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Shrunken Locally Linear Embedding for Passive
Microwave Retrieval of Precipitation

Ardeshir M. Ebtehgj, Rafael L. Bras, and Efi Foufoula-Georgiou

Abstract—This paper introduces a new Bayesian approach to
the inverse problem of passive microwave rainfall retrieval. The
proposed methodology [called the shrunken locally linear em-
bedding algorithm for retrieval of precipitation (ShARP)] relies
on a regularization technique and makes use of two joint dictio-
naries of coincident rainfall profiles and their corresponding up-
welling spectral radiative fluxes. A sequential detection—estimation
strategy is adopted, which basically assumes that similar rain-
fall intensity values and their spectral radiances live close to
some sufficiently smooth manifolds with analogous local geometry.
The detection step employs a nearest neighbor classification rule,
whereas the estimation scheme is equipped with a constrained
shrinkage estimator to ensure the stability of retrieval and some
physical consistency. The algorithm is examined using coincident
observations of the active precipitation radar and the passive mi-
crowave imager onboard the TRMM satellite. We present promis-
ing results of instantaneous rainfall retrieval for some tropical
storms and mesoscale convective systems over ocean, land, and
coastal zones. We provide evidence that the algorithm is capa-
ble of properly capturing different storm morphologies including
high-intensity rain cells and trailing light rainfall, particularly
over land and coastal areas. The algorithm is also validated at an
annual scale for calendar year 2013 versus the standard (version 7)
radar (2A25) and radiometer (2A12) rainfall products of the
TRMM satellite.

I ndex Terms—Data processing, inverse problem, radar, radiom-
etry, rainfall passive retrieval, regularization.

|I. INTRODUCTION

N THE mathematical sense, rainfall retrieval from remotely
sensed observations is an inverse problem in which we
aim to estimate the rainfal intensity from its indirect and
noisy measurements. The passive retrieval of rainfall from
upwelling spectral radiances is one of the most challenging
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atmospheric retrieval problems chiefly because rainfall spectral
signatures are often undersampled, significantly corrupted with
the background radiation, and are nonlinearly related to the
rainfall vertical profile. Theretrieval of rainfall from visible and
infrared observations typically relies on empirical approaches
as the measurements only respond to the radiative fluxes from
the upper portion of the cloud layers (e.g., see [1]-{8]). In mi-
crowave wavelengths (~6-200 GHz), the hydrometeor vertical
profile alters the upwelling radiation in the entire atmospheric
column through absorption—emission and scattering processes.
Over ocean, the absorption—emission of the atmospheric liquid
water can be well distinguished from the cold background by
the physical laws of radiative transfer [9], [10]. In addition,
the attenuation of the polarized ocean surface emission by
atmospheric hydrometeors (see [11]-{14] and the references
therein) and scattering by ice particles [10], [15] give rise to
a high signal-to-noise ratio in the rainfall spectral signatures,
making the retrieval problem more straightforward over ocean
than over land. Over land, the radiation from highly emissive
heterogeneous|and surfaces often masksthe hydrometeor emis-
sion signal, forcing the retrieval approaches to mostly rely on
the complex scattering effects of the ice particlesin the raining
clouds [16]-{18]. As a result of these major differences over
ocean and land, two classes of physically based and empirical
microwave retrieval algorithms have emerged. The empirical
approaches have been predominantly used for retrieval over
land, whereas the physically based methods have been used
over ocean.

Over ocean, the physically based methods typically fol-
low two distinct strategies. The first family of these algo-
rithms [9] simplifies the basic radiative transfer equation for
atmospheric constituents under axially symmetric scattering
and the Rayleigh—Jeans approximation. Given the observed
spectral radiative fluxes with minimal scattering effect, the
simplified eqguations make it possible to obtain atmospheric
absorptivity, the drop-size distribution, and, thus, the rainfall
intensity profile. The second class of methodologies (e.g., see
[12] and [19]-{25]), which is known as the Bayesian retrieval
approaches, exploitsastatistically representative a priori gener-
ated database that encodes the correspondence between spectral
brightness temperatures and rainfall profiles. In physically gen-
erated databases, the causal rel ationships between the precipita-
tion profiles and their upwelling spectral radiances are modeled
using a combination of cloud resolving and radiative transfer
models. Sophisticated numerical cloud resolving models (e.g.,
the Goddard Cumulus Ensemble model) are used to produce a
large collection of raining and nonraining cloud structures with
distinct hydrometeor profiles. Then, for al of these profiles, a
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radiative transfer model is employed to obtain their spectral
radiances at the top of the atmosphere. Finally, this database
isutilized to retrieve rainfall profiles from observed microwave
radiances using an inversion scheme. This approach has been
the cornerstone of the Goddard Profiling Algorithm (GPROF)
[23]{25] used to produce the TRMM operational passive re-
trieval products. On the other hand, over land, empirical meth-
odstypically rely on ascattering index [26], [27], which relates
the depression in the high-frequency channels (e.g., 85 GHz)
to the surface rainfall, in response to the frozen hydrometeors
commonly found in the raining clouds. The magnitude of the
high-frequency depression is naturally not independent of the
land surface emissivity. Asaresult, prior to the rainfall estima-
tion, different screening approaches are commonly employed
to properly exclude depressions caused by the background
noise (e.g., snow and desert surfaces). Among these, the early
version of the GPROF [23], [24] suggests static thresholding
(2285 GHz > 8 K) to detect the raining signatures of the
spectral brightness temperatures measured by the TRMM mi-
crowave imager (TMI). A more involved scattering index has
been also suggested in [28] and [29], which has been partly used
to develop the launch version of the land retrieval algorithm for
the Advanced Microwave Scanning Radiometer—Earth Observ-
ing System (AMSR-E) [18].

Since the successful launch of the TRMM satellite, a major
body of research has been also devoted to developing rainfall
retrieval algorithms by exploiting the coincident observations
provided by the TMI and the TRMM precipitation radar (PR)
(e.g., see [30]36]). The basic idea has been focused on
combining, in an optimal sense, the information content of
both sensors for obtaining improved estimates of the rainfall
profile and, perhaps, the microphysical properties of the atmo-
spheric constituents. Typically, these methods use a variational
cost function to reconcile the observations provided by both
instruments [33]-{36]. Recently, Kummerow et al. [25] have
combined the PR data with the physically driven database of
the GPROF algorithm to make the database more observation-
aly consistent. Using coincident TMI and PR observations
and principal component analysis (PCA), a low-dimensional
approximation method is introduced in [14] and [37], which
is known as the University of Wisconsin agorithm. This al-
gorithm suggests a PCA-based approach to project the nine
TMI channels onto three pseudochannels for filtering the back-
ground noise and reducing redundancies in the TMI channels.
These pseudochannels are then used within a matching process
to efficiently retrieve surface rain rates using a compactly
designed a priori database in a Bayesian context.

Passiverainfall retrieval remains a challenge particularly for:
1) the detection and estimation of light rainfall over land and
adjacent to coastlines; 2) the unbiased estimation of rainfall
over highly emissive and nonhomogeneous land surfaces; and
3) the probabilistic recovery of the small-scale features of
rainfall extremes both over land and ocean (see [14] and [38]
and the references therein). In this paper, motivated by these
continuous challenges, we introduce a new Bayesian retrieval
agorithm, which is called the shrunken locally linear embed-
ding algorithm for retrieval of precipitation (ShARP). This
retrieval algorithm is guided by a priori collections of spectral
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radiances and their corresponding rainfall profiles, which are
the so-called spectral and rainfall “dictionaries.” The core part
is inspired by the concept of locally linear embedding [39],
which assumes that “similar” spectral radiances and their cor-
responding rainfall profiles live close to two joint smooth
manifolds, allowing locally linear approximations. To retrieve
rainfall, ShARP uses a k-nearest-neighbor classification (de-
tection step) coupled with a modern shrinkage regularization
scheme (estimation step). For an observed spectral radiance, the
detection step finds similar signatures in the spectral dictionary
and decides whether the observed spectral radiance is nonrain-
ing or raining. For a raining spectral radiance, the estimation
step uses a shrinkage estimator to obtain its representation
coefficients in the spectral dictionary. Then, the representation
coefficients are used to combine the corresponding rainfall pro-
filesfrom therainfall dictionary to retrieve the rainfall values of
interest.

In summary, the main contribution and advantageous fea-
tures of this algorithm for addressing the aforementioned re-
trieval challenges are as follows. First, the use of a supervised
nearest neighbor classification results in minimal sensitivity
to the variability of the underlying land surface emissivity.
This property promises improved retrieval over troublesome
surfaces and coastal zones without any dependence to other
ancillary data. Second, the core estimation step makes use
of a modern constrained regularization scheme, giving rise to
sufficiently stable retrievals with reduced error compared with
the classic least squares solutions. Third, by design and due to
the used regularization scheme, the agorithm is flexible and
robust enough to employ dictionaries populated empirically, via
physically based modeling, or a combination of them. Fourth,
the algorithm allows usto approximate the posterior probability
density function of the retrieved rainfall, which is particularly
useful for the hazard assessment of rainfall extremes and their
hydrogeomorphic impacts. It is important to note that the
current implementation of our algorithm is fully empirical as
we only populate the rainfall and spectral dictionaries with
the coincident observations of the TRMM-PR and the TMI.
Therefore, in the absence of any independent ground-based
validation, all of the presented retrieval results are bounded by
the accuracy of the PR sensor/algorithm [40]. Clearly, as we
validate our results with 2A25, improved retrievals do not often
come as a surprise; however, they remain of significant impor-
tance as the passive retrieval methods are currently empirical
over land and coastal areas.

Section |1 is devoted to explaining the rainfall data set and
studying the rainfall spectral patterns relevant to the design
of the presented algorithm. Section 111 explains the details of
ShARP. Using the TRMM data, in Section IV, some retrieval
results are presented and compared with the currently opera-
tional PR-2A25 and TMI-2A12 retrieval products (version 7).
Conclusions are drawn and future lines of research are pointed
out in Section V.

II. TRMM RAINFALL DATABASE

Before we embark upon a detailed algorithmic discussion,
we provide a brief explanation of the data set used and some
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relevant insights into the structure of raining and nonraining
microwave spectral patterns, which are essential to the devel-
opment of our algorithm.

The TRMM-PR is a Ku-band radar that operates in a sin-
gle polarization mode at a frequency of 13.8 GHz. After the
TRMM boost, the PR provides direct measurements of rainfall
reflectivity at a grid size of ~5 km every ~250 m of the
troposphere at nadir, over aswath width of 247 km. On the other
hand, the TMI is a dual-polarized multichannel radiometer that
operates on central frequencies of 10.65, 19.35, 21.3, 37.0, and
85.5 GHz. All of the channels are horizontally and vertically
polarized, except the vertical water vapor channel at 21.3 GHz.
During the postboost era, the TMI provides spectral brightness
temperatures over a swath width of 878 km, with different
spatial resolutions of 72 km x 43km, 35 km x 21 km, 26 km x
21 km, 18 km x 10 km, and 8 km x 6 km at the af orementioned
central frequencies, respectively. By design, the TMI and PR
sensors provide overlapping observations over the inner swath
within the radar field of view at different resolutions. A thor-
ough exposition of the TRMM sensor packages can be found
in[41].

Here, we use the coincident 2A25 (level 11) product of the
radar profiling algorithm [42] and the 1B11 (level 1) product of
the radiometer to construct therainfall and spectral dictionaries.
Toregister all of the dataonto asinglegrid of latitude/l ongitude,
we used nearest neighbor interpolation and mapped the TMI
spectral temperatures onto the reported PR grids. Note that, in
this case, we neither lose nor add any information and retrieve
rainfal at the native resolution of the 1B11 product at the
85-GHz high-frequency channel. Clearly, in thisresolution, the
lower frequency channels provide redundant spectral informa-
tion over neighboring grid boxes, whereas their combinations
with higher frequency channels may still provide distinct mul-
tispectral information. Accordingly, throughout this paper, we
use a large collection of collocated TMI and PR data, which is
hereafter called the “rainfall database” over the TRMM inner
swath for all orbital tracksin calendar years 2002, 2005, 2008,
2011, and 2012.

Using the collected rainfall database, Fig. 1 shows the condi-
tional expectations of the TMI spectral brightness temperatures
for different ranges of the PR rainfall intensities and their
coefficients of variation. Specifically, each column of the shown
images demonstrates the conditional mean of the TMI channels,
whereas each row shows the average response of the channels
to the underlying rainfall variability. The stem plots represent
the coefficients of variation of the brightness temperatures for
each channel. Over ocean (top panel), we see that amost all
frequencies are relatively responsive to the underlying surface
rainfall variability. Horizontal channels of 10 and 19 GHz
show the maximum normalized variations, whereas the vertical
polarizations in frequencies of 21 and 37 GHz are the least
responsive channels. This observation is consistent with the fact
that the ocean surface is less emissive in horizontal polariza-
tionsfor the TMI view angle, giving riseto acolder background
and, thus, alarger signal-to-noise ratio of the raining signatures
[43]. Onthe contrary, over land, almost all of the low-frequency
channels below 21 GHz show relatively small coefficients of
variation compared with the higher frequencies. It will be clear
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Fig. 1. Expected values of the spectral brightness temperatures for different
intervals of the surface rainfal intensity over (top panel) ocean and (bottom
panel) land. The images are inferred from coincident pairs of the TMI-1B11
and PR-2A25 products obtained from 1000 randomly chosen orbits in our
rainfall database. The stem plots demonstrate the coefficients of variation for
each spectral band in response to the underlying rainfall variability. Note that
the rainfall intervals on the z-axis are logarithmically spaced between 0.2 and
200 mm/h.

later on that these coefficients of variation can be used to prop-
erly weight each channel to better guide the proposed retrieval
approach. Therefore, for each sampled y, it can be naturally
concluded that a properly chosen statistic of {r)(y)}&_, inthe
following form may be adopted as a stable estimator of x:

K
T = Z ck TE(Y) 1
k=1

where ¢;, denotes some optimal coefficients.

Furthermore, to better understand the correspondence be-
tween the neighboring raining spectral brightness temperatures,
in the Euclidean sense, and their surface rainfall intensities,
we independently collected two learning sets of the form £ =
{(b;,7;)}M, over ocean and land. Each set contains M = 10°
of coincident 1B11 spectral brightness temperatures b € R?
and their corresponding 2A25 surface rainfall » € R estimates.
From a mathematical standpoint, a simple nearest neighbor
search reveds that the spectral temperatures over ocean and
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(Top panels) Two arbitrary sampled raining vectors of the TMI-IB11 spectral brightness temperatures (dotted black lines with circles) over (left) ocean

and (right) land. The gray lines are the 50-nearest spectral neighborsin the Euclidean sense, which are obtained from an independent learning set of the TMI1-1B11
observations. (Bottom panels) PR-2A25 surface rainfall probability histograms of the 50 spectral neighbors, as shown in the top panels. In the top and bottom
panels, the red squares and the blue solid lines with diamonds show the 1-nearest neighbor in the spectral (1-nnT) and rainfall (1-nnR) spaces, respectively.

land are not uniquely related to the estimated surface rainfall
intensities in the Euclidean sense (for more discussion, see
[44]). Nevertheless, in the known lack of uniqueness, a basic
question arises: How can we obtain “stable” estimates of the
surface rainfall using neighboring spectral brightness temper-
atures in a properly collected learning set? To this end, let
us assume that a spectral vector of brightness temperature is
denoted by y and that its scalar surface rainfall value of interest
isz. Thetop panels from left to right in Fig. 2 demonstrate two
arbitrary vectors of the 1B11 raining brightness temperatures
y € Y (black dashed lines) over ocean and land, together
with their 50 nearest neighbors {by (y) }X5°° (gray solid lines)
obtained from the collected learning sets. The bottom panels
show the corresponding surface rainfall values {ry (y)}£5%°
and their probability histograms. It turns out that all of the 50
nearest spectral brightness temperatures were raining, except
for only one of them over land. This observation implies that
a supervised nearest-neighbor classification, using coincident
TMI and PR data, might be a very powerful approach for
the rain/no-rain discrimination problem. Furthermore, it can be
seen that thefirst nearest neighbor in the spectral space (1-nnT)
does not necessarily relate to the nearest neighbor (1-nnR) in
the rainfall space. However, in both cases, the surface rainfalls
of the neighboring spectral vectors are bounding the rainfall
values = of interest. These bounds, both in the spectral and
rainfall spaces, are clearly tighter over ocean than over land
mainly due to the stronger signal-to-noise ratio of the rainfall
signatures.

I1l. ShARP
A. Rainfall Retrieval as Inverse Problem

Passive rainfall retrieval in the microwave bands can be
considered a nonlinear inverse problem, where its solution
shall be constrained by the underlying laws of atmospheric
thermal radiative transfer in a weak or strong sense [45]. By
a strong sense, we mean that the retrieved rainfall profile shall
be exactly consistent with the underlying physics, whereas in
a weak sense, some bounded errors are admissible. To recast
the microwave rainfall retrieval in a standard form of a discrete
inverse problem, let us assume that each vector of the spectral
brightness temperatures and their corresponding rainfall pro-
filesare y = (y1,v2,.--,yn,)’ and x = (z1,72,...,7,,)7,
respectively, where n. and n,. denote the number of spectral
channels and the number vertical layers of the rainfall intensity
profile, respectively. As aresult, in afinite dimension, spectral
observations might be related to the rainfall intensity profile
through the following nonlinear observation model:

y=Fx)+v 2

where F(-) : x — y can be considered a functional represen-
tation of the radiative transfer equations that maps the rainfall
intensity profiles onto the space of the spectral brightness
temperatures, and v € R represents the observation error
with finite energy. Obviously, the goa of the retrieva is to
obtain an estimate of rainfall profile x, given spectral brightness
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temperatures y, the radiative transfer functional 7 (-), and the
a priori information about the error. The search for a stable
closed-form solution to the aforementioned inverse problem
seems infeasible, at least for now, given the fact that F(-) is
extremely nonlinear, particularly under the scattering dominant
regime. In the following section, it will be clear that our
algorithm provides a solution to this complex inverse problem
in aweak sense.

B. Algorithm

Motivated by our observations in Section II, to bridge
the explained complexities in the rainfall retrieval prob-
lem, our agorithm relies on an a priori collected database
denoted by £ = {(b;,r;)}},. This set is populated by a
large number of coincident brightness temperatures b, =
[b1i,b2iy .- bni]T € R™ and their corresponding rainfall
profiles r; = [r1;,72,...,7mn.4]7 € R". For notationa con-
venience, let us stack these pairs according to a fixed or-
der in two joint matrices B = [by|...|by] € R**M and
R = [ry|...|rp] € R™*M which are called the spectral and
rainfall “dictionaries,” respectively. In our notation, each of
these pairs are called elementary “atoms’ to be used for the
reconstruction of the rainfall fields from their observed spectral
signatures. As is evident, these dictionaries can be populated
either by observational or physically based generated pairs.

In the detection step, we simply use a supervised nearest-
neighbor classification rule, which is guided by the dictionar-
ies. In particular, for a given observation vector of spectral
brightness temperature y € 23" and dictionary pair (B, R), let
us assume that S denotes the set of & column indexes of B
that contain the nearest spectral atoms to y in the Euclidean
sense. Given this set, the algorithm forms two joint subdic-
tionaries (Bs € R"<*X R € MK, which are generated
by those K = |S| nearest spectral {b;}¥ , € B and their
corresponding rainfall atoms {r; }%_; € R. Assuming that the
last row of rainfall subdictionary R contains the near-surface
rainfall intensity values, the algorithm simply makes use of a
probabilistic vote rule to declare y as raining or nonraining. In
other words, choosing a probability threshold p, the algorithm
labels y as raining if more than pK number of {r;}X_, are
raining at the surface. In the estimation step, motivated by the
resultsin Fig. 2, we assume that the true rainfall profile x of the
given spectral observation y can be well explained by the Rg
atoms through the following linear model:

x=Rgc+e (3

where c € ¥ isavector of the representation coefficients that
linearly combines the atoms of the rainfall subdictionary, and
e € R" denotes a zero mean error with finite energy. As a
result, given an estimate of the representation coefficients ¢, the
conditional expectation of therainfall profile x can be obtained
asfollows:

% = E(x|é) = Rgé. @)

Obvioudly, the estimation of the representation coefficients
solely from (3) is ambiguous as both sides of the equation
are unknown. To find a solution, as previously explained, we
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assume that the neighboring rainfall profiles and their spectral
signatures live close to two smooth manifolds with analogous
geometric structures and, thus, similar locally linear represen-
tations. Therefore, the algorithm assumes a spectral observa-
tion model with the same linear representation coefficients as
follows:

y =Bsc+v )

where v € %"« denotes a zero mean error with finite energy.
As is evident, the estimation of the representation coefficients
from (5) is no longer an ill-defined problem. To estimate the
representation coefficients in this linear model, the weighted
minimum-mean-square-error estimator, which is constrained to
the probability simplex, seemsto be the first choice as follows:

2
minimize HW1/2(y — BSC)H2
subjectto ¢ > 0,17 c=1 (6)

where the fo-normis||c||3 = ;c?, ¢ = 0 implies the element-
wise nonnegativity, and the positive definite W > 0 in R"e*"e
determines the relative importance or weights of each channel.
These weights may be chosen to relatively encode the signal-
to-noise ratio of the spectra raining signatures. Note that the
nonnegativity constraint is required to be physically consistent
with the positivity of the brightness temperatures in degree of
Kelvin. Furthermore, the sum to one constraint assures that the
estimates are locally unbiased. More importantly, this equality
constraint makes the solution invariant to the rotation, rescaling,
and trandation of the neighboring spectral observations [39].
For asimilar concept in rainfall downscaling, see [46] and [47].

However, problem (6) islikely to be severely ill posed due to
the observation noise, particularly when the column dimension
of Bs is larger than that of spectral bands n.. To make the
problem well posed and sufficiently stable, we suggest the
following regularization scheme:

2
minimize  ||W'/2(y — Bsc)||_+ Aullells + Aslel3
subjectto ¢ >0, 17c=1 (7)

wherethe ¢;-normis||c||; = X;|¢;|, and A1, A2 are nonnegative
regularization parameters. Obviously, by obtaining ¢ as the
solution of the aforementioned problem, we can retrieve the
rainfall using expression (4) asx = Rsc.

Note that problem (7) is a nonsmooth convex problem.
It is nonsmooth as the ¢;-norm is not differentiable at the
origin. Convexity arises as it uses a conic combination of two
well-known convex penalty functions to regularize a classic
weighted least squares problem over a convex set. These two
regularization functions have been widely used to properly
narrow down the solution of ill-posed inverse problems. In an
underdetermined system of equations, the ¢;-norm penalty has
proven to be an effective regularization for obtaining “sparse”
solutions. In other words, it turns out that this regularization
promotes sparsity in the solutions as it uses a minimal number
of atoms of B while retaining the maximum amount of infor-
mation (e.g., see [48]-{51]). On the other hand, the ¢5-norm
penalty is the most widely used regularization approach to
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-
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contain K nearest spectral neighbors among columns of B.
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Standardize y, and columns of B; by
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by their standard deviations.

Il %

Solve problem (2) to obtain the representation
coefficients €; and estimate the rainfall profile as
=R &

Estimation Step

Fig.3. Flowchart of ShARP. See Algorithm 1 for amore detailed explanation.

stabilize the solutions of “dense” ill-posed inverse problems
while incorporating all the atoms of B in the solution (e.g.,
see [52] and [53]). Solely confining the regularization in (7) to
the Z1-norm (Ao = 0) is restrictive for rainfal retrieval in the
current setting of our algorithm for two main reasons. First,
the number of selected columns of Bs or, e.g., the nonzero
elements of the representation coefficients will be bounded
in this case by the number of available spectra bands n..
Second, the spectral atoms in subdictionary Bs are likely to
be highly correlated and clustered in groups. In this case, the
¢1-norm regularization typicaly fails to take into account
the contribution of clustered atoms. On the other hand, al of
the spectral atomsin Bs will be taken into account if we solely
rely on the /5-norm penalty, which can lead to the selection of
irrelevant atoms and overly smooth rainfall retrieval. However,
the proposed mixed penalty removes the explained limitations
of each individual regularization scheme through stabilizing the
problem regularization path, encouraging grouping effects by
shrinking the clusters of correlated atoms, and averaging their
representation coefficients [54]. In addition, from a practical
point of view, this mixed regularization increases the flexibility
of the algorithm to cope with theill conditioning arising due to
the presence of very similar and correlated atoms in the spectral
subdictionary. This property is extremely desirable particularly
for the future developments of our algorithm to accommodate
both observationally and physically generated dictionaries.
Throughout this paper, we consider a convex combination
of regularization penalty functions by assuming that Ao = A«
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and \; = \(1 — «) for dl a € (0,1). As we use the concept
of locally linear embedding together with the aforementioned
mixed shrinkage estimation, we call our retrieval technique
Shrunken locally linear embedding Algorithm for Retrieval
of Precipitation (ShARP). The details are summarized in
Algorithm 1 and sketched in Fig. 3. The given induced non-
negativity constraint in problem (7) alows us to solve it via
constrained quadratic programming (QP) as follows:

minimize ¢’ (BYWBsg + A\oT) c+ (M1 —2BEWy) ¢
subjectto ¢ >0, 1Tc =1 (8)

wherel = [1,...,1]7 € ®K,

Algorithm 1 Shrunken Locally Linear Embedding Algorithm
for Retrieval of Precipitation (ShARP).

Input: Spectral observations Y containing {y; = [y1i, Y2i,
oy Yn,i]T € M} N vectors of spectral brightness temper-
atures, spectral B € :3"<*M and rainfal R € R"*M dic-
tionaries, weight matrix W e 937>« detection probability
p, the number of nearest neighbors K, and regularization
parameters A; and As.

Output: Precipitation field X containing {x; € "}, pix-
els of rainfall intensity profiles.

Fori:=1to N (step 1) do

« Find subdictionaries Bg € 53K and Rg € "X,
where S is the set of the column indexes of B that
contains the k-nearest neighbors of y;.

* Let Rs(end,:) denotethelast row of R containing the
neighboring surface rainfall.

* If |supp(Rs(end, :))| > pK,

— Standardize y; and the atoms of B, such that
> g =0, 327 bk =0, and 370 b = 1,
fork=1,..., K.

— Solve the following minimization:

2
¢ = al’gm'ncizo,chiﬂ{ HWl/Q(Yi — Bscy) )

el +A2||ci||%}.

— x; = Rs¢;
else
— x;,=0
End If
End For

It is important to note that problem (7) is, in effect, a
constrained Bayesian MAP estimator under the following prior:

p(c) ocexp (=Arllelli = A2(lc]3) ©)

which is a conic combination of the Gaussian and Laplace
densities [54]. Therefore, the posterior density of the estimated
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Fig.4. Different Earth surface classes used in the current version of ShARP, i.e., inland water body (In), coastal zone(c), land (1), and ocean (0). The classification
is adopted based on the available data (version 7) of the PR-1C21 product, which are mapped onto a0.05° regular grid.

coefficients and, thus, the rainfall values are not Gaussian. As
a result, the closed-form uncertainty analysis of the retrieved
rainfal is not trivial and may be addressed through random-
ization or ensemble analysis. To this end, one can ssimply see
that the rows of subdictionary Rs contain K samples of the
posterior probability density function (pdf) of the neighboring
rainfall intensity profiles. Thus, depending on the selected
number of nearest neighbors, the whole posterior pdf of the
ShARP estimator can be empirically approximated by counting
the relative frequency of the rainfall occurrence. This strategy
will be used in the sequel to estimate the uncertainty of the
retrieved rainfall.

IV. EXPERIMENTS USING TRMM DATA

As previously explained, in the current implementation of
ShARP, we confine our consideration to empirical rainfall and
spectral dictionaries collected from the coincident PR-2A25
and TMI-1B11 products and only retrieve surface rainfall.
Therefore, the 2A25 product can be used as a reference to
validate the results of ShARP. To further examine the pros and
cons of its performance, all of the retrieval experiments are also
compared with the surface rainfall obtained from the standard
passive TMI-2A12 retrieval product.

A. ShARP Setup

In the current implementation of ShARP, we defined four
different earth surface classes, i.e, ocean, land, coast, and
inland water (see Fig. 4). In other words, we collected four
dictionaries over each surface classand usethemin Algorithm 1
depending on the geolocation of a given pixel of the observed
spectral brightness temperatures. This surface stratification is
obtained from standard surface data in the PR-1C21 product
(version 7) at a ~5 km x 5 km grid box. To construct the
spectral and rainfall dictionaries, we randomly sampled 750
orbits from our rainfall database. In these sampled orbits, more
than 25 x 10° pairs of raining and nonraining signatures were
used to construct the required dictionaries.

1) Detection Sep: As previousy explained, rain/no-rain
classification from microwave observations and its induced
error on the quality of rainfall retrieval have been addressed
in numerous studies [21], [27], [29], [54]-{56] and reported as
achallenging problem that is not easy to mitigate, particularly
over land [25]. Therefore, in developing rainfall retrieval tech-

Ocean Land

p=0.45-0.55
2A12

k=5
k=10

1ep 7
0.2 k=20

—— k=40
— k=100

0 02 04 06 08 10 02 04 06 08 1
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Fig. 5. Rainfall ROC curve over (left panel) ocean and (right panel) land for
different probabilities of detection p € [0, 1] and numbers of nearest neigh-
bors K € {5, 10,20, 40,100} of ShARP. The blue circles show the 2A12
(version 7) product, and the red dash-dotted lines show the 0.95 probability
of hit as adatum.

TABLE |
PROBABILITY OF HIT AND FALSE ALARM FOR 20 NEAREST NEIGHBORS
K = 20 AND A PROBABILITY THRESHOLD OF p = 0.5. THE RESULTS
ARE OBTAINED BY COMPARING ShARP WITH 2A25

Observation (2A25)

Ocean Land
rain no-rain rain no-rain
rain 0.96 0.08 0.90 0.06
ShARP | ain | 0.04 0.92 0.1 0.9%

niques, we naturally have achoiceto either first detect the storm
raining areas and then estimate the rainfall intensities or just use
an estimation scheme that automatically recovers the raining
areas. In general, rainfall retrieval with a sequential rain/no-rain
detection and estimation scheme may be advantageous in the
sense that it allows us to control the probability of false alarm
while only confining the computational expense of estimation
to the detected raining areas.

Considering 2A25 as a reference rainfall field for the vali-
dation of ShARP, Fig. 5 shows the receiver operating charac-
teristic (ROC) curve for the rain/no-rain detection step of our
algorithm, as the classification parameters are varied. The ROC
curve encodes the estimated probability of hit (Prg) versus
the probability of fase dlarm (Pry). As is evident, the best
classification algorithm yields a point at the upper left corner
with Pry = 1 and Prp = 0. Here, the results are obtained by
applying the detection step to morethan 3 x 105 randomly cho-
sen pixels of spectral observations from our rainfall database.
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TABLE 11
DIAGONAL ELEMENTS OF THE WEIGHT MATRIX W € R2*9 UseD IN ShARP FOR THE CHOSEN EARTH SURFACE CLASSES

Relative weights
Classes Channels
10v_ [ I0h [ 19v [ ISh [ 2Iv | 37h [ 37v [ 85v | 85h
Ocean 0.39 1.00 0.35 076 | 0.19 | 0.14 | 040 049 | 045
Land 0.07 0.17 0.09 0.09 | 0.12 | 037 | 035 1.00 | 0.97
Coast 0.19 042 | 0.13 0.36 | 0.07 | 026 | 0.20 1.00 | 095
In-water | 0.33 0.66 | 0.36 0.84 020 | 026 | 0.59 1.00 | 0.88

Note that these spectral pixels are randomly selected from our
rainfall database and have not been used in construction of the
retrieval dictionaries. In Fig. 5, we can see that the ShARP
classification ruleis not very sensitive to the number of chosen
nearest neighbors as all of the curves are hardly distinguishable
from each other. The ShARP rain/no-rain detection quality for
K = 20 and the mgjority vote rule, i.e., p = 0.5, is presented
in Table |. This table explains that, over ocean and land, our
algorithm matches the raining pixels of the 2A25 product in
96% and 90% of the cases, whereasthe fal se alarm rate does not
exceed 8% and 6%, respectively. Fig. 5 also shows the position
of the 2A12 retrieval product. It is seen that given that 2A25
is raining over ocean, 2A12 is raining in 95% of the cases.
On the other hand, we see that, in 20% of the cases, 2A12
detects raining areas that may have been missed by 2A25 and,
thus, ShARP. Although the interpretation of this discrepancy is
not central to the thrust of this paper, this result seems to be
consistent with the recent evidence from the CloudSat satellite
suggesting that the PR underestimates the extent of light rain
over ocean [57], which may reach up to 10% of the rainfal
volume on average over the tropics [58]. Conversely, over land,
we see that if 2A25 is raining, ShARP is raining in 90% of
the cases, whereas 38% of these raining pixels are not captured
in2A12.

2) Estimation Step: After finding the storm raining areas,
our algorithm moves toward the estimation of the rainfall inten-
sities. Recall that we use a positive-definite weight matrix W
in problem (7) that determines the relative importance of each
channel over different surface classes. To design this weight
matrix, we use the normalized coefficients of variation for each
channel, as reported in Fig. 1. In particular, the relative weight
of the ith channel for a specific surface class is obtained by
normalizing its coefficient of variation as w; = ¢! /max(c!),
i=1,...,9 (see Table I1). The weight matrix is then aésigned
to be W = diag(w;). Using these weights allows us to make
the least squares term in problem (7) invariant to temperature
transdlations among spectral channels and more responsive to
a stronger rainfall signal-to-noise ratio. In other words, these
weights reduce the saturation of the cost due to some exces-
sively cold and/or warm channels while remaining sensitive
to their relative variability. To solve problem (7), we use a
primal—dual interior point method [59, Ch. 11]. Basicaly, in
this class of convex optimization techniques, the inequality-
constrained QP problem (8) is reformulated into an equality-
constrained problem to which an iterative Newton's method
can be applied. Specifically, we employed a QP interior-point-
method solver in the MATLAB optimization package, which is
based on avariant of the algorithm in [60]. In this optimization

subalgorithm, the maximum number of iterations in Newton's
stepsis set to 200, and the termination tolerance on the function
value and the magnitude of relative changes in the optimization
variable are both set to 1e — 8. We set the agorithm regular-
ization parametersto be A = 0.001 and « = 0.1, which appear
to work well for awide range of rainfall retrieval experiments.
This setting permitsthe algorithm to perform full orbital rainfall
retrieval on the order of 10-15 min on a contemporary desktop
machine.

B. Instantaneous Retrieval Experiments

Figs. 6-8 demonstrate the results of few instantaneous re-
trieval experiments over ocean, land, and coastal areas, respec-
tively. Here, we confined our consideration to some important
storms recorded in the TRMM extreme event archives (http://
trmm.gsfc.nasa.gov/publications_dir/extreme_events.html).

Over ocean, we used the TMI snapshots of hurricane
Danielle (08/29/2010), super typhoon Usagi (09/21/2013), and
tropical storm Helene (09/15/2006) (see Fig. 6). Over land, we
focused on a few thunderstorms and mesoscal e convective sys-
tems. These eventsinclude asquall line over Mali (08/29/2010),
a local thunderstorm over Nigeria (06/28/1998), and a spring
season squall line containing tornadic activities over Georgia,
USA (01/30/2013) (see Fig. 7). Over coastal areas, we re-
trieved the TMI overpasses of tropical storm Fernand over the
eastern coast of Mexico (08/26/2013), of hurricane Issac over
Mississippi Delta, USA (08/28/2013 and 08/29/2012), and of
typhoon Kai-tak over the Gulf of Tonkin, coastlines of Vietham
and southern China (08/17/2012) (see Fig. 8).

In general, our experiments in Figs. 6-8 demonstrate good
agreement between the ShARP retrieval and the standard
TRMM products. As previously noticed, we typically see that
2A12 retrieves much larger areas of light rain over ocean
compared with 2A25 and, thus, with the current implementation
of ShARP. We see that ShARP can properly recover the storm
morphology and high-intensity and light rainfall both over
ocean and land. For example, in the retrieval experiments of
the tropical cyclones over ocean (see Fig. 6), the high-intensity
rainfall cells, curvature, and multiband structure of the studied
storms are well captured. Over land, in the retrieved thunder-
storm over Nigeria (see the first row in Fig. 6) and the frontal
system over Georgia (see the bottom row in Fig. 6), we see
that the ordinary cells and stratiform trailing behind the leading
edge of the squall line are well captured. Visual inspections of
the retrieved rainfall at the ocean-and interface also confirm
that the ShARP retrievals remain coherent over the interface
and arein good agreement with the 2A12 and 2A 25 products.
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Fig. 6. (Left to right) TMI-2A12, PR-2A25, and ShARRP retrievals. (Top to bottom panels) Hurricane Danielle in 08/29/2010 (orbit no. 72840) at 09:48
coordinated universal time (UTC), super typhoon Usagi in 09/21/2013 (orbit no. 90277) at 02:09 UTC, and tropical storm Helene in 09/15/2006 (orbit
no. 50338) at 14:34 UTC.
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Fig. 7. (Left toright) TMI-2A12, PR-2A25, and ShARP retrievals. (Top to bottom panels) Thunderstorm over Mali, Africa, in 08/29/2010 (orbit no. 72841) at
10:30 UTC, summertime thunderstorm over Nigeria, Africa, in 06/28/1998 (orbit no. 03357) at 17:43 UTC, and spring season squall line of precipitation supercells
and tornadoes over Georgia, USA, in 01/30/2013 (orbit no. 86639) at 16:22 UTC.
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Fig. 8. (Left to right) TMI-2A12, PR-2A25, and ShARP retrievals. (Top to bottom panels) Tropical storm Fernand in 08/26/2013 (orbit no. 89874) at

05:30 UTC, hurricane Isaac in 08/28/2012 (orbit no. 84227) at 22:12 UTC, and typhoon Kai-tak in 08/17/2012 (orbit no. 84050) at 13:35 UTC.
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Fig. 9. Pixel-level probability histograms of the instantaneous rainfall retrievals (> le + 6 points for each product) for the TMI-2A12, PR-2A25, and ShARP

products over the (top panel) ocean and (bottom panel) land—coast surface classes.

Fig. 9 compares the histogram of the retrieved rainfall values
at the pixel level obtained from 100 randomly sampled TRMM
orbits in calendar year 2013. Overall, it is shown that the
distribution of ShARP and 2A25 are matched well. However,
ShARP tends to retrieve more rain around the mode and falls
a bit short over the tail. This behavior is expected as ShARP
uses a MAP estimator that implicitly seeks the mode of the
rainfall distribution. As previously noticed, over ocean, 2A12

retrieves much lower rain rates than the other two products.
In 2A12, the highest probable range of rainfall intensity falls
below 0.02 mm/h. In effect, more than 75% of the raining cases
are reported to be below 0.25 mm/h, whereas the probability of
rainfall at this range is amost zero in the other two products.
In 2A25 and ShARP, 63% and 71% of the raining cases are
within the range of 0.25-0.5 mm/h, respectively, whereas this
probability isaround 0.2 in 2A12. We see that the distribution of
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TABLE 111
RETRIEVAL DIFFERENCE METRICS OBTAINED BY COMPARING
(a) ShARP VERsUS 2A25, (b) ShARP VERSUS 2A12, AND (c) 2A12
VERSUS 2A 25 FOR 100 RANDOMLY CHOSEN ORBITAL TRACKS IN 2013.
THE SHOWN STATISTICS ARE THE RMSD (IN MILLIMETERS PER
HOUR), THE MAD (IN MILLIMETERS PER HOUR), AND SPEARMAN’S
CORRELATION (p). THE STATISTICS ARE OBTAINED FOR
INSTANTANEOUS RAINFALL ESTIMATES AT THE PIXEL-LEVEL OVER
THE INTERSECTION OF THE RAINING AREAS OF ALL
THREE RETRIEVAL PRODUCTS

Retrieval Difference Metrics
Surface Classes
Metrics Ocean Land+Coast
(a) (b) (©) (a) (b) ©)
RMSD 5.0 2.8 5.3 6.1 4.3 6.5
MAD 2.3 1.6 2.6 2.7 24 3.2
P 0.55 | 060 | 045 | 0.50 | 055 | 0.40

2A25 over ocean has the thickest tail among the others. In this
product, the probability of rainfall exceeding 10 mm/h is ~5%,
whereas only 1.5% and 0.7% of the raining cases are in this
range for ShARP and 2A 12, respectively. Note that, as the PR
is not the best indicator of light rainfall over the tropical ocean
(e.g., see [61] and [62]), the interpretation of the recovered
rainfall below the PR accuracy and its distribution in 2A12
cannot be explained in this paper and requires more thorough
investigation. Over land and coastal areas, the rainfall distribu-
tions of al three products are more or less similar. The mode of
the rainfall is around 0.9 mm/h in ShARP and 2A25, whereas
the highest probable rainfall values are concentrated around
1.9 mm/h in 2A12. It is also apparent that 2A25 and, thus,
ShARP detect more lower rain rates < 1 mm/h, whereas the
detection of higher rain rates > 10 mm/h is more probable
in 2A12 over land. It is important to note that, as the extent
of raining areas are different in the studied retrievals, the
observed differences in the probability distribution of instan-
taneous rainfall do not necessarily lead to large differences in
the volumetric retrieved rainfall. In effect, we will show later on
that the total annual estimates of rainfall match well in al three
products.

To further validate the instantaneous retrieval of ShARR,
we report the RMS difference (RMSD), the mean absolute
difference (MAD), and Spearman’s correlation p for each pair
of the studied products. The computation of these proximity
measures for instantaneous rainfall is not straightforward as
these products do not share identical sets of raining areas.
Table 111 showsthe pixel-level estimates of these measures over
the intersection of raining areas in the 100 randomly sampled
orbits discussed in Fig. 9. As is evident, ShARP is closer
and more correlated with 2A25 than with 2A12. Evaluating
the pixel-level differences of the rainfall samples among the
studied products shows that, typically, alarge number of those
deviations are very small, whereas a small number of them
are typicaly very large. For instance, more than 55% of the
differences between ShARP and 2A25 are less than 1 mm/h,
whereas less than 5% of them are greater than 8 mm/h. This
can be the main reason why the RMSD is almost twice that
of the MAD metric in Table I1l. In effect, the RMSD can be
easily saturated by a few large deviations as it quadratically
penalizes them. On the other hand, the MAD linearly penalizes
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the differences and seems to be a more robust measure against
afew numbers of large deviations.

As we explained, the posterior density of the ShARP re-
trievals can be empirically approximated via counting the
frequency of rainfall occurrence in the atoms of the rainfall
subdictionaries. Table IV reports a static estimation of the key
percentiles of the posterior pdf for the examined 100 orbits. For
brevity, we only present the resultsfor therainfall valuesfalling
between 0.1, 0.2, 0.5, 1, 2, 5, 10, 25, and 50 mm/h. Fig. 10
also shows some dynamic probability maps of the posteriori
pdf for the snapshot of hurricane Danielle shown in Fig. 6.
Clearly, this important feature of ShARP allows us to prob-
abilistically perform rainfall retrieval and track the high-risk
areas of the extreme rainfall based on a certain probability of
exceedance.

C. Cumulative Experiments

To validate the results of our algorithm in a cumulative
sense, we focus on all the orbital observations of the TRMM
in 2013. To unify the sampling rate, we only use the available
observations over the inner swath, where both sensors pro-
vide overlapping and validated rainfall observations. Fig. 11
demonstrates the annual rainfall estimates, which are mapped
onto a 0.1° x 0.1° grid. In general, we see good agreement
between ShARP and the standard TRMM products. Here, as
2A25 potentially provides one of the best spaceborne estimates
of the total rainfall volume over the tropics [58], we also study
the deviations of the passive retrievals from this active product.

At a 0.1° resolution, the normalized RMSD (RMSD,,)! is
about 36% and 48% for ShARP (see the bottom panel in
Fig. 11) and 2A12 (seethetop panel in Fig. 11), respectively. At
acoarser resolution of the 1° x 1° grid box, this metric reduces
to 17% and 31% (see Fig. 12), whereas the overall correlation
with 2A25 is 0.92 and 0.97 for 2A12 and ShARP, respectively
(see Fig. 13). Zona mean values are also presented in Fig. 14,
with quantitative explanations in Table V. Over ocean, except
in the North Atlantic midlatitude storm tracks, both ShARP
and 2A 12 dightly overestimate the total rainfall obtained from
2A25; most of the underestimation regions occur over land, par-
ticularly near coastal zones, islands, and peninsulas, athough
some overestimation can be seen in Central Africa and South
Americain both 2A12 and ShARP.

Fig. 12 shows that passive retrieval products overestimate
(~300-400 mm) 2A25 on the narrow ridge of high precip-
itation in the Intertropical Convergence Zone (ITCZ) across
the Pacific Ocean. As is evident, over the South Pacific,
Atlantic, and Indian Ocean convergence zones, we also see
some overestimation in ShARP, whereas the positive difference
isrelatively mitigated compared with the standard 2A12 prod-
uct. In the North Atlantic midlatitude storm tracks, both passive
retrievals dightly underestimate the annual rainfall, whereasthe
deviations are smaller in 2A12 compared with ShARP.

Some promising results of our agorithm seem to be over
land and coastal zones. Over the subtropical hot desert, arid,

1IRMSD,, isthe RMSD, which is normalized by the square root of the sum
of squared of the reference field at a pixel level.
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TABLE IV
STATIC ESTIMATION OF KEY PERCENTILES (IN MILLIMETERS PER HOUR) OF THE POSTERIOR PDF OF THE ShARP RAINFALL RETRIEVALS
FOR 100 SAMPLED ORBITS IN CALENDAR Y EAR 2013. THE SECOND COLUMN DENOTES THE MEAN (IN MILLIMETERS
PER HOUR) VALUES OF THE RETRIEVED RAINFALL WITHIN EACH BIN

Quantiles [mm/hr] of the ShARP Posterior PDF
Bins Mean Ocean Land + Coast

5th [ 25th [ 50th | 75th [ 95th [ 5th | 25th [ 50th | 75th | 95th
0.1-0.2 0.15 0.0 0.0 0.0 0.36 1.7 0.0 0.0 0.0 0.0 1.70
0.2-0.5 0.4 0.0 0.0 04 0.7 2.2 0.0 0.0 0.3 0.8 24
0.5-1.0 0.8 0.0 0.3 0.7 1.2 3.1 0.0 0.4 0.7 1.2 34
1.0-2.0 1.5 0.0 0.6 1.1 2.0 5.2 0.0 0.5 1.0 1.9 5.6
2.0-5.0 3.0 0.3 1.0 1.8 3.5 10.0 | 0.3 0.9 1.8 3.6 10.2
5.0-10.0 7.0 0.7 2.0 4.0 7.9 197 | 05 1.6 3.6 7.2 19.6
10.0-25.0 14.0 1.1 35 74 142 | 352 | 0.7 2.8 6.8 147 | 372
25.0-50.0 31.0 2.5 7.7 165 | 315 | 625 | 0.8 5.2 13.8 | 28.2 | 68.8
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Fig. 10. Probability maps showing different segments of posterior pdf px (x|y) for the (top left panel) ShARP retrieval of hurricane Danielle (orbit no. 72840)

at 09:48 UTC.

and semiarid climates (e.g., Sahara, Arabian, Syrian deserts,
and central Iran Plateau), we see that ShARP retrieves well
the low rainfall amounts seen by the PR. Over Central Africa,
both 2A12 and ShARP overestimate the 2A25 annual rainfall,
whereas the gap seems to be smaller in ShARP. Over North
America, it is seen that 2A12 shows good agreement with
the PR estimates over the East Coast and Midwest of the
USA. However, ShARP approximates well the PR over the
West Coast and Southwest, where the rainfall signatures are
predominantly corrupted with noise due to the highly emissive
desert surfaces. Over South America, ShARP shows improved
retrieval over Brazil and southern Amazon, whereas compared
with 2A 12, notable underestimation can be seen over the north-
ern Amazon basin, Colombia, and Venezuela. Some improved
results of our algorithm are over the snow-covered Tibetan
highlands and Himalayas. We can see that ShARP can distin-
guish well the background noise from the rainfall signatures,
and it reduces some overestimation seen in 2A12. Note that we
have used the minimal number of Earth surface classifications
and have not used any ancillary data (e.g., surface temperature)
over the Tibetan Plateau. Indeed, due to the 9-D nearest neigh-
bor selection of the spectral subdictionaries, our algorithm is
apparently capable of robustly eliminating alarge portion of the
physically inconsistent spectral candidates in the detection step.
Over Southeast Asia, where the rainfall signatures are masked
by a mixture of ocean and land surface background radiation
regimes, both ShARP and 2A 12 underestimate 2A25. However,
the negative differences in ShARP are dlightly reduced com-

pared with 2A 12, particularly over Indonesia, Malaysia, and the
Philippines.

A comparison of the total annual zonal mean values (see the
left panel in Fig. 14) shows that ShARP approximates well the
average latitudinal rainfall distribution. We can see that ShARP
reconstructs well the 2A25 product over ocean not only over
the tropics but also over the midlatitudes, where stratiform
rainfall is dominant (see the middle panel in Fig. 14). Over
land, ShARP underestimates the zonal mean within a narrow
band (latitudes 5° S-N) around the tropics, whereas it performs
well over the subtropical climate zones (see the right panel in
Fig. 14). This underestimation is mainly contributed by the
ShARP poor retrieval skill over the northern part of South
America. A quantitative comparison of these zonal profiles is
presented in Table V.

To briefly evaluate the intraannual performance of our algo-
rithm, particularly over land and coastal areas, we also focused
on a three-month rainfall accumulation for the period from
January to March (JFM) of 2013. We confined the spatial extent
of our evaluation within latitudes 15°-35° N and longitudes
60°—120° W (see Fig. 15). The rainfal in the JFM period is
mainly supplied by the moisture coming from the Pacific Ocean
through the subtropical jet stream and is intensified where
the extratropical lifting saturates the atmospheric column over
the Gulf of Mexico. This mechanism typically causes heavy
precipitation events over the southeast of the USA and the
Gulf of Mexico, whereas it leaves the southwest relatively dry.
Overall, we see that ShARP properly retrieves the high and
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Fig. 11. Annual estimates of the total rainfall (in millimeters) in 2013 mapped onto a 0.1° grid box. (Top to bottom panels) 2A12, 2A25, and ShARP retrieval
products.
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Fig. 12. Annual estimates of thetotal rainfall difference (in millimeters) for calendar year 2013. (Top to bottom panels) Difference between the 2A12 and ShARP
retrievals with 2A25 at agrid size of 1° x 1°. Hot (red) and cold (blue) colors denote the intensity of the positive and negative differences, respectively.
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Fig. 13. Smooth scatter plots of the annual retrieved rainfall (in millimeters)
by (top panel) 2A12 and (bottom panel) ShARP versus 2A25 at a grid size of
1° x 1°. Hot (red) and cold (blue) colors denote the higher and lower densities
of the available rainfall intensity pairs, respectively. R? denotes the coefficient
of determination, RMSD,, and MAD,, are the normalized RMSD and MAD,
respectively, and p denotes the correlation coefficient.
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Fig. 14. Annua rainfall zonal mean values (in millimeters) obtained from the
estimates of the annual rainfall shown in Fig. 11. (Left to right panels) Zonal
mean values computed over al surface classes, ocean, and land—coasts.

low seasonal precipitation amounts in the JFM system, and its
retrieved rainfall resembles well the standard TRMM products.
Specifically, it is seen that, in the vicinity of the coast lines
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TABLE V
RETRIEVAL SKILLS INCLUDING THE RMSD (IN MILLIMETERS) AND THE
MEAN DIFFERENCE (IN MILLIMETERS) FOR THE ANNUAL ZONAL
MEAN VALUES SHOWN IN FIG. 14

Product Surface Class ‘;Ri‘;gl Z(l)nal l\l\/ﬁ)zm
Total 40.20 -6.53

ShARP-2A25 | Ocean 4761 7.15
Land + Coast 95.67 -41.02

Total 103.04 73.63

2A12-2A25 Ocean 99.50 69.42
Land + Coast 37.62 79.43

JFM-2013
2A12-Rainfall [mm]
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Fig.15. Intraannual rainfall accumulation for the JFM period in 2013, mapped

onto a0.1° grid box.

of the Caribbean Islands and Bahamas, the lightrainfall values
are captured well by ShARP. During this period, consistent
with the instantaneous results shown in Fig. 5, the largest
amount of raining areas over the ocean is detected by the 2A12
(88% of ocean), whereas this fraction is 71% and 66% in
ShARP and 2A25, respectively. In contrast, ShARP detects
the largest raining area (69%) over land, whereas this fraction
is 63% and 50% in 2A25 and 2A12, respectively. The main
factor contributing to the overestimation of 2A25 by ShARP is
primarily due to the coarse resolution of the TMI sensor that
is unable to resolve the signatures of small-scale precipitation
events captured by the PR. A brief quantitative comparison
of the JFM rainfall system, only over land and coastal aress,
is presented in Fig. 16. As is evident, ShARP correlates well
with 2A25, whereas we see some discrepancies showing that,
for some light raining areas in 2A25, both ShARP and 2A12
retrieve high rainfall values. It turns out that some of these
anomalies are due, in part, to the misinterpretation of the
highly emissive ground as rainfall signatures. For example,
we see that, over the Baja California Desert, ShARP exhibits
overestimation spots, whereas the snow-covered land surface
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Fig. 16. Smooth scatter plots of the three-month rainfall accumulation
(in millimeters), as shown in Fig. 15. The plots show (left panel) 2A12 and
(right panel) ShARP versus 2A25 at a0.5° x 0.5° grid box. For explanations
of the presented statistics, see the caption of Fig. 13.

in the month of January confuses the 2A12 algorithm over the
northwest of Arizona (~110° W, 35° N).

V. CONCLUDING REMARKS

We proposed a Bayesian microwave rainfall retrieval ago-
rithm that makes use of a priori collected rainfall and spectral
dictionaries. This agorithm relies on a nearest neighbor detec-
tion rule and exploits a modern shrinkage estimator. We have
examined its performance using empirical dictionaries popu-
lated from coincident observations of the TRMM-PR and the
TMI, and we demonstrated its considerable promise to provide
accurate rainfall retrievals, particularly over land and coastal
areas. In future research, the algorithm needs to be further ver-
ified for different rainfall regimes over ocean and land. Further
efforts also need to be devoted to improving the retrieval of
rainfall extremes both over land and ocean. Although we have
confined our experiments to empirical dictionaries, the core of
our algorithm is flexible and versatile enough to exploit both
observational and physically based generated dictionaries. The
proposed implementation is very parsimonious at this stage,
and further refinements, such as smarter choices of surface
classes by considering ground emissivity patterns and adding
auxiliary state variables to the dictionaries (e.g., surface skin
temperature and total column water), can definitely improve
the performance of the proposed approach. Currently, we are
developing a new version of this algorithm that uses compact
dictionaries for faster and more accurate retrieval of the entire
rainfall profile. The particular emphasiswill be on the available
spectral bands (10.65-183 GHz) of the radiometer and the
observations of the dual-frequency PR aboard the successfully
launched Global Precipitation Measuring satellites.
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