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Preface 

Over the past decade, wavelet transforms have been formalized into a rigorous 
mathematical framework and have found numerous applications in diverse 
areas such as harmonic analysis, numerical analysis, signal and image pro-
cessing, nonlinear dynamics, fractal and multifractal analysis, and others. 
Although wavelet transforms originated in geophysics (for the analysis of 
seismic signals), it is only very recently that they are being used again in 
the geophysical sciences. Properties that make wavelets attractive are t i m e -
frequency localization, orthogonality, multirate filtering, and scale-space 
analysis, to name a few. 

This volume is the first collection of papers using wavelet transforms for 
the understanding, analysis, and description of geophysical processes. It in-
cludes applications of wavelets to atmospheric turbulence, ocean wind waves, 
characterization of hydraulic conductivity, seafloor bathymetry, seismic data, 
detection of signals from noisy data, multifractal analysis, and analysis of long 
memory geophysical processes. Most of the papers included in this volume were 
presented at the American Geophysical Union (AGU) Spring Meeting in Balti-
more, May 1993, in a special Union session organized by us entitled "Applica-
tions of Wavelet Transforms in Geophysics." We feel that this volume will serve 
geophysicists as an introduction to the versatile and powerful wavelet analysis 
tools and will stimulate further applications of wavelets in geophysics as well 
as mathematical developments dictated by unique demands of applications. 

The first chapter in this volume is a review article by Kumar and Foufoula-
Georgiou. The purpose of this article is to provide the unfamiliar reader with a 
basic introduction to wavelets and key references for further study. Wavelet 
transforms are contrasted with the Fourier transforms and windowed Fourier 
transforms that are well known to geophysicists; this contrast highlights the 
important property of time—frequency localization in wavelet transforms, 
which is essential for the analysis of nonstationary and transient signals. 
Continuous and discrete, as well as orthogonal, nonorthogonal, and biortho-
gonal wavelet transforms are then reviewed, and the concept of multiresolution 
analysis is presented. Several examples of one- and two-dimensional wavelets 
and information on wavelet construction are given. Finally, some sources of 
available wavelet analysis software packages are included which may help the 
interested reader get started in exploring wavelets. 

The next four chapters present results from the application of wavelet 
analysis to atmospheric turbulence. In Chapter 2, Hagelberg and Gamage 
develop a wavelet-based signal decomposition technique that preserves inter-
mittent coherent structures. Coherent structures in velocity and temperature 
in the atmospheric boundary layer account for a large portion of flux transport 
of momentum, heat, trace chemicals, and particulates. The authors' technique 
partitions signals into two components: one containing coherent structures 
characterized by sharp transitions and intermittent occurrence, and the other 
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containing the remaining portion of the signal (essentially characterized by 
smaller length scales and the absence of coherent events). They apply this 
decomposition to vertical velocity, virtual potential temperature, and buoyancy 
flux density fields. Chapter 3, by Katul, Albertson, Chu, and Parlange, applies 
orthonormal wavelets to atmospheric surface layer velocity measurements to 
describe space-time relations in the inertial subrange. The local nature of the 
orthonormal wavelet transform in physical space aids the identification of 
events contributing to inertial subrange intermittency buildup, which can then 
be suppressed to eliminate intermittency effects on the statistical structure of 
the inertial subrange. 

In Chapter 4, Howell and Mahrt develop an adaptive method for decom-
posing a time series into orthogonal modes of variation. In contrast to conven-
tional partitioning, the cutoff scales are allowed to vary with record position 
according to the local physics of the flow by utilizing the Haar wavelet decom-
position. For turbulence data, this decomposition is used to distinguish four 
modes of variation. The two larger modes, determined by spatially constant 
cutoff scales, are characterized as the mesoscale and large eddy modes. The 
two smaller scale modes are separated by a scale that depends on the local 
transport characteristics of the flow. This adaptive cutoff scale separates the 
transporting eddy mode, responsible for most of the flux, from the nontrans-
porting nearly isotropic motions. Chapter 5, by Brunet and Collineau, applies 
wavelets to the analysis of turbulent motions above a maize crop. Their results 
indicate that organized turbulence exhibits the same structure above a forest 
and a maize crop, apart from a scale factor, and supports the interesting pos-
tulate that transfer processes over plant canopies are dominated by popula-
tions of canopy-scale eddies, with universal characteristics. The authors also 
propose a methodology for separating turbulence data into large- and small-
scale components using the filtering properties of the wavelet transform. 

In Chapter 6, Liu applies wavelet spectrum analysis to ocean wind waves. 
The results reveal significant new insights on wave grouping parameteriza-
tions, phase relations during wind wave growth, and detection of wave breaking 
characteristics. Chapter 7, by Little, demonstrates the usefulness of wavelet 
analysis in studying seafloor bathymetry and especially identifying the loca-
tion and scarp-facing direction of ridge-parallel faulting. In Chapter 8, Pike 
proposes a wavelet-based methodology for the analysis of high resolution 
acoustic signals for sub-seabed feature extraction and classification of scatter-
ers. The key idea is that of displaying the energy dissipation in the t i m e -
frequency plane, which allows a more distinct description of the signal (com-
pared to the Fourier transform spectra) and thus provides a better means of 
extracting seabed properties by correlating them to the attenuation of high 
resolution acoustic signals. In Chapter 9, Brewer and Wheatcraft investigate 
the wavelet transform as a tool for reconstructing small-scale variability in 
hydraulic conductivity fields by incorporating the scale and location informa-
tion of each sample when interpolating to a finer grid. The developed multiscale 
reconstruction method is compared to traditional interpolation schemes and is 
used to examine the issue of optimum sample size and density for stationary 
and fractal random fields. 
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Chapter 10, by Davis, Marshak, and Wiscombe, explores the use of wave-
lets for multifractal analysis of geophysical phenomena. They show the appli-
cability of wavelet transforms to compute simple yet dynamically meaningful 
statistical properties of one dimensional geophysical series. Turbulent velocity 
and cloud liquid water content are used as examples to demonstrate the need 
for stochastic models having both additive (nonstationary) and multiplicative 
(intermittent) features. Merging wavelet and multifractal analysis seems 
promising for both wavelet and multifractal communities and is especially 
promising for geophysics, where many signals show structures at all observa-
ble scales and are often successfully described within a multifractal frame-
work. 

The wavelet transform partitions the frequency axis in a particular way: 
it iteratively partitions the low-frequency components, leaving the high-fre-
quency components intact at each iteration. For some processes or applications 
this partition might not achieve the best decomposition, as partition of the 
high-frequency bands might also be necessary. Wavelet packets provide such a 
partition and are used in Chapter 11, by Saito, for simultaneous signal 
compression and noise reduction of geophysical signals. A maximum entropy 
criterion is used to obtain the best basis out of the many bases that the redun-
dant wavelet packet representation provides. The method is applied to syn-
thetic signals and to some geophysical data, for example, a radioactivity profile 
of subsurface formation and a migrated seismic section. Finally, in Chapter 12, 
Percival and Guttorp examine a particular measure of variability for long 
memory processes (the Allan variance) within the wavelet framework and show 
that this variance can be interpreted as a Haar wavelet coefficient variance. 
This suggests an approach to assessing the variability of general wavelet 
classes which will be useful in the study of power-law processes extensively 
used for the description of geophysical time series. A fairly extensive bibliog-
raphy of wavelet analysis in geophysics is included at the end of this volume. 

Several individuals provided invaluable help in the completion of this vol-
ume. Special thanks go to the reviewers of the book chapters who volunteered 
their time and expertise and provided timely and thoughtful reviews. The first 
author thanks Mike Jasinski, Hydrologie Sciences Branch at NASA-Goddard 
Space Flight Center and the Universities Space Research Association for their 
support during the completion of this project. We are grateful to Charu Gupta 
Kumar, who converted most of the chapters to I^T^X format and typeset and 
edited the entire volume. Without her expertise and dedication the timely 
completion of this volume would not have been possible. Finally, we also thank 
the Academic Press Editor, Peter Renz, for his efficient help during the final 
stages of this project. 

Efi Foufoula-Georgiou Praveen Kumar 
Minneapolis, Minnesota Greenbelt, Maryland 
March, 1994 



Wavele t Analys i s in Geophys ics : A n Introduct ion 

Praveen Kumar and Efi Foufoula-Georgiou 

Abstract. Wavelet analysis is a rapidly developing area of mathematical and 
application-oriented research in many disciplines of science and engineering. The 
wavelet transform is a localized transform in both space (time) and frequency, and 
this property can be advantageously used to extract information from a signal that 
is not possible to unravel with a Fourier or even windowed Fourier transform. 
Wavelet transforms originated in geophysics in early 1980's for the analysis of 
seismic signal. After a decade of significant mathematical formalism they are 
now also being exploited for the analysis of several other geophysical processes 
such as atmospheric turbulence, space-time rainfall, ocean wind waves, seafloor 
bathymetry, geologic layered structures, climate change, among others. Due to 
their unique properties, well suited for the analysis of natural phenomena, it is 
anticipated that there will be an explosion of wavelet applications in geophysics 
in the next several years. This chapter provides a basic introduction to wavelet 
transforms and their most important properties. The theory and applications of 
wavelets is developing very rapidly and we see this chapter only as a limited basic 
introduction to wavelets which we hope to be of help to the unfamiliar reader and 
provide motivation and references for further study. 

§1. Pro logue 

The concept of wavelet transforms was formalized in early 1980's in a 
series of papers by Morlet et al. [42, 43], Grossmann and Morlet [24], and 
Goupillaud, Grossmann and Morlet [23]. Since this formalism and some 
significant work by Meyer ([38, 39] and references therein), Mallat [30, 31], 
Daubechies [13, 15], and Chui [6] among others, the wavelets have become 
pervasive in several diverse areas such as mathematics, physics, digital sig-
nal processing, vision, numerical analysis, and geophysics, to name a few. 
Wavelet transforms are integral transforms using integration kernels called 
wavelets. These wavelets are essentially used in two ways when studying 
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processes or signals: (i) as an integration kernel for analysis to extract 
information about the process, and (ii) as a basis for representation or 
characterization of the process. Evidently, in any analysis or representa-
tion, the choice of the basis function (or kernel) determines the kind of 
information tha t can be extracted about the process. This leads us to the 
following questions: (1) what kind of information can we extract using 
wavelets? and (2) how can we obtain a representation or description of the 
process using wavelets? 

The answer to the first question lies on the important property of 
wavelets called time-frequency localization. The advantage of analyzing 
a signal with wavelets as the analyzing kernels is tha t it enables one to 
study features of the signal locally with a detail matched to their scale, 
i.e., broad features on a large scale and fine features on small scales. This 
property is especially useful for signals tha t are either non-stationary, or 
have short lived transient components, or have features at different scales, 
or have singularities. The answer to the second question is based on seeing 
wavelets as the elementary building blocks in a decomposition or series 
expansion akin to the familiar Fourier series. Thus, a representation of 
the process using wavelets is provided by an infinite series expansion of 
dilated and translated versions of a mother wavelet, each multiplied by an 
appropriate coefficient. For processes with finite energy this wavelet series 
expansion is optimal, i.e., it offers an optimal approximation to the original 
signal, in the least squares sense. 

In what follows we give a brief introduction to the mathematics of 
wavelet transforms and where possible an intuitive explanation of these 
results. The intention of this introduction is two fold: (i) to provide the 
unfamiliar reader with a basic introduction to wavelets, and (ii) to prepare 
the reader to grasp and appreciate the results of the articles tha t follow 
as well as the potential of wavelet analysis for geophysical processes. At 
times we have sacrificed mathematical rigor for clarity of presentation in an 
a t t empt to not obscure the basic idea with too much detail. We also hasten 
to add tha t this review is far from complete both in terms of the breadth of 
topics chosen for exposition and in terms of the treatment of these topics. 
For example, the important topic of wavelet packets has not been discussed 
(see for example [53], [8], and the article by Saito [50] in this volume). It 
is recommended tha t the interested reader who is not a mathematician 
and is meeting wavelet analysis for the first time begins with the book by 
Meyer [39] and continues with the books by Daubechies [15] and Benedetto 
and Frazier [3]. There are also several nice introductory articles on several 
aspects of wavelets, as for example, those by Mallat [30, 31], Rioul and 
Vetterli [47], and the article by Farge [19] on turbulence, among others. 
Also, considerable insight can be gained by the nice book reviews by Meyer 
[40] and Daubechies [18]. 
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This article is organized as follows. Section 2 discusses Fourier and 
windowed Fourier transforms and introduces continuous wavelet trans-
forms and their time-frequency localization properties. In section 3, the 
wavelet transform is presented as a time-scale transform, and the wavelet 
variance and covariance (alternatively called wavelet spectrum and cospec-
t rum) are discussed. A link is also made between non-stationary processes 
and wavelet transforms akin to the link between stationary processes and 
Fourier transforms. Section 4 presents some examples of commonly used 
one-dimensional wavelets (Haar wavelet, Mexican hat wavelet, and Mor-
let wavelet). In section 5, discrete wavelet transforms (orthogonal, non-
orthogonal, and biorthogonal) are introduced and the concept of multires-
olution analysis presented. In section 6, we present extensions of contin-
uous and discrete wavelets in a two-dimensional space. Finally, in section 
7 we present some concluding remarks and give information on obtaining 
available software packages for wavelet analysis. 

§2. T i m e - F r e q u e n c y A n a l y s i s 

The original motive for the development of wavelet transform was (see 
[23]) " . . . of devising a method of acquisition, transformation and recording 
of a seismic trace (i.e., a function of one variable, the time) so as to satisfy 
the requirements listed below: 

1. The contributions of different frequency bands (i.e., of the differ-
ent intervals of the Fourier conjugate variable) are kept reasonably 
separated. 

2. This separation is achieved without excessive loss of resolution in the 
t ime variable (subject, of course, to the limitation of the uncertainty 
principle). 

3. The reconstruction of the original function from its "representation" 
or "transform" is obtained by a method which is (a) capable of 
giving arbitrary high precision; (b) is robust, in the sense of being 
stable under small perturbations. " 

The first two conditions essentially characterize the property known as 
time-frequency localization. Recall tha t although the Fourier transform of 
a function / (£) , given as 

/

oo 

f(t)e-^dt, (1) 
-oo 

gives the information about the frequency content of a process or signal, 
it gives no information about the location of these frequencies in the t ime 
domain. For example figures la ,b show two signals - the first consisting of 
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50 100 
angular frequency 

50 100 
angular frequency 

Figure 1. Spectral and wavelet analysis of two signals. The first sig-
nal (a) (upper left) consists of superposition of two frequencies (sinlOt 
and sin20£), and the second consists of the same two frequencies each 
applied separately over half of the signal duration (b) (upper right). 
Figures (c) (middle left) and (d) (middle right) show the spectra 
of signals, i.e., | / (ω) |2 vs � , in (a) and (b) respectively, and (e) (lower 
left) and (f) (lower right) show the magnitude of their wavelet trans-
forms (using Morlet wavelet) respectively. 

two frequencies (sin 10t and sin 20t) superimposed for the entire duration 
of the signal and the second consisting of the same frequencies, but each 
one applied separately for half of signal duration. Figures lc,d show the 
spectrum, i.e., | / (o ; ) | 2 , of these two signals, respectively. As is clearly 
evident, the spectrum is quite incapable of distinguishing between the two 
signals. 

Time varying frequencies are quite common in music, speech, seismic 
signals, non-stationary geophysical processes, etc. To study such processes, 
one seeks transforms which will enable one to obtain the frequency content 
of a process locally in time. There are essentially two methods tha t have 
been developed to achieve this (within the limits of the uncertainty principle 
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which states tha t one cannot obtain arbitrary good localization in bo th 
t ime and frequency): (a) windowed Fourier transform, and (b) wavelet 
transform. These two methods are discussed in the following subsections. 
Figures le,f display the magnitude of the wavelet transform of the signals 
shown in Figures la ,b , and clearly show the ability of the wavelet transform 
to distinguish between the two signals. 

2 .1 . W i n d o w e d Fourier transform 

2 .1 .1 . Def ini t ion 

In the Fourier transform framework, time localization can be achieved 
by windowing the da ta at various times, say, using a windowing function 
#(£), and then taking the Fourier transform. Tha t is, the windowed Fourier 
transform (also called the short-time fourier transform), G/ (CJ , i ) , is given 
by 

(2) 

(3) 

where the integration kernel is gtj,t(u) = g(u — t)e~iuju. This transform 
measures locally, around the point £, the amplitude of the sinusoidal wave 
component of frequency � . The window function g(t) is usually chosen 
as a real, even function with the maximum concentration of energy in the 
low frequency components. Notice tha t the analyzing kernel <7ω,*(ΐί) has 
the same support1 for all �  and £, but the number of cycles vary with the 
frequency �  (see Figure 2). 

The representation of the function f(t) on the time-frequency plane, 
i.e., (CJ,£) plane, thus obtained is called the phase-space representation. 

The windowed Fourier transform is an energy preserving transforma-
tion or isometry, i.e., 

(4) 

provided / ^ |g(£)|2 dx = 1 (which we assume from here on). It is invertible 
with the reconstruction formula given as ([31], eq. 15) 

(5) 

The parameters t and �  can be assigned discrete values, say t = nt0 

1 support is defined as the closure of the set over which the signal/process is non-zero. 
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Figure 2. Real (solid lines) and imaginary parts (dot-dashed lines) 
of the analyzing kernel g{t)e~tuJt of the windowed Fourier transform at 
different frequencies: (a) (top) �  = 3, (b) (middle) �  = 6 and (c) 
(bottom) �  = 9. The dotted line indicates a Gaussian window function 
g(t). 

and �  = mcjo, and we obtain the discrete windowed Fourier transform 

/

oo 
f{u)g{u-nt0)e-im"°udu. (6) 

-OO 

For the discrete windowed Fourier transform to be invert ible, the condition 
CJO^O < 2π must hold (see [15], sections 3.4 and 4.1). 

2 � . 2 . T ime- frequency local ization 

In order to study the time-frequency localization property of the win-
dowed Fourier transform, we need to study the properties of |<7ω,*|2 and 
\çju>,t |2 since they determine the features of f(t) tha t are extracted. Indeed, 
using Parseval's theorem, equation (3) can be written as 

1 f°° A 
(7) 



Wavelet Analysis in Geophysics: An Introduction 7 

Figure 3. Uncertainties in time (top) and frequency (bottom) lo-
calization in a windowed Fourier Transform for a generic function g{t). 

where ^ ^ ( u / ) is the Fourier transform of gu,t(u) and overbar indicates 
complex conjugate. Let us define the s tandard deviations of gu^ and gu^ 
as ag and ag respectively, i.e., 

and 

(9) 

These parameters measure the spread of the function | ^ ? < | and \gUjt |, about 
t and CJ, respectively (see Figure 3). Owing to the uncertainty principle, 
the products of σ2, and σ | satisfy (see [31]) 

(10) 

(8) 

i.e., arbi trary high precision in both t ime and frequency cannot be achieved. 
The equality in the above equation is achieved only when g(t) is the Gaus-
sian, i.e., 

(H) 
When the Gaussian function is used as a window, the windowed Fourier 
transform is called the Gabor transform [22]. 
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1 ^�  
1 8, 

� �  ' 
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1 g) 1 
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� �  J 

� * 
U 

� 8 

to 

Figure 4. Figure showing the phase-space representation using the 
windowed Fourier transform. 

Once a window function g(t) is chosen both ag and � § are fixed. There-
fore, for any given to and CJQ, the time-frequency resolution can be repre-
sented by the fixed size resolution cell [t0 ±� 9 �  � � ±� 9] (see Figure 4), i.e., 
the windowed Fourier transform at any point (£o5^o) in the phase-space 
provides information about f(t) tha t is localized with an uncertainty of ag 

in the t ime domain and � 9 in the Fourier domain, and this localization is 
uniform in the entire phase-space. In other words the entire phase-space 
is uniformly layered with resolution cells or "bricks" of fixed dimensions. 
This poses two kinds of limitations. Firstly, if the process has a transient 
component with a support smaller than σ^, it is difficult to locate it with 
precision bet ter than ag. Secondly if the process has important features 
of differing sizes then we can not find an optimal g{i) for analyzing the 
process. Therefore, window Fourier transform is more suited for analyzing 
processes where all the features appear approximately at the same scale. 
The wavelet transform addresses the limitations inherent in the windowed 
Fourier transform. 

2.2 . Wave le t transform 

In the windowed Fourier transform, the analyzing functions g„t for all 
�  and t consist of the the same envelope g(t) filled in with sinusoids of 
frequency � . Due to the fixed envelope g(t), the resolution cell size in the 
phase space given by [� 9 χ � $] is the same for all �  and t. Since higher 
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frequency (or short wavelength) features have smaller support , it would be 
desirable to have an analyzing function, say � (�), such tha t its s tandard 
deviation � �  is small when � {�) characterizes high frequency components 
and vice-versa. This was achieved by decomposing the function f(t) using 
a two parameter family of functions called wavelets (see [42] and [43]). One 
of the two parameters is the translation parameter as in the windowed 
Fourier transform case, but the other parameter is a dilation parameter λ 
instead of the frequency parameter � . 

2 .2 .1 . Def ini t ion 

The wavelet transform of a function f(t) with finite energy is defined 
as the integral transform with a family of functions xjj\)t{u) = ~7� � (� � ^) 
and is given as 

2. zero mean, i.e., J ^ t / ^ ^ d i = 0, although higher order moments 

(12) 

Here λ is a scale parameter, t a location parameter and the functions ip\jt(u) 
are called wavelets. In case � \^(� ) is complex, we use the complex con-
jugate � �  t(u) in the above integration. Changing the value of λ has the 
effect of dilating (λ > 1) or contracting (λ < 1) the function � (�) (see Fig-
ure 5a), and changing t has the effect of analyzing the function f(t) around 
the point t. The normalizing constant -4^ is chosen so tha t 

for all scales λ (notice the identity � (�) = V>i,o(0)· We also choose the 
normalization j \� (�)\2 dt = 1. The wavelet transform Wf(X^t) is often 
denoted as the inner product ( / , � \$)-

Notice tha t in contrast to the windowed Fourier transform case, the 
number of cycles in the wavelet � \^(� ) does not change with the dilation 
(scale) parameter λ but the support length does. We will see shortly tha t 
when λ is small, which corresponds to small support length, the wavelet 
transform picks up higher frequency components and vice-versa. 

The choice of the wavelet � {�) is neither unique nor arbitrary. The 
function � {�) is a function with unit energy chosen so tha t it has: 

1. compact support , or sufficiently fast decay, to obtain localization in 
space; 
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|� (� )| 

Figure 5. Schematic illustration of the effect of dilation on a "generic" 
wavelet (top) and the corresponding change on its Fourier transform 
|^(ω) | (bottom). When the wavelet dilates, its Fourier transform con-
tracts and vice-versa, (a) λ < 1, (b) λ = 1, and (c) λ > 1. 

may also be zero, i.e., 

tktp(t) dt = 0 for k = 0 , . . . , N - 1. 
/ 

(13) 

The requirement of zero mean is called the admissibility condition 
of the wavelet. It is because of the above two properties tha t the 
function i/j(t) is called a wavelet. The second property ensures tha t 
ip(t) has a wiggle, i.e., is wave like, and the first ensures tha t it is 
not a sustaining wave. 

The inverse wavelet transform is given by ([15], eq. 2.4.4) 

1 /«oo /*oo 

f(t) = 7T / X-2Wf(X,u)<pXiU(t)dXdu 
W J-ooJO 

(14) 
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where 

(15) 

The wavelet transform is also an energy preserving transformation, i.e., an 
isometry (up to a proportionality constant) , tha t is, 

(16) 

2 .2 .2 . T ime- frequency local ization 

In order to understand the behavior of the wavelet transform in the fre-
quency domain as well, it is useful to recognize that the wavelet transform 
W/(A,£), using Parseval's theorem, can be equivalently writ ten as 

(17) 

Therefore, as in the windowed Fourier transform, we need to study the 
properties of \ip\}t(u)\2 and |^A,<(<^)|2 to understand the time-frequency 
localization properties of wavelet transforms. Specifically, we need to un-
derstand the behavior of the s tandard deviations of |^λ,*|2 and |^λ,*|2, i-e-> 
<� � � >� and σ? . Note that , due to property (13), � \^(�  = 0) = 0. Conse-
quently, the center of passing band, CJ°~ , for tp\yt(t) is located away from 

the origin �  = 0 (as shown in Figure 5b). It can be obtained as the center 
of mass (or first moment about the origin) of the right lobe as 

(18) 

We therefore define the s tandard deviation (i.e., square root of the second 
central moment of the right lobe) �  τ as 

(19) 

Similarly in the t ime domain the standard deviation � � �  t can be obtained 
as 

(20) 

(21) 

where to is given as 

It is easy to verify tha t the following relationships hold: 
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1. The s tandard deviation � � �  t satisfies 

� � � ,� = � � � �,� - (22) 

2. The s tandard deviation � ;, satisfies 

3. The center of passing band αΛ corresponding to the wavelet iß\yt (u) 

satisfies the relationship 

� °; = - ^ . (24) 

From the above relationships one can easily see that as λ increases, i.e., as 
the function dilates, both � °7 and � ,?, decrease indicating that the center 
of passing band shifts towards low frequency components and the uncer-
tainty also decreases, and vice-versa (see also figure 5). In the phase-space, 
the resolution cell for the wavelet transform around the point (ίο,ω^ ) 

is given by [to ± λσ^10 x A
lf0 ± A

lf0] (see Figure 6) which has variable 
dimensions depending on the scale parameter λ. However, the area of the 
resolution cell [� � �  t x �  ? ] remains independent of the scale or location 
parameter. In other words, the phase space is layered with resolution cells 
of varying dimensions which are functions of scale such that they have a 
constant area. Therefore, due to the uncertainty principle, an increased 
resolution in the time domain for the time localization of high frequency 
components comes with a cost: an increased uncertainty in the frequency 
localization as measured by �  ? . One may also interpret the wavelet 
transform as a mathematical microscope where the magnification is given 
by 1/λ. 

§3. Wavelets and Time-Scale Analysis 

3.1. Time-scale transform 

Useful information can also be extracted by interpreting the wavelet 
transform (12) as a time-scale transform. This was well illustrated by Rioul 
and Vetterli (see [47]) and is sketched below. In the wavelet transform (12) 
when the scale λ increases, the wavelet becomes more spread out and takes 
only long time behavior into account, as seen above. However by change 
of variables, equation (12) can also be written as 

(25) 
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HL 

� � ^ 

Figure 6. Figure showing the phase-space representation using the 
wavelet transform. 

Since the mapping f(t) —> f(Xt) has the effect of contracting f(t) when 
λ > 1 and magnifying it when λ < 1, the above equation indicates tha t as 
the scale grows, a contracted version of the function is seen through a fixed 
size filter and vice-versa. Thus, the scale factor λ has the interpretation of 
the scale in maps. 

3.2 . Sca logram, wavelet variance and covariance 

From the isometry of wavelet transform (16) we have 

In general, for two functions f(t) and g(t) (see [15], equation 2.4.2) 

(26) 

(27) 

By considering the RHS of (26) we see tha t |W/(A,£) | 2 /C^A2 can be con-
sidered as an energy density function on the phase-space or (£, λ) plane, i.e., 
|W/(A, �)\2� �� � /� � \2 gives the energy on the scale interval Δλ and t ime 
interval At centered around scale λ and t ime t. Flandrin (see [21]) pro-
posed to call the function |W/(A,£)|2 a scalogram. In analogy, the product 
Wf(\,t)Wg(\,t) can be called a cross scalogram. 
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Equation (26) can also be written as 

(28) 

(29) 

where 

gives the energy content of a function f(t) at scale λ, i.e., it gives the 
marginal density function of energy at different scales λ. The function 
E(X) has been referred to as wavelet variance (see [4]) or wavelet spectrum 
(see [25]). In analogy, the function 

(30) 

has been referred to as wavelet covariance (see [4]) or wavelet cross-spectrum 
(see [25]). 

Notice tha t for a given wavelet ip(t) the center of passing band � °« 

at scale λ is related to that at unit scale through the relation (see equation 
(24)) 

(31) 

Using this relationship, the scale information can be translated to frequency 
information. Using � �  — —� ^ X~2dX and substituting in equation (28) 
we get 

n 

(32) 

By defining 

the above equation can be written as 

(33) 

(34) 

One would therefore expect tha t � '(� ), and thus JE7(A), is related to the 
power spectrum S/(u>) of f(t). This indeed is the case. It can be shown 
(see [25]) tha t 

(35) 

where � � �  (� ) is the spectrum of the wavelet at scale λ. Tha t is, E(s) is 
the weighted average of the power spectrum of f(t) where the weights are 
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given by the power spectrum of ip\(t). This relation is interesting although 
in characterizing a process through E(X) or � '{� ), all location information 
is lost, it does provide certain useful insight ([36], and [27]). 

3 .3 . Non- s ta t ionar i t y and t h e Wigner-Vi l l e s p e c t r u m 

One reason for the remarkable success of the Fourier transform in the 
study of stationary stochastic processes is the relationship between the 
autocorrelation function and the spectrum as illustrated by the following 
diagram: 

T 
X(t) £± � (� ) 

R(r) = 8[X(t)X{t - r)] <=i S(u>) = \� (� ) |2 

where R(r) and 5(CJ) are the auto-covariance function and the power spec-
t rum of the stochastic process X(t), respectively. If an analogous rela-
tionship could be developed for non-stationary processes using the wavelet 
transform, then the properties of the wavelet transform could be harnessed 
in a more useful way. It turns out that , indeed, such a relationship can be 
developed. 

The wavelet spectrum E(X) or � '(� ) discussed in the previous sec-
tion although interesting in its own right, takes us away from the non-
stationarity of the process since it is obtained by integrating over t. We, 
therefore, need something else. This is provided by the Wigner-Ville spec-
t rum. Let us define a general (non-stationary) covariance function R(t, s) 
as 

R(t,s)=S[X(t)X(s)]. 

Then the Wigner-Ville spectrum (WVS) is defined as (see [11] for a dis-
cussion of WVS and other time-frequency distributions) 

/

oo 

� R(t+^,t--)e-iurdT. (36) 

The WVSx(t, � ) is an energy density function as 

/

oo 

WVSx(t,w)duj (37) 
-co 

i.e., we get the instantaneous energy by integrating over all frequencies, 
and the total energy can be obtained as 

(38) 
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The relationship of interest to us is given by the relation between the scalo-
gram and the WVS 

(39) 

i.e., the scalogram can be obtained by affine smoothing (i.e., smoothing at 
different scales in t and �  directions) of the WVS of X with the WVS of 
the wavelet. This relationship has been developed by Flandrin (see [21]). 
As of this writing, we are unaware of any inverse relation to obtain the 
WVSx from the scalogram. We can put the key result of this subsection 
in the following diagrammatic form: 

We, therefore, see tha t there is an inherent link between the study of non-
stationary processes and wavelet transforms akin to the link between sta-
tionary processes and Fourier transforms. 

§4. E x a m p l e s of One-Dimens ional Wave le t s 

Due to the flexibility in choosing a wavelet, several functions have been 
used as wavelets and it would be difficult to provide an exhaustive list. We 
present here some commonly used wavelets (Haar wavelet, Mexican ha t 
wavelet, and Morlet wavelet) in one-dimensional applications. 

4 .1 . Haar wavelet 

The Haar wavelet is the simplest of all wavelets and is given as 

(40) 

In a one-dimensional discretely sampled signal this wavelet can be seen 
as performing a differencing operation, i.e., as giving differences of non-
overlapping averages of observations. In two dimensions an interpretation 
of the discrete orthogonal Haar wavelet transform has been given in [28]. 

4.2 . M e x i c a n hat wavelet 

The Mexican hat wavelet is the second derivative of the Gaussian e~l ' 2 

given as (see Figure 7) 

(41) 
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Figure 7. Mexican hat wavelet. 

The constant is chosen such tha t || �  \\2= 1. This wavelet, being the 
second derivative of a commonly used smoothing function (the Gaussian), 
has found application in edge detection (see [34] and [35]). 

4 .3 . Mor le t wavelet 

The Morlet wavelet is given by 

� (�  = � � "1 / 4^-^-6" 

which is usually approximated as 

� * 
)e 

-t2/2 

� (�  _ _ - 1 / 4 � - � � � * � - * 2 / 2 CJO > 5. 

(42) 

(43) 

Since for � �  > 5, the second term in (42) is negligible, i.e., � (�) « 0, 
satisfying the admissibility condition. By Morlet wavelet we now refer to 
(43). This wavelet is complex, enabling one to extract information about 
the ampli tude and phase of the process being analyzed. The constant is 
chosen so tha t || �  \\2= 1. The Fourier transform of (43) is given by 

� (� ) = �  _ _ - l / 4 -(� -� 0)
2/2 (44) 

This wavelet has been used quite often in analysis of geophysical pro-
cesses (for e.g. see [45]) so we shall study it in a little more detail. The 
Fourier transform of the scaled wavelet � \}� (�) is given as 

λ̂,ο(ω) = � � -�/*� -^-^)'/2 = λ π _ ι / 4 6 - ^ - ω ) * _ 

This wavelet has the property tha t its Fourier transform is supported 
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Real and imaginary parts of Morlet wavelet 

0.5l· 
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-2 0 2 
frequency 

10 
(b) 

Figure 8. (a) (top) Real (solid line) and imaginary part (dot-dashed 
line) of Morlet wavelet (� �  = 5), and (b) (bottom) its Fourier trans-
form. 

almost2 entirely on �  > 0, centered at u°j — � � /�  with a spread of 
= l /λ . The wavelet � � ^ itself is centered at t with a spread of � � � , 

� � � , = � . 
Figure 8a shows the real and imaginary parts of the Morlet wavelet at 

unit scale and Figure 8b shows its Fourier transform (with ωυ = 5 ) . One can 
interpret the results of analysis of real-valued processes using this wavelet 
by plotting the square of the modulus and the phase, i.e., | ( / , ip\, t)\2 and 

on two different plots. Figures 9a,b show these plots for - 1 Im(f,il>xit) 
Re(f,tf>x,t) tan 

the analysis of a chirp signal (a signal whose frequency changes with t as at2 

where a is some constant). The wavelet transform was obtained using the 
Fourier transforms of the signal and the wavelet through implementation 
of equation (17). The scales of analysis are plotted as the ordinate, and 
the abscissa denotes t. The range of scales of the plots has been decided 
using the following criteria. If At is the sampling interval of f(t) then the 
center of passing band o;o/Amin should be less than or equal to the Nyquist 

2 T h e Fourier t r ans fo rm of (42) is suppor t e d ent i re ly ο η ω > 0 b u t t h a t of (43) has a 
negligible m a s s o n w < 0 for t he condi t ion UJQ > 5. 
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frequency, i.e., o;o/Amin < 2π / 2Δί , implying 

UlpAt 
Amin > . (45) 

The maximum scale of analysis is obtained by considering the spread of 
ip\j. Recognizing tha t |^λ,ί | decays to 99.9% of its value at 3� � �  t , we 
impose the condition 3σ^,λ f < (£m a x — £min) /2, i.e., the wavelet support 
should be contained within the da ta range, giving 

(46) "Oiax *� � � �  

The discretization of λ and t for implementation on discrete da ta is dis-
cussed in the following sections. 

Large values of | ( / , � � ^)\2 in the phase-space help us identify the scale 
of the feature and its location on the t axis easily. Figure 9a clearly depicts 
the decreasing scales in the signal with increasing t. In this figure we notice 
tha t large values of the squared modulus appear at relatively large scales on 
the right hand side of the figure where there are no large scale features. This 
is due to the apparent periodicity of the Fourier transform of the limited 
extent signal. The phase plot helps us identify the change of phase of the 
signal from 0 to 2π or — �  to π . It is possible to count the number of cycles 
in a signal. However, this depends upon the scale. As scale decreases, we 
can see more waves and this gives rise to the bifurcation effect evident in 
figure 9b. This is helpful in locating singularities and identifying fractal and 
multifractal na ture of processes (for example see [1]). Figure 9b shows some 
edge effect at small scales due to the periodicity of the Fourier transform 
of the limited extent signal. This periodicity can be eliminated by taking 
the discrete Fourier transform of the chirp signal with a sufficient number 
of zeros appended at the ends. For other methods see [26]. 

§5. D i scre te Wavele t Transforms 

When the parameters λ and t in the wavelet transform (/ , � � ^) take on 
continuous values, it is called continuous wavelet transform. For practical 
applications the scale parameter λ and location parameter t need to be 
discretized. One can choose λ = λ™ where m is an integer and λ0 is a 
fixed dilation step greater than 1. Since � � �  = \� � �  , we can choose 
t = ntoX™ where to > 0 and depends upon ip(t), and n is an integer. 
The essential idea of this discretization can be understood by an analogy 
with a microscope. We choose a magnification, i.e., A^"m, and study the 
process at a particular location and then move to another location. If the 
magnification is large, i.e., small scale, we move in small steps and vice-
versa. This can be easily accomplished by choosing the incremental step 
inversely proportional to the magnification (i.e., proportional to the scale 
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Modulus 

Phase 

Figure 9. Analysis of a chirp signal using Morlet wavelet: (a) (top) 
square of the modulus and (b) (bottom) phase of (/, ip\,t). 
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\™) which the above method of discretization of t accomplishes. We then 
define 

1 , , f - n t 0 A g \ 
� ™,� (*) = ~� ^� (—3^—) 

ν Λ ο Λο 
= Ä 0 - m / V ( A 0 - m i - n i 0 ) . (47) 

The wavelet transform 

(/, t/>m,»> = \-m/2 J f(t)ip(\-mt - nt0) dt (48) 

is called the discrete wavelet transform. 
In the case of the continuous wavelet transform we saw tha t (f, ip\ft) 

for λ > 0 and t G (—οο,οο) completely characterizes the function f(t). In 
fact, one could reconstruct f(t) using (14). Using the discrete wavelet ipmin 
(with �  decreasing sufficiently fast) and appropriate choices of λο and £o> 
we can also completely characterize f(t). In fact, we can write f(t) as a 
series expansion, as we shall see in the following subsections. We first s tudy 
orthogonal wavelets and then the general case. 

5 .1 . Orthogonal wavelet transforms and mult ireso lut ion analys is 

5 .1 .1 . Orthogona l wavelet transforms 

Consider the discrete wavelet transform for λο = 2 and t0 = 1, i.e., 

i f ne}rri 

</V» ( 0 = 2 - » / V ( 2 - r a t - n) = — � ( - ¥ — ) . (49) 

For the purpose of this subsection, let ipm,n{t) denote the above discretiza-
tion rather than the general discretization given by equation (47). We will 
also use the identity ^oo(^) = � (�)· It is possible to construct a certain 
class of wavelets ip(t) such tha t ipm,n(t) are orthonormal, i.e., 

/ · 
� � �,� (^)� � � ',� '(�  dt = J m m / £ n n / (50) 

where 6{j is the Kronecker delta function given as 

%J \0 otherwise. ^ ' 

The above condition implies tha t these wavelets are orthogonal to their 
dilates and translates. One can construct ^ m ) „ ( i ) tha t are not only or-
thonormal, but such tha t they form a complete orthonormal basis for all 
functions tha t have finite energy [30]. This implies tha t all such functions 
f(t) can be approximated, up to arbitrary high precision, by a linear com-
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bination of the wavelets ipmjn(t), i.e., 
oo oo 

/(*)= �  �  Dm^m,n(t) (52) 
m= — oo n = —oo 

where the first summation is over scales (from small to large) and at each 
scale we sum over all translates. The coefficients are obtained as 

Dm,n = (�,� � �,� ) = I f ^)� m,� {1) dt 

and, therefore, we can write 
oo oo 

/(*)= �  �  (/^m,n)^m,„(i). (53) 
m— — oo n= — oo 

From (53) it is easy to see how wavelets provide a time-scale representation 
of the process where time location and scale are given by indices n and m, 
respectively. The equality in equation (53) is in the mean square sense. 
The above series expansion is akin to a Fourier series with the following 
differences: 

1. The series is double indexed with the indices indicating scale and 
location; 

2. The basis functions have the time-scale (time-frequency) localization 
property in the sense discussed in section 2.2. 

By using an intermediate scale mo, equation (53) can be broken up as 
two sums 

oo oo mo oo 

/ ( * ) = Σ Σ (�'� ™,� )� ,� ,� (*)+ Σ Σ </ '</>m,n>V>m,n(i) · 
m = m o + l n= — oo m— — con— — oo 

(54) 
It turns out tha t one can find functions 0m )n(O defined analogous to 

0m,n(i) = 2 - m / 2 0 ( 2 - m i - n ) (55) 
and satisfying certain properties enumerated in appendix A, such tha t the 
first sum on the RHS of equation (54) can be written as a linear combination 
of � � �� ,�  (see [30]), i.e., 

oo oo oo 

( ' ) = Σ Σ < / > ^ m , n ) t f m , n ( t ) · ( 5 6 ) 
� = — oo m = m o + l n = — oo 

Consequently, 
oo m 0 oo 

/ ( * ) = Σ < / , 4 > m „ , n > < £ m o , » W + Σ Σ < / > ^ m , n ) t f m , n ( t ) ( 5 7 ) 
n= — oo m=—oon= — oo 
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The function 0m,n(O is called a scaling function and satisfies J � (�) dt = 1 
among its other properties. For example, the scaling function correspond-
ing to the Haar wavelet is the characteristic function of the interval [0,1) 
given as 

(58) 

The scaling functions and wavelets play a profound role in the analysis of 
processes using orthogonal wavelets. This analysis framework is known as 
the wavelet multiresolution analysis framework and is discussed below. Ap-
pendix B describes a class of orthogonal wavelets developed by Daubechies 
[13] and Appendix C briefly discusses the implementation algorithm by 
Mallat [30]. 

5.1.2. Multiresolution representat ion 
Equation (56) states that all the features of the process /(£), that are 

larger than the scale 2m°, can be approximated by a linear combination of 
the translates (over n) of the scaling function <f)(t) at the fixed scale 2m°. 
Let us represent this approximation by PmQj', i.e., 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

Let us now define 

so that equation (57) becomes 

Since mo is arbitrary we also have 

from which we can obtain by subtraction 

or in general 

This equation characterizes the basic structure of the orthogonal wavelet 
decomposition (53). As mentioned before Pmf(t) contains all the informa-
tion about features in f(t) that are larger than the scale 2m. From equation 
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(64) it is evident tha t when we go from the scale 2 m to the next smaller 
scale 2 m _ 1 , we add some detail to Pmf(t) which is given by Qmf(t). We 
can, therefore, say tha t Q m / ( i ) , or equivalently the wavelet expansion of 
a function at any scale 2 m , characterizes the difference between the pro-
cess at two different scales 2 m and 2 m _ 1 , or equivalently at two different 
resolutions. 

Representation of a function within the nested structure of equation 
(64) is called the wavelet multiresolution representation. Formally it con-
sists of a sequence of closed subspaces {Vr

m}m €2 °f L2(H) where L2(H) 
denotes the Hubert space3 of all square integrable functions, and R and Z 
denote the set of real numbers and integers, respectively. These subspaces 
characterize the behavior of a function at different scales or resolutions. 
For example, Vm characterizes functions at scale 2 m or equivalently at res-
olution given as 2 _ m samples per unit length. The subspaces satisfy the 
following properties: 

M l Vm C Vm-i for all m G Z, i.e., a space corresponding to 
some resolution contains all the information about the space 
at lower resolution, or equivalently, a space corresponding to 
some scale contains all the information about the space at 
larger scale. 

M2 U^U.ooVm is dense in L 2 ( R ) and f l ^ . ^ V ^ = {0}, i.e., 
as the resolution increases the approximation of the func-
tion converges to the original function and as the resolution 
decreases the approximated function contains less and less 
information. 

M3 f(t) G Vm if and only if f(2t) G Vm_i for all m G Z, i.e., 
all spaces are scaled versions of one space. 

M4 f(t) G Vm implies f(t - ^ r ) G VmVk G Z, i.e., the space 
is invariant with respect to the "integer translations" of a 
function. 

Notice tha t since Vm C Vm-i we can write 

Vm-i=Vm®Om (65) 

where Om is the orthogonal complement of Vm in Vm_i (i.e., Om is the 
set of all functions in Vm-i tha t are orthogonal to Vm) and 0 denotes 

3 A Hubert space H is a vector space (possibly infinite dimensional) with an inner 
product (.,.) which is complete with respect to the norm || / | |= (/, f)1/2 induced by 
this inner product. A normed space is complete if every Cauchy sequence in that space 
converges to an element of that space, i.e., for every sequence {/n} C H such that 
|| fm — fn ||—y 0 as m, n -> oo, we have / „ - ^ / G H a s n - > o o [44]. 



Wavelet Analysis in Geophysics: An Introduction 25 

the direct sum. Given this structure, representation of a function in Vm is 
given by Pmf(t) and representation in 0m is given by Qmf(t) (compare 
equation (65) with equation (64)). The operators Pm and Qm are orthog-
onal projection operators onto the spaces Vm and 0 m , respectively. Let 
P^f and Qmf denote the discrete set of inner products { ( / , </>m,n)} and 
{(�,� � �,� )}·, respectively. The set P^f gives the discrete approximation of 
f(t) at scale 2 m and Q^f gives the discrete detail approximation of f(t). 
Then, in simple words equation (65) says tha t we need to add the infor-
mation contained in Q m / to P^f to go from one resolution (scale) to the 
next higher resolution (smaller scale). 

The multiresolution analysis framework is not unique. Several mul-
tiresolution frameworks can be constructed depending upon the choice of 
the pair (� ,� ). Recall tha t the choice of either � (�) or ip(t) determines 
the other. The simplest of all multiresolution frameworks is the one where 
Vm is composed of piecewise constant functions. In this case the scaling 
function is given by equation (58) and the wavelet is the Haar wavelet given 
by equation (40). For examples of other pairs of (� ,� ) t ha t give rise to 
the multiresolution framework, see Appendix B and [13, 15] and [31]. For 
algorithms to construct the pairs (� ,� ), see [52, 51]. 

5.2. N o n - o r t h o g o n a l wavelet transforms 

5 .2 .1 . Frames 

We saw in section 5.1 tha t it is possible to find λο, to and ipmin(t) 
as defined in equation (47) such tha t � � � ,� {�) are orthogonal. This allows 
a function f(t) to be written as a series expansion as given in equation 
(53). However, even if ^ m , n ( 0 are not orthogonal, the function f(t) can be 
represented completely as a series expansion under certain broad conditions 
on the wavelet r/>(i), t0 and λο· These discrete wavelets which provide 
complete representation of the function f(t) are called wavelet frames and 
will be the subject of the next sub-section. We will see tha t orthogonal 
wavelets are a special case of this general framework. Let us first define 
frames. 

A sequence of functions {� � }� £�
 m a Hilbert space H (see footnote 

on page 24 for definition of Hilbert Space) is called a frame if there exist 
two constants A > 0, B < oo, called frame bounds, so tha t for all functions 
f(t) in the Hilbert space H the following holds: 

A | | / | | 2 < £ | < / , v > „ > l 2 < B | l / l l 2 · (66) 
n 

The constant B < oo guarantees tha t the transformation / —> { ( / , � � ) } 
is continuous and the constant A > 0 guarantees tha t this transformation 
is invertible and has continuous a inverse. This enables one to: (1) com-
pletely characterize the function, and (2) reconstruct the function from its 
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decomposition. 
In general, a frame is not an orthonormal basis. It provides a redundant 

representation of the function f(t). This is analogous, for example, to 
representing a vector in the Euclidean plane using more than two basis 
vectors. The ratio A/B is called the redundancy ratio or redundancy factor. 
Redundant representations are more robust to noise and therefore useful 
when noise reduction is an issue. 

When A = B, the frame is called a tight frame. In this case there is a 
simple expansion formula given as 

� (�) = \� (� ,� � )� � {�). (67) 
n 

Notice tha t this formula is very similar to the one obtained for an or-
thonormal set {� � }· In this case, however, {� � } niay not even be linearly 
independent, i.e., there is a large degree of redundancy in the represen-
tation. Orthonormal bases arise as a special case. For a tight frame, if 
A = B = 1 and if || � �  \\= 1, then {� � } form an orthonormal basis and we 
get the usual expansion formula. When {^m,n} constitute a tight frame 
then A = B = C^ / io log^o where � �  is defined in equation (15) (see [15], 
equation 3.3.8). However, in practice it is difficult to get A exactly equal 
to £?, but easier to get A close to B, i.e., e = -j — 1 <£ 1. Daubechies (see 
[14], pg. 971) calls such frames snug frames. The expansion formula in this 
case is given as 

/ ( � ) = �� � � (/^>«+^ (68) 
n 

where the error 7 is of the order of 2x7 || / ||· The general case of A 96 B 
is more involved and beyond the scope of this introduction (see [15], for 
details). 

5.2 .2 . Wave le t frames 

Now let L denote the transformation L : f(t) -l· {(/ , � � � , � )} , where 
tpm,n(t) is defined by equation (47). We can characterize the function 
f(t) through the wavelet coefficients { ( / , ipm,n)} provided the transform L 
satisfies the condition (66), i.e., 

� ||/� � 2<� � � />'/� »>� 2^� /� � 2· (69) 
m n 

Given discrete wavelets, we can obtain simple expansions such as in (67) 
and (68), provided ^ m > n constitute a frame, i.e., 

W) = I �  � </ ' VVn>̂ m,nW· (70) 
m n 
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if {� � �,� } is a tight frame, and 

/ ( � ) = � � � � � <·� ^>">^."+-�  (7i) 
m n 

when {� � �,� } is a snug frame. Such frames can be constructed for certain 
choices of λο and £o, provided ip(t) satisfies the admissibility condition, 
i.e., J � (�) dt — 0, and has compact support or sufficiently fast decay. The 
conditions for the choice of λο and to are described in Daubechies (see [15], 
chapter 3). Here it suffices to say tha t these conditions are fairly broad 
and admit a very flexible range. For example, for the Mexican hat wavelet 
(as given in equation (41)), for λο = 2 and to = 1, the frame bounds are 
A = 3.223 and B = 3.596 giving B/A = 1.116. 

One can obtain B/A closer to 1 by choosing λο < 2. Grossmann et al. 
[24] suggested decomposing each octave into several voices (as in music) by 
choosing λο — 2 1 / / M where M indicates the number of voices per octave. 
With such a decomposition we get 

� ™� (�  = 2 - m / 2 A V ( 2 " m / M * - nto). (72) 

For the Mexican hat wavelet, by choosing M = 4 and to = 1 we can obtain 
A = 13.586 and B = 13.690 giving B/A = 1.007. Such a decomposition 
using such a multivoice frame enables us to cover the range of scales in 
smaller steps giving a more "continuous" picture. For example, with M = 4 
we get discrete scales at {λ = . . . , 1 , 2 1 / 4 , 2 1 / 2 , 2 3 / 4 , 2 , 2 5 / 4 , 2 3 / 2 , 2 7 / 4 , 4 , . . . } 
as against {λ = . . . , 1 ,2 ,4 , . . . } for usual M = 1. Figure 9 was created using 
Morlet wavelet with M = 4 and t0 = 1. For this decomposition A = 6.918, 
B = 6.923 giving B/A = 1.0008. It should be noted tha t Morlet wavelet, 
which is not orthogonal, gives a good reconstruction under the framework 
of equation (71). Multivoice frames are discussed extensively in Daubechies 
([15], chapter 3) where more details on the values of A and B for different 
choices of M and to are given for the mexican hat and the Morlet wavelet. 

Redundant representations such as the one presented above, in addition 
to their noise reduction capability, are useful when representations tha t are 
close to the continuous case are sought (see for example [3, 32, 35, 5, 33] 
and [49]). 

5.3 . B ior thogona l wavele ts 

Under the wavelet multiresolution framework, the decomposition and 
reconstruction of a function is done using the same wavelet, i.e., 

�(*) = � � (� ™.»)� ™.»�  (73) 
m n 

where { ( / , ^ m , n ) } are the decomposition coefficients. This however, can 
severely limit the choice of wavelet � (�). For example, it has been shown 
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(see [15], theorem 8.1.4) tha t the only real and compactly supported sym-
metric or antisymmetric wavelet under a multiresolution framework is the 
Haar wavelet. In certain applications however, real symmetric wavelets 
which are smoother and have bet ter frequency localization than the Haar 
wavelet may be needed. In such situations, biorthogonal wavelets come 
to the rescue. It is possible to construct two sets of wavelets {ipm^n} and 
{� � � ,� } such tha t 

/(') = � � ^- .")</ � � ( � ) (74) 
m n 

= EE</^™.»>^.«w· (75) 
m n 

That is, one can accomplish decomposition using one set of wavelets and 
reconstruction using another. The wavelets ißmyn(t) = ^ 7 7 ^ ( 2 ^ — n ) a n ( ^ 

� � �,� ^) = 2^72^(2^ ~ n ) n e e d t 0 S a t i s fy 

EEK/></Vn>|2 < B\\f\\* (76) 
m n 

� � � /'Vw*)!2 ^ è\\f\\2 (77) 
m n 

{� � �,� ,� � � ',� ') = ^mm'^nn' (78) 

where B and B are some constants and condition (78) is the condition of 
biorthonormality. Given such a biorthonormal set, it is possible to con-
struct corresponding scaling functions {� � �,� } a n d {<j>m,n} such tha t 

\� � �,� ·)� � �,� '/ — ^� � '· v ' * V 

Notice tha t nothing is said about the orthogonality of {� � � ,� }, {� � �,� }, 
{� � �,� } a n d {� � �,n) themselves. In general they form a linearly indepen-
dent basis. Also, there is no condition of orthogonality between the wavelets 
� (�) and V>(£), a n d the corresponding scaling functions � (�) and 0(£), re-
spectively. Given these wavelets and scaling functions, one can construct 
a multiresolution nest, as in the orthonormal case, i.e., 

• · · c v2 c Vi c v0 c y_i c K-2 c · · · 

• · · C V2 C Vi C Vo C VLi C V-2 C ■ ■ ■ 
with Vm — span{0 m j „} and Vm = span{0m > n } and the complementary 
spaces Om = span{^ m > n } and O m = s p a n { ^ m > n } . The spaces Vm and 
Om (Vm and O m , respectively) are not orthogonal complements in general. 
Equation (78), however, implies tha t 

Vm JL Öm and Vm J- O m . (80) 
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Another advantage of biorthogonal wavelets is (see [15], section 8.3) 
tha t one can have ip(t) and zp(t) with different vanishing moments. For 
example, if ip(t) has more vanishing moments than � {�), one can obtain 
higher da t a compression using ( / , V>m,n) and a good reconstruction using 

the sum being restricted to some finite values. 

§6. Two-Dimens iona l Wave le t s 

6 .1 . Cont inuous wavele ts 

The continuous analogue of wavelet transform (12) is obtained by treat-
ing u — (u 1,1*2) and t = (£1,^2) as vectors. Therefore for the two dimen-
sional case 

(81) 

(82) 

� > 0 

An analogous inversion formula also holds, i.e., 

The condition of admissibility of a wavelet remains the same, i.e., 

1. compact support or sufficiently fast decay; and 

2. fft{t)dt = 0. 
Two examples of two-dimensional wavelets are discussed in the follow-

ing subsection. 

6 .1 .1 . Two-d imens iona l Morlet wavelet 

Define the vector t = (£1,^2) on the two-dimensional plane with \t\ = 
\Jt\ -+-1\. Then the two dimensional Morlet wavelet is defined as 

(83) 

(84) 

with Fourier transform 

where Ω = {� \, � <�  ) is an arbitrary point on the two-dimensional frequency 
plane, and Ω° = (ω^,ωί,) is a constant. The superscript �  indicates the 
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Figure 10. Frequency support of two dimensional Morlet wavelet. 

direction of the wavelet, i.e, 

^ t a n - 1 ^ . (85) 

The properties of this wavelet are best understood from its spectrum. 
Figure 10 shows the spectrum of the two-dimensional Morlet wavelet for 
0 = 0 and λ = 1. This wavelet is no longer progressive as in the one-
dimensional case, i.e., its spectrum is not entirely supported on the positive 
quadrant . Manipulating Ω0 by changing �  allows us to change the direc-
tional selectivity of the wavelet. For example, by choosing Ω° = (ω?, � ^) = 
u;°(cos0,sin0), � ° > 5, 0 < �  < 2π we get the wavelet transform 
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The last equation is obtained by using Parseval's theorem. At any arbitrary 
scale λ, equation (86) can be written as 

\ /»OO /«OO 0 0 

V^ J — OO J — OO 

The above equation indicates tha t the wavelet transform {�,� �
�  *) extracts 

the frequency contents of the function f(t) around the frequency coordi-
nates (� �/� ,� ^/� ) = (� ° cos0/A,u;0 sin0/A) with a radial uncertainty of 
�  ? = Ι /λ , at the location t. Therefore, by fixing λ and traversing along 

0, directional information at a fixed scale λ can be extracted, and by fix-
ing �  and traversing along λ, scale information in a fixed direction can be 
obtained. 

6.1 .2 . Halo wavelet 

Often the directional selectivity offered by Morlet wavelet is not desired 
and one wishes to pick frequencies with no preferential direction. Dallard 
and Spedding [12] defined a wavelet by modifying the Morlet wavelet and 
called it the Halo wavelet because of its shape in the Fourier space. The 
wavelet itself is defined through its Fourier transform 

� (� ) = � � -(� � � � °�>2/2 (88) 

where n is a normalizing constant. As can be seen from the above expression 
this wavelet has no directional specificity. 

6.2. Orthogona l wavele ts 

For two-dimensional multiresolution representation, consider the func-
tion / ( i i ,£2 ) £ I / 2 (R 2 ) . A multiresolution approximation of L 2 ( R 2 ) is a 
sequence of subspaces tha t satisfy the two-dimensional extension of prop-
erties M l through M4 enumerated in the definition of the one-dimensional 
multiresolution approximation. We denote such a sequence of subspaces of 
L 2 ( R 2 ) by ( ^ m ) m G z · T k e a PP r o x i m a - t ion of the function / ( i i , Î 2 ) at the 
resolution m, i.e., 2 2 m samples per unit area, is the orthogonal projection 
on the vector space Vm. 

A two-dimensional multiresolution approximation is called separable 
if each vector space Vm can be decomposed as a tensor product of two 
identical subspaces V^ of L 2 ( R ) , i.e., the representation is computed by 
filtering the signal with a low pass filter of the form Φ( ί ι , t2) = � (��)� ^2). 
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For a separable multiresolution approximation of L 2 ( R 2 ) , 

Vm = t £ ® V £ (89) 

where 0 represents a tensor product. It, therefore, follows (by expanding 
y m + i as in (89) and using property M l ) tha t the orthogonal complement 
0m of Vm in Vm+\ consists of the direct sum of three subspaces, i.e., 

Om = {VL®Oln)®{Ol®V^)®{0]n®0]n). (90) 

The orthonormal basis for Vm is given by 

( 2 m * ( 2 m t i - n , 2 m t 2 - f c ) ) ( n fc)eZ2 = ( 2 m ^ m ( 2 m i 1 - n )^» m ( 2 m i 2 - f c ) ) ( n k ) ^ . 

' <91> Analogous to the one-dimensional case, the detail function at the resolution 
m is equal to the orthogonal projection of the function on to the space Om 

which is the orthogonal complement of Vm in V^+i . An orthonormal basis 
for Om can be built based on Theorem 4 in Mallat (1989a, pg. 683) who 
shows tha t if 4>{t\) ls the one dimensional wavelet associated with the 
scaling function � (�� ), then the three "wavelets" Φ 1 ^ , ^ ) — � (��)� (�2)·> 
Φ 2 ( ί ι , ί 2 ) = � {� )� {�2) and Φ 3 ( ί ι , ί 2 ) = � {� )� {�2) are such tha t 

i V ^ m n / î ) ^ Trink") ^ m n k ) ( n k)£%2 J 

is an orthonormal basis for Om. 
The discrete approximation of the function f(ti,t2) at a resolution m 

is obtained through the inner products 

Pif = {(f,*rnnk)(nk)€Z*} = { ( / . 0 π ,η ^ » * ) (Μ ) 6 Ζ » } (92) 

The discrete detail approximation of the function is obtained by the inner 
product of / ( i i ,£2) with each of the vectors of the orthonormal basis of 
Om. This is, thus, given by 

Ä 7 = {(/,*L,*)(n,fc)<Ez2}> (93) 

Ä 2 / = {(/,*L,*)(„,fc)€z*K (94) 
and 

Q£/ = {(/,*3
m„*)(n,fc)€Z'}· (95) 

The corresponding continuous approximation will be denoted by Qmf(t), 
Qmf(t) and Qmf(t) respectively. For implementation to discrete da ta see 
[31]· 

The decomposition of Om into the sum of three subspaces (see equa-
tion (90)) acts like spatially oriented frequency channels. Assume tha t we 
have a discrete process at some resolution m + 1 whose frequency domain 
is shown in Figure 11 as the domain of Pm+if. When the same process 
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� 3 

� 2 � � (� ) 
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Frequency support of Pmf 
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Frequency support of Q mf 
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� 3 
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�  = ( œt , cot ) 
1 2 

Figure 11 . Frequency support of wavelets in two dimensional mul-
tiresolution decomposition. 

is reduced to resolution ra, its frequency domain shrinks to tha t of P^f. 
The information lost can be divided into three components as shown in 
Figure 11: vertical high frequencies (high horizontal correlation), horizon-
tal high frequencies (high vertical correlation) and high frequencies in bo th 
direction (high vertical and horizontal correlations, for example, features 
like corners). They are captured as Q ^ / , Q^f a n d Qmf respectively. 
This property has been used in [29] to characterize the directional behav-
ior of rainfall. Wavelets with more than three frequency channels can be 
constructed (see, for example, [10]) but are not discussed herein. 

§7. Conclus ions 

Wavelet theory involves representing general functions in terms of sim-
pler building blocks at different scales and positions. Wavelets offer a ver-
satile and sophisticated tool yet simple to implement, and have already 
found several applications in a wide range of scientific fields. The list of 
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Table I 
Anonymous ftp site information for wavelet related software. 

1 FTP site 
cs.nyu.edu 
playfair.stanford.edu 
simplicity.stanford.edu 
gdr.bath.ac.uk 
pascal.math.yale.edu 

bimi@iss.nus.sg 
cml.rice.edu 

1 wuarchive.wustl.edu 

Directory 
pub/wave 
pub/software/wavelets 
/pub/taswell 
/pub/masgpn 
/pub/software/xwpl 

e-mail request 
/pub/dsp/software 
edu/math/msdos/modelling 

References/Notes f 
[35, 33], C programs 1 
MATLAB Scripts 
MATLAB scripts 
S software 
Wavelet Packet 
Laboratory 
for KHOROS 
MATLAB scripts 
C programs 

wavelet applications increases at a fast pace and includes to date signal pro-
cessing, coding, fractals, statistics, image processing, astrophysics, physics, 
turbulence, mathematics, numerical analysis, economics, medical research, 
target detection, industrial applications, quantum mechanics, geophysics 
etc. (see, for example, the edited volumes by Chui [7], Ruskai et al. [48], 
Benedetto and Frazier [3], Farge et al. [20], Meyer and Roques [41], Combes 
et al. [9], and Beylkin et al. [2], among others). A general li terature survey 
on wavelets can be found in [46]. In geophysics, significant progress has 
already been made in studying and unraveling structure of several geophys-
ical processes using wavelets (see the extended bibliography of wavelets in 
geophysics at the end of this volume). We have no doubt tha t the study of 
geophysical phenomena, which are by nature complex, and take place and 
interact at a range of scales of interest, will continue to benefit from the 
use of the powerful and versatile tools tha t wavelet analysis has to offer. 

There are a number of useful sources of information about wavelet pub-
lications and computer software for the implementation of wavelet analysis. 
An electronic information service called "wavelet digest" exists (at the t ime 
of this writing) on the Internet with the address waveletumath.scarolina.edu. 
Several anonymous ftp sites exist on the Internet from where software for 
wavelet analysis can be obtained. In Table I we provide a brief list (known 
to the authors at the time this was written) solely for the purpose of infor-
mation to readers, without any recommendations, or reference to suitability 
or correctness of these codes. 

A. Propert i e s of Scaling Funct ion 

The scaling function satisfies the following properties: 

1. j 4>(t)dt = 1, i.e., the scaling function is an averaging function-, 
compare this with the wavelet tha t satisfies / � (�) dt = 0. 
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2. || � (�) | |= 1, i.e., the scaling function is normalized to have unit 
norm. 

3. f � � � ,� (�)� � �',� '(t) dt = 0, i.e., the scaling function is orthogonal to 
all the wavelets. 

4. j ' � � � ,� (�)� � �,� '(�) dt = Snn>, i.e., the scaling function is orthogonal 
to all its translates at any fixed scale. Note tha t unlike the wavelets, 
the scaling function is not orthogonal to its dilates. In fact, 

5. (j)(t) = � �  ��(� )� (2� — � ), i.e., the scaling function at some scale can 
be obtained as a linear combination of itself at the next scale (h(n) 
are some coefficients called the scaling coefficients). This is a two-
scale difference equation (see [16] and [17] for a detailed t reatment 
of such equations). 

6. The scaling function and wavelet are related to each other. In fact, 
one can show tha t 

� {�) = � /9{� )� {2�-� ) (A.l) 
n 

where g(n) are coefficients derived from h(n). Tha t is, the wavelets 
can be obtained as a linear combination of dilates and translates of 
the scaling function. 

For the particular case of Haar wavelet (see equation (40)) and the corre-
sponding scaling function (equation (58)) h(0) = h(l) = 1 and h{n) = 0 
for all other n, and g(l) = —g(0) = 1 and g(n) = 0 for all other n. 

B . Daubech ie s ' Wave le t s 

Daubechies [13] developed a class of compactly supported scaling func-
tions and wavelets denoted as ( ^ , � /� ). They were obtained through the 
solution of the following two-scale difference equations: 

2N-1 

� (�  = y/2 �  � � )� {2� - n) (� ·�) 

2ΛΓ - 1 

tl>(t) = j2 �  9{� )� {2�-� ) (Β.2) 
n=0 

where 
g(n) = (-l)nh(2N - n + 1) for n = 0 , 1 , . . . , 2N - 1. (B.3) 

For techniques to solve the above equations see [52]. The scaling coefficients 
h(n) are obtained from solutions of high order polynomials ([15], chapter 
6, and [51]) and satisfy the following constraints: 
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1. A necessary and sufficient condition for the existence of a solution 
to the above two-scale difference equations is 

2ΛΓ - 1 

�  M») = \/2· (� .4) 
n=0 

2. Integer translations and dilations of </>(£) and � (�) form an orthog-
onal family if the scaling coefficients satisfy 

2 J V - 1 

J2 h(n - 2k)h(n - 21) = Skl for all k and I. (B.5) 
n=0 

3. The constraints 
2 7 V - 1 

�  {-l)n~lnkh{n) = 0 for k = 0 , 1 , . . . , N - 1 (B.6) 

yield the result tha t � (�) has N vanishing moments, i.e., 

tktp(t) at = 0 for k = 0 , 1 , . . . , N - 1. (B.7) /�  

Daubechies' wavelets of this class have the following properties: 

1. They are compactly supported with support length 2N — 1. The 
scaling function also has the same support length. 

2. As iV increases, the regularity of � �  and � �  also increases. In fact 
� � ,� �  £ CaN (the- set of continuous functions tha t are a^ order 
differential) where (iV, α^γ) pairs for some iV are given as (see [13]) 

{(2,0.5 - e), (3,0.915), (4,1.275), (5,1.596), (6,1.888), (7,2.158)}. 

3. Condition (B.7) of vanishing moments of � (�) implies tha t up to 
Nth order derivatives of the Fourier transform of � (�) at the origin 
are zero, i.e., 

-^� ^�  = 0) = 0 for k = 0 , 1 , . . . , iV - 1. (B.8) 

This property essentially implies a form of localization of the Fourier 
transform � (� ). 

Figures B l and B2 show the scale function and the corresponding 
wavelets for N = 2 and TV = 5 respectively. The figures also depict the 
magnitude of their Fourier transforms. As can be seen the regularity of the 
wavelets and the scale functions increase as N increases. 
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Figure B l . The figure shows Daubechies' scaling function (upper 
left) and the wavelet (lower left) of order N = 2. The magnitude of 
their Fourier transforms is shown, respectively, on the right hand column 
plots. 

C. I m p l e m e n t a t i on Algor i thm for Orthogonal Wave le t s 

The implementation algorithm for wavelet multiresolution transforms 
is simple. From a da ta sequence {c^} (say at resolution level m = 0) 
corresponding to a function f(t) we construct 

� „/(*) = �  <£#'-") (C.I) 

for a chosen <£(£), i.e., assume { c ° } n €£ = { ( / ,0On)} n G z · The da ta se-
quence at lower resolution can be obtained by 

ci = 5>(»-2*)<$. (C.2) 
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Figure B2. The figure shows Daubechies' scaling function (upper 
left) and the wavelet (lower left) of order N = 5. The magnitude of 
their Fourier transforms is shown, respectively, on the right hand column 
plots. 

The detail sequence {^}f c Gz = {(/ '^i^)}fceZ 1S obtained as 

d\ = Y,g{n-2k)cl (C.3) 

Equivalently the above two equations can be written in the matr ix notat ion 

{c1} = H{c0} and {d" 1 } = G{c 0 } . (C.4) 

The matrices H and G are such tha t 

HH* = / , GG* = I (C.5) 

and H*H and G*G are mutually orthogonal projections with 

H*H + G*G = I (C.6) 
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where H* and G* are adjoints of H and G respectively and i" is the identity 
matrix. Also, 

GH* = 0 and HG* = 0. (C.7) 

The algorithm given in equation (C.2) and (C.3) can be recursively im-
plemented and the da ta and details at lower and lower resolutions can be 
obtained. This also highlights another important feature. Once we have 
the coefficients h{n), we never need to construct the scale function 0(f) or 
the wavelet � (�) for implementation on a discrete da ta set. The assump-
tion involved, however, is tha t c^ = f f(t)(f)(t — n)dt, i.e., the integration 
kernel is � (�) corresponding to the chosen /i(n)'s. The reconstruction of 
the original sequence can be achieved by using 

c™-1=2Y^h(n-2k)cÎ + 2j2g(n-2k)dZ (C.8) 
k k 

and is exact. 
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