepel et al. [2013]) were observed.

Figure 1. Schematic for the episodic motion of one particle. Steps are separated by rests, moving and resting states are represented by
red and blue lines, respectively. The step lengths Ls , step times Ts , velocities of moving particle up , and the resting times Tr are all stochastic
variables.
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Despite the ambiguities in the PDFs of both step lengths Ls and resting times Tr , the tail of the PDF of active
particle velocities up has been observed to be thin tailed by several studies, e.g., exponential distribution by
Roseberry et al. [2012], Furbish et al. [2012c], Furbish and Schmeeckle [2013], Fathel et al. [2015], or Gaussian
distribution by Ancey and Heyman [2014] and Martin et al. [2012].

Both the models by Fan et al. [2014] and Ancey and Heyman [2014], developed and calibrated on experi-
mental data, are based on the Langevin equation which describes the forces exerted on a single particle. In
particular, the Fan et al. [2014] model was developed for uniform particles under low bed load transport
conditions and was calibrated using the experimental data by Roseberry et al. [2012]. The evolution of indi-
vidual particle velocities up was expressed as a function of the actual forces acting on the particle, incorpo-
rating both a deterministic and a stochastic component. By simulating many particle trajectories, the Fan
et al. [2014] model was able to reproduce both the thin tailed probability density function (PDF) of the mov-
ing particle velocities (a typical collective or macro-scale quantity) and the relationship between step times
Ts and the associated step lengths Ls (representative of grain-scale kinematics). However, the particles simu-
lated by the model of Fan et al. [2014] were always assumed to be in motion. Here, we extend the Fan et al.
[2014] model to include particle resting, by incorporating a resting time stochastic model leading to an Epi-
sodic Langevin Equation (ELE) able to reproduce the more realistic particle episodic behavior at low trans-
port rates.

We acknowledge that our model may not be able to rigorously predict the transport process of tracer par-
ticles, because the resting time model has not been validated on experimental data. However, the simula-
tion results can help us to better understand how the emergent advection and diffusion regimes, i.e., the
first and second-order moments of travel distances, respectively, are constrained by the particles’ motion
and resting time statistical characteristics. In particular, we want to understand if and how different tails of
the statistical distribution of the resting time Tr can be a source of anomalous diffusion.

The paper is structured as follows. In section 2, we introduce the episodic formulation of the Langevin Equa-
tion (ELE), to simulate the tracer particle switching between active and resting regimes. In sections 3 and 4,
we study the transport of uniform particles, testing exponential PDFs and power-law PDFs of resting times
Tr , respectively. In section 5, we compare the advection and diffusion regimes obtained using our ELE
model to those resulting from the Langevin equation proposed by Ancey and Heyman [2014] extended to
incorporate episodic movement. In section 6, we compare the three models (Schumer et al. [2009] S-RWM,
Weeks et al. [1996] W-ARWM, and our ELE) and discuss the emergence of their diffusion regimes. Conclu-
sions are presented in section 7.

2. Episodic Particle Transport Framework

Fan et al. [2014] proposed a Langevin equation (LE) to describe the temporal evolution of a particle velocity
based on the forces exerted on it. In the streamwise direction, for a single particle per unit mass, the LE was
expressed as follows:

dup

dt
52Dx � sign up

� �
1Fx1nx (1)

where t is time, up is the streamwise velocity, Dx is a constant for Coulomb-like friction force; Fx is an aver-
age downstream force (including drag and gravity), and nx is a fluctuating, stochastic force. A stochastic
Runge-Kutta numerical algorithm was used to discretize the LE as

F152Dx � sign up tð Þ1w1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DxDt
p� �

1Fx

F252Dx � sign up tð Þ1Dt � F11w2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DxDt
p� �

1Fx

up t1Dtð Þ5up tð Þ1 1
2

F11F2ð ÞDt1w0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DxDt

p
(2)

where F1 and F2 are the Runge-Kutta coefficients; w0, w1, and w2 are independent Gaussian random varia-
bles with zero mean and unit variance; and Dx denotes the magnitude of a fluctuating, stochastic force (see
Fan et al. [2014] for more details about the LE model, and for its calibration based on the experimental data
by Roseberry et al. [2012]).
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While the LE model (equation (1)) provides an adequate description for particles in motion, it does not
incorporate the possibility of episodic particle resting on the bed. In real systems, however, the particle
velocity fluctuates significantly and may often fall to zero, leading to the particle stopping for a while and
continuously switching between resting and moving regimes. Here we extend the LE to incorporate a rest-
ing time in an episodic framework resulting in an Episodic Langevin Equation (ELE) which can mimic more
realistically the nature of episodic particle motion. The ELE framework can be expressed as follows:

1. We use equation (2) to simulate a single particle velocity series (active particle motion regime);
2. We impose the particle velocity to be zero when its velocity turns from positive to negative (or from neg-

ative to positive), forcing the particle to stop (the velocity remains zero) for a duration defined by the sto-
chastic resting time Tr (particle resting regime);

3. After Tr , the particle is allowed to move again, according to equation (2).

We acknowledge that the criterion as noted in (2) for particle deposition is only a working assumption. It is
indeed possible that a particle bounding on the river bed may reverse its velocity before and after the con-
tact such that, at some point in time, it reaches zero velocity without necessarily stopping. However, for low
bed load transport rates, as those simulated here and measured by Roseberry et al. [2012], it seems a reason-
able assumption. In the simulations below, we keep the same values of parameters used in Fan et al. [2014]
(Dx53:66 m � s22, Fx53:17 m � s22, and Dx50:0223 m2 � s23) to model the motion regime in the ELE, but
we increased the simulation time step to Dt51023 s in order to accommodate much longer trajectories.
Figure 2a shows a realization of a simulated velocity time series for one particle depicting the episodic char-
acteristic of particle movement. The travel distance x during a certain time t may consist of several steps,
while the total time t consists of a sequence of step and resting times. Note that for both Dt51023 s, in this
paper, and Dt51024 s, in Fan et al. [2014], the velocities of the active particles (abandoning zero velocities)
maintain the same thin-tailed, exponential-like PDF derived by the LE of Fan et al. [2014] (not presented
here for brevity). Figure 2b shows the simulated step times Ts versus step lengths Ls, suggesting a power-
law Ls / T 1:6

s relationship. The exponent 1.6 is very close to 5/3, also obtained from the experimental data
by Roseberry et al. [2012]. This result is obtained from 16,903 steps, extracted from 100 simulated particles
moving simultaneously for a duration of 40 s, with a minimum resting time Tr set to 0.001 s (equal to the
simulation time step Dt), and excluding step lengths less than 0.005 cm. In our simulation, the step lengths
Ls, step times Ts, and the velocities up of the moving particle are embedded in the particle motion model
(explicitly related to the model parameters Dx, Fx, and Dx) while the resting times Tr are provided by an inde-
pendent model capable to explore different statistical distributions of Tr .

3. ELE With Exponential PDF of Resting Times

Using the ELE model discussed in section 2, we simulated the motion of a large number of uniform size par-
ticles with exponential PDF of resting times Tr . The ratio of average resting time over average step time �T r=
�T s was set to different values, namely 5, 25, and 125, representing different transport rates.

Particles in a continuous motion regime (Tr50) are also simulated for comparison. We acknowledge that we
keep the set of parameters (Dx, Fx, and Dx) invariant for different ratios of �T r=�T s . To change these parame-
ters, we would need experimental data under different transport regimes which are not available. From the
simulated data, we study the characteristics of the resulting advection and diffusion regimes after the parti-
cle release (x50, t50). In the initial conditions (t50): (a) the model has been ‘‘warmed up’’ to achieve the
steady PDF (exponential-like) of the moving particles velocities; (b) all the particles are in the same position
x50 (without accounting for particle-particle interactions or collisions, in a mechanistic way). All the follow-
ing simulations use the same initial conditions described here.

3.1. Particle Advection
The advection process governs how quickly particles are transported downstream: it can be quantified by
the growth of the mean particle travel distances x with time t

hxi / tax : (3)

Here hxi represents the ensemble average of every travel distance xi for every individual particle, whereas
ax represents the scaling exponent. When ax51, particle advection is ‘‘normal,’’ i.e., the mean grows linearly
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with time. When ax 6¼ 1, particle advection is ‘‘anomalous,’’ specifically, subadvection for ax < 1 and super-
advection for ax > 1 [Weeks and Swinney, 1998].

Figure 3a represents particle advection for different �T r=�T s ratios, all showing normal advection (ax51) for
the entire range of time scales investigated here. Note that here time t is normalized by d=u� (see also
Nikora et al. [2002]), where d is the particle diameter and u� is the friction velocity (assumed to be 0.5 mm
and 2.01 cm/s, respectively, after Roseberry et al. [2012]). Also note that Figures 4, 6, and 7 all use the same
dimensionless form of time.

3.2. Particle Diffusion
The diffusion process quantifies the dispersion of particles as they travel downstream and can be thus
described by the growth of the variance of the particle travel distance with time t

r2
x 5h xi2hxið Þ2i / tbx : (4)

When bx51, particle diffusion is ‘‘normal,’’ i.e., the variance grows linearly with t. When bx 6¼ 1, particle diffu-
sion is ‘‘anomalous,’’ specifically, subdiffusion for bx < 1, superdiffusion for 1 < bx < 2 and ballistic for bx52
[see for e.g., Weeks et al., 1996; Nikora et al., 2002; Martin et al., 2012; Furbish et al., 2012a].

Figure 3b shows that different diffusion regimes are observed for different ranges of investigated time
scales. Superdiffusion (more exactly, ballistic) occurs at short time scales due to the inertia of the particles;
then, diffusion changes to normal for longer time scales. The two regimes, separated by an approximate
threshold time T 0

LI516 (corresponding to a dimensional value TLI 5 0.4 s) are consistent with the ‘‘local’’ and
‘‘intermediate’’ scales and with the separating timescale T 0

LI515 obtained by Bialik et al. [2012].

Although the ratios of �T r=�T s cover a wide range of scales, the threshold times TLI that separate different dif-
fusion regimes are very similar. Fan et al. [2014] obtained that the autocorrelation time scale of the particle
velocities series was sc50:098 s under the assumption of transport regime only (if we use episodic motion
series, a robust autocorrelation time could not be obtained due to the zero-velocities during resting times).
sc50:098 s is however so small that most particles stay within the motion regime [Nikora et al., 2002]. This
suggests that, up to �1021 s, particle diffusion is statistically determined through a ballistic process con-
trolled by the initial acceleration of particles entering in the motion regime, and by their inertial properties.
The transition timescale emerging from our simulations is of the same order of magnitude, TLI � 4sc , corre-
sponding, spatially, to a travel distance of �10 particles diameters assuming a particle velocity equal to the
shear velocity. The above step length is well within the range of the step length provided in Figure 4, con-
firming that the transitional time scale statistically marks the transition between the initial transport condi-
tions (within the first step length or hop) and the genuine episodic regime (involving multiple steps and/or
alternating step times and resting times).

Figure 2. Simulated particles using the Episodic-Langevin-Equation (ELE). (a) A simulated velocity time series for a single particle obtained
from the ELE for a duration of 10 s. Inset plot shows a zoomed-in time series for a duration of 0.5 s. Note the episodic behavior of the parti-
cle, i.e., stopping and moving (in the inset plot) represented by the blue and red lines, respectively. (b) Simulated step times Ts versus step
lengths Ls suggesting a power-law Ls / T 1:6

s relationship. The exponent 1.6 is very close to 5/3, also obtained from the experimental data
by Roseberry et al. [2012].
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3.3. Heavy-Tailed Step Lengths Do Not Necessarily Induce Superdiffusion
In section 3.1 and 3.2, both active particle velocities and resting times were thin-tailed resulting in normal
advection and diffusion (except for ballistic within very small time scales). However, the distribution of step
lengths Ls obtained from our model is heavy-tailed, with a fitted power-law exponent � 21.5, i.e., f Lsð Þ�
L21:5

s (see Figure 4a). The observed normal diffusion from the heavy-tailed step lengths and thin-tailed rest-
ing times, obtained from our ELE, does not agree with the random walk model results by Schumer et al.
[2009] (S-RWM) and Weeks et al. [1996] (W-ARWM). We infer that this difference is due to the fact that, in our
model, particles achieve the step lengths Ls within finite step times Ts (Figure 5c), while in S-RWM, the step
times Ts were considered as zero (Figure 5a). In other words, in S-RWM, the active particle velocity up is infin-
itely large while in our model, the active particle velocity up is finite and thin tailed. On the other hand, in
the W-ARWM model (Figure 5b), up was considered constant in every step. Thus, the normal diffusion
regime in our ELE model does not depend on the distribution of the step lengths Ls, but rather on the thin-
tailed PDF of the particle velocity up. As a limiting condition in our model, if the particles never stop (�T r50),
the resulting step lengths will be infinitely large, but the diffusion regime will still be normal (see Figure 3b,
gray line).

4. ELE With Power-Law PDF of Resting Times

In this section, we use a different distribution of resting times Tr : a common power-law PDF named Pareto
distribution, given as

f Trð Þ5 m21ð Þam21T 2m
r (5)

where m is the tail index, and a is the minimum possible value above which the distribution is defined
(Tr � a). Among the several values of the m parameter investigated (not all shown for brevity), here we
selected two for which the transport model exhibits superdiffusion (m51:6) and subdiffusion (m51:4). In
order to compare travel distance statistics for exponential and power-law distributions of the resting times,
for a given value of m, we define different values of a to ensure that the diffusion characteristics are compa-
rable, at least for a range of timescales (see Figures 3b and 7b). This is achieved for a51=5000 and 1/50, for
m51:4 and 1.6, respectively. The PDFs of the exponential and power-law resting times are presented for
comparison in Figure 6. As expected, the PDFs of power-law distributed resting times decay much slower
than the exponential distributed resting times.

Figure 3. Emergent advection and diffusion regimes as depicted by the mean and variance of travel distance with time. (a) Growth of
average travel distance hxi with time for the particles with different mean resting times (note that particles with smaller resting times will
transport and disperse faster). Blue, red, and green lines represent diffusion regimes for the ratios of �T r=�T s equal to 5, 25, and 125, respec-
tively. Advection of particles for no stop (Tr50) is also presented for comparison (gray line). All four conditions mentioned above show nor-
mal advection for all studied time scales. (b) Change in diffusion regimes from ballistic to normal. Diffusion of particles for no stop (Tr50)
is also presented for comparison (gray line). Thin black-dashed lines indicate the slope of different regimes. The time that separates two
regimes T 0

LI5TLI u�=d is about 16, which is close to the value 15, obtained by Bialik et al. [2012] as the threshold between ‘‘local’’ and ‘‘inter-
mediate’’ diffusions. Also note that x axis represents dimensionless time t normalized by d=u� , where u� and d are the friction velocity and
particle diameter, respectively.
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4.1. Particle Advection
Figure 7a describes the particle advection regimes for two power-law resting time distributions, with m51:4
and m51:6, respectively, and compared to an exponential resting time distribution (here with the ratio
�T r=�T s5 25). For both power-law distributed Tr , at small time scales, normal advection (ax51) is observed,
though progressively reduced exponents (ax < 1) at large time scales lead to subadvection with ax50:6
and 0.4, respectively. Our simulations show that in the range 1 < m < 2, subadvection emerges at large
time scales, consistent with the model by Schumer et al. [2009] for thin-tailed steps Ls, and different resting
time distributions. Note that, subadvection means that the average travel distance grows slower than linear
with time, which leads to a temporal decrease of the average virtual particle velocity �UVx . This phenomenon
was also observed in natural rivers for bed load transport, see Ferguson and Hoey [2002].

4.2. Particle Diffusion
Figure 7b shows the different diffusion regimes for the same resting time distributions tested above. At
small time scales, both power-law distributed Tr (m51:4 and 1.6) lead to a ballistic diffusion regime, while at
larger time scales, the diffusion changes from superdiffusion (bx51:2 for m51:6) to subdiffusion (bx50:8 for
m51:4). Note that both anomalous diffusion and anomalous advection occur at nearly the same time scale
(compare Figures 7a and 7b). Also note that, for m51:4, at very small time scales over ballistic diffusion
regime emerges, which may be due to the fact that the group of particles in motion has not reached a
steady state at those small time scales [see Fan 2014; Campagnol et al., 2015].

Contrary to the general understanding that power-law distribution of resting time would result in subdiffu-
sion [e.g., Nikora et al., 2002; Schumer et al., 2009], our simulations show that both superdiffusion and subdif-
fusion could occur as a result of different tail parameters m of the power-law Tr distribution. An extended
discussion about this observation is presented in section 6.

4.3. Transition Times From Normal to Anomalous Advection and Diffusion Regimes: Sensitivity
Analysis
In this section, we perform sensitivity analysis to study how the transition times from normal to anomalous
advection/diffusion (TNA) are affected by the model parameters. For this, first, we keep the same rest state
model and change the motion state model by changing the shear velocity u� to twice and four times (the
corresponding diffusion parameter Dx is also increased by twice and four times, see Fan et al. [2014]). How-
ever, the observed transition time from normal to anomalous advection/diffusion regimes does not change,
for e.g., TNA 5 2000 s for three cases. Second, we keep the same motion state model and change the rest
state model by changing a (which reflects the magnitude of the heavy tailed variables) to twice and four
times, even though the mean value may not converge. The results reveal that a larger magnitude of rest
times induces longer transition times from normal to anomalous advection/diffusion regimes (TNA 5 2000,
4000, and 8000 s, for given a value, twice, and four times a, respectively). Specifically, when comparing the
advection and diffusion regimes under the same combination of motion and rest models, the transition
times TNA, from normal to anomalous advection, are always the same as those from normal to anomalous

Figure 4. PDFs of simulated particles (a) for step lengths and (b) for step times. Both PDFs show power-law tails with exponents � 21.5
and � 22.0 for step lengths and step times, respectively.
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diffusion. In summary, TNA does not depend on the motion regime, but depends on the rest regime; mostly
on the thin/thick tails of the PDF of the resting times, and only marginally on the mean resting times for
exponential PDF.

5. Advection and Diffusion Regimes From an Episodic Framework Using the
Langevin Equation by Ancey and Heyman [2014]

The Langevin equation (LE) by Fan et al. [2014] was developed for low transport rate conditions (particles
are rolling and/or sliding on the bed). For high transport rate conditions (saltating particles), Ancey and Hey-
man [2014] developed a Langevin equation calibrated using their own experimental data. Here we incorpo-
rate the Langevin equation by Ancey and Heyman [2014] into our episodic framework to simulate the
episodic motion regime of particles. For simulation purposes, we used their own parameters as �up50:299

m � s21 and �up=
ffiffiffiffiffiffiffiffiffi
D=tr

p
55:7 calibrated from

their experiments. Note that the value of D
and tr were not provided independently in
Ancey and Heyman [2014]; as a result, we
estimated the independent particle relaxa-
tion time tr as the ratio between the set-
tling velocity (computed as in Cheng
[1997]) and the acceleration due to gravity
[Zhong et al., 2011]. The computed values
of tr and D are 0.0332 s and
9:13 3 1025 m2 � s21, respectively. For
more details about the model formulation,
see Ancey and Heyman [2014].

We further imposed the particle velocity to
be zero when its velocity turns to negative,
forcing the particle to stop (the velocity
remains zero) for a duration defined by the
stochastic resting time Tr (particle resting
regime), according to our ELE framework.
For incorporating resting time in the model,

Figure 5. Definition sketches of different models. (a) Model by Schumer et al. [2009] (S-RWM), the steps are achieved instantaneously; (b)
Model by Weeks et al. [1996] (W-ARWM), the steps are achieved within a finite time, and all the velocities during the steps are kept con-
stant; and (c) Semimechanistic ELE model from this study, the steps are achieved with finite time and the velocities are stochastic.

Figure 6. PDFs of resting times used in the Episodic Langevin Equation
(ELE) model. Black, red and green lines represent exponential distribution
with average 0.625 s, power law with m51:6, a51=50 and power law with
m51:4, a51=5000, respectively. The inset shows the same distributions on
log-log scale for comparison.
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we used exponential and heavy-tailed distributed resting times. For comparison purposes, we used
T r50:625 s for the exponentially distributed resting times Tr , (derived imposing T r=T s525 and T s50:05s,
consistent with our ELE parameters). Similarly, for the heavy-tailed distributed resting times Tr , we chose m5

1:4 and 1.6, respectively.

Although the time scales of advection and diffusion regimes obtained from the episodic Ancey and Heyman
[2014] model (Figure 8) are larger than those in our ELE (Figure 7), as a result of the different T r=T s ratio,
similar emergent advection and diffusion regimes are observed. Recall that active particle velocities from
both LE by Fan et al. [2014] and Ancey and Heyman [2014] are thin-tailed (exponential and Gaussian, respec-
tively), suggesting that the emergent advection and diffusion regimes are only determined by the PDF of
the resting times, as far as the PDF of active particle velocities remains thin tailed.

In addition, we must recognize that both the Fan et al. [2014] and Ancey and Heyman [2014] models are cali-
brated using experimental observations. So any effect of particle collisions on the distribution of particle
velocity, would be accounted for indirectly in the model parameters. That said, we acknowledge that our
model however does not treat particle collisions in a mechanistic way. Hence, applying our model, or the

Figure 7. Power-law resting times leading to anomalous transport. (a) advection (growth of mean travel distance hxi with time). For par-
ticles with heavy tailed resting time with m51:6 (blue line) and m51:4 (red line), the mean travel distance grows slower than linearly, with
ax50:6 and ax 50:4, which show subadvection. Linear growth of hxi with time for particles with exponential resting time (�T r=�T s525, black
line) is also presented for comparison. (b) Diffusion (variance of travel distance with time); diffusion at large time scales and the normal dif-
fusion with exponential resting times are also presented for comparison. Resting times with m51:6 show superdiffusion while resting times
with m51:4 show subdiffusion. Only very heavy-tailed resting times (m < 1:5) lead to subdiffusion and for larger scales the regimes are
characterized by bx52m22. Note that x axis represents dimensionless time t normalized by d=u� , where u� and d are the friction velocity
and particle diameter, respectively.

Figure 8. Normal and anomalous transport obtained by incorporating an episodic framework in the Langevin equation of Ancey and Hey-
man [2014]. (a) The emergent advection and (b) diffusion regimes are the same as those obtained from our Episodic Langevin Equation
(ELE) model (see Figure 7 for comparison). Note that x axis represents dimensionless time t normalized by d=u� , where u� and d are the
friction velocity and particle diameter, respectively.
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Ancey and Heyman [2014]
model, to higher transport con-
ditions can be done only if the
transport parameters are re-
calibrated on the resulting parti-
cle velocity distribution.

6. Discussion

6.1. Comparison of ELE With
Different Random Walk
Models
Both Schumer et al. [2009] (S-
RWM) and Weeks et al. [1996]

(W-ARWM) used random walk models to study the episodic motion of particles with different distributions
of step lengths f Lsð Þ�L2l

s and resting times f Trð Þ�T2m
r , and explored the corresponding advection and dif-

fusion regimes associated with the different tail parameters l and m. Figures 5a and 5b show the schematic
of S-RWM, W-ARWM for comparison purposes. As discussed above, in S-RWM (Figure 5a), steps were
achieved instantaneously, and thus active particle velocities were infinitely large. In W-ARWM (Figure 5b),
the steps were assumed to be resolved within a finite time, with constant velocities during particle motion.
In our ELE model (Figure 5c), the steps are also occurring within a finite time, but the associated particle
velocities are stochastic, which represents an increased degree of complexity with respect to the approach
of Weeks et al. [1996] and, in our opinion, a model improvement.

Table 1 shows the advection and diffusion characteristics resulting from a range of values of the resting
time tail parameter m, using the three models under investigation S-RWM, W-ARWM, and our ELE. Note that
in the two models S-RWM and W-ARWM, we impose the step lengths Ls to be thin tailed.

6.2. Coupled and Uncoupled Step Times With Associated Step Lengths
In this section, we further investigate the fundamental differences between the three approaches (S-RWM,
W-ARWM, and our ELE), specifically, whether the step times and the associated step lengths in these models
are coupled or not. As discussed above, in S-RWM, the step times were assumed to be zero, and thus the
step lengths are not correlated to the step times, while in W-ARWM and in our ELE models the step times
and the associated step lengths are related as Ls / Ts and Ls / T 1:6

s , respectively (see Figure 2b for ELE), and
thus coupled. The correlation between step lengths and step times explains the different diffusion regimes
as seen in our ELE and W-ARWM compared to S-RWM. Moreover, if the step lengths and step times are cor-
related, the fractional advection-diffusion equation as in Schumer et al. [2009] cannot be used, as suggested
by Pelosi et al., [2014]. However, if the step times Ts are nonzero, and the step lengths Ls have no relation-
ship with the step times Ts, the spatial and temporal statistical characteristics are uncoupled, and thus the
S-RWM and the fractional advection-diffusion equation could still be used.

From the above discussion, we notice that for the advection characteristics (first-order moment of travel dis-
tance x), all three models (ELE, with motion regimes modeled following Fan et al. [2014] or Ancey and Hey-
man [2014], S-RWM, and W-ARWM) reproduce the same advection regime, whereas only the W-ARWM and
ELE models reproduce the same diffusion regime. We suggest that S-RWM is too simplified for the study of
diffusion of bed load particles, though it is still appropriate for the study of anomalous deposition rate
[Schumer and Jerolmack, 2009] and incision rate of bed rock rivers [Stark et al., 2009; Finnegan et al., 2014],
which depend on the first-order moment of the stochastic variables. Based on this, we suggest that progres-
sively higher-order moments of travel distances (in general, modeled stochastic variables) might be
required to differentiate between competing models of resting and motion regimes.

7. Summary and Conclusions

In this paper, we built an episodic semimechanistic framework to simulate the transport of uniform tracer
particles, with steps separated by rests, and studied the emergent (normal or anomalous) particle
advection-diffusion regimes. In our framework, states of motion and rest were modeled independently,

Table 1. Advection and Diffusion Regimes at Large Time Scales Obtained From the
Three Different Modelsa

Models Conditions of m Advection Exponent ax Diffusion Exponent bx

Schumer et al. [2009] 1 < m < 2 m21 m21
m > 2 1 1

Weeks et al. [1996] 1 < m < 2 m21 2m22
2 < m < 3 1 42m

m > 3 1 1
This study 1 < m < 2 m21 2m22

2 < m < 3 1 42m
m > 3 1 1

aThe random walk model by Schumer et al. [2009] (S-RWM), the asymmetric random
walk model by Weeks et al. [1996] (W-ARWM), and the semimechanistic Episodic Lange-
vin Equation (ELE) model from the current study.

Water Resources Research 10.1002/2015WR018023

FAN ET AL. ADVECTION AND DIFFUSION REGIMES FOR UNIFORM PARTICLES 2798



with two different models for the particle motion state [Fan et al. 2014; Ancey and Heyman, 2014] incorpo-
rated and tested. We explored how different resting time distributions affect particle advection and diffu-
sion, under the constraint of thin tailed velocities [Fan et al. 2014; Furbish et al. 2012b; Ancey and Heyman,
2014].

For exponentially distributed resting times Tr , thin-tailed active particle velocities up were observed to play
a dominant role in the diffusion regime: at longer time scales, diffusion was observed to be normal instead
of superdiffusive, even if the step lengths were heavy tailed. Instead, assuming a power-law distribution of
the resting times with a tail parameter m, led to four different regimes identified based on the resulting par-
ticle advection and diffusion parameters: (I) 1 < m < 1:5, sub-advection and subdiffusion; (II) 1:5 < m < 2,
subadvection and super-diffusion; (III) 2 < m < 3, normal-advection and superdiffusion; and (IV) m > 3
normal-advection and normal-diffusion.

Our results also suggest that the assumption of instantaneous steps Ls , used e.g., in Schumer et al. [2009],
could only reproduce the same advection regime, but results in a different diffusion regime as compared to
our more complex semimechanistic model or to the Weeks et al. [1996] model (with finite step times).

We acknowledge, as a major limitation of our approach, the fact that the model governing particle motion
is totally independent from the resting time model: while the first one has been calibrated in two monitored
transport conditions using the Roseberry et al. [2012] and Ancey and Heyman [2014] data, the second one
could not be verified, in any known conditions, due to the lack of experimental measurements. As a result,
we elaborated how different resting time models influence particle advection and diffusion regimes at dif-
ferent time scales. Further observations of resting times would be needed to assess the predictive capabil-
ities of the proposed model and its utility as a diagnostic tool for guiding hypotheses of sediment transport
regimes in real rivers.

Notation

a minimum possible value for Pareto distribution.
Dx the amplitude of fluctuation force in the streamwise direction L3 � T22½ �.
d diameter of the particle ½L�.
D equivalent of a particle diffusivity L2 � T21½ �.
Dx mean downstream force exerted on a particle of unit mass L � T22½ �.
F1; F2 Runge-Kutta coefficients.
g gravity acceleration L � T22½ �.
Ls step length ½L�.
t time ½T�.
tr particle relaxation time ½T�.
TLI The threshold of local and intermediate time scales for particle diffusion ½T�.
Ts step time ½T�.
Tr resting time ½T�.
up streamwise particle velocity L � T21½ �.
�up mean streamwise velocity of particles L � T21½ �.
u� bed friction velocity L � T21½ �.
Uvx virtual velocity for the particles moving episodically L � T21½ �.
w0 w1 , w2 three independent standard Gaussian distribution random numbers.
x travel distance in streamwise direction ½L�.
ax the exponent for advection, namely, the power-law exponent for mean of travel distance x with

time.
bx the exponent for diffusion, namely, the power-law exponent for variance of travel distance x with

time.
d delta function.
Dx friction force in streamwise direction L � T22½ �.
l; m the tail parameter for power-law step length Ls and resting time Tr respectively.
nx Gaussian white noise force in streamwise direction L � T22½ �.
sc autocorrelation time of particle velocities time series T½ �.
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