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Preface 

Over the past decade, wavelet transforms have been formalized into a rigorous 
mathematical framework and have found numerous applications in diverse 
areas such as harmonic analysis, numerical analysis, signal and image pro-
cessing, nonlinear dynamics, fractal and multifractal analysis, and others. 
Although wavelet transforms originated in geophysics (for the analysis of 
seismic signals), it is only very recently that they are being used again in 
the geophysical sciences. Properties that make wavelets attractive are t i m e -
frequency localization, orthogonality, multirate filtering, and scale-space 
analysis, to name a few. 

This volume is the first collection of papers using wavelet transforms for 
the understanding, analysis, and description of geophysical processes. It in-
cludes applications of wavelets to atmospheric turbulence, ocean wind waves, 
characterization of hydraulic conductivity, seafloor bathymetry, seismic data, 
detection of signals from noisy data, multifractal analysis, and analysis of long 
memory geophysical processes. Most of the papers included in this volume were 
presented at the American Geophysical Union (AGU) Spring Meeting in Balti-
more, May 1993, in a special Union session organized by us entitled "Applica-
tions of Wavelet Transforms in Geophysics." We feel that this volume will serve 
geophysicists as an introduction to the versatile and powerful wavelet analysis 
tools and will stimulate further applications of wavelets in geophysics as well 
as mathematical developments dictated by unique demands of applications. 

The first chapter in this volume is a review article by Kumar and Foufoula-
Georgiou. The purpose of this article is to provide the unfamiliar reader with a 
basic introduction to wavelets and key references for further study. Wavelet 
transforms are contrasted with the Fourier transforms and windowed Fourier 
transforms that are well known to geophysicists; this contrast highlights the 
important property of time—frequency localization in wavelet transforms, 
which is essential for the analysis of nonstationary and transient signals. 
Continuous and discrete, as well as orthogonal, nonorthogonal, and biortho-
gonal wavelet transforms are then reviewed, and the concept of multiresolution 
analysis is presented. Several examples of one- and two-dimensional wavelets 
and information on wavelet construction are given. Finally, some sources of 
available wavelet analysis software packages are included which may help the 
interested reader get started in exploring wavelets. 

The next four chapters present results from the application of wavelet 
analysis to atmospheric turbulence. In Chapter 2, Hagelberg and Gamage 
develop a wavelet-based signal decomposition technique that preserves inter-
mittent coherent structures. Coherent structures in velocity and temperature 
in the atmospheric boundary layer account for a large portion of flux transport 
of momentum, heat, trace chemicals, and particulates. The authors' technique 
partitions signals into two components: one containing coherent structures 
characterized by sharp transitions and intermittent occurrence, and the other 
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containing the remaining portion of the signal (essentially characterized by 
smaller length scales and the absence of coherent events). They apply this 
decomposition to vertical velocity, virtual potential temperature, and buoyancy 
flux density fields. Chapter 3, by Katul, Albertson, Chu, and Parlange, applies 
orthonormal wavelets to atmospheric surface layer velocity measurements to 
describe space-time relations in the inertial subrange. The local nature of the 
orthonormal wavelet transform in physical space aids the identification of 
events contributing to inertial subrange intermittency buildup, which can then 
be suppressed to eliminate intermittency effects on the statistical structure of 
the inertial subrange. 

In Chapter 4, Howell and Mahrt develop an adaptive method for decom-
posing a time series into orthogonal modes of variation. In contrast to conven-
tional partitioning, the cutoff scales are allowed to vary with record position 
according to the local physics of the flow by utilizing the Haar wavelet decom-
position. For turbulence data, this decomposition is used to distinguish four 
modes of variation. The two larger modes, determined by spatially constant 
cutoff scales, are characterized as the mesoscale and large eddy modes. The 
two smaller scale modes are separated by a scale that depends on the local 
transport characteristics of the flow. This adaptive cutoff scale separates the 
transporting eddy mode, responsible for most of the flux, from the nontrans-
porting nearly isotropic motions. Chapter 5, by Brunet and Collineau, applies 
wavelets to the analysis of turbulent motions above a maize crop. Their results 
indicate that organized turbulence exhibits the same structure above a forest 
and a maize crop, apart from a scale factor, and supports the interesting pos-
tulate that transfer processes over plant canopies are dominated by popula-
tions of canopy-scale eddies, with universal characteristics. The authors also 
propose a methodology for separating turbulence data into large- and small-
scale components using the filtering properties of the wavelet transform. 

In Chapter 6, Liu applies wavelet spectrum analysis to ocean wind waves. 
The results reveal significant new insights on wave grouping parameteriza-
tions, phase relations during wind wave growth, and detection of wave breaking 
characteristics. Chapter 7, by Little, demonstrates the usefulness of wavelet 
analysis in studying seafloor bathymetry and especially identifying the loca-
tion and scarp-facing direction of ridge-parallel faulting. In Chapter 8, Pike 
proposes a wavelet-based methodology for the analysis of high resolution 
acoustic signals for sub-seabed feature extraction and classification of scatter-
ers. The key idea is that of displaying the energy dissipation in the t i m e -
frequency plane, which allows a more distinct description of the signal (com-
pared to the Fourier transform spectra) and thus provides a better means of 
extracting seabed properties by correlating them to the attenuation of high 
resolution acoustic signals. In Chapter 9, Brewer and Wheatcraft investigate 
the wavelet transform as a tool for reconstructing small-scale variability in 
hydraulic conductivity fields by incorporating the scale and location informa-
tion of each sample when interpolating to a finer grid. The developed multiscale 
reconstruction method is compared to traditional interpolation schemes and is 
used to examine the issue of optimum sample size and density for stationary 
and fractal random fields. 
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Chapter 10, by Davis, Marshak, and Wiscombe, explores the use of wave-
lets for multifractal analysis of geophysical phenomena. They show the appli-
cability of wavelet transforms to compute simple yet dynamically meaningful 
statistical properties of one dimensional geophysical series. Turbulent velocity 
and cloud liquid water content are used as examples to demonstrate the need 
for stochastic models having both additive (nonstationary) and multiplicative 
(intermittent) features. Merging wavelet and multifractal analysis seems 
promising for both wavelet and multifractal communities and is especially 
promising for geophysics, where many signals show structures at all observa-
ble scales and are often successfully described within a multifractal frame-
work. 

The wavelet transform partitions the frequency axis in a particular way: 
it iteratively partitions the low-frequency components, leaving the high-fre-
quency components intact at each iteration. For some processes or applications 
this partition might not achieve the best decomposition, as partition of the 
high-frequency bands might also be necessary. Wavelet packets provide such a 
partition and are used in Chapter 11, by Saito, for simultaneous signal 
compression and noise reduction of geophysical signals. A maximum entropy 
criterion is used to obtain the best basis out of the many bases that the redun-
dant wavelet packet representation provides. The method is applied to syn-
thetic signals and to some geophysical data, for example, a radioactivity profile 
of subsurface formation and a migrated seismic section. Finally, in Chapter 12, 
Percival and Guttorp examine a particular measure of variability for long 
memory processes (the Allan variance) within the wavelet framework and show 
that this variance can be interpreted as a Haar wavelet coefficient variance. 
This suggests an approach to assessing the variability of general wavelet 
classes which will be useful in the study of power-law processes extensively 
used for the description of geophysical time series. A fairly extensive bibliog-
raphy of wavelet analysis in geophysics is included at the end of this volume. 

Several individuals provided invaluable help in the completion of this vol-
ume. Special thanks go to the reviewers of the book chapters who volunteered 
their time and expertise and provided timely and thoughtful reviews. The first 
author thanks Mike Jasinski, Hydrologie Sciences Branch at NASA-Goddard 
Space Flight Center and the Universities Space Research Association for their 
support during the completion of this project. We are grateful to Charu Gupta 
Kumar, who converted most of the chapters to I^T^X format and typeset and 
edited the entire volume. Without her expertise and dedication the timely 
completion of this volume would not have been possible. Finally, we also thank 
the Academic Press Editor, Peter Renz, for his efficient help during the final 
stages of this project. 

Efi Foufoula-Georgiou Praveen Kumar 
Minneapolis, Minnesota Greenbelt, Maryland 
March, 1994 



Wavele t Analys i s in Geophys ics : A n Introduct ion 

Praveen Kumar and Efi Foufoula-Georgiou 

Abstract. Wavelet analysis is a rapidly developing area of mathematical and 
application-oriented research in many disciplines of science and engineering. The 
wavelet transform is a localized transform in both space (time) and frequency, and 
this property can be advantageously used to extract information from a signal that 
is not possible to unravel with a Fourier or even windowed Fourier transform. 
Wavelet transforms originated in geophysics in early 1980's for the analysis of 
seismic signal. After a decade of significant mathematical formalism they are 
now also being exploited for the analysis of several other geophysical processes 
such as atmospheric turbulence, space-time rainfall, ocean wind waves, seafloor 
bathymetry, geologic layered structures, climate change, among others. Due to 
their unique properties, well suited for the analysis of natural phenomena, it is 
anticipated that there will be an explosion of wavelet applications in geophysics 
in the next several years. This chapter provides a basic introduction to wavelet 
transforms and their most important properties. The theory and applications of 
wavelets is developing very rapidly and we see this chapter only as a limited basic 
introduction to wavelets which we hope to be of help to the unfamiliar reader and 
provide motivation and references for further study. 

§1. Pro logue 

The concept of wavelet transforms was formalized in early 1980's in a 
series of papers by Morlet et al. [42, 43], Grossmann and Morlet [24], and 
Goupillaud, Grossmann and Morlet [23]. Since this formalism and some 
significant work by Meyer ([38, 39] and references therein), Mallat [30, 31], 
Daubechies [13, 15], and Chui [6] among others, the wavelets have become 
pervasive in several diverse areas such as mathematics, physics, digital sig-
nal processing, vision, numerical analysis, and geophysics, to name a few. 
Wavelet transforms are integral transforms using integration kernels called 
wavelets. These wavelets are essentially used in two ways when studying 
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processes or signals: (i) as an integration kernel for analysis to extract 
information about the process, and (ii) as a basis for representation or 
characterization of the process. Evidently, in any analysis or representa-
tion, the choice of the basis function (or kernel) determines the kind of 
information tha t can be extracted about the process. This leads us to the 
following questions: (1) what kind of information can we extract using 
wavelets? and (2) how can we obtain a representation or description of the 
process using wavelets? 

The answer to the first question lies on the important property of 
wavelets called time-frequency localization. The advantage of analyzing 
a signal with wavelets as the analyzing kernels is tha t it enables one to 
study features of the signal locally with a detail matched to their scale, 
i.e., broad features on a large scale and fine features on small scales. This 
property is especially useful for signals tha t are either non-stationary, or 
have short lived transient components, or have features at different scales, 
or have singularities. The answer to the second question is based on seeing 
wavelets as the elementary building blocks in a decomposition or series 
expansion akin to the familiar Fourier series. Thus, a representation of 
the process using wavelets is provided by an infinite series expansion of 
dilated and translated versions of a mother wavelet, each multiplied by an 
appropriate coefficient. For processes with finite energy this wavelet series 
expansion is optimal, i.e., it offers an optimal approximation to the original 
signal, in the least squares sense. 

In what follows we give a brief introduction to the mathematics of 
wavelet transforms and where possible an intuitive explanation of these 
results. The intention of this introduction is two fold: (i) to provide the 
unfamiliar reader with a basic introduction to wavelets, and (ii) to prepare 
the reader to grasp and appreciate the results of the articles tha t follow 
as well as the potential of wavelet analysis for geophysical processes. At 
times we have sacrificed mathematical rigor for clarity of presentation in an 
a t t empt to not obscure the basic idea with too much detail. We also hasten 
to add tha t this review is far from complete both in terms of the breadth of 
topics chosen for exposition and in terms of the treatment of these topics. 
For example, the important topic of wavelet packets has not been discussed 
(see for example [53], [8], and the article by Saito [50] in this volume). It 
is recommended tha t the interested reader who is not a mathematician 
and is meeting wavelet analysis for the first time begins with the book by 
Meyer [39] and continues with the books by Daubechies [15] and Benedetto 
and Frazier [3]. There are also several nice introductory articles on several 
aspects of wavelets, as for example, those by Mallat [30, 31], Rioul and 
Vetterli [47], and the article by Farge [19] on turbulence, among others. 
Also, considerable insight can be gained by the nice book reviews by Meyer 
[40] and Daubechies [18]. 
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This article is organized as follows. Section 2 discusses Fourier and 
windowed Fourier transforms and introduces continuous wavelet trans-
forms and their time-frequency localization properties. In section 3, the 
wavelet transform is presented as a time-scale transform, and the wavelet 
variance and covariance (alternatively called wavelet spectrum and cospec-
t rum) are discussed. A link is also made between non-stationary processes 
and wavelet transforms akin to the link between stationary processes and 
Fourier transforms. Section 4 presents some examples of commonly used 
one-dimensional wavelets (Haar wavelet, Mexican hat wavelet, and Mor-
let wavelet). In section 5, discrete wavelet transforms (orthogonal, non-
orthogonal, and biorthogonal) are introduced and the concept of multires-
olution analysis presented. In section 6, we present extensions of contin-
uous and discrete wavelets in a two-dimensional space. Finally, in section 
7 we present some concluding remarks and give information on obtaining 
available software packages for wavelet analysis. 

§2. T i m e - F r e q u e n c y A n a l y s i s 

The original motive for the development of wavelet transform was (see 
[23]) " . . . of devising a method of acquisition, transformation and recording 
of a seismic trace (i.e., a function of one variable, the time) so as to satisfy 
the requirements listed below: 

1. The contributions of different frequency bands (i.e., of the differ-
ent intervals of the Fourier conjugate variable) are kept reasonably 
separated. 

2. This separation is achieved without excessive loss of resolution in the 
t ime variable (subject, of course, to the limitation of the uncertainty 
principle). 

3. The reconstruction of the original function from its "representation" 
or "transform" is obtained by a method which is (a) capable of 
giving arbitrary high precision; (b) is robust, in the sense of being 
stable under small perturbations. " 

The first two conditions essentially characterize the property known as 
time-frequency localization. Recall tha t although the Fourier transform of 
a function / (£) , given as 

/

oo 

f(t)e-^dt, (1) 
-oo 

gives the information about the frequency content of a process or signal, 
it gives no information about the location of these frequencies in the t ime 
domain. For example figures la ,b show two signals - the first consisting of 
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50 100 
angular frequency 

50 100 
angular frequency 

Figure 1. Spectral and wavelet analysis of two signals. The first sig-
nal (a) (upper left) consists of superposition of two frequencies (sinlOt 
and sin20£), and the second consists of the same two frequencies each 
applied separately over half of the signal duration (b) (upper right). 
Figures (c) (middle left) and (d) (middle right) show the spectra 
of signals, i.e., | / (ω)|2 vs ω, in (a) and (b) respectively, and (e) (lower 
left) and (f) (lower right) show the magnitude of their wavelet trans-
forms (using Morlet wavelet) respectively. 

two frequencies (sin 10t and sin 20t) superimposed for the entire duration 
of the signal and the second consisting of the same frequencies, but each 
one applied separately for half of signal duration. Figures lc,d show the 
spectrum, i.e., | / (o ; ) | 2 , of these two signals, respectively. As is clearly 
evident, the spectrum is quite incapable of distinguishing between the two 
signals. 

Time varying frequencies are quite common in music, speech, seismic 
signals, non-stationary geophysical processes, etc. To study such processes, 
one seeks transforms which will enable one to obtain the frequency content 
of a process locally in time. There are essentially two methods tha t have 
been developed to achieve this (within the limits of the uncertainty principle 
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which states tha t one cannot obtain arbitrary good localization in bo th 
t ime and frequency): (a) windowed Fourier transform, and (b) wavelet 
transform. These two methods are discussed in the following subsections. 
Figures le,f display the magnitude of the wavelet transform of the signals 
shown in Figures la ,b , and clearly show the ability of the wavelet transform 
to distinguish between the two signals. 

2 .1 . W i n d o w e d Fourier transform 

2 .1 .1 . Def ini t ion 

In the Fourier transform framework, time localization can be achieved 
by windowing the da ta at various times, say, using a windowing function 
#(£), and then taking the Fourier transform. Tha t is, the windowed Fourier 
transform (also called the short-time fourier transform), G/ (CJ , i ) , is given 
by 

(2) 

(3) 

where the integration kernel is gtj,t(u) = g(u — t)e~iuju. This transform 
measures locally, around the point £, the amplitude of the sinusoidal wave 
component of frequency ω. The window function g(t) is usually chosen 
as a real, even function with the maximum concentration of energy in the 
low frequency components. Notice tha t the analyzing kernel <7ω,*(ΐί) has 
the same support1 for all ω and £, but the number of cycles vary with the 
frequency ω (see Figure 2). 

The representation of the function f(t) on the time-frequency plane, 
i.e., (CJ,£) plane, thus obtained is called the phase-space representation. 

The windowed Fourier transform is an energy preserving transforma-
tion or isometry, i.e., 

(4) 

provided / ^ |g(£)|2 dx = 1 (which we assume from here on). It is invertible 
with the reconstruction formula given as ([31], eq. 15) 

(5) 

The parameters t and ω can be assigned discrete values, say t = nt0 

1 support is defined as the closure of the set over which the signal/process is non-zero. 
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Figure 2. Real (solid lines) and imaginary parts (dot-dashed lines) 
of the analyzing kernel g{t)e~tuJt of the windowed Fourier transform at 
different frequencies: (a) (top) ω = 3, (b) (middle) ω = 6 and (c) 
(bottom) ω = 9. The dotted line indicates a Gaussian window function 
g(t). 

and ω = mcjo, and we obtain the discrete windowed Fourier transform 

/

oo 

f{u)g{u-nt0)e-im"°udu. (6) 
-OO 

For the discrete windowed Fourier transform to be invert ible, the condition 
CJO^O < 2π must hold (see [15], sections 3.4 and 4.1). 

2 Λ . 2 . T ime- frequency local ization 

In order to study the time-frequency localization property of the win-
dowed Fourier transform, we need to study the properties of |<7ω,*|2 and 
\çju>,t |2 since they determine the features of f(t) tha t are extracted. Indeed, 
using Parseval's theorem, equation (3) can be written as 

1 f°° A 
(7) 
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Figure 3. Uncertainties in time (top) and frequency (bottom) lo-
calization in a windowed Fourier Transform for a generic function g{t). 

where ^ ^ ( u / ) is the Fourier transform of gu,t(u) and overbar indicates 
complex conjugate. Let us define the standard deviations of gu^ and gu^ 
as ag and ag respectively, i.e., 

and 

(9) 

These parameters measure the spread of the function | ^ ? < | and \gUjt |, about 
t and CJ, respectively (see Figure 3). Owing to the uncertainty principle, 
the products of σ2, and σ | satisfy (see [31]) 

(10) 

(8) 

i.e., arbi trary high precision in both t ime and frequency cannot be achieved. 
The equality in the above equation is achieved only when g(t) is the Gaus-
sian, i.e., 

(H) 
When the Gaussian function is used as a window, the windowed Fourier 
transform is called the Gabor transform [22]. 
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1 ^Λ 

1 8, 

σβ ' 

°g .1 
σ Λ| 1 

1 g) 1 

1 ^Λ 
1 8 

σ8 . 

1 ^Λ 
| § 

1 ^ 

1 ^ Λ 
| § 

σΡ J 

σ* 
U 

σ8 

to 

Figure 4. Figure showing the phase-space representation using the 
windowed Fourier transform. 

Once a window function g(t) is chosen both ag and σ§ are fixed. There-
fore, for any given to and CJQ, the time-frequency resolution can be repre-
sented by the fixed size resolution cell [t0 ±σ9 χ ωο±σ9] (see Figure 4), i.e., 
the windowed Fourier transform at any point (£o5^o) in the phase-space 
provides information about f(t) tha t is localized with an uncertainty of ag 

in the t ime domain and σ9 in the Fourier domain, and this localization is 
uniform in the entire phase-space. In other words the entire phase-space 
is uniformly layered with resolution cells or "bricks" of fixed dimensions. 
This poses two kinds of limitations. Firstly, if the process has a transient 
component with a support smaller than σ^, it is difficult to locate it with 
precision bet ter than ag. Secondly if the process has important features 
of differing sizes then we can not find an optimal g{i) for analyzing the 
process. Therefore, window Fourier transform is more suited for analyzing 
processes where all the features appear approximately at the same scale. 
The wavelet transform addresses the limitations inherent in the windowed 
Fourier transform. 

2.2 . Wave le t transform 

In the windowed Fourier transform, the analyzing functions g„t for all 
ω and t consist of the the same envelope g(t) filled in with sinusoids of 
frequency ω. Due to the fixed envelope g(t), the resolution cell size in the 
phase space given by [σ9 χ σ$] is the same for all ω and t. Since higher 
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frequency (or short wavelength) features have smaller support , it would be 
desirable to have an analyzing function, say φ(ί), such tha t its s tandard 
deviation σψ is small when φ{ϊ) characterizes high frequency components 
and vice-versa. This was achieved by decomposing the function f(t) using 
a two parameter family of functions called wavelets (see [42] and [43]). One 
of the two parameters is the translation parameter as in the windowed 
Fourier transform case, but the other parameter is a dilation parameter λ 
instead of the frequency parameter ω. 

2 .2 .1 . Def ini t ion 

The wavelet transform of a function f(t) with finite energy is defined 
as the integral transform with a family of functions xjj\)t{u) = ~7χΦ(Μγ^) 
and is given as 

2. zero mean, i.e., J ^ t / ^ ^ d i = 0, although higher order moments 

(12) 

Here λ is a scale parameter, t a location parameter and the functions ip\jt(u) 
are called wavelets. In case φ\^(μ) is complex, we use the complex con-
jugate φχ t(u) in the above integration. Changing the value of λ has the 
effect of dilating (λ > 1) or contracting (λ < 1) the function φ(ί) (see Fig-
ure 5a), and changing t has the effect of analyzing the function f(t) around 
the point t. The normalizing constant -4^ is chosen so tha t 

for all scales λ (notice the identity φ(ί) = V>i,o(0)· We also choose the 
normalization j \φ(ί)\2 dt = 1. The wavelet transform Wf(X^t) is often 
denoted as the inner product ( / , φ\$)-

Notice tha t in contrast to the windowed Fourier transform case, the 
number of cycles in the wavelet φ\^(η) does not change with the dilation 
(scale) parameter λ but the support length does. We will see shortly tha t 
when λ is small, which corresponds to small support length, the wavelet 
transform picks up higher frequency components and vice-versa. 

The choice of the wavelet φ{ί) is neither unique nor arbitrary. The 
function φ{ί) is a function with unit energy chosen so tha t it has: 

1. compact support , or sufficiently fast decay, to obtain localization in 
space; 
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|ψ(ω)| 

Figure 5. Schematic illustration of the effect of dilation on a "generic" 
wavelet (top) and the corresponding change on its Fourier transform 
|^(ω)| (bottom). When the wavelet dilates, its Fourier transform con-
tracts and vice-versa, (a) λ < 1, (b) λ = 1, and (c) λ > 1. 

may also be zero, i.e., 

tktp(t) dt = 0 for k = 0 , . . . , N - 1. 
/ 

(13) 

The requirement of zero mean is called the admissibility condition 
of the wavelet. It is because of the above two properties tha t the 
function i/j(t) is called a wavelet. The second property ensures tha t 
ip(t) has a wiggle, i.e., is wave like, and the first ensures tha t it is 
not a sustaining wave. 

The inverse wavelet transform is given by ([15], eq. 2.4.4) 

1 /«oo /*oo 

f(t) = 7T / X-2Wf(X,u)<pXiU(t)dXdu 
W J-ooJO 

(14) 
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where 

(15) 

The wavelet transform is also an energy preserving transformation, i.e., an 
isometry (up to a proportionality constant), tha t is, 

(16) 

2 .2 .2 . T ime- frequency local ization 

In order to understand the behavior of the wavelet transform in the fre-
quency domain as well, it is useful to recognize that the wavelet transform 
W/(A,£), using Parseval's theorem, can be equivalently writ ten as 

(17) 

Therefore, as in the windowed Fourier transform, we need to study the 
properties of \ip\}t(u)\2 and |^A,<(<^)|2 to understand the time-frequency 
localization properties of wavelet transforms. Specifically, we need to un-
derstand the behavior of the s tandard deviations of |^λ,*|2 and |^λ,*|2, i-e-> 
<τψχ>ί and σ? . Note that , due to property (13), ψ\^(ω = 0) = 0. Conse-
quently, the center of passing band, CJ°~ , for tp\yt(t) is located away from 

the origin ω = 0 (as shown in Figure 5b). It can be obtained as the center 
of mass (or first moment about the origin) of the right lobe as 

(18) 

We therefore define the s tandard deviation (i.e., square root of the second 
central moment of the right lobe) σ τ as 

(19) 

Similarly in the t ime domain the standard deviation σφλ t can be obtained 
as 

(20) 

(21) 

where to is given as 

It is easy to verify tha t the following relationships hold: 
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1. The s tandard deviation σφχ t satisfies 

σΦχ,ι = λσΦι,ο- (22) 

2. The s tandard deviation σ;, satisfies 

3. The center of passing band αΛ corresponding to the wavelet iß\yt (u) 

satisfies the relationship 

ω°; = - ^ . (24) 

From the above relationships one can easily see that as λ increases, i.e., as 
the function dilates, both ω°7 and σ,?, decrease indicating that the center 
of passing band shifts towards low frequency components and the uncer-
tainty also decreases, and vice-versa (see also figure 5). In the phase-space, 
the resolution cell for the wavelet transform around the point (ίο,ω^ ) 

is given by [to ± λσ^10 x A
lf0 ± A

lf0] (see Figure 6) which has variable 
dimensions depending on the scale parameter λ. However, the area of the 
resolution cell [σφχ t x σ ? ] remains independent of the scale or location 
parameter. In other words, the phase space is layered with resolution cells 
of varying dimensions which are functions of scale such that they have a 
constant area. Therefore, due to the uncertainty principle, an increased 
resolution in the time domain for the time localization of high frequency 
components comes with a cost: an increased uncertainty in the frequency 
localization as measured by σ ? . One may also interpret the wavelet 
transform as a mathematical microscope where the magnification is given 
by 1/λ. 

§3. Wavelets and Time-Scale Analysis 

3.1. Time-scale transform 

Useful information can also be extracted by interpreting the wavelet 
transform (12) as a time-scale transform. This was well illustrated by Rioul 
and Vetterli (see [47]) and is sketched below. In the wavelet transform (12) 
when the scale λ increases, the wavelet becomes more spread out and takes 
only long time behavior into account, as seen above. However by change 
of variables, equation (12) can also be written as 

(25) 
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HL 

λσ^ 

Figure 6. Figure showing the phase-space representation using the 
wavelet transform. 

Since the mapping f(t) —> f(Xt) has the effect of contracting f(t) when 
λ > 1 and magnifying it when λ < 1, the above equation indicates tha t as 
the scale grows, a contracted version of the function is seen through a fixed 
size filter and vice-versa. Thus, the scale factor λ has the interpretation of 
the scale in maps. 

3.2 . Sca logram, wavelet variance and covariance 

From the isometry of wavelet transform (16) we have 

In general, for two functions f(t) and g(t) (see [15], equation 2.4.2) 

(26) 

(27) 

By considering the RHS of (26) we see tha t |W/(A,£) | 2 /C^A2 can be con-
sidered as an energy density function on the phase-space or (£, λ) plane, i.e., 
|W/(A, ί)\2ΑίΑλ/Οψ\2 gives the energy on the scale interval Δ λ and t ime 
interval At centered around scale λ and time t. Flandrin (see [21]) pro-
posed to call the function |W/(A,£)|2 a scalogram. In analogy, the product 
Wf(\,t)Wg(\,t) can be called a cross scalogram. 
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Equation (26) can also be written as 

(28) 

(29) 

where 

gives the energy content of a function f(t) at scale λ, i.e., it gives the 
marginal density function of energy at different scales λ. The function 
E(X) has been referred to as wavelet variance (see [4]) or wavelet spectrum 
(see [25]). In analogy, the function 

(30) 

has been referred to as wavelet covariance (see [4]) or wavelet cross-spectrum 
(see [25]). 

Notice tha t for a given wavelet ip(t) the center of passing band ω°« 

at scale λ is related to that at unit scale through the relation (see equation 
(24)) 

(31) 

Using this relationship, the scale information can be translated to frequency 
information. Using άω — —ω^ X~2dX and substituting in equation (28) 
we get 

n 

(32) 

By defining 

the above equation can be written as 

(33) 

(34) 

One would therefore expect tha t Ε'(ω), and thus JE7(A), is related to the 
power spectrum S/(u>) of f(t). This indeed is the case. It can be shown 
(see [25]) tha t 

(35) 

where Ξψχ (ω) is the spectrum of the wavelet at scale λ. Tha t is, E(s) is 
the weighted average of the power spectrum of f(t) where the weights are 
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given by the power spectrum of ip\(t). This relation is interesting although 
in characterizing a process through E(X) or Ε'{ώ), all location information 
is lost, it does provide certain useful insight ([36], and [27]). 

3 .3 . Non- s ta t i onar i ty and t h e Wigner-Vi l l e s p e c t r u m 

One reason for the remarkable success of the Fourier transform in the 
study of stationary stochastic processes is the relationship between the 
autocorrelation function and the spectrum as illustrated by the following 
diagram: 

T 
X(t) £± Χ(ω) 

R(r) = 8[X(t)X{t - r)] <=i S(u>) = \Χ(ω) |2 

where R(r) and 5(CJ) are the auto-covariance function and the power spec-
t rum of the stochastic process X(t), respectively. If an analogous rela-
tionship could be developed for non-stationary processes using the wavelet 
transform, then the properties of the wavelet transform could be harnessed 
in a more useful way. It turns out tha t , indeed, such a relationship can be 
developed. 

The wavelet spectrum E(X) or Ε'(ω) discussed in the previous sec-
tion although interesting in its own right, takes us away from the non-
stationarity of the process since it is obtained by integrating over t. We, 
therefore, need something else. This is provided by the Wigner-Ville spec-
t rum. Let us define a general (non-stationary) covariance function R(t, s) 
as 

R(t,s)=S[X(t)X(s)]. 

Then the Wigner-Ville spectrum (WVS) is defined as (see [11] for a dis-
cussion of WVS and other time-frequency distributions) 

/

oo 

■R(t+^,t--)e-iurdT. (36) 

The WVSx(t, ω) is an energy density function as 

/

oo 

WVSx(t,w)duj (37) 
-co 

i.e., we get the instantaneous energy by integrating over all frequencies, 
and the total energy can be obtained as 

(38) 
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The relationship of interest to us is given by the relation between the scalo-
gram and the WVS 

(39) 

i.e., the scalogram can be obtained by affine smoothing (i.e., smoothing at 
different scales in t and ω directions) of the WVS of X with the WVS of 
the wavelet. This relationship has been developed by Flandrin (see [21]). 
As of this writing, we are unaware of any inverse relation to obtain the 
WVSx from the scalogram. We can put the key result of this subsection 
in the following diagrammatic form: 

We, therefore, see tha t there is an inherent link between the study of non-
stationary processes and wavelet transforms akin to the link between sta-
tionary processes and Fourier transforms. 

§4. E x a m p l e s of One-Dimens iona l Wave le t s 

Due to the flexibility in choosing a wavelet, several functions have been 
used as wavelets and it would be difficult to provide an exhaustive list. We 
present here some commonly used wavelets (Haar wavelet, Mexican ha t 
wavelet, and Morlet wavelet) in one-dimensional applications. 

4 .1 . Haar wavelet 

The Haar wavelet is the simplest of all wavelets and is given as 

(40) 

In a one-dimensional discretely sampled signal this wavelet can be seen 
as performing a differencing operation, i.e., as giving differences of non-
overlapping averages of observations. In two dimensions an interpretation 
of the discrete orthogonal Haar wavelet transform has been given in [28]. 

4.2 . M e x i c a n hat wavelet 

The Mexican hat wavelet is the second derivative of the Gaussian e~l ' 2 

given as (see Figure 7) 

(41) 



Wavelet Analysis in Geophysics: An Introduction 17 

Figure 7. Mexican hat wavelet. 

The constant is chosen such tha t || φ \\2= 1. This wavelet, being the 
second derivative of a commonly used smoothing function (the Gaussian), 
has found application in edge detection (see [34] and [35]). 

4 .3 . Mor le t wavelet 

The Morlet wavelet is given by 

φ(ή = ττ"1/4^-^-6" 

which is usually approximated as 

Φ* 
)e 

-t2/2 

φ(ή _ _ - 1 / 4 ρ - ί ω ο * ρ - * 2 / 2 CJO > 5. 

(42) 

(43) 

Since for ωο > 5, the second term in (42) is negligible, i.e., φ(ί) « 0, 
satisfying the admissibility condition. By Morlet wavelet we now refer to 
(43). This wavelet is complex, enabling one to extract information about 
the ampli tude and phase of the process being analyzed. The constant is 
chosen so tha t || φ \\2= 1. The Fourier transform of (43) is given by 

φ(ω) = π _ _ - l / 4 -(ω-ω0)
2/2 (44) 

This wavelet has been used quite often in analysis of geophysical pro-
cesses (for e.g. see [45]) so we shall study it in a little more detail. The 
Fourier transform of the scaled wavelet φ\}ο(ί) is given as 

λ̂,ο(ω) = χπ-ι/*β-^-^)'/2 = λ π _ ι / 4 6 - ^ - ω ) * _ 

This wavelet has the property tha t its Fourier transform is supported 
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Real and imaginary parts of Morlet wavelet 

0.5l· 
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Spectrum of Morlet wavelet 

-2 0 2 
frequency 

10 
(b) 

Figure 8. (a) (top) Real (solid line) and imaginary part (dot-dashed 
line) of Morlet wavelet (ωο = 5), and (b) (bottom) its Fourier trans-
form. 

almost2 entirely on ω > 0, centered at u°j — ωο/λ with a spread of 
= l / λ . The wavelet φχ^ itself is centered at t with a spread of σΦχ, 

σΦχ, = λ. 
Figure 8a shows the real and imaginary parts of the Morlet wavelet at 

unit scale and Figure 8b shows its Fourier transform (with ωυ = 5 ) . One can 
interpret the results of analysis of real-valued processes using this wavelet 
by plotting the square of the modulus and the phase, i.e., | ( / , ip\, t)\2 and 

on two different plots. Figures 9a,b show these plots for - 1 Im(f,il>xit) 
Re(f,tf>x,t) tan 

the analysis of a chirp signal (a signal whose frequency changes with t as at2 

where a is some constant). The wavelet transform was obtained using the 
Fourier transforms of the signal and the wavelet through implementation 
of equation (17). The scales of analysis are plotted as the ordinate, and 
the abscissa denotes t. The range of scales of the plots has been decided 
using the following criteria. If At is the sampling interval of f(t) then the 
center of passing band o;o/Amin should be less than or equal to the Nyquist 

2 T h e Fourier t r ans fo rm of (42) is suppor t ed ent i re ly ο η ω > 0 b u t t h a t of (43) has a 
negligible m a s s o n w < 0 for t he condi t ion UJQ > 5. 
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frequency, i.e., o;o/Amin < 2π /2Δ ί , implying 

UlpAt 
Amin > . (45) 

The maximum scale of analysis is obtained by considering the spread of 
ip\j. Recognizing tha t |^λ,ί| decays to 99.9% of its value at 3σψχ t , we 
impose the condition 3σ^,λ f < (£m a x — £m in) /2, i.e., the wavelet support 
should be contained within the da ta range, giving 

(46) "Oiax *Ίηιη 

The discretization of λ and t for implementation on discrete da ta is dis-
cussed in the following sections. 

Large values of | ( / , φχ^)\2 in the phase-space help us identify the scale 
of the feature and its location on the t axis easily. Figure 9a clearly depicts 
the decreasing scales in the signal with increasing t. In this figure we notice 
tha t large values of the squared modulus appear at relatively large scales on 
the right hand side of the figure where there are no large scale features. This 
is due to the apparent periodicity of the Fourier transform of the limited 
extent signal. The phase plot helps us identify the change of phase of the 
signal from 0 to 2π or — π to π. It is possible to count the number of cycles 
in a signal. However, this depends upon the scale. As scale decreases, we 
can see more waves and this gives rise to the bifurcation effect evident in 
figure 9b. This is helpful in locating singularities and identifying fractal and 
multifractal na ture of processes (for example see [1]). Figure 9b shows some 
edge effect at small scales due to the periodicity of the Fourier transform 
of the limited extent signal. This periodicity can be eliminated by taking 
the discrete Fourier transform of the chirp signal with a sufficient number 
of zeros appended at the ends. For other methods see [26]. 

§5. D i scre te Wavele t Transforms 

When the parameters λ and t in the wavelet transform (/ , φχ^) take on 
continuous values, it is called continuous wavelet transform. For practical 
applications the scale parameter λ and location parameter t need to be 
discretized. One can choose λ = λ™ where m is an integer and λ0 is a 
fixed dilation step greater than 1. Since σψχ = \σφχ , we can choose 
t = ntoX™ where to > 0 and depends upon ip(t), and n is an integer. 
The essential idea of this discretization can be understood by an analogy 
with a microscope. We choose a magnification, i.e., A^"m, and study the 
process at a particular location and then move to another location. If the 
magnification is large, i.e., small scale, we move in small steps and vice-
versa. This can be easily accomplished by choosing the incremental step 
inversely proportional to the magnification (i.e., proportional to the scale 
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Modulus 

Phase 

Figure 9. Analysis of a chirp signal using Morlet wavelet: (a) (top) 
square of the modulus and (b) (bottom) phase of (/, ip\,t). 
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\™) which the above method of discretization of t accomplishes. We then 
define 

1 , , f - n t 0 A g \ 
Φ™,η(*) = ~κ^Φ(—3^—) 

ν Λ ο Λο 
= Ä 0 - m / V ( A 0 - m i - n i 0 ) . (47) 

The wavelet transform 

(/, t/>m,»> = \-m/2 J f(t)ip(\-mt - nt0) dt (48) 

is called the discrete wavelet transform. 
In the case of the continuous wavelet transform we saw tha t (f, ip\ft) 

for λ > 0 and t G (—οο,οο) completely characterizes the function f(t). In 
fact, one could reconstruct f(t) using (14). Using the discrete wavelet ipmin 
(with φ decreasing sufficiently fast) and appropriate choices of λο and £o> 
we can also completely characterize f(t). In fact, we can write f(t) as a 
series expansion, as we shall see in the following subsections. We first s tudy 
orthogonal wavelets and then the general case. 

5 .1 . Orthogona l wavelet transforms and mult ireso lut ion analys is 

5 .1 .1 . Orthogona l wavelet transforms 

Consider the discrete wavelet transform for λο = 2 and t0 = 1, i.e., 

i f ne}rri 

</V» ( 0 = 2 - » / V ( 2 - r a t - n) = — φ ( - ¥ — ) . (49) 

For the purpose of this subsection, let ipm,n{t) denote the above discretiza-
tion rather than the general discretization given by equation (47). We will 
also use the identity ^oo(^) = Ψ(ί)· It is possible to construct a certain 
class of wavelets ip(t) such tha t ipm,n(t) are orthonormal, i.e., 

/ · 
Φπι,η(^)Φτη',η'(ή dt = J m m / £ n n / (50) 

where 6{j is the Kronecker delta function given as 

%J \0 otherwise. ^ ' 

The above condition implies tha t these wavelets are orthogonal to their 
dilates and translates. One can construct ^ m ) „ ( i ) tha t are not only or-
thonormal, but such tha t they form a complete orthonormal basis for all 
functions tha t have finite energy [30]. This implies tha t all such functions 
f(t) can be approximated, up to arbitrary high precision, by a linear com-
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bination of the wavelets ipmjn(t), i.e., 
oo oo 

/(*)= Σ Σ Dm^m,n(t) (52) 
m= — oo n = —oo 

where the first summation is over scales (from small to large) and at each 
scale we sum over all translates. The coefficients are obtained as 

Dm,n = (ί,Ψπι,η) = I f ^)Ψm,η{1) dt 

and, therefore, we can write 
oo oo 

/(*)= Σ Σ (/^m,n)^m,„(i). (53) 
m— — oo n= — oo 

From (53) it is easy to see how wavelets provide a time-scale representation 
of the process where time location and scale are given by indices n and m, 
respectively. The equality in equation (53) is in the mean square sense. 
The above series expansion is akin to a Fourier series with the following 
differences: 

1. The series is double indexed with the indices indicating scale and 
location; 

2. The basis functions have the time-scale (time-frequency) localization 
property in the sense discussed in section 2.2. 

By using an intermediate scale mo, equation (53) can be broken up as 
two sums 

oo oo mo oo 

/ ( * ) = Σ Σ (ί'Ψ™,η)Ψ,η,η(*)+ Σ Σ </ '</>m,n>V>m,n(i) · 
m = m o + l n= — oo m— — con— — oo 

(54) 
It turns out tha t one can find functions 0m )n(O defined analogous to 

0m,n(i) = 2 - m / 2 0 ( 2 - m i - n ) (55) 
and satisfying certain properties enumerated in appendix A, such tha t the 
first sum on the RHS of equation (54) can be written as a linear combination 
of φηΐο,η (see [30]), i.e., 

oo oo oo 

( ' ) = Σ Σ < / > ^ m , n ) t f m , n ( t ) · ( 5 6 ) 
η= — oo m = m o + l n = — oo 

Consequently, 
oo m 0 oo 

/ ( * ) = Σ < / , 4 > m „ , n > < £ m o , » W + Σ Σ < / > ^ m , n ) t f m , n ( t ) ( 5 7 ) 
n= — oo m=—oon= — oo 
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The function 0m,n(O is called a scaling function and satisfies J φ(ΐ) dt = 1 
among its other properties. For example, the scaling function correspond-
ing to the Haar wavelet is the characteristic function of the interval [0,1) 
given as 

(58) 

The scaling functions and wavelets play a profound role in the analysis of 
processes using orthogonal wavelets. This analysis framework is known as 
the wavelet multiresolution analysis framework and is discussed below. Ap-
pendix B describes a class of orthogonal wavelets developed by Daubechies 
[13] and Appendix C briefly discusses the implementation algorithm by 
Mallat [30]. 

5.1.2. Multiresolution representat ion 
Equation (56) states that all the features of the process /(£), that are 

larger than the scale 2m°, can be approximated by a linear combination of 
the translates (over n) of the scaling function <f)(t) at the fixed scale 2m°. 
Let us represent this approximation by PmQj', i.e., 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

Let us now define 

so that equation (57) becomes 

Since mo is arbitrary we also have 

from which we can obtain by subtraction 

or in general 

This equation characterizes the basic structure of the orthogonal wavelet 
decomposition (53). As mentioned before Pmf(t) contains all the informa-
tion about features in f(t) that are larger than the scale 2m. From equation 
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(64) it is evident tha t when we go from the scale 2 m to the next smaller 
scale 2 m _ 1 , we add some detail to Pmf(t) which is given by Qmf(t). We 
can, therefore, say tha t Q m / ( i ) , or equivalently the wavelet expansion of 
a function at any scale 2 m , characterizes the difference between the pro-
cess at two different scales 2 m and 2 m _ 1 , or equivalently at two different 
resolutions. 

Representation of a function within the nested structure of equation 
(64) is called the wavelet multiresolution representation. Formally it con-
sists of a sequence of closed subspaces {Vr

m}m €2 °f L2(H) where L2(H) 
denotes the Hubert space3 of all square integrable functions, and R and Z 
denote the set of real numbers and integers, respectively. These subspaces 
characterize the behavior of a function at different scales or resolutions. 
For example, Vm characterizes functions at scale 2 m or equivalently at res-
olution given as 2 _ m samples per unit length. The subspaces satisfy the 
following properties: 

M l Vm C Vm-i for all m G Z, i.e., a space corresponding to 
some resolution contains all the information about the space 
at lower resolution, or equivalently, a space corresponding to 
some scale contains all the information about the space at 
larger scale. 

M2 U^U.ooVm is dense in L 2 ( R ) and f l ^ . ^ V ^ = {0}, i.e., 
as the resolution increases the approximation of the func-
tion converges to the original function and as the resolution 
decreases the approximated function contains less and less 
information. 

M3 f(t) G Vm if and only if f(2t) G Vm_i for all m G Z, i.e., 
all spaces are scaled versions of one space. 

M4 f(t) G Vm implies f(t - ^ r ) G VmVk G Z, i.e., the space 
is invariant with respect to the "integer translations" of a 
function. 

Notice tha t since Vm C Vm-i we can write 

Vm-i=Vm®Om (65) 

where Om is the orthogonal complement of Vm in Vm_i (i.e., Om is the 
set of all functions in Vm-i tha t are orthogonal to Vm) and 0 denotes 

3 A Hubert space H is a vector space (possibly infinite dimensional) with an inner 
product (.,.) which is complete with respect to the norm || / | |= (/, f)1/2 induced by 
this inner product. A normed space is complete if every Cauchy sequence in that space 
converges to an element of that space, i.e., for every sequence {/n} C H such that 
|| fm — fn ||—y 0 as m, n -> oo, we have / „ - ^ / G H a s n - > o o [44]. 
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the direct sum. Given this structure, representation of a function in Vm is 
given by Pmf(t) and representation in 0m is given by Qmf(t) (compare 
equation (65) with equation (64)). The operators Pm and Qm are orthog-
onal projection operators onto the spaces Vm and 0 m , respectively. Let 
P^f and Qmf denote the discrete set of inner products { ( / , </>m,n)} and 
{(ί,ψπι,η)}·, respectively. The set P^f gives the discrete approximation of 
f(t) at scale 2 m and Q^f gives the discrete detail approximation of f(t). 
Then, in simple words equation (65) says tha t we need to add the infor-
mation contained in Q m / to P^f to go from one resolution (scale) to the 
next higher resolution (smaller scale). 

The multiresolution analysis framework is not unique. Several mul-
tiresolution frameworks can be constructed depending upon the choice of 
the pair (φ,ψ). Recall tha t the choice of either φ(ί) or ip(t) determines 
the other. The simplest of all multiresolution frameworks is the one where 
Vm is composed of piecewise constant functions. In this case the scaling 
function is given by equation (58) and the wavelet is the Haar wavelet given 
by equation (40). For examples of other pairs of (φ,φ) tha t give rise to 
the multiresolution framework, see Appendix B and [13, 15] and [31]. For 
algorithms to construct the pairs (φ,ψ), see [52, 51]. 

5.2. N o n - o r t h o g o n a l wavelet transforms 

5 .2 .1 . Frames 

We saw in section 5.1 tha t it is possible to find λο, to and ipmin(t) 
as defined in equation (47) such tha t ψγη,η{ί) are orthogonal. This allows 
a function f(t) to be written as a series expansion as given in equation 
(53). However, even if ^ m , n ( 0 are not orthogonal, the function f(t) can be 
represented completely as a series expansion under certain broad conditions 
on the wavelet r/>(i), t0 and λο· These discrete wavelets which provide 
complete representation of the function f(t) are called wavelet frames and 
will be the subject of the next sub-section. We will see tha t orthogonal 
wavelets are a special case of this general framework. Let us first define 
frames. 

A sequence of functions {ψη}η£Ζ
 m a Hilbert space H (see footnote 

on page 24 for definition of Hilbert Space) is called a frame if there exist 
two constants A > 0, B < oo, called frame bounds, so tha t for all functions 
f(t) in the Hilbert space H the following holds: 

A | | / | | 2 < £ | < / , v > „ > l 2 < B | l / l l 2 · (66) 
n 

The constant B < oo guarantees tha t the transformation / —> { ( / , φ η ) } 
is continuous and the constant A > 0 guarantees tha t this transformation 
is invertible and has continuous a inverse. This enables one to: (1) com-
pletely characterize the function, and (2) reconstruct the function from its 
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decomposition. 
In general, a frame is not an orthonormal basis. It provides a redundant 

representation of the function f(t). This is analogous, for example, to 
representing a vector in the Euclidean plane using more than two basis 
vectors. The ratio A/B is called the redundancy ratio or redundancy factor. 
Redundant representations are more robust to noise and therefore useful 
when noise reduction is an issue. 

When A = B, the frame is called a tight frame. In this case there is a 
simple expansion formula given as 

Ϊ(ΐ) = \Σ(Ϊ,Ψη)ψη{ί). (67) 
n 

Notice tha t this formula is very similar to the one obtained for an or-
thonormal set {φη}· In this case, however, {φη} niay not even be linearly 
independent, i.e., there is a large degree of redundancy in the represen-
tation. Orthonormal bases arise as a special case. For a tight frame, if 
A = B = 1 and if || φη \\= 1, then {φη} form an orthonormal basis and we 
get the usual expansion formula. When {^m,n} constitute a tight frame 
then A = B = C^ / io log^o where Οψ is defined in equation (15) (see [15], 
equation 3.3.8). However, in practice it is difficult to get A exactly equal 
to £?, but easier to get A close to B, i.e., e = -j — 1 <£ 1. Daubechies (see 
[14], pg. 971) calls such frames snug frames. The expansion formula in this 
case is given as 

/ ( ί ) = ΐΓβΣ(/^>«+^ (68) 
n 

where the error 7 is of the order of 2x7 || / ||· The general case of A 96 B 
is more involved and beyond the scope of this introduction (see [15], for 
details). 

5.2 .2 . Wave le t frames 

Now let L denote the transformation L : f(t) -l· {(/ ,ψγη,η)}, where 
tpm,n(t) is defined by equation (47). We can characterize the function 
f(t) through the wavelet coefficients { ( / , ipm,n)} provided the transform L 
satisfies the condition (66), i.e., 

Α||/ιι2<ΣΣκ/>'/ν»>ΐ2^ΐ/ΐΐ2· (69) 
m n 

Given discrete wavelets, we can obtain simple expansions such as in (67) 
and (68), provided ^ m > n constitute a frame, i.e., 

W) = I Σ Σ</' VVn>̂ m,nW· (70) 
m n 
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if {ψπι,η} is a tight frame, and 

/ ( ί ) = ζΤβΣΣ<·Λ^>">^."+-Ύ (7i) 
m n 

when {ψπι,η} is a snug frame. Such frames can be constructed for certain 
choices of λο and £o, provided ip(t) satisfies the admissibility condition, 
i.e., J φ(ί) dt — 0, and has compact support or sufficiently fast decay. The 
conditions for the choice of λο and to are described in Daubechies (see [15], 
chapter 3). Here it suffices to say tha t these conditions are fairly broad 
and admit a very flexible range. For example, for the Mexican hat wavelet 
(as given in equation (41)), for λο = 2 and to = 1, the frame bounds are 
A = 3.223 and B = 3.596 giving B/A = 1.116. 

One can obtain B/A closer to 1 by choosing λο < 2. Grossmann et al. 
[24] suggested decomposing each octave into several voices (as in music) by 
choosing λο — 2 1 / / M where M indicates the number of voices per octave. 
With such a decomposition we get 

ψ™η(ή = 2 - m / 2 A V ( 2 " m / M * - nto). (72) 

For the Mexican hat wavelet, by choosing M = 4 and to = 1 we can obtain 
A = 13.586 and B = 13.690 giving B/A = 1.007. Such a decomposition 
using such a multivoice frame enables us to cover the range of scales in 
smaller steps giving a more "continuous" picture. For example, with M = 4 
we get discrete scales at {λ = . . . , 1 , 2 1 / 4 , 2 1 / 2 , 2 3 / 4 , 2 , 2 5 / 4 , 2 3 / 2 , 2 7 / 4 , 4 , . . . } 
as against {λ = . . . , 1 ,2 ,4 , . . .} for usual M = 1. Figure 9 was created using 
Morlet wavelet with M = 4 and t0 = 1. For this decomposition A = 6.918, 
B = 6.923 giving B/A = 1.0008. It should be noted tha t Morlet wavelet, 
which is not orthogonal, gives a good reconstruction under the framework 
of equation (71). Multivoice frames are discussed extensively in Daubechies 
([15], chapter 3) where more details on the values of A and B for different 
choices of M and to are given for the mexican hat and the Morlet wavelet. 

Redundant representations such as the one presented above, in addition 
to their noise reduction capability, are useful when representations tha t are 
close to the continuous case are sought (see for example [3, 32, 35, 5, 33] 
and [49]). 

5.3 . B ior thogona l wavele ts 

Under the wavelet multiresolution framework, the decomposition and 
reconstruction of a function is done using the same wavelet, i.e., 

ί(*) = ΣΣ(Μ™.»)ψ™.»Μ (73) 
m n 

where { ( / , ^ m , n ) } are the decomposition coefficients. This however, can 
severely limit the choice of wavelet φ(ί). For example, it has been shown 
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(see [15], theorem 8.1.4) tha t the only real and compactly supported sym-
metric or antisymmetric wavelet under a multiresolution framework is the 
Haar wavelet. In certain applications however, real symmetric wavelets 
which are smoother and have bet ter frequency localization than the Haar 
wavelet may be needed. In such situations, biorthogonal wavelets come 
to the rescue. It is possible to construct two sets of wavelets {ipm^n} and 
{Ψτη,η} such tha t 

/(') = ΣΣ^-.")</νη(ί) (74) 
m n 

= EE</^™.»>^.«w· (75) 
m n 

That is, one can accomplish decomposition using one set of wavelets and 
reconstruction using another. The wavelets ißmyn(t) = ^ 7 7 ^ ( 2 ^ — n ) a n ( ^ 

ψηι,η^) = 2^72^(2^ ~ n ) n e e d t 0 S a t i s fy 

EEK/></Vn>|2 < B\\f\\* (76) 
m n 

ΣΣκ/'Vw*)!2 ^ è\\f\\2 (77) 
m n 

{Ψπι,η,Ψτη',η') = ^mm'^nn' (78) 

where B and B are some constants and condition (78) is the condition of 
biorthonormality. Given such a biorthonormal set, it is possible to con-
struct corresponding scaling functions {φηι,η} a n d {<j>m,n} such tha t 

\ψπι,η·)ψπι,η'/ — ^ηη'· v ' * V 

Notice tha t nothing is said about the orthogonality of {ψγη,η}, {Ψπι,η}, 
{Φπι,η} a n d {Φπι,n) themselves. In general they form a linearly indepen-
dent basis. Also, there is no condition of orthogonality between the wavelets 
ψ(ί) and V>(£), a n d the corresponding scaling functions φ(ί) and 0(£), re-
spectively. Given these wavelets and scaling functions, one can construct 
a multiresolution nest, as in the orthonormal case, i.e., 

• · · c v2 c Vi c v0 c y_i c K-2 c · · · 

• · · C V2 C Vi C Vo C VLi C V-2 C ■ ■ ■ 
with Vm — span{0 m j „} and Vm = span{0 m > n } and the complementary 
spaces Om = span{^ m > n } and O m = s p a n { ^ m > n } . The spaces Vm and 
Om (Vm and O m , respectively) are not orthogonal complements in general. 
Equation (78), however, implies tha t 

Vm JL Öm and Vm J- O m . (80) 
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Another advantage of biorthogonal wavelets is (see [15], section 8.3) 
tha t one can have ip(t) and zp(t) with different vanishing moments. For 
example, if ip(t) has more vanishing moments than φ{ϊ), one can obtain 
higher da t a compression using ( / , V>m,n) and a good reconstruction using 

the sum being restricted to some finite values. 

§6. Two-Dimens iona l Wave le t s 

6 .1 . Cont inuous wavelets 

The continuous analogue of wavelet transform (12) is obtained by treat-
ing u — (u 1,1*2) and t = (£1,^2) as vectors. Therefore for the two dimen-
sional case 

(81) 

(82) 

λ > 0 

An analogous inversion formula also holds, i.e., 

The condition of admissibility of a wavelet remains the same, i.e., 

1. compact support or sufficiently fast decay; and 

2. fft{t)dt = 0. 

Two examples of two-dimensional wavelets are discussed in the follow-
ing subsection. 

6 .1 .1 . Two-d imens iona l Morle t wavelet 

Define the vector t = (£1,^2) on the two-dimensional plane with \t\ = 
\Jt\ -+-1\. Then the two dimensional Morlet wavelet is defined as 

(83) 

(84) 

with Fourier transform 

where Ω = {ω\, ω<χ ) is an arbitrary point on the two-dimensional frequency 
plane, and Ω° = (ω^,ωί,) is a constant. The superscript Θ indicates the 
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Figure 10. Frequency support of two dimensional Morlet wavelet. 

direction of the wavelet, i.e, 

^ t a n - 1 ^ . (85) 

The properties of this wavelet are best understood from its spectrum. 
Figure 10 shows the spectrum of the two-dimensional Morlet wavelet for 
0 = 0 and λ = 1. This wavelet is no longer progressive as in the one-
dimensional case, i.e., its spectrum is not entirely supported on the positive 
quadrant . Manipulating Ω0 by changing Θ allows us to change the direc-
tional selectivity of the wavelet. For example, by choosing Ω° = (ω?, ω^) = 
u;°(cos0,sin0), ω° > 5, 0 < θ < 2π we get the wavelet transform 
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The last equation is obtained by using Parseval's theorem. At any arbitrary 
scale λ, equation (86) can be written as 

\ /»OO /«OO 0 0 

V^ J — OO J — OO 

The above equation indicates tha t the wavelet transform {ί,φθ
χ *) extracts 

the frequency contents of the function f(t) around the frequency coordi-
nates (ωι/Χ,ω^/Χ) = (ω° cos0/A,u;0 sin0/A) with a radial uncertainty of 
σ ? = Ι / λ , at the location t. Therefore, by fixing λ and traversing along 

0, directional information at a fixed scale λ can be extracted, and by fix-
ing Θ and traversing along λ, scale information in a fixed direction can be 
obtained. 

6.1 .2 . Halo wavelet 

Often the directional selectivity offered by Morlet wavelet is not desired 
and one wishes to pick frequencies with no preferential direction. Dallard 
and Spedding [12] defined a wavelet by modifying the Morlet wavelet and 
called it the Halo wavelet because of its shape in the Fourier space. The 
wavelet itself is defined through its Fourier transform 

ψ(Ω) = κβ-(ΙΩΗΩ°Ι>2/2 (88) 

where n is a normalizing constant. As can be seen from the above expression 
this wavelet has no directional specificity. 

6.2. Orthogona l wavele ts 

For two-dimensional multiresolution representation, consider the func-
tion / ( i i ,£2) £ I / 2 (R 2 ) . A multiresolution approximation of L 2 ( R 2 ) is a 
sequence of subspaces tha t satisfy the two-dimensional extension of prop-
erties M l through M4 enumerated in the definition of the one-dimensional 
multiresolution approximation. We denote such a sequence of subspaces of 
L 2 ( R 2 ) by ( ^ m ) m G z · T k e a PP r o x i m a - t ion of the function / ( i i , Î 2 ) at the 
resolution m, i.e., 2 2 m samples per unit area, is the orthogonal projection 
on the vector space Vm. 

A two-dimensional multiresolution approximation is called separable 
if each vector space Vm can be decomposed as a tensor product of two 
identical subspaces V^ of L 2 ( R ) , i.e., the representation is computed by 
filtering the signal with a low pass filter of the form Φ(ί ι , t2) = φ(ίι)φ^2). 
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For a separable multiresolution approximation of L 2 ( R 2 ) , 

Vm = t £ ® V £ (89) 

where 0 represents a tensor product. It, therefore, follows (by expanding 
y m + i as in (89) and using property M l ) tha t the orthogonal complement 
0m of Vm in Vm+\ consists of the direct sum of three subspaces, i.e., 

Om = {VL®Oln)®{Ol®V^)®{0]n®0]n). (90) 

The orthonormal basis for Vm is given by 

( 2 m * ( 2 m t i - n , 2 m t 2 - f c ) ) ( n fc)eZ2 = ( 2 m ^ m ( 2 m i 1 - n ) ^ » m ( 2 m i 2 - f c ) ) ( n k ) ^ . 

' <91> Analogous to the one-dimensional case, the detail function at the resolution 
m is equal to the orthogonal projection of the function on to the space Om 

which is the orthogonal complement of Vm in V^+i . An orthonormal basis 
for Om can be built based on Theorem 4 in Mallat (1989a, pg. 683) who 
shows tha t if 4>{t\) ls the one dimensional wavelet associated with the 
scaling function φ(ίχ), then the three "wavelets" Φ 1 ^ , ^ ) — Φ(ίι)Ψ(ί2)·> 
Φ 2 ( ί ι , ί 2 ) = φ{Η)φ{ΐ2) and Φ 3 ( ί ι , ί 2 ) = Φ{Η)φ{ί2) are such tha t 

i V ^ m n / î ) ^ Trink") ^ m n k ) ( n k)£%2 J 

is an orthonormal basis for Om. 
The discrete approximation of the function f(ti,t2) at a resolution m 

is obtained through the inner products 

Pif = {(f,*rnnk)(nk)€Z*} = { ( / . 0 π , η ^ » * ) ( Μ ) 6 Ζ » } (92) 

The discrete detail approximation of the function is obtained by the inner 
product of / ( i i ,£2) with each of the vectors of the orthonormal basis of 
Om. This is, thus, given by 

Ä 7 = {(/,*L,*)(n,fc)<Ez2}> (93) 

Ä 2 / = {(/,*L,*)(„,fc)€z*K (94) 
and 

Q£/ = {(/,*3
m„*)(n,fc)€Z'}· (95) 

The corresponding continuous approximation will be denoted by Qmf(t), 
Qmf(t) and Qmf(t) respectively. For implementation to discrete da ta see 
[31]· 

The decomposition of Om into the sum of three subspaces (see equa-
tion (90)) acts like spatially oriented frequency channels. Assume tha t we 
have a discrete process at some resolution m + 1 whose frequency domain 
is shown in Figure 11 as the domain of Pm+if. When the same process 
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Figure 11 . Frequency support of wavelets in two dimensional mul-
tiresolution decomposition. 

is reduced to resolution ra, its frequency domain shrinks to tha t of P^f. 
The information lost can be divided into three components as shown in 
Figure 11: vertical high frequencies (high horizontal correlation), horizon-
tal high frequencies (high vertical correlation) and high frequencies in bo th 
direction (high vertical and horizontal correlations, for example, features 
like corners). They are captured as Q ^ / , Q^f a n d Qmf respectively. 
This property has been used in [29] to characterize the directional behav-
ior of rainfall. Wavelets with more than three frequency channels can be 
constructed (see, for example, [10]) but are not discussed herein. 

§7. Conclus ions 

Wavelet theory involves representing general functions in terms of sim-
pler building blocks at different scales and positions. Wavelets offer a ver-
satile and sophisticated tool yet simple to implement, and have already 
found several applications in a wide range of scientific fields. The list of 
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Table I 
Anonymous ftp site information for wavelet related software. 

1 FTP site 
cs.nyu.edu 
playfair.stanford.edu 
simplicity.stanford.edu 
gdr.bath.ac.uk 
pascal.math.yale.edu 

bimi@iss.nus.sg 
cml.rice.edu 

1 wuarchive.wustl.edu 

Directory 
pub/wave 
pub/software/wavelets 
/pub/taswell 
/pub/masgpn 
/pub/software/xwpl 

e-mail request 
/pub/dsp/software 
edu/math/msdos/modelling 

References/Notes f 
[35, 33], C programs 1 
MATLAB Scripts 
MATLAB scripts 
S software 
Wavelet Packet 
Laboratory 
for KHOROS 
MATLAB scripts 
C programs 

wavelet applications increases at a fast pace and includes to date signal pro-
cessing, coding, fractals, statistics, image processing, astrophysics, physics, 
turbulence, mathematics, numerical analysis, economics, medical research, 
target detection, industrial applications, quantum mechanics, geophysics 
etc. (see, for example, the edited volumes by Chui [7], Ruskai et al. [48], 
Benedetto and Frazier [3], Farge et al. [20], Meyer and Roques [41], Combes 
et al. [9], and Beylkin et al. [2], among others). A general li terature survey 
on wavelets can be found in [46]. In geophysics, significant progress has 
already been made in studying and unraveling structure of several geophys-
ical processes using wavelets (see the extended bibliography of wavelets in 
geophysics at the end of this volume). We have no doubt tha t the study of 
geophysical phenomena, which are by nature complex, and take place and 
interact at a range of scales of interest, will continue to benefit from the 
use of the powerful and versatile tools tha t wavelet analysis has to offer. 

There are a number of useful sources of information about wavelet pub-
lications and computer software for the implementation of wavelet analysis. 
An electronic information service called "wavelet digest" exists (at the t ime 
of this writing) on the Internet with the address waveletumath.scarolina.edu. 
Several anonymous ftp sites exist on the Internet from where software for 
wavelet analysis can be obtained. In Table I we provide a brief list (known 
to the authors at the time this was written) solely for the purpose of infor-
mation to readers, without any recommendations, or reference to suitability 
or correctness of these codes. 

A. Propert i e s of Scaling Funct ion 

The scaling function satisfies the following properties: 

1. j 4>(t)dt = 1, i.e., the scaling function is an averaging function-, 
compare this with the wavelet tha t satisfies / ψ(ί) dt = 0. 
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2. || φ(ΐ) | |= 1, i.e., the scaling function is normalized to have unit 
norm. 

3. f φτη,η(ί)ψπι',η'(t) dt = 0, i.e., the scaling function is orthogonal to 
all the wavelets. 

4. j ' Φτη,η(ί)Φπι,η'(ί) dt = Snn>, i.e., the scaling function is orthogonal 
to all its translates at any fixed scale. Note tha t unlike the wavelets, 
the scaling function is not orthogonal to its dilates. In fact, 

5. (j)(t) = Ση ϊι(η)φ(2ί — η), i.e., the scaling function at some scale can 
be obtained as a linear combination of itself at the next scale (h(n) 
are some coefficients called the scaling coefficients). This is a two-
scale difference equation (see [16] and [17] for a detailed t reatment 
of such equations). 

6. The scaling function and wavelet are related to each other. In fact, 
one can show tha t 

φ{ΐ) = Υ/9{η)φ{2ί-η) (A.l) 
n 

where g(n) are coefficients derived from h(n). Tha t is, the wavelets 
can be obtained as a linear combination of dilates and translates of 
the scaling function. 

For the particular case of Haar wavelet (see equation (40)) and the corre-
sponding scaling function (equation (58)) h(0) = h(l) = 1 and h{n) = 0 
for all other n, and g(l) = —g(0) = 1 and g(n) = 0 for all other n. 

B . Daubech ie s ' Wave le t s 

Daubechies [13] developed a class of compactly supported scaling func-
tions and wavelets denoted as ( ^ , ρ/ψ). They were obtained through the 
solution of the following two-scale difference equations: 

2N-1 

φ(ή = y/2 Σ Κη)Φ{2ί - n) (Β·ΐ) 

2 Λ Γ - 1 

tl>(t) = j2 Σ 9{η)φ{2ΐ-η) (Β.2) 
n=0 

where 
g(n) = (-l)nh(2N - n + 1) for n = 0 , 1 , . . . , 2N - 1. (B.3) 

For techniques to solve the above equations see [52]. The scaling coefficients 
h(n) are obtained from solutions of high order polynomials ([15], chapter 
6, and [51]) and satisfy the following constraints: 
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1. A necessary and sufficient condition for the existence of a solution 
to the above two-scale difference equations is 

2 Λ Γ - 1 

Σ M») = \/2· (Β.4) 
n=0 

2. Integer translations and dilations of </>(£) and φ(ί) form an orthog-
onal family if the scaling coefficients satisfy 

2 J V - 1 

J2 h(n - 2k)h(n - 21) = Skl for all k and I. (B.5) 
n=0 

3. The constraints 
2 7 V - 1 

Σ {-l)n~lnkh{n) = 0 for k = 0 , 1 , . . . , N - 1 (B.6) 

yield the result tha t φ(ϊ) has N vanishing moments, i.e., 

tktp(t) at = 0 for k = 0 , 1 , . . . , N - 1. (B.7) /■ 

Daubechies' wavelets of this class have the following properties: 

1. They are compactly supported with support length 2N — 1. The 
scaling function also has the same support length. 

2. As iV increases, the regularity of χφ and ΝΨ also increases. In fact 
ΝΦ,ΝΨ £ CaN (the- set of continuous functions tha t are a^ order 
differential) where (iV, α^γ) pairs for some iV are given as (see [13]) 

{(2,0.5 - e), (3,0.915), (4,1.275), (5,1.596), (6,1.888), (7,2.158)}. 

3. Condition (B.7) of vanishing moments of φ(ΐ) implies tha t up to 
Nth order derivatives of the Fourier transform of φ(ϊ) at the origin 
are zero, i.e., 

-^φ^ω = 0) = 0 for k = 0 , 1 , . . . , iV - 1. (B.8) 

This property essentially implies a form of localization of the Fourier 
transform φ(ω). 

Figures B l and B2 show the scale function and the corresponding 
wavelets for N = 2 and TV = 5 respectively. The figures also depict the 
magnitude of their Fourier transforms. As can be seen the regularity of the 
wavelets and the scale functions increase as N increases. 
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Figure B l . The figure shows Daubechies' scaling function (upper 
left) and the wavelet (lower left) of order N = 2. The magnitude of 
their Fourier transforms is shown, respectively, on the right hand column 
plots. 

C. I m p l e m e n t a t i o n Algor i thm for Orthogonal Wave le t s 

The implementation algorithm for wavelet multiresolution transforms 
is simple. From a da ta sequence {c^} (say at resolution level m = 0) 
corresponding to a function f(t) we construct 

ρ„/(*) = Σ <£#'-") (C.I) 

for a chosen <£(£), i.e., assume { c ° } n € £ = { ( / ,0On)} n G z · The da ta se-
quence at lower resolution can be obtained by 

ci = 5>(»-2*)<$. (C.2) 
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Figure B2. The figure shows Daubechies' scaling function (upper 
left) and the wavelet (lower left) of order N = 5. The magnitude of 
their Fourier transforms is shown, respectively, on the right hand column 
plots. 

The detail sequence {^}f c Gz = {(/ '^i^)}fceZ 1S obtained as 

d\ = Y,g{n-2k)cl (C.3) 

Equivalently the above two equations can be written in the matr ix notat ion 

{c1} = H{c0} and {d" 1 } = G{c 0 } . (C.4) 

The matrices H and G are such tha t 

HH* = / , GG* = I (C.5) 

and H*H and G*G are mutually orthogonal projections with 

H*H + G*G = I (C.6) 
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where H* and G* are adjoints of H and G respectively and i" is the identity 
matrix. Also, 

GH* = 0 and HG* = 0. (C.7) 

The algorithm given in equation (C.2) and (C.3) can be recursively im-
plemented and the da ta and details at lower and lower resolutions can be 
obtained. This also highlights another important feature. Once we have 
the coefficients h{n), we never need to construct the scale function 0(f) or 
the wavelet φ(ί) for implementation on a discrete da ta set. The assump-
tion involved, however, is tha t c^ = f f(t)(f)(t — n)dt, i.e., the integration 
kernel is φ(ί) corresponding to the chosen /i(n)'s. The reconstruction of 
the original sequence can be achieved by using 

c™-1=2Y^h(n-2k)cÎ + 2j2g(n-2k)dZ (C.8) 
k k 

and is exact. 
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Applications of Structure Preserving Wavelet Decompositions 
to Intermittent Turbulence: A Case Study 

Carl R. Hagelberg and Nimal K. K. Gamage 

Abstract. Coherent structures in velocity and temperature in the atmospheric 
boundary layer account for a large portion of flux transport of scalars such as 
momentum, heat, trace chemicals and particulates. Generally, coherent structures 
are bounded by zones of concentrated shear in velocity or temperature fields. 

We develop techniques based on the wavelet transform to provide a signal 
decomposition which preserves coherent structures. The decomposition is used 
to separate the signal into two components, one of which contains the important 
structures as defined by the characteristics of the transform. Embedded within 
the technique are a coherent structure detection mechanism, an analysis of in-
termittency resulting in an intermittency index, and filtering techniques. We 
illustrate the dependence of the coherent structure detection mechanism on the 
choice of analyzing wavelet demonstrating that anti-symmetric wavelets are ap-
propriate for detecting zones of concentrated shear, while symmetric wavelets are 
appropriate for detection of zones of concentrated curvature. 

We apply these techniques to the vertical velocity component, virtual po-
tential temperature, and buoyancy flux density records from two portions of data 
gathered during the First International Satellite Land Surface Climatology Project 
(ISLSCP) Field Experiment 1987 (FIFE 87). We analyze the buoyancy flux cor-
responding to velocity and temperature structures in a convective, unstable at-
mospheric boundary layer, and the same boundary layer in a state of declining 
convection in late afternoon. 

Spectral estimates of each of the partitions for the velocity signals are com-
pared to the non-partitioned velocity signals. The characteristics of the partition 
reveal that the structure containing components of the velocity records follow a 
classical spectral description having a —5/3 power law behavior in the inertial 
range, while the non-structure components follow a —1 power law. We suggest 
that classification of turbulence as weak or strong can be based on the intermit-
tency index and the scale distribution of coherent structures. 
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§1. Introduction 

Various physical processes in the atmospheric boundary layer such as 
the vertical transport of momentum and heat are associated with intermit-
tent, coherent events, such as convective updrafts and plumes occurring 
due to localized heating and the resulting convection [18, 20]. Character-
izing the physics of these events through observations and their behavior 
under varying conditions is still a topic of considerable continued study 
[1, 3]. There is a need to verify existing models (conceptual, mathemati-
cal or numerical) with observational data, and the need to provide models 
with parameter estimates for realistic simulation and continued insight into 
the physics to further develop conceptual models. Additionally, there is a 
need to determine from observation a set of parameters which best de-
scribe the processes associated with intermittent events. Identification of 
such parameters will suggest new approaches to modeling. 

Conditional sampling techniques have been extensively reported in 
the literature as a means of extracting coherent events from data records 
[1, 3, 17, 20, 24]. Typically, conditional sampling techniques extract co-
herent events from a record to form an ensemble. The ensemble is then 
analyzed to characterize the events. This process loses important inter-
mittency information since the global placement of the events is neglected. 
Various approaches to the sampling method have been used including "di-
rect" thresholding on the values of scalars [18], thresholding on computed 
variance over short record patches [24, 25], visual identification of time do-
main characteristics [3], and thresholding time domain gradients [17]. In 
the latter case, an indicator record is constructed applying a threshold on, 
for example, the absolute value of the time derivative of velocity. This al-
lows the definition of intermittency as a function of threshold which is 0 if 
no events are selected and 1 if the whole record is selected. This technique 
does not attempt to address the issue of coherence. More recently, con-
ditional sampling methods have been developed based on variants of the 
wavelet transform [4, 9, 20]. The techniques proposed and demonstrated 
here, based on the wavelet transform, provide a general and objective means 
for achieving the desirable characteristics of conditional sampling methods 
and also provide a measure of intermittency which is directly related to 
coherent events. 

The wavelet transform has evolved in various disciplines which require 
analysis of signals exhibiting intermittency in various forms. We attempt 
to illustrate some properties of the wavelet transform and propose certain 
new ideas useful to the study of atmospheric turbulence and the planetary 
boundary layer. 

Sharp edges contain significant energy at high wave number. A signal 
consisting of intermittent sharp edges can have varying spectral charac-
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teristics depending on the spacing of the events. This is significant since 
the physical processes of t ransport of momentum and heat often occur in 
concentrated events (in space or time) in the atmospheric boundary layer. 
Consequently, a spectral description of such processes is not adequate to 
charcterize the intermittency of events. 

In this paper we partit ion signals into two components. One contain-
ing coherent structures characterized by sharp transitions and intermittent 
occurrence, the other component containing the remaining portion of the 
signal essentially characterized by smaller length or t ime scales and the 
absence of coherent events. We envision an intermittency index, a struc-
ture type, and perhaps a small-scale spectral characterization as typical 
parameters useful for characterizing the atmospheric boundary layer. The 
s tructure type can be based on the analyzing wavelet. The intermittency 
index is defined in Section 3 from the local extremes of the wavelet t rans-
form. The spectrum may be computed directly from the wavelet transform 
phase plane and is discussed in Section 2. We note tha t the partitioning 
we develop is different from a Fourier based low-pass/high-pass partition-
ing since a typical structure defined by a large gradient will have frequency 
components in both bands. 

It is possible to show tha t any symmetric wavelet is the second deriva-
tive of a smoothing function, whereas an anti-symmetric wavelet is the first 
derivative of a smoothing function [4, 22]. The anti-symmetric wavelets are 
optimally suited for shear-zone or micro-front detection [10]. These an t i -
symmetric events contribute to the inertial range, dissipation range, and 
to t ranspor t processes. In contrast, the symmetric wavelets are optimal for 
finding maximum curvature. Hence, if a signal contains a sharp transition, 
the ant i -symmetric wavelet will be highly coherent at the center of the 
transition while the symmetric wavelet will be coherent at the edges of the 
transition effectively defining the boundaries of the transition zone. Equiv-
alently, a zero-crossing of the symmetric wavelet transform will coincide 
with the center of the transition. However, distinguishing between large 
gradients and small gradients (over a given length scale) is more difficult 
using a symmetric wavelet [22]. It requires an estimation of the angle of 
the zero crossing in the transform [4], while the magnitude of the local 
extremes of the anti-symmetric transform is a direct (relative) measure 
of the sharpness [10]. Some of these properties are demonstrated using a 
simulated da ta set in Section 3. 

Combining the optimal properties of ant i -symmetry in space, and con-
centrated support in frequency leads to the natural choice of using the spline 
wavelets for analyses where strong shear zones characterize the important 
structures. 

In Section 4 we apply the techniques presented to da ta sampled during 
F IFE 87 (described in Section 4). The vertical velocity, virtual potential 
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temperature, and (derived) buoyancy flux density fields obtained from the 
atmospheric boundary layer are studied for two cases corresponding to late 
morning and late afternoon on the same day. We compute the intermit-
tency index for each of the records. We then construct partition of the 
signals and compute total buoyancy flux for various combinations of the 
components. Additionally, spectra for the velocities and their decomposi-
tions are studied. A summary is provided in Section 5. 

§2. The Wavelet Transform 

2.1. The continuous case 

We follow [22], where the wavelet transform is considered to be a type 
of multi-channel tuned filter. This allows the implementation of a fast 
algorithm and facilitates the interpretation of the wavelet transform as a 
coherent structure detection mechanism. We review the necessary informa-
tion for the decomposition and reconstruction algorithms, though further 
discussion may be found in [22] and [23]. The books [5] and [7] give com-
prehensive treatment of wavelet transforms and Multi-Resolution Analysis. 
We limit our discussion to the properties most pertinent to our results. 

To establish the notation, we begin with two functions, / and #, in 
L2(R) and define their inner-product by 

(/,<?):= Jf(t)g(t)dt. (1) 
R 

Hence, the L2(R) norm of / may be written 

ll/l|2 = ( / , / ) 1 / 2 . 
Similarly, the convolution of / and g is 

f*g(b):= J f{t)g{b-t)dt. (2) 
R 

The Fourier Transform of f(t) is 

/(*)Λ =/(ω):= Je-^f(t)dt, (3) 
R 

and the inverse Fourier transform is denoted f(t) = /(u>)v. 
Some further definitions specific to developing the wavelet transform 

are the scaled version of a function, 

/·(*):= ; / φ 0>*0); (4) 
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the scaled and translated version of a function, 

/.»(*) := -8fC-^-) (-#0); (5) 

and the reflection through the origin of a function, 

/ - ( « ) : = / ( - * ) · (6) 

A basic wavelet is an L2(H) function, xp{t), which satisfies the fol-
lowing admissibility criteria [5, 7]: 

(i) zero mean: J dtip(t) = 0, and 

(ii) regularity: Οψ := f du \ψ(ω)\2/\ω\ < oo. 

Additionally we normalize the wavelet to have norm unity, tha t is, \\ψ\\2 = 
1, and since we are interested in time-frequency (equivalently, space-fre-
quency) localization, we specify tha t ψ be a windowing function [5]. Tha t 
is, the first moment, t\j)(t), should be integrable. Requiring first and higher 
moments to be zero imposes higher regularity on the wavelet. 

Defini t ion 2 .1 . The continuous wavelet transform of a function f(t) G 
L 2 ( R ) at a location 6, relative to the basic wavelet φ at scale s, is defined 
by 

Wsf(b) := (/,ψ.„) = J f(t) \φ(*-^)dt. (7) 
R 

Equivalently, 
W.f(b):=f*t/>;{b). (8) 

The continuous wavelet transform of an L2 (R) function is a function 
of scale, s φ 0, and location, 6, and as such forms a surface over the (5, b)-
plane called the phase plane of the wavelet transform. 

Note tha t we have chosen a particular scaling for our definition of the 
wavelet transform in equation (7) through equation (4). Other choices are 
possible [2, 10], however, it has been argued tha t the choice provided by 
equation (7) facilitates the interpretation of the wavelet transform as a 
measure of coherence of structures with respect to scale [10]. We note tha t 
[10] a t t empted to distinguish between scaling choices of yfs and s in the 
definition of the wavelet transform by calling scaling by yfs the wavelet 
transform and scaling by s the covariance transform. It appears tha t the 
emerging convention in the literature is to disregard this distinction by 
using the name "wavelet transform" for any choice of scaling, and we adopt 
this point of view, making distinctions where necessary. Using the scaling 
yfs leads to an energy preserving transform, tha t is, a type of Parseval's 
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relation for wavelets. While this is attractive for interpreting the wavelet 
transform as a decomposition of variance, it obscures the interpretation for 
detecting coherent events. 

In the notation of equation (7) the wavelet transform may be inter-
preted as a covariance between the wavelet at a given dilation, φ8 and the 
signal, / , at a specified location in the signal [10]. Using the notation of 
equation (8) the wavelet transform may also be interpreted as the signal, 
/ , filtered by a particular (non-uniform, band pass) filter, φ8 [6, 21]. We 
will discuss the application of the wavelet transform to the construction of 
filters and the filtering properties of some wavelets in Section 3. 

The continuous wavelet transform may be inverted to recover the signal 
as follows. 

where Οψ is the constant defined in the regularity condition (ii). 

2.2 . Dyad ic subsampl ing in scale 

We restrict the scale parameter, s to powers of 2. This allows the 
implementation of the fast wavelet transform algorithm given by [22]. 

Thus, let s = 2·7 for j any integer. For this restriction to yield a 
usefully invertible transform, the regularity condition (ii) must be modified 
as follows. The function φ G £ 2 ( R ) (which satisfies the zero mean condition 
(i)) is called a dyadic wavelet if there exist positive constants 0 < A < B < 
oo such tha t 

(9) 

(10) 

which is called the stability condition for the dyadic wavelet [5, 22]. It has 
been shown tha t a dyadic wavelet also satisfies the regularity condition (ii) 
[5]. 

Defini t ion 2 .2 . The (continuous) dyadic wavelet transform of the signal 
/ at the scale 2J at location b is defined by 

(11) 

(12) 

where we denote φ2j by φ$. Equivalently, 

By restricting the scale parameter to powers of 2, we have in effect sub-
sampled the continuous wavelet phase plane. This is sometimes referred to 
as the semi-discrete wavelet transform. It has been shown tha t a complete 



Intermittent Turbulence 51 

reconstruction of the signal may be accomplished using another wavelet 
which is dual to the analyzing wavelet [5, 7, 22]. Tha t is, the forward 
wavelet transform is performed using the basic analyzing wavelet, φ, while 
the inverse wavelet transform must be accomplished using the dual wavelet, 
X, defined as any function capable of performing the inverse transform in 
the following way. 

Defini t ion 2 .3 . Any function, χ G L 2 ( R ) , is a dyadic dual of a dyadic 
wavelet, ψ, provided every function, / G L 2 ( R ) , can be writ ten as 

oo . 

/ ( * )= Σ 2 - 3 ^ 2 /^ / (6 )x (2^ -6 ) )d6 . (13) 
i = - o o R 

In order to find the dual wavelet, conditions have been established 
which relate the dual to the analyzing wavelet. The following result is 
proven in [5]. 

T h e o r e m 2 . 1 . Given a dyadic wavelet, φ, and any L2(H) function, χ, 
such that 

oo 

sup Σ |χ(2>ω) | 2 < oo , (14) 
uçRj= — oo 

then x is a dyadic dual of φ if and only if 

oo 

Σ φ·@ω)χ@ω) = 1 . (15) 
j=—oo 

In equation (15), ψ* denotes the complex conjugate of φ. There may 
be many functions, χ, which will satisfy equation 15 for a given φ. The 
condition given in equation (14) is a smoothness condition similar to the 
stability condition imposed on the basic wavelet in equation (10). Equa-
tion (15) expresses the restriction to an energy preserving forward-inverse 
transform relation. 

The set of functions {ipj(t — b)} for — oo < j < oo and b G R , used 
to define the continuous dyadic wavelet transform, forms a non-orthogonal 
basis for L 2 ( R ) . An orthogonal basis for I / 2 (R) may be obtained from this 
set by subsampling the translation parameter b using 6*. = 2Jfc to obtain 
the set fyjk(t) = ψ]{ί — 2Jfc)} for j and k integers. By normalizing the 
orthogonal set we have an orthonormal basis of L 2 ( R ) . In fact the proper 
normalization is given by the following. 
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= - L ^ ( — ) for s = 2j,b = 2jk. (16) 
y/S y S ' 

Thus, by choosing the normalization in equation (4) to be ips(t) = 1/\fsip{t/s) 
and subsampling in the orthogonal fashion, we arrive at the orthonormal 
basis tyjk}· We denote the orthonormal wavelet coefficients obtained from 
the signal / by Wjkf to distinguish them from the dyadic wavelet coeffi-
cients given by Wjf in equation (12). 

Orthonormal wavelets provide certain advantages. For example, they 
are self-dual in the sense tha t χ = ψ in equation (13), with the integral over 
b replaced by a sum over k. The orthonormal wavelet coefficients satisfy 
preservation of energy as a type of Parseval's relation. Tha t is, 

oo 

ll/ll2= Σ I^WI2· (17) 
j,k= — oo 

Using the orthonormal wavelet transform it is possible to define the 
wavelet spectrum in the following way [14, 27, 28]. Rewriting equation (17) 
as 

oo 

ii/ii2 = Σ Ei 
j= — oo 

oo oo 

= Σ Σ i^wi2, (is) 
j= — oo k= — oo 

we can define the wavelet spectrum of an Li function, / , as 
oo 

EJ= Σ i^i2 · (19) 
k= — oo 

It is possible to assign a correspondence between the Fourier wavenumber 
and the scale of the wavelet transform. This can be done formally by 
assigning the wavenumber at the center of mass of the frequency content 
of the wavelet at a particular scale [27]. However, for comparing power law 
trends of wavelet spectra with trends in Fourier spectra the assignment is 
essentially arbitrary as long as it remains consistent through the dilation 
of the wavelet. 

If the energy spectrum, |/(u;)|2/u;, obeys a scaling law, say | / ( C J ) | 2 / C J ~ 
CJ~P, then the wavelet spectrum is expected to possess a scaling law through 
the correspondence Ej <-» / ( ω ) | 2 ~ constant · 2^p~l\ (In our notation, 
j -Λ —oo implies ω —> oo. Tha t is, large positive j corresponds to increasing 
scale; large negative j corresponds to decreasing scale). The similarity 
symbol, ~ , is used to indicate tha t for small scales (ω large, j negative and 
large) the spectrum has a trend corresponding to exponential decay. 
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2 .3 . F in i te reso lut ion in discrete appl icat ions 

Since discrete da ta are limited to finite resolution (smallest scale) de-
termined by a sampling rate it is not possible to perform an analysis at a 
resolution finer than some fixed scale. Choosing the smallest scale to be 
unity (s = 23\ j = 0) means we cannot represent da ta on scales between 
grid points. Actual da ta are also limited to some finite record length, say 
s = V for j = J > 1. Furthermore, any definitions of functions on the finite 
grid may fail to follow the continuous properties in the conditions given by 
equations (10), (14), and (15). This is discussed in detail in [22]. The 
solution is to introduce a smoothing function, φ, whose frequency content 
represents the fractional loss of energy when performing a wavelet t rans-
form followed by the inverse transform (under the restrictions imposed by 
finite resolution). Tha t is, 

oo 

φ(ω) = Σψ(2*ω)χ(νω). 

The relation in equation (15) then can be written 

\φ(ω)\2 - \φ(^ω)\2 = ΣΦ*&»)*@ω) , (20) 
i=i 

for ψ*(23ω)χ(23ω) a positive, real, even function. 
Denote by Sj the smoothing operator at scale j given by 

5 i / ( i ) : = / * ^ ( * ) , (21) 

where φ^(ί) = 2~3φ^2~3). The information content of the signal smoothed 
at some coarse scale, Sjf{t), and the wavelet coefficients for all scales up to 
the coarse scale, {Wj/(£)}i<j<./5 is sufficient to recover the original discrete 
signal. We accomplish this using the fast wavelet transform algorithm 
described in [22]. 

As noted, the orthonormal wavelet coefficients may be obtained from 
the continuous dyadic wavelet coefficients through appropriate subsampling 
and scaling. For real applications the da ta record length is finite and an 
orthogonal subsampling depends on which da ta point is assigned as the 
end of record. Since the wavelet transform is not shift invariant, a shift 
in the location at which the wavelet coefficients are computed results in a 
change in the wavelet coefficients, and hence a change in the est imate of 
the spectrum resulting from the coefficients. By averaging over all possible 
orthogonal subsamplings of the translation parameter we approach a shift 
invariant est imate of the spectrum. An equivalent approach would be to 
average over several globally translated orthogonal wavelet analyses. 
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When computing spectra of finite resolution da ta using traditional ap-
plications of the fast Fourier transform, it is well known tha t the resulting 
spectral estimates are highly dependent on windowing the da ta ([13, 16]). 
The wavelet transform creates its own window (the wavelet) and the char-
acteristics of the spectral estimate are then dependent on the regularity 
of the analyzing wavelet. For an application of these ideas to atmospheric 
da ta see [9]. 

§3. Fi l tering Propert i e s of Wave le t s 

3 .1 . Part i t ions as filters 

We wish to partition a signal into two components, one containing 
significant structures and the other containing the remaining portion of 
the signal. Once a partit ion is obtained, further analysis of each compo-
nent can proceed. For example, an intermittency index can be assigned 
to the structure-containing component, and spectral characteristics of the 
components can be analyzed. In certain communication theory applica-
tions the significant structures may correspond to a signal prior to being 
t ransmit ted, while the remaining portion of the signal corresponds to the 
noise introduced during transmission. In the case of atmospheric turbu-
lence, structures may be defined as regions of sharp transition of significant 
amplitude [10, 20], while the remaining portion corresponds to a different 
physical flow characteristic (not necessarily regarded as "noise"). 

To create a partit ion of a signal one must begin with assumptions 
regarding the nature of the signal. For example, Fourier (band-pass) filter-
ing partit ions a signal into components based on frequency content. Some 
criterion is used to determine the components, such as the location of a fre-
quency band or the location of multiple bands determined by a frequency 
amplitude cutoff. The partition then consists of the portion of the signal 
with frequency content inside the bands and the portion with frequency 
content outside the bands. A filter consists of retaining only one element 
of the partit ion. If the significant structures are band limited and the 
remaining portion of the signal is outside the structure containing band, 
then the signal will exhibit spectral gaps. The band-pass filters can then 
be prescribed according to the location of the spectral gaps. 

However, if the structure of interest in the signal is a sharp transition 
it contains significant high frequency content. The high frequency content 
can not be distinguished from the frequency contribution of several smaller 
amplitude sharp transitions, or from colored or white noise. In this case 
the component of interest in the signal is not usefully band limited and the 
spectrum will not exhibit a clear spectral gap. A Fourier filtering technique 
is not well suited to creating a partition of the signal in such a case. The 
wavelet transform can help in this situation since it effectively limits the 
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spectral content under consideration to specific time or space locations. 
The wavelet phase plane contains information on the coherence be-

tween the signal and the wavelet in both position and scale. This can be 
condensed into a global statistic providing information about the scale a t 
which there are the largest number of coherent events of significant ampli-
tudes. The global statistic for a signal, / , is called the wavelet variance 
[10, 20] and is defined in the continuous case as 

oo 

D2{s)= j[Wsf{b)fdb. (22) 

— oo 

This is similar to the wavelet spectrum of equation (19), but is not a vari-
ance decomposition of the signal with the choice of scaling given in equa-
tion (4). (It is possible to interpret the wavelet variance as proportional to 
the energy (variance) of the signal using appropriate logarithmic axes [4]). 
However, the quantity D2 is a variance since it is the squared error about 
zero of the wavelet transform (which removes the mean from the signal). 
Note tha t there are two situations which will contribute to producing a 
large value of the wavelet variance at a given scale - one large ampli tude 
coherent event or several coherent events of lesser amplitude. For analy-
sis of atmospheric turbulence signals, both situations may be considered 
significant. 

We note tha t when information about dominant physical length scales 
of important structures are deduced from the wavelet variance, the contin-
uous scale transform, rather than a dyadic subsampling, should be consid-
ered. The subsampling, while providing complete information for inversion, 
does not allow for a complete physical analysis since important physical 
scales may be skipped. 

While the wavelet variance is a reasonable means of characterizing 
signals, a characterization by the type of events they contain, and a measure 
of their intermittency would provide further description. We address this 
issue in Section 3c. 

Locating local maxima in the wavelet variance provides a means of 
determining the scales at which the structures in the signal are coherent 
with the wavelet shape, and of significant amplitude and /o r number. It is 
possible to imagine situations where there is more than one local maxima 
in the wavelet variance. For example, if there is significant white noise in 
the signal, the wavelet variance will have a large peak at the smallest scale, 
and a somewhat smaller peak at the scale of the coherent events. Another 
example is a signal consisting of short pulses. One peak in the wavelet 
variance corresponds to the scale of the length of the pulse and another peak 
corresponds to the spacing of the pulses, assuming the spacing and width 
are different scales [8]. Finally, a superposition of two sinusoidal waves at 
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different frequencies will produce two local maxima in the wavelet variance 
[4]. In such a situation, each local maximum corresponds to a wavelength 
and some choice as to their significance must be based on knowledge of the 
nature of the signal. 

Once the dominant event scale or scales are found, one of the obvious 
methods leading to a partition of the signal is to limit the reconstruction 
from the phase plane to the scales above and below some scale near the 
dominant scale, or between two dominant scales. One approach to deter-
mining a parti t ion if only one dominant scale is present is to reconstruct 
from the phase plane information using the large scales down to some small 
scale which is determined from the dominant scale by taking an appropri-
ate fraction of the dominant scale. The partition then consists of the large 
scale reconstruction and the small scale reconstruction ( that is, the remain-
ing portion of the signal). If there is a clear "scale gap" between peaks in 
the wavelet variance, the scale for the partition could be chosen to be in 
the gap [4]. We refer to this as scale threshold partitioning. Scale thresh-
old partitioning has the problem of neglecting the fact tha t structures of 
interest are multiscaled and may have significant information content even 
at small scales. Tha t is, portions of the information content of a single 
s tructure may fall into both elements of the partition. This is an inherent 
problem in partitioning signals in which multiscale structures are impor-
tant but are found in the presence of broad band noise. Another inherent 
problem is determining the appropriate fraction of the dominant scale for 
the threshold. Examples are given later in this section and in Section 4. 
Even with these difficulties, a scale threshold partition works very well for 
separating out white noise at the smallest resolvable scale. 

In [23] the rate of growth or decay of significant "ridges" in the phase 
plane is used as a means of quantifying what is meant by noise. This is 
a measure of the regularity of a multiscale feature. For highly singular 
features the wavelet transform will undergo a rapid increase in value at 
small scales as the scale is decreased. Assuming tha t the "noise" is less 
regular than the structures of interest and limited to small scales, a ridge 
reconstruction ([23, 22]) is performed using only the portions of ridges 
which do not exhibit an increase at small scales, or by extending ridges to 
smaller scales keeping the amplitude fixed. 

In [23] the use of ridge threshold filtering described above is motivated 
by the interest in signal compression. For this study we have no need for 
signal compression and therefore have the information of the entire phase 
plane at our disposal. We can therefore employ a simpler approach to 
partitioning which still allows for the multiscale nature of coherent events. 
Furthermore, for applications to atmospheric turbulence data , we are inter-
ested in partitioning the signal rather than an actual filtering ( that is, we 
retain both components of the parti t ion). The method we examine is the 
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reconstruction of the portion of the signal whose wavelet coefficients are 
larger or smaller than a particular threshold. Reconstruction of the signal 
using coefficients larger than some fixed value, |Wy/(n) | > u;c, preserves 
the structural features. The remaining coefficients, | W j / ( n ) | < wci are 
used to reconstruct the portion of the signal not associated with the struc-
tures. We call this type of partitioning of a signal phase plane threshold 
partitioning. 

Note tha t phase plane threshold partitioning requires the scaling chosen 
in equation (4) for the definition of the wavelet transform. If some other 
scaling is chosen then an appropriately scaled cutoff must be used. For 
the orthonormal decomposition, in which the scaling is chosen as 1/y/s 
(equation 16), the phase plane cutoff is scale dependent and given by 

The partitioning of the signal into a component containing structures 
and a component containing the remainder allows the comparison of the 
spectra of the respective components. We will demonstrate tha t the spec-
tral characteristics of each component of a velocity record are quite differ-
ent. The partitioning can be accomplished using the wavelet partit ioning 
methods described above. The partit ion is dependent upon the choice of 
analyzing wavelet and the method of thresholding used. We utilize these 
characteristics to analyze buoyancy flux in the atmospheric boundary layer 
in Section 4. 

3.2 . D e t e c t i o n characterist ics of anti—symmetric and s y m m e t r i c 
wave le t s 

In this section we demonstrate certain general characteristics of the 
differences between using symmetric versus anti-symmetric wavelets for 
signal analysis. Figure l a is the vertical velocity record from an aircraft 
measurement during the FIFE 87 field experiment (described in Section 4). 
The signal contains structures resembling square or ramped pulses on the 
order of 10 seconds wide (40 meters). There are approximately eight or nine 
such events. In order to illustrate the response of the wavelet transform to 
such structures, consider the simulated signal of Figure 2. This consists of 
four "pulses" of similar shape, unevenly spaced, with a resolution of 256 
points. The shape was chosen to have some characteristics typical of the 
structures observed in the F IFE 87 vertical velocity record. 

The subsequent analyses are performed using the ant i-symmetric quad-
ratic spline wavelet and the symmetric cubic spline wavelet shown in Fig-
ure 3. The wavelet transform of the simulated signal based on a symmetric 
wavelet and an anti-symmetric wavelet at a single scale are shown in Fig-
ure 4. Note the magnitude of the symmetric transform is large at the 
boundaries of the transitions, while the magnitude of the ant i-symmetric 
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Figure 1. Morning case: (a) (top) Vertical velocity record shown as 
the fluctuation about the mean, w' (m/s) = w — w, where w = —0.0045 
(m/s), (b) (middle) Virtual potential temperature fluctuation, θ'ν (K). 
Tv - 301.46 (K). (c) (bottom) Buoyancy flux density, w'9'v (ms_ 1K). 
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Figure 1. Afternoon case (d) (top) Vertical velocity fluctuation, w' 
(m/s), (e) (middle) Virtual potential temperature fluctuation, θ'ν (K). 
(f) (bottom) Buoyancy flux density, w'0'v (ms- 1K). 

transform is large at the center of the transitions. This characteristic is 
scale dependent since at scales larger than a particular event size the lo-
cation of maximum coherence between the wavelet and the signal may be 
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Figure 2. Simulated signal having features qualitatively similar to 
features in the vertical velocity record (Figure la). 

quadratic spline wavelet 
cubic spline wavelet 

Figure 3. Anti-symmetric quadratic spline (solid line) and symmetric 
cubic spline (dashed line) used for wavelet analysis. 

influenced by characteristics of the signal outside of the event. This is 
illustrated in Figure 5, where the anti-symmetric transform is shown at 
three scales. Note tha t the location of maximal gradient, corresponding to 
extremes of the transform, migrate as larger scales are considered [22]. 

We now turn to the notion of creating a partition of the signal. Con-
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Figure 4. Anti-symmetric (long dashed line) and symmetric (short 
dashed line) wavelet transforms of the simulated signal (solid line) at 
the scale 23. 

sider the signal shown in Figure 6 consisting of the simulated signal given 
in Figure 2 plus small amplitude sine wave with random phase. This is 
intended to represent a situation where the desired features are the larger 
scale structures which contain sharp transitions but are found in the pres-
ence of significant smaller scale information. 

The dominant scale of structures must first be found using the wavelet 
variance defined in equation (22). The dyadic equivalent of equation (22) 
was used to compute an estimate of the wavelet variance of the simu-
lated signals of Figure 2 and Figure 6 using both the symmetric and a n t i -
symmetric wavelets. The result is shown in Figure 7. Four curves are 
shown corresponding to computing the wavelet variance of the simulated 
signal without noise and the simulated signal with noise using either a 
symmetric or anti-symmetric wavelet. The maximum wavelet variance for 
scales larger than the smallest occurs at the scale 25 and is apparently in-
dependent of the choice of wavelet. This independence would suggest tha t 
identifying structures in a signal is independent of the symmetry of the 
wavelet used. However, further test cases using a variety of length scales 
in the structures show tha t is not always true. 
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Figure 5. Anti-symmetric wavelet transform (dashed lines) of the 
simulated signal (solid line) at three scales. Note the migration of the 
location of the extremes. The location and interpretation of a coherent 
event is necessarily scale dependent. 

Figure 6. Simulated signal which includes small scale information con-
sisting of a mix of white noise and coherent small scale structure. 



Intermittent Turbulence 63 

600 

400 

Figure 7. Wavelet variance computed using the discrete form of equa-
tion (22) 

Once the dominant scale of structures is selected from a (local) maxi-
mum of the wavelet variance, the local extremes (either maxima or minima) 
of the wavelet transform at tha t scale provides the location of the struc-
tures. Moreover, a phase plane partit ion can then be formed based on a 
fraction of the largest (in magnitude) of the local extrema at the scale of 
maximum wavelet variance. This process is illustrated in Figure 8 where 
the ant i -symmetric quadratic spline wavelet has been used. 

Once a threshold value has been determined by the method in the pre-
vious paragraph, a parti t ion of the signal may be formed. A reconstruction 
based on the wavelet transform values above the threshold forms one com-
ponent and the remaining portion of the signal forms the other component. 
This is shown in Figure 9 where a factor of 0.3 of the largest of the local ex-
t rema was used (determined empirically based on the influence of changes 
in the factor on the variance of the non-st ructure component). 

The result in Figure 9 may be compared to a simple scale threshold 
partit ioning shown in Figure 10, where the scale threshold is 21. Tha t is, 
the smallest scale information forms one element of the parti t ion and all 
scales above tha t form the other. This is the best way in which to separate 
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Figure 8. Anti-symmetric wavelet transform (dashed line) of simu-
lated signal (solid line) at the scale of maximum variance (from Figure 
7). The arrows indicate the location of the local extremes. A factor 
times the largest of the extremes is used to determine the phase plane 
threshold value. 

out white noise, since it has a decorrelation length scale of two points. Scale 
partitioning has been suggested as a method of filtering in [4]. 

Finally, the phase plane threshold and the scale threshold may be com-
bined to create a partition such as tha t shown in Figure 11. We have 
combined a phase plane threshold of a factor of 0.2 (also emperically deter-
mined as above) of the largest of the local extremes with a scale threshold 
of 21 . 

3 .3 . Quanti fying in termit tency 

Intermittency has many manifestations depending on physical context. 
One classic example is the laboratory flow constructed by ejecting fluid of 
a higher than ambient temperature from a jet. The t ime history of temper-
ature at a point downstream in the turbulent flow will exhibit intermittent 
spikes as small cores of fluid of high temperature from the jet pass by the 
sensor. As the sensor is moved from the center of the jet flow to the edge of 
the domain, the intermittency effect increases. Tha t is, the fraction of the 
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Figure 9. Phase plane threshold partition of the simulated signal 
shown in Figure 6. A constant was added to the large scale portion 
to offset the plots. 

record which is high temperature decreases as the sensor moves away from 
the center of the domain. An intermittency index defined as the fraction of 
the record occupied by high temperature fluid provides information about 
the degree of entrainment of ambient fluid into the high temperature core. 
See [26] for a more detailed discussion. In Figure l c the regions of sus-
tained positive buoyancy flux density are the structures of interest. These 
structures could be identified by applying a threshold to the data , but the 
intermittency (fractional record length where da ta is large) is sensitive to 
the choice of the threshold. Furthermore, thresholding does not take into 
account the coherency of the structures. For the vertical velocity record 
shown in Figure la , intermittency depends on the type of event one wishes 
to define. For example, we are interested in identifying regions of sharp 
gradient of sufficient magnitude (which can not be identified using a thresh-
old on the da ta) . The wavelet transform provides a means of locating such 
events. Once their location is known some measure of the intermittency of 
these occurrences with respect to the total signal length can be devised. 

The main purpose of this section is to propose a new measure of in-
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Figure 10. Scale partition (at scale 21) of the simulated signal shown 
in Figure 6. A constant was added to the large scale portion to offset 
the plots. 

termittency computed directly from the wavelet transform information. 
This measure of intermittency combined with the fraction of buoyancy flux 
contributed by the structure component of buoyancy record provides an 
important insight into the nature of the boundary layer convective pro-
cess. In Section 3b we have discussed finding the dominant scale using the 
wavelet variance, and locating the local extremes in the wavelet transform 
at tha t scale. Using this information the signal is partitioned into a struc-
ture component and a non-strucuture component. As a measure of the 
fraction of the record containing structures, an intermittency index can be 
formed as 

support of structures intermittency = (23) 
total record length 

For example, if the structure component of the buoyancy flux accounts for 
most of the total flux and the intermittency index is small (very intermit-
tent coherent structures) then there are a few strong convective plumes in 
the flow. In contrast, if the intermittency index is large (most of the record 
occupied by coherent structures) then there is a more uniform t ransport 
(such as in regions of subsidence or secondary flow). 
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Figure 11 . Combination of a scale (at scale 21) and phase plane 
threshold (at 0.25 times the largest extreme) to create a combination 
partition of the simulated signal of Figure 6. A constant was added to 
the large scale portion to offset the plots. 

This definition of intermittency is dependent on the thresholding used 
to locate local extremes in the wavelet transform, but does not depend on 
thresholding the data . 

§4. Appl icat ions t o Atmospher i c D a t a 

4 . 1 . Descr ip t ion of t h e da ta 

We now apply the techniques described in Sections 2 and 3 to two 
portions of da ta collected during the First International Satellite Land 
Surface Climatology Project (ISLSCP) Field Experiment 87 (FIFE87). A 
description of the experiment and analysis of da ta using other techniques 
including conditional sampling may be found in the F IFE special issue of 
J G R [15]. The purpose of this section is to demonstrate the utility of the 
techniques presented in the previous sections by providing new insight into 
the interpretation of specific data . This is an extension of the results shown 
in [12] where a different segment of the da ta was analyzed. 

An objective of FIFE87 was to gather in situ boundary layer measure-
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ments in conjunction with satellite remote measurements to obtain suitable 
parameterization schemes. In part , the objectives are to determine the ac-
curacy of, and to calibrate, satellite da ta and to relate the remotely sensed 
da ta to flux quantities. The intermittent nature of momentum, heat, and 
buoyancy fluxes makes this task difficult and may lead to deceptive esti-
mates from remotely sensed data. The in situ da ta used in this study were 
sampled using the National Center for Atmospheric Research (NC AR) King 
Air research aircraft in fair weather conditions over a 50 kilometer square 
of uniform tallgrass over the Konza National Prairie in northeast Kansas— 
the designated F IFE site. A case study for June 6, 1987 from the Intensive 
Field Campaign 1 ( IFCl) is reported in [11]. June 6 t h was a clear day des-
ignated as the "golden day" for FIFE87 IFCl . We study two portions of 
the da ta from June 6 t h corresponding to late morning and late afternoon. 
These two times present differing physical situations; late morning being 
a strongly convective, developing mixed layer, and late afternoon having 
subsiding thermal forcing and the resulting weak or decaying convection 
combined with a well mixed and sheared boundary layer. 

The measurements were obtained on June 6 t h at 650 meters above 
ground in the morning and 1300 meters above ground in the afternoon 
with 4 meter resolution along an east to west transect at the northern 
edge of the site. The flights remained at a fixed position with respect to 
the atmospheric boundary layer top (about 90% of ABL) to ensure consis-
tency in the sampled data. The da ta were collected over the time intervals 
11:26:46 L (Local t ime (L) = -6 UTC) to 11:30:11 L for the morning leg, 
and 15:55:56 L to 15:59:21 L for the afternoon leg. Figure l a - c shows 
the vertical velocity component, the virtual potential temperature, and the 
buoyancy flux density derived from the virtual potential temperature and 
the vertical velocity for the morning leg. Figure ld - f shows the corre-
sponding fields for the afternoon. Note the intermittently occurring zones 
of sharp transition in the vertical velocity (Figure l a and d), and the zones 
of positive buoyancy flux (Figure l c and f). Note also the the number and 
size of ramp and plume structures (in both velocity and temperature) is 
different between the morning and afternoon legs. 

4 .2 . Analys i s of t h e da ta 

Table 1 collects some length scale statistics computed using an an t i -
symmetric wavelet transform for vertical velocity components and the vir-
tual potential temperature for the morning and afternoon legs. Listed are 
the dominant scale lengths (as derived from the largest local maximum in 
the wavelet variance), the number of occurrences of events of this size, and 
the intermittency index as defined in Section 3c. Due to large amplitude 
low frequency components in the temperature records, the largest variance 
for an anti-symmetric wavelet will occur at the largest scale. We therefore 
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chose to use the next smallest scale at which a local maximum occurred. 
The determination of dominant scales based on the dyadic wavelet t rans-
form subsamples the continuous scale information tha t would be possible 
using a continuous scale. However, the dominant scales are in the smaller 
scales where there is a bet ter sampling density, and the scale distinctions 
at higher resolution are not particularly relevant to the present analysis. 

Table 2 collects the same statistics based on using a symmetric wavelet. 
The dominant length scales tend to be the same or slightly longer, and 
the number of events the same or slightly fewer. Correspondingly, the 
intermittency index is the same or slightly larger (less intermit tent) . 

Both Table 1 and Table 2 show tha t coherent structures are of smaller 
scale in the afternoon than the morning and are much more (spatially) 
frequent. This can be seen by comparing, for example, the vertical velocity 
record from the morning (Figure la ) with the vertical velocity record from 
the afternoon (Figure Id) . 

Table 1: Length 

Field 
Morning case: 

w 
θυ 

*»% 
Afternoon case: 

w 
θν 

χυ'θ'υ 

scale analysis using an anti-symmetric wavelet 
Dominant 

Length Scale (km) 

1 
0.5 
0.5 

0.125 
0.25 
0.06 

Number 
of events 

10 
18 
20 

76 
36 
142 

Intermittency 
Index 

0.59 
0.53 
0.61 

0.57 
0.54 
0.54 

Table 2. Length scale analysis using a symmetric wavelet 

Field 
Morning case: 

w 
θν 

w'9'v 

Afternoon case: 
w 
θν 

w'9'v 

Dominant 
Length Scale (km) 

1 
0.5 

1 

0.125 
.25 

0.125 

Number 
of events 

10 
19 
8 

77 
36 
83 

Intermittency 
Index 

0.61 
0.57 
0.49 

0.59 
0.55 
0.62 
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A combination phase plane threshold and scale partition has been cre-
ated for the velocity components (Figure 12a and c) and the buoyancy flux 
densities (Figure 12b and d) for the morning and afternoon cases. Combi-
nation partitions were also created for the temperature records but are not 
shown. An anti-symmetric wavelet analysis was used in each case. The 
sharp vertical edges have been maintained in the larger scale partition in 
each case. 

Total buoyancy flux over the signal was computed by summing over 
the flux density for each of five possibilities - from the original data, νϋ'θ'υ, 
which will be the reference flux; from the structure partition of the derived 
buoyancy flux density record, (u/0(,)str; from the structure component of 
the velocity with the original temperature data, u)'stx9'v; from the structure 
component of the temperature with the original velocity data, t i / ^ s t r ) ' ; 
and from the structure component of velocity with the structure component 
of temperature, (wstTY(6v stTy. This was done for the morning case and 
the afternoon case resulting in the ten numbers shown in Table 3 where the 
total fluxes are shown as a percentage of the reference flux. The morning 
reference flux was about 40% of the afternoon reference flux. 

The flux transport computed using the structure component of velocity, 
(u;str )'#(,, accounts for 69% of the reference flux in the morning and 58% of 
the reference flux in the afternoon. The flux transport computed using the 
structure component of temperature, u)f(6VstJ.y, is relatively higher in both 
the morning (82%) and the afternoon (75%). Additionally, the total flux 
computed using the structure component of the velocity with the structure 
component of the temperature, (wstTy(6V8tT)\ is 58% in the morning and 
42% in the afternoon indicating that the temperature structures are not 
highly correlated with the velocity structures. 

Table 3. Total flux analysis using structure partitions | 
Flux density 

Morning case: 
w'e'v 

( tu 'É^tr 

< Λ 
«/(<W 

(">str)'(0t> str)' 
Afternoon case: 

ιν'θ'ν 

(u>'0C).tr 
<X 

t0'(e».tr)' 
(wStr)'(0« str)' 

Buoyancy flux 
Structure part of flux 
Flux due to velocity structures 
Flux due to temperature structures 
Flux of temp. str. due to vel. str. 

Buoyancy flux 
Structure part of flux 
Flux due to velocity structures 
Flux due to temperature structures 
Flux of temp. str. due to vel. str. 

Total Flux 1 

100% 
100% 
69% 
82% 
58% 

100% 
100% 
58% 
75% 
42% 
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Figure 12. Morning case: Combination phase plane and scale parti-
tions for (a) (top) vertical velocity and (b) (bottom) buoyancy flux 
density, Vertical shifts have been added to offset the components. 
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Figure 12. Afternoon case: Combination phase plane and scale par-
titions for (c) (top) vertical velocity and (d) (bottom) buoyancy flux 
density, Vertical shifts have been added to offset the components. 
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In the lower portion of the convective boundary layer (CBL) the buoy-
ancy generation is due to heating resulting in coherent tempera ture struc-
tures, (evstT)', accounting for a large fraction of the buoyancy flux. Near 
the top of the CBL the buoyancy is driven by accumulated momentum, 
(wstr)'> of the plume structures [18]. The da ta were gathered in a mid-
dle portion of the CBL (650 meters in the morning; 1300 meters in the 
afternoon), and the percentage of buoyancy flux due to virtual potential 
temperature structures being larger than buoyancy flux due to velocity 
structures reflects this in both the morning and afternoon cases. Compar-
ing the velocity parti t ion of the morning case (Figure 12a) to the velocity 
parti t ion of the afternoon case (Figure 12c) it is apparent tha t the morning 
case contains relatively larger, well-defined structures. This is reflected in 
a comparison of the buoyancy flux densities as well (Figures 12b and d) . 
This is quantified in the length scale analysis summarized in Table 2. 

The late morning boundary layer is characterized by vigorous convec-
tive activity which results in large plume structures penetrat ing from the 
bo t tom to the top of the CBL. By afternoon, vertical soundings taken si-
multaneously with the aircraft da ta indicate tha t significant vertical shear 
of horizontal winds has developed and tha t the CBL is well mixed. This 
leads to entrainment of upper air into the CBL and breaks up the plume 
structures into smaller sized structures. Combined with the weakening 
heating at the ground, this accounts for the observed smaller and more 
numerous structures in the afternoon da ta compared to the morning data . 
This conceptual model is supported by the statistics gathered in Table 1. 
The larger vertical velocity structures occur in the morning data , but are 
fewer in number, while the intermittency remains approximately the same. 
Tha t is, the total area covered by vertical velocity structures is relatively 
the same, but the size decreases by the afternoon. The virtual potential 
temperature structures follow a similar, but less pronounced, pa t tern . 

The Fourier spectra of the morning and afternoon vertical velocity 
records are shown in Figure 13a and b, respectively. It is apparent tha t the 
size of the predominant structures decreases in the afternoon, since most of 
the energy migrates to short wavelengths. Figure 14 shows the spectral es-
t imates for the structure and non-s t ructure elements of the morning record 
(Figure 14a) and the afternoon record (Figure 14b). The spectra are plot-
ted as log(k~5/3 /(&)) vs. log{k) to visualize a fc~5/3 power law behavior 
as a flat region. In the inertia! range (200m and smaller) bo th morning 
and afternoon spectra indicate a —5/3 power law behavior (seen as a flat 
region in Figure 13). The morning spectra contains more scatter due to 
the smaller number of large coherent structures contained in the record (see 
Table 1,2). In the afternoon when the record contained a large number of 
small sized coherent structures, the spectra has less scatter. Many studies 
have computed energy density spectra of observed turbulence records and 
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either established the presence or absence of the —5/3 power law region. 
In [19] it was observed using da ta from several experiments tha t the —5/3 
region is seen in strong turbulence but not in weak turbulence. It is sug-
gested in [12] tha t the universal —5/3 slope spectra is found in the spectra 
of the structure parti t ion of velocity, while the non-s t ructure part i t ion is 
flat or has a —1 power law behavior. In Figure 14 we show the spectra of 
the velocity structure component (thick line) and the non-s t ructure com-
ponent (thin line). The structure component of the record contains a —5/3 
power law region while the non-structure component has a —1 power law 
behavior. These results are consistent with [12]. The similarity of the 
spectra of the structure component to spectra of strong turbulence and 
those of the non-s t ructure to weak turbulence suggest tha t a bet ter char-
acterization of turbulence may be achieved by the use of the intermittency 
index and the size distribution of the coherent structure component of the 
velocity. 

§5. S u m m a r y and Conclus ions 

In this paper we have utilized the wavelet transform as a t ime (or space) 
series analysis tool for the analysis of da ta containing intermittent coherent 
events. We use a non-orthogonal formulation of the wavelet transform, and 
choose scaling to emphasize the edge and singularity detection capabilities 
of the transform. The fast algorithm of [22] is implemented for this purpose. 

We use local maxima of the wavelet variance (defined in Section 2) as 
a means for identifying important scales in the data . This approach has 
been used in other studies as well [10, 4]. It is important to note tha t 
this is a reduction of the wavelet phase plane and is subject to the bias of 
non-characteristic events. For example, a single event with a large ampli-
tude may determine a local maximum in the wavelet variance when several 
events of a differing scale may contain the desired structural information. 

Using the wavelet transform for detecting coherent events is consid-
ered in Section 3. The locations of local extrema of an anti-symmetric 
wavelet transform correspond to locations of centers of large gradients in 
the signal. Similarly, the locations of local extrema of a symmetric wavelet 
transform correspond to locations of large curvature in the signal. Alterna-
tively, the zero crossings of the symmetric wavelet transform correspond to 
locations of centers of gradients in the signal, but the magnitude (sharpness 
of the gradient) is then only determined by the slope of the zero crossing. 
Each type of detection is necessarily scale dependent which must be consid-
ered when a t tempt ing to identify structures. A crucial choice for s tructure 
detection algorithms is between anti-symmetric and symmetric analyzing 
wavelets. The specific type of wavelet, and its regularity are less critical in 
applications to real data . This is due in part to the limitations imposed by 
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Figure 13. Spectral variance density derived from the vertical velocity 
component for (a) (top) the morning case, and (b) (bottom) the 
afternoon case. The spectra have been multiplied by k5'3 so that a 
—5/3 region will appear horizontal in the figure. 
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Figure 14. Spectral variance density of structure (thick line) and non-
structure (thin line) components of w-velocity shown in Figure 12a and 
c. (a) (top) Morning case, and (b) (bottom) afternoon case. 
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finite resolution and finite record length. 
Having determined a dominant length scale, the wavelet transform at 

the dominant scale of the signal can be used to identify the location of 
coherent events of tha t size (by locating local extremes in the transform). 
We then define an intermit tency index based on the ratio of the support of 
wavelets at these locations to the total record length. 

In order to study the properties of the structure containing component 
of a signal separately from the remaining component we utilize three types 
of signal partitioning (Section 3). A scale threshold partit ion, a wavelet 
phase plane partit ion, and a combination of both. The parti t ions may be 
visualized as taking the wavelet phase plane information derived from the 
signal and partitioning it into two phase planes based on scale, magnitude 
of the wavelet transform, or both. Each of the two new phase planes is 
then used to reconstruct a signal, whose sum is the original signal. The 
localization in t ime and frequency of the wavelet transform allows a par-
tition which retains sharp edge characteristics in the structure component 
which not possible with traditional Fourier band pass techniques. 

Finally, these tools are applied to atmospheric da ta from the FIFE87 
experiment. The analysis performed here complements a previous study 
which used da ta from the same field experiment [12]. The vertical veloc-
ity components and the buoyancy flux density are partit ioned using the 
ant i -symmetric wavelet transform for fields obtained during late morning 
and late afternoon. An intermittency index and dominant scale length are 
computed for each signal. Additionally, total fluxes were computed and 
analyzed in terms of the structure components of the signals. We char-
acterize the evolution of the convective boundary layer by comparing the 
characteristic scale lengths of velocity and temperature structures for the 
morning and afternoon cases. Additionally, we summarize the contribution 
of velocity and temperature structures to buoyancy flux by comparing the 
contributions of various partitions of the signals. The findings are consis-
tent with the conceptual model of a convective boundary layer subject to 
increasing shear and mixing during the afternoon. The more uniform mix-
ing results in the temperature structures being stronger and well defined 
in the afternoon. 

The spectral energy density of each of the elements of the velocity 
parti t ions are compared to the spectral density of the original velocity 
signals. We have found tha t the structure component has the classical 
characteristics of a strong turbulence signal, containing an energetic region 
at long wavelengths and a transition region having a —5/3 behavior. The 
non-s t ruc ture component exhibits —1 spectrum usually associated with 
weak turbulence. Thus, the structure element of the parti t ion behaves 
(spectrally) like tha t of strong turbulence while the non-s t ructure element 
behaves more like tha t of weak turbulence. We suggest tha t the spectral 
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characteristics of turbulent velocities are determined by the intermittency 
and scale lengths of structures, the combination yielding the —5/3 spectral 
slope, and provide a bet ter classification than weak and strong turbulence 
based on the spectral characteristics. 

In this study we have applied a wavelet analysis to signals derived from 
the atmospheric boundary layer. We chose certain aspects of the types of 
wavelets used (symmetric and anti-symmetric), and the way in which they 
are used (non-orthogonal translates) based on known signal processing 
characteristics of wavelets [22]. The technique encompasses many desir-
able features of traditional conditional sampling techniques. An objective 
means for defining and quantifying intermittency of coherent events, and 
for creating partit ions of signals which preserve the sharp gradients char-
acteristic of coherent events has been presented. The objective (i.e. com-
putable) na ture of these characteristics will allow large da ta bases to be 
processed in a consistent fashion. This should allow further study of the 
nature of the evolution of structures in differing planetary boundary layer 
scenarios. 
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Intermittency in Atmospheric Surface Layer Turbulence: The 
Orthonormal Wavelet Representation 

Gabriel G. Katul, John D. Albertson, Chia R. Chu, and 
Marc B. Parlange 

Abstract. Orthonormal wavelet expansions are applied to atmospheric surface 
layer velocity measurements that exhibited about three decades of inertial sub-
range energy spectrum. A direct relation between the n t h order structure function 
and the wavelet coefficients is derived for intermittency investigations. This rela-
tion is used to analyze power-law deviations from the classical Kolmogrov theory 
in the inertial subrange. The local nature of the orthonormal wavelet transform in 
physical space aided the identification of events contributing to inertial subrange 
intermittency buildup. By suppressing these events, intermittency effects on the 
statistical stucture of the inertial subrange is eliminated. The suppression of in-
termittency on the n t h order structure function is carried out via a conditional 
wavelet sampling scheme. The conditional sampling scheme relies on an indicator 
function that identifies the contribution of large dissipation events in the wavelet 
space-scale domain. The conditioned wavelet statistics reproduce the Kolmogrov 
scaling in the inertial subrange and resulted in a zero intermittency factor. A 
relation between Kolmogrov's theory and Gaussian statistics is also investigated. 
Intermittency resulted in non-Gaussian statistics for the inertial subrange scales. 

§1. Introduction 

According to the Kolmogorov theory [25] (hereafter referred to as K41), 
the ensemble average of the n th order velocity difference (Δΐί;) between two 
points separated by spatial distance (r), in the inertial subrange, for high 
Reynolds number flow is given by 

<|Δ«,·η = ΛΓη«6»*Γ* (1) 
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where e is the turbulent energy dissipation rate 

and Ui are the velocity components (i — 1,2,3), n is the order of the struc-
ture function, v is the kinematic viscosity, Kn is a universal constant inde-
pendent of the flow but dependent on n, r is the separation distance that 
is much smaller than the energy containing length scale or integral length 
scale (L) but much larger than the Kolmogorov microscale η(= [^/3/(e)]1/4), 
and (·) is the ensemble averaging operator. The scaling laws of Equation (1) 
have been confirmed by many experiments for n = 2 (e.g. the existence of 
the 2/3 law for the structure function or —5/3 law for the power spectrum) 
as originally proposed by Kolmogorov [25] and discussed in Monin and Ya-
glom ([42], pp. 453-527). However, the scaling laws in Equation (1) are 
not accurate for n > 2, as evidenced by many other experiments (see e.g. 
[1]). Deviations from these scaling laws have classically been attributed 
to the intermittency in e. This intermittency results in an e(x) behavior 
that resembles an on-off process. That is, the dissipation of turbulent ki-
netic energy occurs only in a small fraction of the fluid volume. Hence, the 
breakdown of Equation (1) is attributed to the inequality between (en) and 
(e)n, as noted by Landau (see footnote in [29]; p. 126). As a result, many 
phenomenological models for intermittency corrections to K41 have been 
proposed. Example phenomenological models include the lognormal model 
[26], the ß-model [17], and other multifractal models ([40], [39] and [2]). 

Many atmospheric surface layer (ASL) flows exhibit an inertial sub-
range that extends over many decades so that intermittency effects on 
inertial subrange scaling becomes important (see [22]; [42], Ch.8). Refined 
intermittency studies in the natural environment encounter difficulties due 
to: 1) the limited sampling period over which steady state mean mete-
orological conditions exist, 2) the need for instrumentation that is free 
of atmospheric contamination and possible calibration drifts due to tem-
perature and humidity changes, 3) the need for instrumentation that is 
field robust and capable of providing all three velocity components (since 
changes in wind direction are inevitable), and 4) the need for turbulence 
conditions that allow the application of Taylor's frozen hypothesis with 
minimum wavenumber distortion. 

The first difficulty severely limits the number of data points that can 
be used to evaluate the ensemble average in Equation (1). Typically, the 
ergodic hypothesis is used to evaluate the ensemble average in Equation (1) 
from the measured time averages. The convergence of the time average and 
the ensemble average requires a very large number of measurements that 
may not be available in many field studies due to unsteadiness in the mean 
meteorological conditions. The second and third difficulties limit the use 
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of many laboratory fast response sensors such as hot wire probes tha t are 
capable of resolving scales as small as the dissipation scales but difficult 
to operate for long periods in the natural environment. We note here tha t 
some success in using such instruments (e.g. triaxial hot wire probes) for 
extended periods were reported [43]. However, hot wire probes are not 
suited for ASL measurements in arid and semi-arid environments since the 
air tempera ture fluctuation can be very large (up to 6°C in seconds). 

The development of analyzing tools tha t allow the study of intermit-
tency effects in the ASL from limited number of field measurements is 
necessary. The purpose of this paper is to investigate the usefulness of or-
thonormal wavelet transforms to quantify intermittency effects on inertial 
subrange scaling from ASL velocity measurements. For this purpose, we 
develop a conditional sampling scheme tha t is capable of identifying dissi-
pation events in the space-scale wavelet domain. This conditional sampling 
scheme can identify the location of large dissipation events tha t contribute 
to inertial subrange intermittency. 

The wavelet transform is applied to 56 Hz triaxial sonic anemometer 
velocity measurements in the ASL tha t exhibit an inertial subrange for 
three decades. Since intermittency investigations typically utilize Fourier 
power spectra and structure functions, we first establish a relation between 
the wavelet coefficients and these statistical measures. Then, we introduce 
conditional wavelet statistics tha t are developed to isolate events responsi-
ble for deviations from K41. However, before we discuss these approaches, 
we offer a brief review of wavelet transforms with emphasis on applications 
to turbulence measurements. 

§2. Analys i s of Turbulence using Wavele t Transforms 

Wavelet transforms are recent mathematical tools tha t can unfold tur-
bulence signals into space and scale [15]. Continuous wavelet transforms 
have been applied to many turbulence measurements and proved to be 
successful in identifying local scaling exponents ([4], [14] and [3]), inter-
mit tency visualization [30], and coherent motion in ASL flows ([10], [19], 
[18] and [33]). Orthonormal wavelets are a discrete form of the continu-
ous wavelets; however, they have the added feature of forming a complete 
basis with the analyzing wavelet functions orthogonal to their translates 
([41]; [12]; [9], Chapter 1). The application of orthonormal wavelets has 
yielded important new techniques in the study of turbulence ([53], [54], 
[55], [37], [38] and [23]). For completeness, a brief review of continuous and 
orthonormal wavelet transforms is given. 

Analogous to Fourier transforms, wavelet transforms can be classified 
as either continuous or discrete. The continuous wavelet transform is first 
introduced followed by a motivation for using discrete wavelet transform. 
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2 .1 . Cont inuous wavelet transforms 

As shown by Grossmann et al. [20], the continuous wavelet transform 
W(b, a) of a real square integrable signal f(x) (i.e. the integral of [ / (#)]2 

from — oo to +oo is finite) with respect to a real integrable analyzing wavelet 
φ(χ) (i.e. the integral of ψ(χ) from —oo to +oo is finite) can be defined as 

W(b,a) = C;*-r / φ( )f(x)dx (3) 
Va J-oo a 

where a is a scale dilation, b is a position translation, and Cg is defined by 

/

+oo 
\Κ\~ι\φ*(Κ)\2άΚ <oo (4) 

-OO 

where K is the wavenumber and φ* is the Fourier transform of ψ(χ) given 
by 

/

1-oo 
tP(x)e'ikxdx. (5) 

-OO 

The condition in Equation (4) ensures the locality of Cg in the Fourier 
domain. The continuous wavelet transform is commonly viewed as a nu-
merical microscope whose optics, magnification, and position are given by 
ψ(χ), α, and 6, respectively ([30] and [10]). The function ψ(χ) has to satisfy 
the following conditions: 

1. The admissibility condition, which requires tha t 
r+oo 

rjj(y)dy = 0. (6) 
' — O O 

Simply stated, Equation (6) requires tha t the average of φ(χ) be 
zero. 

f 
2. The invertability condition, which requires at least one reconstruc-

tion formula for recovering the signal exactly from its wavelet coef-
ficients (see [15]). 

The function f(x) can be retrieved from the wavelet coefficients by 

W N _ i f+°° /*+°° i ,,x-b.TXT, ,.dbda 
/ ( * ) = Cg

 2 / / α-?ψ( )W(a,b) — j - . (7) 
J0 J-oo a a 

Further details regarding the continuous wavelet transform theory can be 
found in many references (e.g. [13], [11], [9] and [15]). 

2.2 . Orthonormal wavelet expans ions 

For actual turbulence measurements, discrete wavelet transforms are 
preferred since f(x) is known at only discrete points Xj (whose spacing de-
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pends on the resolution of the sensor and the sampling frequency). There-
fore, for discrete measurements, it is necessary to discretize the scale (a) 
and space (b) domains of Equation (3). If f(xj) is defined by TV points, one 
may consider simply discretizing the space domain of (3) by TV nodes and 
the scale domain of (3) by N nodes (i.e. discretized by a series of dirac-
delta functions). In this manner, the wavelet transform of f(xj) requires 
iV2 wavelet coefficients. Hence, the discretization discussed above forms an 
over-complete description of f(xj) in the wavelet domain. Because of the 
over-complete description of f(xj), some redundant information is injected 
into the wavelet transform of f(xj). This redundant information may or 
may not be advantageous depending on the application. If statistical anal-
ysis is to be performed on the wavelet coefficients, then the redundant 
information can produce artificial correlations tha t are a property of the 
wavelet transform and not of turbulence. 

As shown by Yamada and Ohkitani ([53], [54] and [55]), for space-
scale statistical relations, it is recommended tha t the discretization of the 
space and scale domains form a complete basis so tha t N measurements are 
characterized by N wavelet coefficients. Orthonormal wavelet transforms 
are suited for this purpose since the basis function are orthogonal and the 
mutual independence of the wavelet coefficients is guaranteed. 

Daubechies ([11]; [12], pp. 10), Mallat ([34] and [35]) and Meyer [41] 
demonstrated tha t using a logarithmic uniform spacing for the scale dis-
cretization with increasingly coarser spatial resolution at larger scale, a 
complete orthogonal wavelet basis can be constructed. We choose the Haar 
wavelet basis for its differencing characteristics, since we are interested in 
developing explicit relations between the n t h order structure function and 
the wavelet coefficients. Other important features of the Haar wavelet basis 
are discussed in [33]. 

The Haar basis φ(χ) = ( α _ 1 / 2 ) ^ ( ( χ - 6 ) / α ) , where a = 2 m and b = 2mi 
for i, m G Z, is given by 

(8) 

For this basis function, the wavelet coefficients WT^m+l\k) and the coarse 
grained signal 5^ m + 1 ^ (k) at scale ra + 1 can be determined from the signal 
S^m) at scale m by using 

(9) 

(10) 

for m = 0 to M - 1, i = 0 to 2M-m~l - 1, and M = log2(iV), N is the 
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number of samples (integer power of 2) (see [5] and [6]). For the Haar 
wavelet, the coarse grained signal defined by Equation (10) is a low-pass 
filtered function obtained by a simple block moving average, while the 
wavelet coefficients are computed from the high-pass filter in Equation (9). 
The wavelet coefficients and coarse grained signal may be calculated by the 
following pyramidal algorithm: 

1. Beginning with m = 0, use Equations (9) and (10) to calculate the 
signal S^ and the coefficients WT^ at the first scale by looping 
over i from 0 to 2 M _ 1 — 1. This will result in S and WT vectors of 
length N/2. The turbulence measurements are stored in S^. 

2. Repeat step 1 with ra = 1 to calculate the next coarser scale's pair 
of vectors 5 ( 2 ) and WT™ (each of length TV/4). 

3. Repeat for larger scale m up to M — 1 to produce a series of S 
and WT vectors of progressively decreasing length. Note tha t at 
m = M — 1 the coarse grained signal converges to a point. 

This algorithm yields N—1 wavelet coefficients tha t define the orthonormal 
Haar wavelet transform of the measured turbulence signal. The above pyra-
midal procedure, which is the basis for Fast Wavelet Transforms (FWT) , 
requires about N computations vis-a-vis the N log2 N computations for 
Fast Fourier Transforms (FFT) . The set N — 1 discrete Haar wavelet coef-
ficients satisfies the conservation of energy condition 

J V - l M 2 M _ m - l 

Σ/ω2 = Σ Σ wT^\i). (H) 

Equation (11) states tha t the sum of the square of the wavelet coefficients 
conserves the norm of the signal and is similar to Parseval's identity in 
Fourier expansions ([9], pp. 12). 

§3. Exper iment 

The da ta presented here were collected during an experiment carried 
out on June 27, 1993 over a uniform dry lakebed (Owens lake) in Owens 
valley, California. The lakebed is contained in a large basin bounded by 
the Sierra Nevada range to the east and the White and Inyo Mountains 
to the west. The instrumentation site is located on the northeast end 
of the lakebed (elevation=l,100 m) . The site's surface is a heaved sand 
soil extending uniformly 11 km in the North-South direction and 4 km in 
the East-West direction. The three velocity components were measured 
at z = 2.5 m above the surface using a triaxial ultrasonic anemometer 
(Gill Instruments/1012R2) to an accuracy of ± 1 % . Sonic anemometers 
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Table I 
Summary of energy, meteorological, turbulence, and surface roughness 
conditions during the experiment. The net radiation was measured by 
a Q6 Fritshen type net radiometer, the soil heat flux was measured by 
two REBS soil heat flux plates, the sensible heat flux was measured by 
a Campbell Scientific eddy correlation system (sampling at 10 Hz), and 
the friction velocity was measured by a triaxial sonic anemometer. The 
momentum roughness length was determined from 6 near-neutral runs 
of (U) and it* using the logarithmic velocity profile. 

Energy Conditions 
Net radiation (Rn) 
Soil Heat Flux (G) 
Sensible Heat Flux (H) 

173 W m " 2 

78 W m " 2 

90 W m " 2 

Meteorological Conditions 
Mean Horizontal Wind Speed ((U)) 
Mean Air Temperature (Ta) 

2.68 m s" 1 

31.6°C 
Turbulence Conditions 

Friction Velocity (u+) 
Root-Mean Square Velocity (au) 

0.165 m s - 1 

0.516 m s" 1 

A t m o s p h e r i c Stability Conditions 
Height above ground surface (z) 
Obukhov Length (L) 

2.5 m 
-3 .98 m 

Surface Roughness 
Momentum Roughness Length (z0) 0.13 mm 

achieve their frequency response by sensing the effect of wind on the t ran-
sit times of sound pulses traveling in opposite directions across a known 
pa th length dsi(= 0.149 m in this study). The sonic anemometer is well 
suited for these experiments since it is free of calibration nonlinearities, 
atmospheric contamination drifts, temperature effects, and t ime lag. The 
main disadvantage of sonic anemometers is the wavenumber distortion due 
to averaging over dsi. This distortion is restricted to wavenumbers in excess 
of 2n/dsi(= 42.2 m - 1 ) as discussed in [51] and [16]. 

The sampling frequency fs was 56 Hz and the sampling period Tp was 
9.75 minutes. The short sampling period was necessary to achieve steady 
state conditions in the mean meteorological conditions. Recall also tha t a 
long sampling period may not be necessary in this case since our intent is 
to resolve interial subrange scales tha t are much smaller than the integral 
length scale. The sampling at fs = 56 Hz for Tp = 9.75 minutes resulted in 
N = 32,768 points which are displayed in Figure 1. Notice in Figure 1 tha t 
the velocity fluctuated by as much as 3 m s" 1 in a few seconds. A summary 
of the mean meteorological and turbulence conditions is presented in Table 
1. 

From Table 1, the ratio of the root mean square velocity au(= ((U — 
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Figure 1. Time variation of the measured longitudinal velocity (U) 
at z = 2.5 m above the ground surface. The sampling frequency and 
sampling period are 56 Hz and 9.75 minutes, respectively. 

( t / ) ) 2 ) 1 / 2 ) to the mean horizontal wind speed (U) is 0.52/2.68 = 0.194 
which is smaller than 0.5. Hence, Taylor's hypothesis [48] can be used to 
convert t ime increments to space increments without significant distortion, 
at least for the inertial subrange scales (e.g. [31], [44], [50] and [45]). The 
resolvable wavenumber Κ^γ(= 2π/((U)(fs/2)~1)) by the sonic anemome-
ter corresponding to the Nyquist frequency^ ( / s / 2 ) is 65.2 m - 1 . We note 
tha t this wavenumber is larger than 42.2 m _ 1 , and therefore, we restrict 
our statistical analysis to wavenumbers smaller than 42.2 m _ 1 but display 
the spectra for all measured wavenumbers. 

§4. W a v e l e t S t a t i s t i c s 

In this section, we first develop relations between the Haar wavelet co-
efficients and the Fourier power spectrum and the structure function, then 
we discuss hdw wavelet transforms can be used to investigate intermit tency 
effects on the inertial subrange. 
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4 .1 . R e l a t i o n b e t w e e n wavelet coefficients and Fourier power 
s p e c t r u m 

In Fourier analysis, the fundamental tool used to characterize turbu-
lence is the power spectral density function E(K). The function E(K) 
represents the energy density contained in each wavenumber band dK, and 
thus provides information regarding the importance of each scale of mo-
tion. However, important spatial information regarding location of events 
become implicit in the phase angle of Fourier transform. In this section, 
we relate the Haar wavelet coefficients to the Fourier power spectrum and 
show how spatial information can be expressed in an explicit manner. 

The variance of the turbulence measurement, in terms of the wavelet 
coefficients, can be deduced from the conservation of energy 

M 2
M - m - l 

a2 = Ν~λΣ Σ {WT^\i]f. (12) 
m—l i=0 

The total energy TE contained in scale Rm(= 2m dy) can be computed 
from the sum of the squared wavelet coefficients at scale index (m) so tha t 

nM — m -i 

TE = N~1 ] T (WT<m>[i])2 (13) 
2 = 0 

where dy(= /S
_1(C^)) is the measurement spacing in physical space. In 

order to compare the wavelet power spectrum to the Fourier spectrum, we 
define a wavenumber A^m, corresponding to scale Rm, as 

Km = £-. (14) 

Hence, the power spectral density function E(Km) is computed by dividing 
TE by the change in wavenumber AKm(= 2π2~ m dy~l ln[2]) so t ha t 

E{Km) - 2 ^ ( 2 ) ( 1 5 ) 

where (·) is averaging in space over all values of (i) for scale index (m) 
(see [37] and [53]). The adequacy of Equations (14) and (15) are dis-
cussed in Katul ([24], pp. 149, 186-187). In Equation (15), the wavelet 
power spectrum at wavenumber Km is directly proportional to the aver-
age of the square of the wavelet coefficients at tha t scale. Because the 
power at wavenumber Km is determined from averaging many squared 
wavelet coefficients, we expect the wavelet power spectrum to be smoother 
than its Fourier counterpart. This is apparent in Figure 2 which displays 
good agreement between Fourier and wavelet power spectrum for all three 
decades of inert ial subrange wavenumber s. 
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Fourier 
Wavelet 
- 5 / 3 

10-1 100 101 
Wavert umber (m-1) 

103 

Figure 2. A comparison of the Fourier and Haar wavelet power spec-
tra. Taylor's hypothesis is used to convert time to wavenumber domain. 
The —5/3 power law is also shown. 

The Fourier power spectrum was computed by square windowing 8192 
points, cosine tapering 5% on each window edge, and averaging the re-
sultant 4 power spectra (N = 32,768). The wavelet power spectrum was 
computed by: 1) Using the pyramidal algorithm in Equations (9) and (10) 
to obtain the wavelet coefficients over position index (i) and scale index 
(ra), and 2) Using Equation (15) in conjunction with computed wavelet 
coefficients from step 1 to obtain the wavelet power spectrum. Windowing 
is unnecessary for the wavelet spectrum. We note tha t similar compar-
isons were reported by Hudgins et al. [21] and Barcy et al. [4] using the 
continuous wavelet transform. 

Since the wavelet power spectrum is directly proportional to the av-
erage of the squared wavelet coefficients, we can also calculate the spatial 
s tandard deviation using 

SD^K^ = d ^ 2 ) [ { W T ( m ) [ i ] 4 > - ((WT{m)w2))2}*- (16) 
In Meneveau ([37] and [38]), it was pointed out tha t a plot of E(Km) and 
E^m) + SDE gives a compact representation of the energy and its spatial 
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Figure 3. The evolution of the coefficient of energy variation CV(K) 
as a function of wavenumber (K). The solid line is the best fit regression 
line through the data points. 

variability at each scale which is referred to as the "dual spectrum". How-
ever, as shown by Katul and Parlange [23], a bet ter dimensionless indicator 
for the spatial energy variance is given by the coefficient of variation CVE 
defined as 

<*««.> _i§gg=i. (1„ 
An example of the variation of CVE is shown in Figure 3. 

Notice in Figure 3 tha t CVE increases as the wavenumber increases 
indicating increased turbulent activity at smaller scales. The increase in 
CVE can be related to the increased spottiness or intermittency in the 
dissipation ra te and is discussed next. In Tennekes and Lumley ([46] pp. 
66), the dissipation rate for locally isotropic turbulence is given by 

(e) = 15i/ 
du 

dx 
(18) 

where u is the velocity fluctuation in the longitudinal direction, and x is 
identical to x\. Recall tha t deviations from K41 are due to the spottiness 
or intermittency in e. Tennekes [47] suggested tha t intermittency results 
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in a large spatial variance in the dissipation rate (c e ) 2 around its mean 
value (e). Hence, we arrive at the desired physical meaning of CVE'- This 
dimensionless ratio can be interpreted as (σ€/(β)) if the following arguments 
are adopted: 

1. For locally isotropic turbulence, the s tandard deviation σ€ around 
(e) is given by 

du 

dx 

du 

dx 

2' * j 0.5 

I / Γ<9ΐ/1 \ / l"r)?/l \ I 
(19) 

Notice here the similarity between Equations (16) and (19). 

2. The derivatives in Equations (18) and (19) (e.g. du/dx) can be 
approximated by differencing operations (e.g. Au/Ax). 

3. Using step (2), the Ax in the ratio (cre/(e)) cancels out from the 
numerator and denominator and we are left with the differencing 
operations. 

4. The differencing (Au) at scale (m) can be directly related to the 
wavelet coefficients using Equation (9). This point is the subject of 
section 4.2. 

Hence, the increase in CVE, as shown in Figure 3, is a direct indication 
tha t € is becoming more and more intermittent at smaller scales. Wha t 
is also important to note here is tha t this result cannot be inferred from 
the usual Fourier power spectrum. From a turbulent energy point of view, 
a key difference between wavelet and Fourier transforms is tha t Fourier 
transforms are nonlocal and therefore distribute the energy uniformly in 
space (i.e. SDE — 0). 

4 .2 . Re la t ion b e t w e e n wavelet coefficients and s tructure funct ion 

Using Equation (9) the wavelet coefficients can be related to the n t h 

order s tructure function, for any flow variable 0, using 

(\φ(χ + r) - φ(χ)\η) ~ ( l ^ f f n ) - (20) 

In the above equation, we made use of the following: 1) the separation 
distance r = 2 m dy, 2) the wavelet coefficients are proportional to φ(χ + 
r) — φ(χ) at position x = (2mi) dy, 3) the amplitudes of the Haar wavelet 
coefficients are proportional to ( 2 m ) x / 2 , and 4) (·) is the averaging operator 
of the wavelet coefficients over all values of the position index (i) at scale 
index (m). To study intermittency effects on Equation (1), we modify the 
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above relation and propose a conditional structure function to be discussed 
next. 

4 .3 . Condi t iona l sampl ing and in termi t t ency effects o n K 4 1 

In general, intermittency of turbulent fluids is symbolized by an on-off 
process in the dissipation ra te so tha t at a certain time, the turbulent energy 
is only active in a small fraction of the fluid volume [36]. In a one dimen-
sional cut (namely along the x direction), the signature of intermittency is 
large isolated dissipation events within an overall passive surrounding fluid 
([36], pp. 104-109). For tha t purpose, we classify the wavelet coefficients 
as either "dissipative" or "passive". The dissipative wavelet coefficients are 
the coefficients directly influenced by the large localized dissipation events 
discussed above, while the passive coefficients are not. The distinction be-
tween dissipative and passive must be based on some minimum dissipation 
threshold criterion. Such a criterion is difficult to construct without some 
relation between the velocity and the dissipation. Before we establish the 
conditioning criteria, let us first define the indicator function 1^ at scale 
index (m) by 

J ( m ) f 0 if [WT^(i)? > F([WT(™\i)]>) 
\ 1 otherwise ^ ' 

where F is a conditioning criteria tha t allows discrimination between the 
dissipative and passive wavelet coefficients. Based on Equation (21), F 
may be interpreted as the ratio of the dissipation at scale index (m) and 
position index (i) to the mean dissipation, if the following arguments are 
adopted: 

1. The dissipation at position index (i) and scale index (m) is directly 
proportional to the square of the velocity gradient at tha t position. 
Tha t is e at scale index (m) is proportional to (du/dx)2 at scale 
index (m). This statement may be inferred from Equation (18) 
without the averaging operation. Possible sources of deviation from 
this s tatement are presented in [47]. 

2. The mean dissipation at scale index (m) is directly proportional to 
((du/dx)2) at scale index (m). This statement is a direct conse-
quence of Equation (18). 

3. Arguments resulting in Equation (20) are all valid. 

Arguments (1) and (2) may not be valid for turbulence tha t is locally 
anisotropic. However, based on the numerous studies of local isotropy in 
ASL flows (e.g. [22]; [42], Ch.8), we adopt the working hypothesis tha t tur-
bulence is locally isotropic in the inert ial subrange. These three arguments 
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result in a sequence of equalities given by: 

e'm> _ [Hr-) _ (u^(x + Ax)-u^m'>(x))2 _{WT^m\i)f 

(c)(m) " /(au(^\2\ ~ ([u(m)(x + Ax)-u(™)(x)Y) ~ ((WT(™))2) 

(22) 
where e^ is the dissipation at position index (i) and scale (m), (e)^m^ is 
the mean dissipation at scale (ra), and [u^ (x + Ax) — u^m\x)]/Ax is the 
finite difference approximation of the velocity gradient at scale (ra) and 
position x. The first equality follows from arguments (1) and (2). The 
second equality is due to the fact tha t Ax required to convert gradients to 
differences (in a finite difference approximation of the derivative) cancels 
out in the numerator and denominator, respectively. The third equality 
is a direct consequence of Equation (20). For example, if F = 5, then all 
squared wavelet coefficients tha t are in excess of 5 times the average squared 
wavelet coefficient at scale index (ra) are set to zero. This conditioning 
criterion allows us to consider a conditional power spectrum Ec given by 

E ( A m ) 2 ^ ( 2 ) ( 2 3 ) 

where (·) is now averaging in space over all non-zero values of [1^ WT^ (i)]2. 
Hence, Ec represents the power spectrum of the passive fluid fraction. Also, 
we can define the conditional n t h order structure function by 

(\φ(χ + r) - φ(χ)\ψϊ ~ ((\l(m)WT(pr)) (24) 

where ((·)) is averaging over all non-zero values of [1^ WT^ (i)]. These 
conditional statistics can be computed by: 

1) Using the pyramidal algorithm to calculate the Haar wavelet coef-
ficients at each scale index (m) and position index (i); 2) squaring these 
coefficients to obtain the energy content at each scale index (m) and posi-
tion index (z); 3) averaging the squared wavelet coefficients for each scale 
index (m); 4) dividing the squared wavelet coefficient (at space index i) by 
the value computed in step (3); 5) If this ratio is larger than some preset 
value for F , then set this coefficient to zero, otherwise leave as is; 6) Use 
Equation (23) or (24) to determine the power spectrum or the n t h order 
structure function with averaging performed over all non-zero values at 
scale index (ra). Repeat the above steps for all values of (m) within the 
inertial subrange. The adequacy of this conditional sampling criteria for 
recovering K41 and characterizing intermittency is considered next. 
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Figure 4a. Comparison between the conditioned (F = 5) and uncon-
ditioned wavelet structure functions [D2(r)] for n = 2. The solid lines 
are regression fits through the data points. 

§5. Resu l t s and Discuss ion 

This section discusses the effects of intermittency on K41 using the 
conditional wavelet analysis for three cases: 1) n = 2, 2) ra = 3, and 3) 
n = 6. In each case, we check whether K41 is recovered when intermittency 
is suppressed, and then we investigate the statistical s tructure of the events 
responsible for deviations from K41 scaling. We do not present theoretical 
details regarding intermittency models, but we focus more on the contrast 
between the conditioned (intermittency suppressed) and unconditioned (in-
termit tency active) statistics. 

Case 1: n = 2 

It is known tha t intermittency effects are generally small and may 
not be detectable for the structure function with n = 2 ([1] and [52]). 
We test this hypothesis by comparing the unconditioned and conditioned 
[F = 5) s t ructure functions of Equation (24). The results are presented in 
Figure 4aa. 

Both conditioned and unconditioned second order s tructure functions 
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exhibit scaling laws tha t are in agreement with K41 (slope= 2/3) indicating 
tha t intermittency effects may not be significant for n = 2 (see [7] and [8] 
for a possible physical explanation). We also present a summary of the 
regression statistics for the regression model log[.D2(r)] = Alog[r] + B in 
Table 2. Notice in Table 2 tha t the coefficient of determination (R2) for the 
regression model is in excess of 0.99; hence, the determination of scaling 
laws from wavelet structure functions appears to be very reliable. 

Table II 
Summary of the regression statistics for the model 
\og[(\AU\n}] = Alog[r] + B. The coefficient of 
determination (R2) and the standard error of estimate 
(SEE) are also shown. The conditioned statistics are 
for the conditioning criterion F = 5. 

n 

2 

3 

6 

Slope 
(A) 

0.680 
0.660 
1.010 
0.950 
2.008 
1.690 

Intercept 
(B) 

-2 .73 
-2 .55 
-3 .88 
-3 .53 
-7.10 
-5 .76 

#2 

0.996 
0.996 
0.995 
0.995 
0.993 
0.987 

SEE 

0.038 
0.036 
0.056 
0.055 
0.150 
0.170 

Conditioned (C)/ 
Unconditioned (U) 

C 
u 
c 
u 
c 
u 

One must note tha t certain scale aliasing occurs due to the use of or-
thogonal and complete basis since the number of Haar modes characterizing 
the frequency domain is relatively small (m = 15). This aliasing may in-
fluence the indicator function / ( m ) . Hence, intermittency characterization 
by the indicator function can be overestimated or underestimated based 
on the value of F. For tha t purpose, we performed the same analysis for 
F = 4 ,5 ,7 , and 10. The slope variation (for n = 2) did not differ by 
more than 0.004. This analysis clearly reveals the robustness of the pro-
posed conditional sampling scheme. Similar results were also obtained by 
Yamada and Ohkitani [54]. 

Case 2: n = 3 
As shown by Landau and Lifshitz ([29], pp. 123-128), a relation be-

tween the third order structure function and (r) is given by 

|(AC/)3 | = Î (€)r . (25) 

The above relation was explicitly derived using the Navier-Stokes equations 
for locally isotropic turbulence, and thus, is independent of any assumptions 
implicit in K41 or any intermittency corrections to K41. If intermittency 
does not alter the third order structure function behavior, our conditioned 
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Figure 4b. Same as Figure 4a but for n — 3. 

and unconditioned statistics should both reproduce the r 1 dependence of 
Equation (25). Using Equations (20) and (24) with F = 5 and n = 3, we 
compare the unconditioned and conditioned third order s tructure functions 
in Figure 4b. 

Both unconditioned and conditioned slopes (see Table 2) are in good 
agreement with Landau and Lifshitz [29] predictions (which are also consis-
tent with K41). This analysis supports the insensitivity of the third order 
s tructure function to intermittency corrections as noted by Anselmet et al. 
[1]. Yamada and Ohkitani [54] obtained similar results using an analogous 
conditional analysis procedure, but a different wavelet. 

Case 3: n = 6 
The sixth order structure function can be related to the dissipation 

correlation function from 

((At/)6) 
(e(x)e(x + r)) 

where the dissipation correlation function is given by 

(e(x)e(x + r))~ ( £ ) 

(26) 

(27) 
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Table III 
Some values of the intermit tency parameter μ from various sources. 

Source Measurements μ 
Mahrt [32] Atmospheric mixed layer: 0.3-0.4 

Convective and Nocturnal 
Anselmet et ai [1] Turbulent and Duct flow 0.2 ± 0.05 
Kuznetsov et al. [27] Wind-tunnel boundary layer 0.15-0.25 

(Depends on external intermittency). 
Monin and Yaglom [42] See Ch.8 for an extensive review 0.2-0.5 

and μ is the intermittency parameter ([26], [17] and [1]). The value of μ 
has been the subject of extensive research and its value appears to vary 
between 0.15 and 0.5 (see Table 3). Thus, from Equations (26) and (27), 
we see tha t the sixth order structure function is related to μ by 

((AU)6) ~ Γ2~μ. (28) 

We now evaluate the performance of the conditional wavelet analysis 
for reproducing K41 scaling and suppressing intermittency (i.e. μ = 0). 
Using Equations (20) and (24) with F = 5 and n = 6, we compare the 
unconditioned and conditioned sixth order wavelet structure function in 
Figure 4c. 

The slope of conditioned sixth order structure function is 2.0(= 2 — μ) 
indicating tha t intermittency is well suppressed (μ = 0) for the higher-order 
statistics (and K41 is recovered). Recall tha t the conditioning criteria is 
based on second-order statistics (wavelet power spectrum), yet intermit-
tency was suppressed even in the sixth-order statistics. 

The value of μ from the unconditioned sixth-order structure is 0.31 ( = 
2 — 1.69), which agrees with many published values from laboratory and 
atmospheric turbulence studies (see Table 3 for some examples). The con-
sistency in our value of μ with other laboratory experiments, in spite of 
limited da ta and sampling resolution, demonstrates the effectiveness and 
robustness of orthonormal wavelet expansions for intermittency studies. 

K41 and Non-Gaussian Statistics 
Kraichnan [28] suggested tha t K41 is consistent with the concept of 

an inertial cascade if the velocity statistics within the inertial subrange do 
not differ significantly from Gaussian. We therefore consider the velocity 
statistics and their relation to K41 scaling. This relation is achieved by 
noting tha t conditional wavelet analysis recovers K41 and eliminates any 
intermittency effects from the inertial subrange. Here Gaussian behavior 
is tested by computing the conditioned and unconditioned wavelet flatness 
factor for inertial subrange scales. The wavelet flatness factor (FF) at scale 
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Figure 4c. Same as Figure 4a but for n = 6 

index (m) is defined as 

FF(Rm) = 
{(WT^\i])4) 

((WTW\i})2)2 (29) 

Using Equation (29) and the conditional wavelet analysis for F = 5, we 
compute F F for all (m) corresponding to inertial subrange scales. The 
results are summarized in Figure 4d. 

Notice tha t the conditioned FF(Rm) are nearly Gaussian (i.e. FF ~ 
3) for all inertial subrange scales while the unconditioned case is clearly 
non-Gaussian with wavelet flatness factors up to 7. Also, note tha t the 
unconditioned flatness factor increases with decreasing separation distance. 
This analysis clearly indicates tha t K41 is associated with near-Gaussian 
statistics and intermittency effects result in non-Gaussian statistics. 

Finally, the wavelet flatness factor proposed in Equation (29) can also 
be used to infer the statistical properties of the horizontal velocity gradients 
if the following arguments are adopted: 

1. The differencing nature of the Haar wavelet transform, as can be 
noted from Equation (9), results in direct proportionality between 
wavelet coefficients and horizontal velocity differences. 
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• Conditioned 
o Unconditioned 

Figure 4d. The wavelet flatness factor (FF) as a function of sepa-
ration distance (r) for inertial subrange scales. Both conditioned and 
unconditioned cases are shown. 

The dimensionless ratio in Equation (29) is the same for differences 
and gradients since the division by the wavelet width or separation 
distance tha t is required to convert differences to gradients in nu-
merator and denominator cancels out. These two arguments are 
due to Mahr t [33]. Using these two arguments, FF(Rm) in Equa-
tion (29) can be interpreted as a gradient flatness factor at scale Rm· 
Notice in Figure 4d tha t the unconditioned wavelet flatness factor 
increases as the separation distance decreases. The flatness factor is 
commonly used to measure the importance of the tails of the prob-
ability density function. Hence, the increase of FF in Figure 4d 
indicates tha t the tails of the horizontal velocity gradient probabil-
ity density function become more important as the scale decreases. 
This analysis also indicates tha t the increase in the gradient proba-
bility density tails, at smaller scales, is due to intermittency within 
the inertial subrange (see Figure 4d). In contrast, no such increase 
is noted for the passive wavelet coefficients. 

100 

2. 
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§6. S u m m a r y and Conclus ions 

Triaxial sonic anemometer velocity measurements at 2.5 m above a uni-
form dry lakebed (11 km by 4 km) were used to investigate intermittency in 
the inertial subrange. The power spectrum of the horizontal velocity mea-
surements exhibited a —5/3 power law for three decades allowing detailed 
investigation of scaling laws in the inertial subrange. In order to describe 
space-scale relations in the inertial subrange, we utilized the orthonormal 
wavelet representation. The orthonormal wavelet representation was well 
suited for this investigation since the basis function are orthogonal and 
mutual independence of the expansion coefficients is guaranteed. In addi-
tion, it was shown tha t the expansion coefficients can be related directly 
to quantities commonly used in conventional turbulence analysis. Rela-
tions between the orthonormal wavelet coefficients and the Fourier power 
spectrum, as well as relations with the nth order structure function were 
established. A comparison between Fourier and wavelet power spectra was 
also carried out. Good agreement between the two spectra was noted even-
though the Haar wavelet has poor localization in the frequency domain. 

Since intermittency build up in the inertial subrange was due to local-
ized dissipative events, a conditional wavelet scheme was developed. The 
conditional wavelet scheme relied on an indicator function tha t identified 
the wavelet coefficients directly influenced by large and localized dissipation 
events. The conditional wavelet scheme efficiently suppressed intermittency 
within the inertial subrange by removing these wavelet coefficients. K41 
statistics, up to sixth order, were recovered when intermittency in the dis-
sipation was suppressed from the wavelet coefficients. It was also found 
tha t intermittency did not significantly influence second and third order 
statistics in agreement with many other studies. The robustness of the 
conditional wavelet scheme was also verified. 

Finally, we demonstrated tha t intermittency was directly responsible 
for non-Gaussian statistics in the inertial subrange, while K41 was associ-
ated with near Gaussian statistics. The wavelet transform produced inter-
mit tency factors comparable to values obtained from laboratory and other 
field experiments. 
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An Adaptive Decomposition: 
Application to Turbulence 

J. F. Howell and L. Mahrt 

Abstract. Nine hours of 45 meter tower anemometer measurements are an-
alyzed to demonstrate an adaptive method for decomposing a time series into 
orthogonal modes of variation. In conventional partitioning (or filtering) the cut-
off scales are specified a priori to be constant throughout the record. Applying 
a constant cutoff scale is less effective if two different physical modes vary on 
overlapping scales, since the statistical partitioning is then physically ambiguous. 
For the turbulence data analyzed in this study, motions leading to a majority of 
the momentum flux intermittently occur on small scales which otherwise lead to 
little flux. To better separate the transporting motions from the more random 
motions, the cutoff scale separating these two modes is allowed to vary with record 
position. 

The entire record of data is partitioned into four modes of variation using 
a piece-wise constant (Haar) decomposition. The two larger scale modes are 
characterized as the mesoscale and large eddy modes. Similar to conventional 
partitioning, these two modes are determined by spatially constant cutoff scales. 
The two smaller scale modes on the other hand, are separated by a scale which 
depends on the local transport characteristics of the flow. Local extremes in 
the spatial distribution of momentum flux determine the partitioning between 
the two small scale modes. This leads to an adaptive cutoff scale, which better 
isolates the transport mode responsible for a majority of the momentum flux. 
The spatial variation of this cutoff scale allows the time series to be decomposed 
into modes which are physically more pure as is verified in terms of traditional 
statistics for each mode. For example, the gradient skewness in the longitudinal 
wind component for the main transporting eddies is —0.23 using a constant cutoff 
scale and —0.85 using the adaptive cutoff scale indicating that the shear driven 
transporting eddies are more completely isolated using the variable cutoff scale. 
The remaining small scale deviations define the fine scale mode, which consist of 
non-transporting nearly isotropic motions. 

Wavelets in Geophysics 107 
Efi Foufoula-Georgiou and Praveen Kumar (eds.), pp. 107-128. 
Copyright 1994 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 
ISBN 0-12-262850-0 



108 J. Howell and L. Mahrt 

§1. Introduct ion 

A common issue in time series analysis is sorting out the different modes 
of variation. If such modes overlap in Fourier space or are primarily local 
or event-like, then traditional Fourier and eigenvector decompositions are 
generally less effective in separating the different modes. As an alternative, 
nine hours of turbulence da ta are orthogonally decomposed into piece-wise 
constants. Based on the decomposition statistics, four modes of variation 
are defined. One of these modes includes a majority of the momentum 
flux and is described by a subrange of scales which depends on the record 
position. 

The Haar wavelet is the underlying basis in the decomposition applied 
in this study. Decomposing the turbulence in terms of higher order wavelets 
which are more compact in Fourier space yield similar results. Higher order 
wavelets however, are slightly less efficient in capturing the sharp gradients 
associated with the transport physics which is the primary goal of this 
study. On the other hand, higher order wavelets do appear bet ter suited 
for representing the larger scale, smoother variations. Additional reasons 
for specifically using the Haar wavelet are provided at the beginning of 
Section 2.1, and results of applying alternative orthogonal wavelets are 
discussed at the end of Section 2.3. 

In general, wavelets decompose global variance or energy in terms of 
scale and position within the record. Wavelets are used extensively in 
seismic analysis and are beginning to find their way into other geophys-
ical disciplines [3, 11, 12, 13, 18, 21]. Related to this study, Farge [9] 
and Meneveau [23] discuss a variety of wavelet applications to turbulence. 
Ways of constructing, describing, and implementing wavelet tools are many. 
Daubechies [8] constructs wavelets which are compact in physical space, 
and yet still provide a complete basis for decomposing the total sampled 
variance. Viewing wavelet bases from a linear algebra perspective [24] can 
be useful in solving numerical equations [1]. Spline wavelets are gener-
ally effective for interpolating and filtering da ta [2, 7, 25]. Another com-
mon view is tha t a wavelet basis set describes a multiresolution analysis 
[10, 19, 22]. 

A multiresolution analysis is a convenient setting for locally describing 
the different scales of variation in the data. Multiresolution techniques are 
used in image analysis, for example, to store and transmit images compactly 
[5,6]. The current development could be posed in terms of a multiresolution 
analysis [16] or alternatively in terms of the wavelet analysis referred to 
above. However, the methods in this study (Section 2) are kept simplified 
such tha t it is unnecessary to explicitly appeal to these closely related 
topics. 

The strategy in this study is to first decompose the turbulence t ime 
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series into distinct modes. Because small scale variations in the turbulence 
record correspond to two types of motions, an adaptive technique is used 
to separate them (Section 2.2). For a simple demonstration of the adaptive 
technique, only the scale separating these two small scale modes is allowed 
to spatially vary. Generally, the adaptive technique allows for the separa-
tion of physically distinct modes with overlapping scales. This separation 
is not possible in conventional filtering with a specified response function or 
distribution of weights. After decomposing the turbulence, the spatial dis-
tr ibution of momentum flux will be reconstructed for the different modes. 
Additional statistics are then computed for the different modes (Section 
2.3). In Section 3 a brief physical interpretation of the results is provided. 

§2. Part i t ioning the T i m e Series 

The da ta used in this study consist of 9.1 hours of the three velocity 
components measured 45 meters above flat terrain in near neutral condi-
tions [17]. The wind speed fluctuates about a mean value of ü = 12.8 m / s 
throughout the 9.1 hours, and most of the energy is concentrated in the 
1 minute or 1 km eddy motions (Section 2.3). For a turbulence depth of 
roughly 500 m the Reynolds number is more than 108. Additional statistics 
describing this da ta set can be found in [17] and [21]. 

The value of the longitudinal wind component at the i t h record position 
is denoted as 

«,·; i = l,2,...,2M (1) 

where δ = ^ s is the width of a sampling interval and in the current analysis 
M = 19, corresponding to 524,288 da ta points. There are equivalent t ime 
series of the cross stream component v and the vertical wind component 
w. 

2 .1 . D e c o m p o s i t i o n m e t h o d 

Haar [14] first presented this decomposition method over 80 years ago, 
yet the utility of such a basic decomposition is only beginning to be realized, 
primarily in the context of wavelets. Indeed, Daubechies [8] appealed to 
the Haar basis set in introducing a fundamental set of equations describing 
a unique sequence of orthogonal wavelet bases. 

Two coefficients (—1 and +1) essentially describe a Haar basis element. 
The Haar decomposition involves multiplying differences of ari thmetic sums 
of the da t a by dyadic numbers (= 2P where p is an integer). Orthogonal 
wavelet transforms usually involve more coefficients and irrational numbers. 
The Haar wavelet is (odd) symmetric while all other compactly supported 
orthogonal wavelets are apparently asymmetric [8]. The Haar basis set 
is sometimes discounted because a Haar transform value corresponds to 
a Fourier spectral window which decays away from a central wavelength 
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at a slower ra te than higher order wavelets, an important consideration 
in many applications. For the turbulence da ta analyzed in this study, the 
main transport ing eddies often consist of sharp boundaries or microfronts. 
Microfronts are efficiently decomposed with the Haar basis set because 
they both contain sharp gradients. Compactness in Fourier space seems 
less important in this case. The Haar decomposition is now reviewed. 

The longitudinal wind averaged over the entire record is defined as 

i i 
π=^Σ>- (2) 

Variations in the longitudinal wind are described by difference terms de-
fined as 

i 2 m - i 

Au(am; n) = — Σ (w2™(n-i)+j ~ u2m{n_lHJ). (3) 

These difference terms correspond to Haar transform values and character-
ize the average change in the u signal on the scale am = 2mS across the 
interval [am(n — 1), amn\. Specifically, (3) is half the difference between the 
half interval averages, so for example, Au(ai; n) = ^ x (u2n — ̂ 2n - i ) · Inter-
vals of length a m are enumerated starting with n = 1 (the first translate) 
and ending with n = 2 M _ m (the last translate). These non-overlapping 
translated intervals completely cover the time series of length aw The 
differences (3) are then computed for each translate and dyadic scale such 
tha t the sampled variations are completely decomposed. 

The signal deviation from the record average at the ith record position 
is reconstructed as 

M 

Ui - ü = Σ ( - l ) * A u ( a m ; n) (4) 

i — 1 i — 1 
n = 1 + int(——) ; £ = 1 + int(- r ) 

for i — 1 ,2, . . . ,2M . The second translation number ί represents the enu-
merated half intervals of length am/2. The translation numbers n and ί 
correspond to the difference terms (3) which are necessary for reconstruct-
ing the da ta value at the zth record position. Specifically, n corresponds to 
the interval [am(n — l ) , a m n ] which includes the ith record position. The 
integer ί is even (odd) depending on whether the da tum at the i t h record 
position was added (subtracted) in the associated difference term. The 
operator ini(*) yields the integer part of the number *. 

The total sampled variance is obtained by squaring the left hand side 
of (4) and averaging over the 2 M different record positions. This operation 
corresponds to a sum over dyadic scales of mean square Haar transform 
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values. The total sampled variance is written as 

2 M M 1 2 M _ m 

5 M E ( ^ ' " Ï Ï ) 2 = Σ ^Μ^ Σ [Ati(am;n)]2. (5) 
i = l m = l n = l 

The total covariance between the time series of the longitudinal and vertical 
wind components is obtained by multiplying the u reconstruction (4) by an 
equivalent expression for w, and averaging over all record positions. The 
resulting covariance quantity is written as 

2 
l 

M Λ 2 

-JM Ys(Ui * U)(Wi ~W) = (6) 
i=l 

M-m 

Σ ^ Μ ^ Σ ^u(am;n)Aw(am;n). 
2 

7Ti=l n=l 

The identities (4)-(6) can be verified by substituting in the expression 
for ü from (2), the expression for Au(am;n) from (3), and equivalent ex-
pressions for w and Aw(am;n). Verifying (4)-(6) is facilitated by the two 
identities: 

M 

Σ 2m = 2M + 1 - 2 (7) 
m=\ 

171 i i 

2.2. Modes of variation 

Variations contributing to the local signal deviation from the record 
average (4) are now partitioned into different modes. The sum of the dif-
ferent modes will be equal to (4), and the individual modes will locally 
correspond to a continuous subrange of scales. Accordingly, the longitudi-
nal wind data associated with a given mode c (= 1,..., C) at the i th record 
position is described by a range of scales between a - and am+ so that 

Ui-u= Σ (-l)eAu(am;n) (9) 

. /l'■ — 1 x „ . . j ' - 1N n = 1 + int(——) ; t = 1 + int(- r) v 2m 2m 

where raf = M, ra^ = 1 , and ra+ = m~_1 — 1. A given mode c at the 
i th record position includes all the difference terms (3) associated with the 
range of dilation scales a - through a + · The small scale cutoff for the 
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smallest scale mode is a\ = 2J, so m ^ = 1 is fixed. This leaves C — 1 scales 
unspecified. In this study C = 4, so the values of mj~, ra^~ and m^ are to 
be determined. 

If the value of m~ is set to a constant, then the scale separating the 
two corresponding modes will be independent of record position. For the 
atmospheric wind data, the cutoff scales for the two largest scale modes, 
namely the mesoscale (c = 1) and large eddy (c = 2) modes, are defined in 
this manner. These two modes are defined to span the scales from 800 m 
- 420 km. Here we have converted time to distance (Taylor's hypothesis) 
using the mean wind speed ü = 12.8 m / s . 

Because the horizontal variance drops off rapidly with scale at about 
5 km (Figure 5, Section 2.3), 5 km is chosen as the small scale cutoff 
for the mesoscale mode c = 1. The smallest dyadic scale greater than 5 
km is «13 = 6.5 km, so accordingly, mj~ = 13. At the 500 m scale the 
u-w covariance (momentum flux) increases rapidly with decreasing scale. 
Therefore, 500 m is chosen as the small scale cutoff for the large eddy mode, 
c = 2, in order tha t most of the flux remains to be captured. The smallest 
dyadic scale greater than 500 m is a10 = 800 m, so accordingly m^ = 10. 
The large eddy mode consist of motions which may generally span the 
entire depth of the boundary layer whereas the smaller scale (< a9 = 400 
m) motions are likely to be not as deep. 

Since there is no obvious constant scale separating the two smaller 
scale modes, the scale (or m^ · ) is allowed to depend on the record posi-
tion according to the local physics of the flow. This allows random small 
scale fluctuations to be effectively separated from small scale variations 
associated with a transporting eddy. In other words, the t ransport mode 
is allowed to locally capture smaller scales if such scales account for sig-
nificant flux. For example, significant momentum flux may be associated 
with wind gusts or so called microfronts. Including small scales in the re-
construction of the t ransport mode at the position of a microfront more 
effectively captures the flux. Between the gusts, the small scale motions 
do not significantly t ransport momentum and therefore are not included in 
the reconstruction of the transport mode. 

Local t ransport occurs at locations where variations in the longitudinal 
wind component u are in phase with variations in the vertical component 
w. The analyzed eddies are centered according to the largest magnitudes 
of the product A.u(am;n) x A n ; ( a m ; n ) within each of the 4,096 intervals 
of width 07 « 100 m. Specifically, flux maxima are determined within the 
non-overlapping intervals [a-j{n — l),ajn] for n = 1,2,3, . . . , 2 1 2 . These lo-
cal maxima statistically represent local maxima in the spatial distribution 
of momentum flux, and thus determine the position and scale of a trans-
porting eddy. In this study we do not use a minimum threshold value for 
conditioning the local flux maxima. The strongest momentum flux event 
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within each non-overlapping 100 m interval is included in the t ranspor t 
mode, regardless of the sign or strength of the event. 

The values of m^i are determined by first requiring 1 < m^i < 7 for 
all record positions. The upper bound on m^i ensures tha t the t ranspor t 
mode (c = 3) includes, as a minimum, all scales between αγ = 100 m and 
α9 = 400 m. This choice is based on the observed global dependence of 
covariance on scale (Section 2.3). 

The next step in determining m^i is to identify the largest value of 
Au(am; n) x Aw(am; n) within in each a-j « 100 m interval. Say tha t within 
a particular interval of length αγ, this largest product corresponds to the 
index values m* and n* associated with the transform interval [am* (n* — 
1), am* n*]. The t ransport mode is then reconstructed down to the scale am* 
for all of the record positions contained in the interval [am* (n* — 1), am* n*]. 
This reconstruction corresponds to including all of the difference terms (3) 
associated with the telescoping intervals [am'(nf — l ) , a m / n ' ] where am* < 
am' < a7 a n d the translation number is n' = 1 + int( ™>-L· )· 

The difference terms corresponding to the telescoping intervals are used 
in reconstructing the t ransport mode c = 3. These terms determine m^~z·. 
Considering the i t h record position contained within the given interval of 
length αγ, this position will necessarily be contained in the interval [am/ (η'— 
l ) , a m / n ' ] for one or more values of m!. For example, this position (by 
definition) is always contained in the interval corresponding to m' = 7. 
The value of m^i at this given ith record position is simply the smallest of 
the ml'. This value corresponds to the smallest of the telescoping intervals 
in which this given ith record position is contained. A more complete 
description (with figures) of a similar adaptive technique can be found in 
[16]· 

As an example, a 4 km segment of the mc distributions are plotted 
in Figure 1. The straight horizontal lines indicate the spatially constant 
scales separating modes 1 & 2 and 2 L· 3. The scale separating modes 3 
& 4 (m^i) varies from several meters to 100 m depending on the record 
position. The local minima in m^i occur at locations where the smaller 
scale variations are identified as belonging to the t ransport mode. At these 
locations, some of the flux occurs on small scales usually associated with 
microfronts. 

2 .2 .1 . Def ini t ions 

The particular modal definitions, detailed below, are based on an inter-
pretat ion of the variance and covariance spectra (Section 2.3). The modal 
reconstructions (Section 2.2.2) substantiate the partitioning. The largest 
scale (mesoscale) mode leads to very little flux and consist of predominantly 
horizontal motions. The large eddy mode leads to some flux, and for this 
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Figure 1. The small scale cutoffs for the four different physical modes 
of variation 

mode the variance in the longitudinal wind component is significantly larger 
than the variance in the cross stream and vertical wind components. The 
next smallest scale, the transport mode contains a majority of the flux, 
and the motions are more 3-dimensional than the large eddy mode. The 
smallest resolved (fine) scale mode is responsible for very little net flux and 
consist of nearly isotropic motions. 

(i) The mesoscale mode, c— 1, at the ith record position is defined as 

«l,· = Σ (-l)*Au(am;n) 
m=13 

i — 1 i — 1 = 1 + int(——) ; t = 1 + int(- r ) 

(10) 

where Au(am; n) is defined in (3). The dilation scale am = 2mS = 2 m _ 4 s 
« 2 m + 3 x 0.1 m, so this mode includes scales between a13 « 6.5 km and 
ai9 « 420 km. 

(ii) The large eddy mode, c = 2, at the ith record position is defined as 

12 

«2,i= ^2 {-l)eAu(am]n) ( U ) 
m=10 
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where n and £ are defined in (10). This mode includes scales between 
αιο « 800 m and a\2 « 3.3 km. 

(iii) The t ransport mode, c = 3, at the ith record position is defined as 

9 
u^i= Σ (-l)'Ati(am;n) (12) 

m=mä i 

where 1 < ra«^· < 7 is determined for each interval of length αγ « 100 
m according to the above discussion. This mode includes scales between 
a\ « 1.6 m and a9 « 400 m. 

(iv) The fine scale mode, c = 4, at the zth record position is defined as 

mi,i 
u*,i = ] £ (~l/Au(am; n) (13) 

where m ^ = m^i — 1. At record positions where ra^· = 1 the fine scale 
mode is zero. This mode includes scales between ai « 1.6 m and a6 « 50 
m. 

2 .2 .2 . R e c o n s t r u c t i o n s 

The sum of the different modes is equal to (4), so it follows tha t 

c 
Ui -ü =^2uCii (14) 

c=l 

where C = 4 is the total number of modes in this case. Figure 2 shows 
the different orthogonal modes of the longitudinal wind. The sum of the 
different modes including the record average 12.8 m / s is equivalent to the 
original da ta (Figure 3). The large differences in the scales of variation 
for the different modes is made apparent by plotting the modes on the 
same horizontal scale. The transport mode c = 3 consist of variable width 
blocks because the scale separating the two small scale modes depends 
on the record position. The local minima in the separation scale occur 
at locations where the block widths are more narrow as can be seen by 
comparing Figures 1 and 2. 

Segment lengths along the horizontal axes are now adjusted according 
to the different scales of variations in order for the flux uc x wc to be plotted 
for different c (Figure 4). For example, the mesoscale mode, c = 1, can be 
viewed for the entire ( « 420 km) record while the fine scale mode, c = 4, 
is suitably viewed on a segment only 400 m in length. 

Figure 4 shows tha t the t ransport mode captures most of the down-
ward momentum flux while the fine scale mode leads to small flux with 
nearly equal probability of upward or downward flux. In this sense, the 
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198 199 200 
km-> 

201 202 

Figure 2. The four orthogonal modes of the longitudinal wind com-
ponent u plotted on the same segment of the record shown in Figure 
1. 

partitioning is successful. In order to quantify the differences between the 
four modes, globally averaged statistics are now computed. 

§3. Variance and Covariance Spec tra 

A global estimate of the variance on the scale a m is the square of 
the Haar transform (3) on the scale am averaged over all the translation 
positions, written as 

var[ 

ηΙΥΊ — TO 

1 (15) 

where A u ( a m ; n ) is defined in (3). Prom (5) the total variance summed 
over all scales can then be expressed as 

M 

Var(u) = 2_\ var(u;am) (16) 
m = l 

where Var(u) corresponds to the left hand side of (5). 
In order to obtain a more continuous estimate of the variance as a func-

tion of scale, the dilation a is allowed to take on values between orthogonal 
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Figure 3. The sum of the four different modes which equals the orig-
inal data. 

scales, and the difference (transform) intervals are allowed to overlap. This 
leads to a difference term defined as 

Au(a; b) = — ^2(ui+j - ui+j-m) (17) 
i=i 

where the dilation scale is a = 2m J, and b = iS is the central position of the 
transform interval. Provided there are N equally spaced da ta points, (17) 
is defined for i = ra,..., iV — ra so there are a total of N — 2m + 1 transform 
values on the scale a = 2m8. This generalization leads to a non-orthogonal 
est imate of the variance on the scale a defined as 

1 N-m 

var^a) = j v _ 2 m + i Σ M « ; 6 ) ] 2 · (18) 
i=m 

Depending on the sampling, the non-orthogonal and orthogonal global es-
t imates of a local variance may be nearly equal at a fixed dyadic scale, tha t 
is var*(u; a) « var(u; am) for a = am. The non-orthogonal est imate based 
on the spatially overlapping transform intervals leads to smoother spectral 
estimates with respect to scale. 

An orthogonal estimate for the covariance between the longitudinal 
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Figure 4. The product uc X wc of the four orthogonal modes. The 
four modes are (a) the mesoscale mode c = 1, (b) the large eddy mode 
c = 2, (c) the transport mode c = 3, and (d) the fine scale mode c = 4. 

and vertical wind components on the scale am is written as 
cyM — m 

1 
j ( t i ,w ;a m ) = 9 M _ m ]T] Au(am',n)Aw(am;n), (19) COtM 

n = l 

so from (6) the total covariance can be alternatively expressed as 

M 

Cov(u,w) = 2_] cov(u,w;am) (20) 

where Cov(u,w) corresponds to the left hand side of (6). 
A non-orthogonal estimate of the covariance on the scale a is defined 

as 
N — m 

cov*(u,w;a) = N _ 2 m + l Σ Au(a ;6 )Aw(a ;6 ) (21) 
i=m 

which provides bet ter scale resolution for estimating the scales of motion 
dominating the vertical flux. 

The orthogonal and non-orthogonal covariance spectra are plotted for 
the t ime series of the longitudinal and vertical wind components (Figures 
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Figure 5. Variance in the longitudinal wind component u. The cir-
cles are orthogonal values while the curve represents non-orthogonal 
estimates. The regions between the vertical dashed lines are denoted 
MS (mesoscale), LE (large eddy), TE (transporting eddy), and FS (fine 
scale) and correspond to four orthogonal modes of variation. The num-
bers in each region are the contributions of the corresponding mode 
to the total variance. The fine scale mode corresponds to the shaded 
region. The transport and fine scale modes both include variance on 
dilation scales less than 100 m. 

5-7). The numbers for each mode in the lower portion of the figures are 
the relative contributions to the total covariances. These numerical values, 
in addition to other statistics, are summarized in Table I. 

Included in these statistics are gradients in the longitudinal wind com-
ponents. Gradients in a piece-wise constant signal are readily defined as 
the difference between adjacent constant values divided by the distance 
between the center positions of the associated segments. Consequently, for 
the t ranspor t mode the gradients are computed over variable distances, 
since the piece-wise constants are of variable width (Figure 2, c = 3). 

The skewness values of the gradients in the longitudinal wind compo-
nents for the different modes are listed in Table I. A positive (negative) 
value of the skewness for the u gradients indicates the wind speed increases 
(decreases) more rapidly in the downstream direction. Thus, the results 
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Figure 6. As in Figure 5 except for the variance in the vertical wind 
component w. 

Table I 
Haar wavelet decomposition statistics. Variances (var and cov) are in 
m2/s2. The values in the parenthesis are the results if the adaptive step is 
not taken to include additional small scale motions in the t ransport mode. 

Mode 
u var 

v var 

w var 

u-w cov 

u-w corr 

isotropy 

skewness of 
u gradient 

Mesoscale 
1.043 

0.779 

0.027 

-0.049 

-0 .29 

0.03 

0.048 

Large Eddy 
1.474 

0.407 

0.170 

-0.300 

-0 .60 

0.18 

-0.227 

Transport 
1.456 

(1.263) 
1.019 

(0.852) 
0.731 

(0.526) 
-0.438 

(-0.368) 
-0 .42 

(-0.45) 
0.59 

(0.50) 
-0.846 

(-0.230) 

Fine Scale 
0.411 

(0.604) 
0.524 

(0.691) 
0.457 

(0.662) 
-0.068 

(-0.138) 
-0 .16 

(-0.22) 
0.98 

(1.02) 
-0.006 

(-0.019) 

Total J 
4.3841 

2.7294 

1.3845 

-0.8552 

-0 .35 

0.39 

-0.220 
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Figure 7. As in Figure 5 except for the covariance between the time 
series of the longitudinal wind component u and the vertical wind com-
ponent w. 

show tha t the t ransport mode is associated with rapid decreases in the 
wind speed in the downstream direction, a characteristic of shear driven 
t ransport . The variable cutoff scale leads to a gradient skewness of —0.846 
where as a constant cutoff scale results in a gradient skewness of only 
—0.230. Thus, the spatially adaptive cutoff scale defines a more complete 
physical partitioning. 

Also listed in Table I are the correlation coefficients, defined in the 
usual way as 

/
 C0V^W) (22) 

y/Var(u)Var(w) 
and an isotropy coefficient which is calculated as 

2 x Varjw) 

Var(u) + Var(v) ^ } 

If all three velocity components contain the same amount of variance, this 
isotropy coefficient is unity. 

The Haar is but one possible wavelet to use in decomposing the turbu-
lence. As mentioned at the beginning of Section 2.1, the Haar wavelet is an 
element in a sequence of wavelets introduced by Daubechies [8]. Another 
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Table II 
As in Table I except the numbers are D4 wavelet decomposition statistics. 

Mode 
u var 

v var 

w var 

u-w cov 

u-w corr 

isotropy 

Mesoscale 
1.052 

0.783 

0.029 

-0.069 

-0 .40 

0.03 

Large Eddy 
1.556 

0.432 

0.176 

-0.311 

-0 .59 

0.18 

Transport 
1.364 

(1.207) 
1.023 

(0.891) 
0.737 

(0.563) 
-0.421 

(-0.363) 
-0 .42 

(-0.44) 
0.62 

(0.54) 

Fine Scale 
0.372 

(0.529) 
0.490 

(0.622) 
0.442 

(0.616) 
-0.059 

(-0.117) 
-0 .15 

(-0.20) 
1.02 

(1.07) 

Total 
4.3441 

2.7282 

1.3838 

-0.8605 

-0 .35 

0.39 

simple element of tha t sequence is referred to as a D4 wavelet since it is 
constructed from four coefficients whereas the Haar requires only two. A 
distinction between different wavelets in the Daubechies sequence is local-
ity in physical space versus locality in Fourier space. For example, the D4 
wavelet is more local in Fourier space than the Haar whereas as the Haar 
wavelet is more local in physical space. In order to study the sensitivity of 
the present results to a specific wavelet, the D4 wavelet basis is applied to 
the turbulence t ime series in the same manner as the Haar basis. The lack 
of symmetry in the D4 wavelet was not a significant factor in this case. 

The results of applying the Haar and D4 wavelet bases (Tables I and 
II) are similar, though in the D4 wavelet decomposition (Table I) there is a 
little more variance and covariance captured in the larger scale modes and 
there is a little less variance and covariance in the two smaller scale modes. 
Adapting the D4 wavelet decomposition to the spatial distribution of the 
covariance has about the same effect as adapting the Haar decomposition. 
The effect of adapting the decompositions is quantifiable in terms of the 
differences between the values in parenthesis and the values immediately 
above those numbers in Tables I and II. For example, when applying the 
D4 wavelet (Table II), adapting the decomposition increases the u-w co-
variance (flux) in the transport mode by about 16%. Adapting the Haar 
decomposition (Table I) leads to a 19% increase in the flux associated with 
the t ransport mode. Applying wavelets which are even more compact in 
Fourier space lead to similar results. Though with higher order wavelets, 
the ratio of the variance and covariance in the larger scales to tha t of the 
smaller scales tends to be greater. 

Higher order wavelets appear to be bet ter suited for representing the 
larger scale modes, which normally have a smoother spatial s tructure. For 
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example, the variance and covariance spectra generated from decomposing 
the turbulence da ta with higher order wavelets contain peaks at the larger 
(> 1 km) scales, which are bet ter defined than in the Haar spectra. The 
smaller ( < 1 km) scale turbulence and associated sharp gradients, however, 
are efficiently captured by the Haar decomposition. 

Another result is tha t the total covariances captured by the D4 wavelet 
(Table II) are slightly different than the totals listed in Table I obtained 
from the Haar decomposition. Total sampled covariances directly com-
puted according to the left hand sides of (5) and (6) agree with the Haar 
decomposition totals to more digits than shown in Table I. 

§4. P h y s i c a l I n t e r p r e t a t i o n 

The turbulence da ta analyzed in this study has been decomposed into 
deviations of small scale averages from larger scale averages. The turbu-
lence measurements include 9.1 hours of wind tower da ta which translates 
to about 420 km using Taylor's hypothesis and a mean wind speed u = 12.8 
m / s . The flow is partit ioned primarily according to the scale dependence 
of the u-w covariance (Figure 7). Deviations of 3.2 km averages from the 
entire record average (variations on scales > 6.4 km) define the mesoscale 
mode. Deviations from the 3.2 km averages represent the turbulence, which 
in tu rn are partit ioned into three different modes of variation (Section 2). 

Based on the u-w covariance (see shoulder in Figure 7 around a = 2 
km), the large eddy mode is defined by deviations of 400 m averages from 
the 3.2 km averages, tha t is variations on the scales between 800 m and 
3.2 km. The exact scales defining the large eddy mode are somewhat 
arbitrary, since the physics changes between the small scale and large scale 
ends of this regime. At the small scale end of the large eddies, the vertical 
motions become more significant. The large eddy mode corresponds to 
motions which are more horizontal at the 45 m observation level compared 
to the smaller scale motions as indicated by the small value of the isotropy 
coefficient (Table I) . 

The large eddies may be the lower part of boundary layer scale motions 
(on the order of 1 km deep) where the lower par t of the eddies observed at 
the tower level are forced by the ground to be more horizontal. In this case, 
the t ransport by the large eddies would increase with height. Roll vortices 
are an example of such eddies [4]. When observed from t ime series measured 
from towers, such larger scale motions are sometimes referred to as inactive 
eddies because they contribute significantly to the horizontal variance but 
contribute little to the momentum flux at levels closer to the ground. In this 
case the motions are not considered to be traditional turbulence and must 
be removed from the signal before traditional similarity arguments can be 
applied [15]. This concept may be most descriptive of the larger scale par t 
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of the large eddies in the present partitioning. The weak vertical motions 
tha t occur on the large eddy scales, however, are well correlated with the 
variations of the longitudinal wind component leading to significant (35% 
of total) momentum flux. While the mean shear seems to exert a greater 
influence on the large eddy mode compared to the mesoscale mode (greater 
gradient skewness, Table I), the shear effect on the large eddies is still small 
compared to tha t of the transporting eddies. 

Deviations of the raw time series from the 400 m averages define the 
two smallest scale turbulence modes. In order to distinguish the two types 
of small scale motions, the scale separating the two modes varies depending 
on the local behavior of the transport as discussed in Section 2. Specifically, 
averages are computed over a sufficiently small scale (< 400 m) in order 
to resolve the local vertical t ransport of momentum. Deviations of these 
smaller scale averages from the 400 m averages are included in the t ransport 
mode to capture a majority of the momentum flux, including local extremes 
(Figure 4, panel c). 

As a result, the fine scale structure is also determined by the variable 
cutoff scale. This is in contrast to conventional high pass filtering where 
the cutoff scale is constant throughout the record. A constant cutoff scale 
is not used in this case because transporting eddies intermittently occur 
on scales which are traditionally assigned to the fine scale structure. From 
another point of view, the fine scale mode includes relatively larger scale 
motions only at locations where small scale t ransport is absent. This means 
tha t motions occurring on a range of scales between 1.6 m and 50 m are of 
the transport ing eddy type at some positions while at other positions these 
motions make up the fine scale structure. 

The t ransport mode is characterized by strong gradient skewness (Ta-
ble I) reflecting the strong influence of the mean shear on the transport ing 
eddies. According to conventional expectations, the mean shear generates 
eddy motions which transport higher momentum toward the surface. In 
terms of energetics, this momentum transport corresponds to conversion of 
mean kinetic energy to turbulence kinetic energy. T h e data decompos i -
t ion in this s t u d y provides a definition of t h e transport ing eddies 
which allows quant i tat ive verification of classical concepts . Also 
as expected, the value of the isotropy coefficient for the transporting eddies 
is between tha t of the large eddies and the fine scale structure. The main 
transport ing eddies are characterized by significant vertical motions which, 
however, remain smaller than the horizontal velocity components. This 
is because the mean shear directly generates variance in the u-component 
which subsequently induces vertical velocity fluctuations through pressure 
fluctuations. 

The remaining small scale deviations make up the fine scale structure. 
Very little t ransport is associated with the fine scale mode, and the energy 
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in the horizontal and vertical wind components are nearly equal. More 
specifically, the isotropy coefficient is close to unity. The gradient skewness 
is very small, since the fine scale structure does not receive energy directly 
from the mean shear. Instead the fine scale structure receives energy from 
the t ransport ing eddies through the so called energy cascade to smaller 
scales. 

§5. Conclus ion 

Geophysical t ime series generally consist of physically distinct modes of 
variation, each occurring on a subrange of scales which depend on space and 
time. Conventional decomposition or filtering techniques divide the t ime se-
ries according to scales which are constant in space and time. In this study, 
distinct modes were isolated using a piece-wise constant (Haar wavelet) de-
composition which allows the scales defining a particular mode to vary with 
record position. With this approach sampled covariances are completely 
and orthogonally decomposed. Partitioning the flow in this manner allows 
assessment of the relative contributions of the different modes to traditional 
statistics. 

The turbulence da ta analyzed in this study has been parti t ioned into 
four modes of variation. Each mode is defined locally in terms of an upper 
and lower cutoff scale. The cutoff scales for the two larger scale modes are 
specified to be constant with respect to record position. The scale sepa-
rating the two smaller scale modes varies with position according to the 
local maxima in the spatial distribution of momentum flux. A local mo-
mentum flux is quantified in terms of the product of the difference terms 
Au(am;n) x A w ( a m ; n ) , which is equivalent to a product of wavelet co-
efficients at a fixed scale and position. Using a wavelet decomposition to 
examine the spatial or temporal distribution of the scale dependent flux is a 
promising approach for distinguishing distinct physical modes of variation. 

Adapting the decomposition to the spatial distribution of momentum 
flux leads to an improvement in the small scale partitioning as interpreted 
in terms of globally averaged statistics. The spatial dependence of the 
cutoff scale allows the computed t ransport mode to capture more of the 
momentum flux; some of the flux occurring on scales traditionally included 
as fine scale s t ructure is now more correctly included in the t ransport mode. 
For the t ranspor t mode, the gradients in the longitudinal wind component 
are negatively skewed in the downstream direction, which verifies tha t this 
mode is primarily shear driven. If a constant cutoff scale were used, the 
skewness of the gradients in the longitudinal wind for the main t ransport ing 
motions would be only —0.230. After the additional small scale variations 
are included by varying the cutoff scale, the gradient skewness is —0.846. 
This change is a result of further resolving the microfronts associated with 
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momentum transport . Moreover, the adaptive step leading to the spatially 
varying cutoff scale reduces the u-w correlation for the computed fine scale 
s tructure leading to a physically more pure decomposition. 

Application of the adaptive technique to other geophysical t ime se-
ries requires tha t the variable cutoff scale be posed in terms of the phys-
ical process of interest. The physics of the decomposition might also be 
posed in terms of sudden changes of a quantity associated with larger 
scale variations. With traditional filtering, for example, sudden climatic 
changes, sharp frontal boundaries, or any near discontinuities in the t ime 
series which lead to large scale changes will be partially partit ioned into 
the small scale part; the corresponding low pass filtered signal will include 
only a smoothed version of the sharp changes. The adaptive decomposition 
applied here can be constructed to include sharp changes in the larger scale 
par t of the signal, avoiding undue smoothing [16]. The basic goal of the 
adaptive technique is to partition the flow according to the physics when 
the subrange of scales describing a given physical mode varies spatially or 
temporally. Since the present approach partitions the original t ime series 
into separate t ime series for each mode, the coherent structures associated 
with a particular physical mode can in turn be analyzed. 
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Wavelet Analysis of Diurnal and Nocturnal Turbulence 
Above a Maize Crop 

Yves Brunet and Serge Collineau 

Abstract. A set of daytime and nighttime turbulence data acquired above a 
maize crop is analyzed, using various properties of the wavelet transform. Wavelet 
variances and covariances provide characteristic duration scales for the turbulent 
motions contributing most to the signal energy. Subsequent detection of their 
signatures in the raw time series allows a characteristic gust frequency to be deter-
mined. Once normalized with friction velocity and canopy height, this frequency 
appears to be similar to that observed above a pine forest, which supports the pos-
tulate that transfer processes over plant canopies are dominated by populations of 
canopy-scale eddies, with universal characteristics. Conditional averaging of the 
corresponding patterns provides a clear picture of the ejection-sweep processes. 
Around the inversion time of the mean vertical temperature gradient, two scales 
of motions are inferred from the observation of wavelet variances and covariances. 
A technique based on the inverse wavelet transform is then developed for parti-
tioning the original signals into small- and large-scale components, using a cut-off 
scale deduced from wavelet variances and covariances. Despite their wavelike as-
pect, the extracted large-scale components are not gravity waves. Their nature 
is unclear but the proposed methodology has potential applications for studying 
wave-turbulence interactions. 

§1. Introduction 

Daytime turbulence in the vicinity of vegetation canopies has been ex-
tensively investigated during the past ten years. It is now widely recognized 
that, within and just above vegetation canopies, turbulent transport pro-
cesses are to a large extent dominated by intermittent, energetic coherent 
structures, with length scales of the order of the canopy depth ([1], [18], 
and [20]). A dynamic model for the formation and development of these 
'canopy eddies' has been proposed recently ([11] and [19]). 
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These structures may be seen in time series of wind velocity compo-
nents as periodic pat terns revealing the existence of ejection-sweep pro-
cesses (a slow upward movement of air, followed by a strong downward 
motion associated with an acceleration of horizontal velocity). In the pres-
ence of a mean vertical temperature gradient, periodic ramp pat terns are 
then apparent in time series of temperature (gradual rises followed by rel-
atively sharp drops). Collineau and Brunet [4] developed a methodology 
based on the wavelet transform for studying such time series. From mea-
surements acquired above and within a pine forest in slightly unstable con-
ditions, Collineau and Brunet [5] determined a mean duration scale for 
the active par t of the coherent motions, using the wavelet variance, and 
estimated the frequency distribution of time intervals between contiguous 
structures, using the wavelet transform as a jump-detector. The lat ter ap-
proach enabled them to perform conditional sampling on the t ime series. 
This provided a clear picture of the ejection-sweep process, as well as an 
evaluation of the relative contributions of coherent motions to momentum 
and heat fluxes. 

Much less attention has been paid so far to nighttime turbulence. Paw 
U et ai [18] presented some evidence tha t similar processes occur, revealed 
by inverse temperature ramps. Also, gravity waves have been observed 
in a variety of plant canopies, just after sunset [17]. Both phenomena 
are intermittent. Over plant canopies, turbulent coherent motions appear 
quasi-periodically at a frequency depending, to a first approximation, on 
friction velocity u* and canopy height h ([18] and [19]). Gravity waves 
can be seen in t ime series of temperature and vertical velocity as trains 
of oscillations characterized by the Brunt-Vaisala frequency. Discriminat-
ing between propagatory and turbulent events is a mat te r of importance. 
Their respective behaviour towards pollutant diffusion, for example, has 
consequences on diffusion modelling: turbulent processes induce t ranspor t 
of air, while linear waves do not. However, both contribute to the variance 
of vertical velocity, which is a critical input parameter in diffusion mod-
els. Not discriminating between waves and turbulence can thus lead to an 
overestimation of the actual rates of diffusion [7]. 

Given these considerations, the aim of this paper is fourfold: 

1. show tha t the methodology proposed by Collineau and Brunet ([4] 
and [5]) is also applicable over shorter plant canopies, where the 
'signal' (i.e., organized turbulence) to 'noise' (i.e., random small-
scale motions) ratio is much smaller; 

2. show tha t organized turbulence in slightly unstable conditions ex-
hibits the same structure above a forest and a maize crop, a scale 
factor apart; 
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3. extend the analysis to stable conditions; 

4. propose a methodology for performing scale separation in measured 
t ime series, using the filtering capabilities of the wavelet transform. 

For this, we use a micrometeorological da ta set acquired above a maize 
canopy. After a presentation of the site and the experimental procedures, 
we briefly describe the characteristics of mean flow and turbulence. We 
then recall the concept of wavelet variance (see [4] and [12]) and introduce 
the wavelet covariance. Both are used to determine characteristic duration 
scales of the energy-containing events in the time series. This enables an 
objective detection scheme to be designed, using the good localization in 
time of the wavelet transform. Conditional sampling is then performed on 
the t ime series, leading to a clear picture of the ejection-sweep process. 
Finally, we present a few preliminary results of wavelet decomposition of 
turbulent da ta into large and small scale components. 

§2. E x p e r i m e n t a l Procedures and Flow Character is t ics 

The experiment was carried out over a maize crop at Grignon, France 
(48°51'N, 1°58Έ), from July to September 1990. The da ta presented here 
were obtained on August 13. At this date, the canopy height (evaluated 
as the mean height of a set of 100 individual plants) was h = 1.55 m, with 
a zero-plane displacement height d = 1.15 m (d is the apparent level of 
momentum absorption by the plants, used as the origin of heights in crop 
studies). The leaf area index (LAI, or total leaf area per unit soil surface) 
was 4.1. A meteorological mast was equipped with slow-response temper-
ature (shielded, aspirated thermocouples) and windspeed (cup anemome-
ters) sensors at 7 heights z ranging from z/h = 0.3 to z/h = 4.6. The 
distance from the leading edge of the field was larger than 200 m in the 
direction of prevailing winds. Two three-dimensional sonic anemometers-
thermometers (model PAC-100, Dobbie Instruments) , were also set up on 
the mast at heights z/h = 0.6 and 1.6. All three velocity components (u, 
streamwise; t>, lateral; tu, vertical) and air temperature T were sampled at 
20 Hz, a ra te high enough for exploring a significant part of the inertial 
subrange, and stored on a micro-computer. 

Only the da ta acquired above the canopy are used here. Linear trends 
are first removed from all original t ime series, split ted into contiguous 30 
min runs. In what follows, prime notations ΐί', w' and T' s tand for the 
fluctuations of ii, w and T around their mean values ïï, w and T, calculated 
for each run. 

Two sets of samples are used in this study, one ('diurnal') acquired from 
13:30 to 15:30 U T and the other ( 'nocturnal ') from 18:00 to 20:00 UT, just 
before and after sunset (which occurred at 19:10 UT) . An illustration of the 
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micrometeorological conditions encountered during these periods is given 
in Table 1. For daytime samples mean horizontal windspeed is between 1.5 
and 2 m s " 1 , and later drops to about 1 m s - 1 . In the first case the friction 
velocity u* = (—u'w')1/2 is of the order of 0.4 m s - 1 , whereas in the second 
case it drops from 0.35 m s - 1 at 18:00 UT to about 0 . 1 m s - 1 after 19:00. As 
a result of radiative cooling of the underlying surfaces, the sensible heat flux 
H = pCpW'T' (where p is the air density and cp the specific heat at constant 
pressure) is directed towards the canopy throughout the second period, 
with values between about —10 and —40 W m - 2 . For diurnal samples H 
is positive, between 100 and 170 W m - 2 . The values taken by {z — d)/L 
(where L is the Monin-Obukhov length) indicate that slightly unstable (or 
near-neutral) conditions are prevailing in the afternoon, whereas light to 
moderate stability occurs from 18:00 to 20:00 UT. 

Table I 
Summary of experimental conditions: statistical moments of u, w and T 
(means, standard deviations, covariances) and stability parameter 
\z - d)/L. 

1 Time 

1 13:30 
14:00 
14:30 

1 15:00 
1 18:00 

18:30 
19:00 

1 19:30 

u 
(m/s) 
1.482 
1.706 
1.904 
1.776 
1.660 
0.912 
0.851 
0.992 

T 
(°C) 

28.68 
28.44 
28.40 
28.19 
25.90 
24.20 
21.76 
20.84 

(m/s) 
0.984 
0.868 
0.994 
0.815 
0.786 
0.399 
0.179 
0.220 

(m/s) 
0.497 
0.517 
0.598 
0.529 
0.444 
0.218 
0.106 
0.137 

(JT 

(K) 
0.765 
0.616 
0.597 
0.507 
0.203 
0.422 
0.346 
0.353 

u'w' 
(m2/s2) 
-0.111 
-0.139 
-0.193 
-0.170 
-0.113 
-0.030 
-0.006 
-0.010 

w'T' 
(K m/s) 

0.134 
0.113 
0.116 
0.080 

-0.027 
-0.030 
-0.010 
-0.014 

— * - * ii 
L 

-0.064 1 
-0.038 
-0.024 
-0.020 | 

0.013 1 
0.101 
0.404 
0.230 | 

Figure 1 shows typical 200 s samples of instantaneous fluctuations, 
extracted from the two data sets. All time series exhibit some degree of in-
termittency, with sporadic active periods particularly visible in the traces 
of instantaneous cross-products. Closer inspection of Figure lb (night) 
reveals typical recurrent features characterized by sharp increases in tem-
perature, associated with positive (respectively negative) fluctuations in 
u (respectively w). These temperature patterns are commonly called 'in-
versed ramps' by analogy with their daytime counterpart (slow increases 
followed by sudden drops), readily visible in Figure la. These tempera-
ture discontinuities can be unambiguously identified as the signatures of 
turbulent coherent motions sweeping down into the canopy air space. In 
stable conditions, this results in warmer air being imported from aloft by 
energetic gusts, yielding a sudden increase in time series of temperature. 

From this example, it therefore seems that in nightime and daytime 
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Figure 1. Typical examples of time series of velocity components, air 
temperature and cross-products u'w' and w'T' above the maize crop 
(z/h = 1.25) on August 13. (a): diurnal sample, (b): nocturnal sample. 
For the clarity of these graphs the original signals (recorded at 20 Hz) 
have been low-pass filtered at 2 Hz. 
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T(eC) 

Figure 2. Mean air temperature profiles at various times, within and 
above the canopy (the horizontal dashed line represents the canopy top). 

conditions momentum and sensible heat fluxes are transferred by the same 
dynamic process, the only difference (sharp rises or drops in temperature) 
being due to the inversion of the mean temperature profiles (Figure 2). No 
regular wavelike oscillations are visually detectable in the nocturnal t ime 
series. However, this may not always be the case and further analysis is 
desirable, in order to investigate the possible existence of gravity waves. 
For this, we need advanced data processing tools, such as those provided 
by the wavelet transform. 

§3. Wave le t Variance and Covariance 

In this paper, dilation over the non-dimensional scale a and translation 
at b of the analyzing wavelet ψ are performed with the following normal-
ization factor (preserving the Li-norm): 

a a (1) 

We use only the continuous version of the wavelet transform of a function 
/ , noted ( / , ψ ( α ^ ) and defined as: 

/

+oo 
/(i)V>(a'6) dt. (2) 

-oo 
Let / be a given experimental t ime series with energy Ef = ( / , / ) . We 
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define the wavelet variance WVf of / for the analyzing wavelet ψ as: 

/

+oo 
Κ/,^°·6)>|2Λ. (3) 

-co 
Because energy is conserved by wavelet transformation, the area under a 
wavelet variance is proportional to the signal energy, when appropriate log-
arithmic axes are used (see [4]). Due to the 'built-in' smoothing process of 
the wavelet variance (integration over the translation parameter) , ensemble 
averaging is not usually required to obtain stable, readable variance graphs. 

Collineau and Brunet [4] showed tha t when a wavelet variance graph 
exhibits a single peak at a scale a, a characteristic duration scale D can be 
defined as: 

D = άϋψ, (4) 
where ϋψ is a duration constant which was shown to be an intrinsic prop-
erty of the wavelet ψ. Όψ can be calculated as the solution of a simple, first-
order differential equation, which was done analytically for a few common 
wavelets (Haar, Mexican hat , first derivative of a Gaussian function. . . ) . It 
was demonstrated tha t D can be interpreted as the mean duration of the 
elementary events contributing most to the signal energy (D = r / 2 for a 
sine function of period r ) . 

The wavelet transform conserves not only the energy ( / , / ) , but also 
the inner product (f,g) of two functions [6], since: 

{Ϊ,9) = γτ / -{f^a'b)){g^(a'b))dadb, (5) 

where 

ΙΦΗΙ2 ^ (6) 
-co ω 

has a finite value, by definition of a wavelet (Φ being the Fourier transform 
οΐψ). Just as a wavelet variance can be considered as the wavelet equivalent 
of a Fourier spectrum, one can define a wavelet covariance WCfg(a) from 
Equations (2), (3) and (5), the wavelet equivalent of a cospectrum: 

/

+oo 
(f,4>^){g^)db. (7) 

-co 
To our knowledge, this property has not been used yet on experimental 
da ta sets1 . 

1 After this work was completed, it was brought to the authors' knowledge that 
the concept of wavelet covariance has been independently described by L. H. Hudgins 
(Wavelet Analysis of Atmospheric Turbulence, Thesis, University of California, Irvine, 
March 1992). 
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Figure 3. Wavelet variances and covariances: WVU (triangles), WVW 

(plus), WVT (crosses), WCUW (full squares) and WCWT (open squares). 
(a): 14:00-15:00 UT, (b): 19:00-20:00 UT, (c): 18:00-18:30 UT. 
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We have calculated the wavelet variances of i/, w and T, and the wavelet 
covariances of (u,w) and (u; ,T), for all the available da ta samples. The 
Mexican hat wavelet was chosen for this, because of its good localization 
in frequency. Figure 3a shows the variances and covariances obtained from 
14:00 to 15:00 UT, under slightly unstable conditions. 

Single, well-defined peaks can be seen on the wavelet variance and 
covariance curves. The wavelet variance for vertical wind velocity WVW 

peaks at Dw « 1-2 s, whereas WVU and WCT peak at Du « DT ~ 3 -
4 s. From a qualitative point of view, these results are very similar to 
those obtained by Collineau and Brunet [5] over a pine forest in similar 
stability conditions. Only the magnitudes of the Z)-scales differ: in the 
lat ter case typical values of 5-7 s and 10-15 s respectively were obtained 
for the w-variance peaks, and the peaks for u and T. However, normalizing 
the duration scales Du or DT by w* and h as suggested in the introduction 
give the same mean value Du*/h « 0.85 for both canopies. It therefore 
seems tha t over the maize crop the motions contributing to these peaks are 
also typical canopy-scale eddies, of the same type as those depicted in [5], 
This will be confirmed further. 

The covariances WCUW and WCWT also exhibit unambiguous peaks, at 
the same D scales as WVU and WVT (Figure 3a). Instead of using WCUW 

and WCWT, Collineau and Brunet [5] calculated the wavelet variance of 
series of instantaneous cross-products u'w' and w'T'. They were shown to 
display a peak at the same scale as WVW. This is very similar to what hap-
pens with Fourier spectra and cospectra in the surface layer: the cospectra 
peak at the same frequency as the u and T spectra (see [13] for a review), 
whereas the spectra of the time series of cross-products such as u'w' and 
w'T' peak at the same frequency as the w spectra. 

Figure 3b shows the wavelet variances and covariances obtained from 
19:00 to 20:00 UT, under conditions of moderate stability. The wT co-
variance is now negative, following the inversion in sensible heat flux, but 
all curves are qualitatively similar to those in Figure 3a, with identical D 
scales. The variances of u and w appear flatter than in Figure 3a but this is 
just a consequence of a change in the respective magnitude of the wavelet 
variances and covariances. Full-scale graphs of WVU and WVW indeed show 
well-marked peaks at the same D-scales as in Figure 3a. This confirms the 
visual impression given by Figure l b , tha t the same kind of structures as 
those commonly seen in diurnal t ime traces are also present in this noctur-
nal sample. The normalized peak scales Du*/h are now about 3-4 times 
larger than in Figure 3a since ii* has dropped from 0.3-0.4 m s - 1 to about 
0.1 m s - 1 . Using mean wind speed as a velocity scale would lead to a 
smaller difference since ΰ has only dropped by a factor of 2. 

Considering now the period from 18:00 to 18:30 U T (Figure 3c), two 
peaks are apparent on all curves but WVW. Consequently, there seems to 
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be two superimposed types of motions in this da ta sample, which bo th 
contribute to the signal energy. The motions responsible for the left-hand 
side peak are probably of the same nature as those visible in Figures 3a 
and 3b, since here also D « 3.5 s. The second peak is located at D « 13 s 
and its nature is yet unknown. We will focus on this in Section 5. 

§4. J u m p D e t e c t i o n and Condit ional Sampl ing 

Having determined a typical event duration, we are now interested in 
how frequently these events occur. Several methods for detecting sharp 
edges in digital t ime series, based on the use of localized transforms, have 
been proposed recently ([12] and [14]). The combined localization prop-
erties of wavelets in both time and frequency can be exploited together 
usefully for designing efficient jump-detection algorithms. Collineau and 
Brunet [5] showed tha t using (Τ,φ^) (or (w,^ ( a , 6 ) ) ) as detection func-
tions of ramps (or large excursions from the mean) in time series of temper-
ature (or streamwise wind velocity), after determination of the scale a of 
the wavelet variance peak, leads to an accurate detection of the structures 
visible in the time series. The final decision step in the detection algorithm 
requires an empirical threshold for first derivative like wavelets (e.g., the 
Haar wavelet), but only a slope sign for the Mexican hat wavelet, which 
yields zero-crossings in (T, φ(α^) (or (w, φ(α^)) whenever large, sharp rises 
or drops occur in the series. With a comparable reliability, the zero-crossing 
algorithm is therefore simpler than those based on thresholds, which is the 
case of most s tandard jump-detection algorithms used in turbulence, such 
as the Variable Interval Time-Averaging technique (see for example [21]). 
However, it has been made clear in [15] that detection through first or sec-
ond derivative like wavelets are equivalent algorithmic problems when the 
objective is to classify the 'sharpness' of variations of the signal, which, in 
the lat ter case, requires thresholding the slope of the wavelet transform. 

Here, detection was performed on all time series of streamwise wind 
velocity, using the Mexican hat wavelet. Wind velocity was chosen because 
it has a higher signal-to-noise (as defined in the introduction) ratio than 
temperature in this particular da ta set, and also because in this case the 
slope sign criterion does not depend on whether the da ta are diurnal or 
nocturnal. Figure 4 shows histograms of the time intervals Δ between the 
detected events, for two typical half-hour samples with similar values of 
w*, in bo th diurnal and nocturnal conditions. The two distributions are 
strikingly similar and provide the same mean value Δ « 9 s. Normalizing 
Δ as above, we obtain a mean value Au*/h « 2.1 over the whole da ta set, 
which is again in fairly good agreement with the value of 1.8 obtained over 
the forest canopy already mentioned [5]. 

Finnigan ([9] and [10]) found tha t the peak frequency of the Fourier 
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Figure 4. Histograms of the time intervals between the events de-
tected in diurnal (14:30-15:00 UT) and nocturnal (18:00-18:30 UT) sam-
ples. 

spectrum of u just above a wheat canopy was very close to the directly 
measured arrival frequency of canopy-scale sweeps. So, if the t ime scale Δ 
really is a measure of the mean time interval between successive canopy-
scale eddies, the inverse l / Δ should be directly comparable to the peak 
frequency of the u spectrum. It should also be close to the peak frequency 
of the T spectra and uw cospectra, which were shown in [13] to have all 
the same normalized value fh/uh « 0.15 (±0.05), within and just above 
a plant canopy (uh being the mean horizontal wind speed at canopy top) . 
Fourier spectra and cospectra for the sample 14:00-15:00 U T are shown in 
Figures 5a and 5b, respectively. Except for the w spectrum, they all peak 
at a frequency / « 0.1 Hz, which is in excellent agreement with 1/Δ = 0.11 
Hz. As the mean wind speed at the canopy top is üh = 1.1 m s - 1 for this 
sample, we also find fh/üh ~ 0.14, well in the range of expected values. 

Having identified the relevant pat terns , we can perform conditional 
sampling and averaging in order to obtain the mean 'signature' of the de-
tected motions. Collineau and Brunet [5] showed tha t conditional averaging 
requires the use of a wavelet very well localized in time, which is not the 
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Figure 5. u-, w- and Γ- Fourier spectra (a), and um- and wT-
cospectra (b) for the sample 14:00-15:00 UT. Spectral densities are mul-
tiplied by the frequency and divided by the signal variance. 
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case of the Mexican hat . Instead, we use the 'Ramp ' wavelet defined as: 

0 - o o < x < - 0 . 5 
2x + 1 - 0 . 5 < x < 0 
2z - 1 0 < x < 0.5 

0 0.5 < x < +oo 

which was shown by these authors to lead to slightly bet ter results than 
the Haar wavelet, because its shape matches more closely the signature of 
the turbulent structures (see Figure 6). Since this type of wavelet exhibits 
a peak at j ump times of the input signal, we had to calibrate the required 
detection threshold. This was done so tha t the number of detected events 
matches the number of events seen by the Mexican ha t in the same t ime 
series. For this exercise the detection was performed on the temperature 
signal as in [5], but quite similar results would be obtained from the velocity 
signals. 

For each turbulent variable / , we first define N time-windows of length 
Δ , centered at the N points detected in the temperature series. Then, for 
each variable (if, w, T ) , the raw signal in each window is normalized by the 
local mean fi and the local s tandard deviation σ/ ί . Finally, the conditional 
(normalized) average {/(£)} i s calculated over the N windows as: 

i=l f* 

with Ti — Δ / 2 < t < T{; + Δ / 2 , r,· being the ith detection time. 
The averaged pat terns are presented in Figures 6a (diurnal samples) 

and 6b (nocturnal samples). Both figures show a characteristic slow ({ti} < 
0) upward ({w} > 0) movement of air, rapidly switching to a strong down-
ward ({w} < 0) motion associated with an acceleration of horizontal ve-
locity ({u} > 0). In the diurnal case a sharp temperature drop follows a 
slow rise, whereas the opposite occurs in the nocturnal case. Such pat terns 
have the characteristics of typical 'ejection-sweep' processes. It has to be 
emphasized tha t detection was performed on t ime series of tempera ture 
only, which suggests a strong coupling between temperature , vertical and 
streamwise velocities. 

These results invite several comments. Firstly, they show tha t above 
our maize crop the motions responsible for the peaks in wavelet variances 
and covariances, and objectively detected by the wavelet transform, do have 
the 'signatures ' of coherent eddies, such as those observed over a variety of 
plant canopies or rough surfaces ([18], [19], and [20]). Secondly, the nor-
malized pa t te rns are very similar to those obtained by the same technique 
above a forest canopy ([5]), with {T} peaking between ±0.6 and ±0.8 , and 
{u} and {w} having equally smaller amplitudes, bo th comprised between 

φ(χ) = 
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Figure 6. Normalized conditional averages {w}, {w} and {T}, as de-
fined in Equation (8), for the diurnal (a) and nocturnal (b) series. 
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about ±0.2 and ±0.5 . Thirdly, apart from the difference in the tempera-
ture signature due to the opposite sign of the mean vertical temperature 
gradient, turbulence seems to be dominated by the same processes in our 
daytime and nighttime samples. However, this should not be generalized 
since a relatively small stability range has been explored ((z — d)/L between 
-0 .064 and 0.404, as shown in Table 1). 

We noticed in Figure 3c tha t just after the inversion in the mean tem-
perature gradient, another peak was visible in the wavelet variances and 
covariances, corresponding to longer duration scales. As gravity waves have 
already been observed in similar conditions [17], one may reasonably won-
der whether those peaks could be due to such phenomena. This is the 
objective of the next section. 

§5. Wave le t D e c o m p o s i t i o n 

The occurrence of linear gravity waves can be predicted theoretically 
by a linear stability analysis of the dynamical flow equations, as the result 
of Kelvin-Helmoltz instabilities (see [7] and [8]). This analysis provides a 
characteristic wave frequency depending on the mean vertical tempera ture 
gradient. This is the Brunt-Vaisala frequency N , defined as: 

where g is the acceleration due to gravity (see for example [22]). As the 
mean temperature gradient at the height of the sonic anemometer is of the 
order of 0.3 K m - 1 in the period 18:00-18:30, the Brunt-Vaisala frequency 
is N « 0.1 Hz (which corresponds to a characteristic t ime scale of about 
10 s). On the other hand, the £)-scale corresponding to the second peak 
in Figure 3c is 13 s; as the wavelet variance of a sine function peaks at a 
frequency corresponding to half the period ([5]), the associated t ime scale 
would be of 26 s, a value more than twice as large as the former. 

The linear stability analysis also predicts a phase shift of ± π / 2 between 
w and T [22]. In fact, most experimental approaches for studying gravity 
waves have relied on Fourier analysis, performed on time series of stream-
wise and vertical velocity, pressure and temperature. Cospectra, variance, 
phase, quadrature and coherence spectra have been shown to exhibit spe-
cific features in the presence of gravity waves ([2], [7], and [16]). However 
this is not always the case, for several reasons: (i) there is not always a 
clear separation in the power spectra between the regions of waves and 
turbulence, especially for w near the ground [16]; (ii) factors such as verti-
cal wind shear, advection or proximity to the surface may complicate the 
situation and, for instance, per turbate the phase angles and decrease the 
levels of coherence [3]; (iii) non-stationary waves cannot be easily detected 
with Fourier-based methods if they only last for a few oscillations. 
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In our case, no specific feature could be visually detected in the vari-
ous spectra and cospectra. Nevertheless, it is still desirable to investigate 
the nature of the second peak in the variances and covariances. For this, 
the combined time- and frequency-localization properties of the wavelet 
transform provide powerful tools. 

From the definition of the wavelet transform, one can define an inverse 
wavelet transform as: 

-I Λ + 00 /« + 00 -I 

m=7T / -(f^ia'b)Wia'b)(t)dadb, (10) 
W J-oo J0 a 

by which the original signal can be retrieved from the whole set of wavelet 
coefficients ( / , φ^α^). This 'reconstruction' formula enables one to fil-
ter the original function, by splitting the integration domain into specific 
ranges of a scales. For instance, the wavelet transform can be used as 
a low-pass, high-pass or band-pass filter, provided tha t adequate cut-off 
scales are imposed in Equation (10). 

In the present case, decomposition of the signal into two components 
can be simply performed by splitting the reconstruction integral over a 
into large and small a scales. If the wavelet variance of the signal exhibits 
two peaks separated by a gap (the wavelet equivalent of a spectral gap), an 
obvious choice for the cut-off scale ac is the gap scale. A textbook example, 
using the sum of two sine functions with different periods, was given in [4]: 
the reconstructed small and large components of the signal allowed the 
authors to retrieve accurately the respective original sine functions. 

We applied this method to the series acquired from 18:00 to 18:30 
UT, after they were band-averaged at 0.5 s in order to facilitate the com-
putat ion. The Mexican hat wavelet was chosen for its good frequency 
localization. A cut-off duration scale Dc = 7 s was inferred from Fig-
ure 3c, corresponding, for this particular wavelet, to a cut-off dilation scale 
ac = Dc/Όφ = Dcy/2 /π « 3.15. Figure 7 presents a small sample of the 
extracted small-scale components ws, ws and Ts of the respective input 
signals. Roughly speaking, what we see here is a representation of the 
original series after low-pass filtering at // = 1/0.5 = 2 Hz and high-pass 
filtering at fh = 1/DC = 0.14 Hz. All traces exhibit pseudo-periodic os-
cillations, sometimes combined into two characteristic types of events: one 
set consists in slow, upward movements of cold air and the other in fast, 
downward motions of warm air, each individual event lasting for about 3 s. 
These pat terns correspond respectively to the ejection and sweep processes 
described above. As they occur repeatedly all over the half-hour sample 
with the appropriate time scales, it is likely tha t most of them are signa-
tures of the above-mentioned coherent structures, even if each individual 
pa t te rn is not a replicate of the averaged pat terns showed in Figure 6b. 
The large-scale components w/, wi and T/ shown in Figure 8 exhibit similar 
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0.08 

Figure 7. A sample of small-scale components (us, ws and Ts) ex-
tracted by the inverse wavelet transform (from the run 18:00-18:30 UT). 

200 

Figure 8. A sample of large-scale components (w/, wi and T/) ex-
tracted by the inverse wavelet transform (from the run 18:00-18:30 UT). 
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features, at larger time scales. It is now clear tha t the underlying motions 
are not gravity waves. In particular, wi and T/ are not out of phase, but 
in phase opposition (just as ws and Ts). The scale difference between the 
two types of components is illustrated in Figure 9a and 9b for vertical ve-
locity and temperature, respectively. The two large-scale components are 
strongly linked. Both exhibit wavelike motions, with a periodicity of order 
20-25 s, e.g. twice the duration scale associated with the second peak. 

This scale separation is only based upon scale criteria. However, as 
all large-scale components show repeatable features, they are not likely 
to be due to unpredictable low-frequency trends, but rather result from a 
deterministic, dynamic process, perhaps linked with the establishment of 
the thermal inversion. At the present stage, the reasons for these features 
are unclear. More da ta collected during such transition regimes must be 
analyzed, as well as da ta acquired in much more stable conditions. 

Nevertheless, this analysis emphasizes the filtering capabilities of the 
wavelet transform, which appears to have great potential for extracting 
specific components and investigating phase aspects. 

§6. S u m m a r y and Conclus ions 

The results of this experimental study confirm the importance of co-
herent structures in turbulent transfer processes between plant canopies 
and the atmosphere. The features observed in time series of velocity com-
ponents and air temperature recorded above a maize crop are very similar 
to those observed above other plant canopies, and quite consistent with 
the picture of canopy turbulence acquired over the past few years. Wavelet 
analysis has enabled us to detect characteristic signatures of coherent mo-
tions in all series, revealing the occurrence of ejection-sweep processes. The 
scale of these motions is canopy-dependent and a comparison between the 
pine forest and the maize crop suggests tha t the occurrence frequency of 
these motions scales with friction velocity and canopy height. In both cases 
a value of Au*/h « 2 was obtained for the mean time interval between 
successive structures. Also, a unique value Du*/h « 0.85 was obtained for 
the duration scale corresponding to the peak in the wavelet variances of 
streamwise velocity and temperature. The wavelet covariances of uw and 
wT were also observed to peak at the same scale. These results support 
the postulate tha t 'universal' mechanisms are responsible for the structure 
of turbulence in the vicinity of plant canopies, in near-neutral conditions 
([1], [11], and [19]). 

Analysis of nighttime samples in light to moderate stability also proved 
the existence of similar processes. In moderate stability ((z — d)/L œ 0.3) 
the t ime scale Au*/h was found to be somewhat larger, but this needs 
further confirmation since only one hour long sample was available for this 
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Figure 9. A sample of small- and large-scale components of vertical 
velocity (a) and temperature (b) (from the run 18:00-18:30 UT). 
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study. In lighter stability, around the inversion time of the mean vertical 
temperature gradient, another scale of motions was observed, for which no 
satisfactory explanation can be given at the present time. 

These results were obtained by performing a wavelet analysis of tur-
bulent time series, consisting in several steps. Firstly, computation of 
wavelet variances and covariances provide characteristic duration scales 
of the events contributing most to the signal energy. Secondly, the wavelet 
transform is used for detecting these events, by 'looking' at the series at 
these particular scales. As far as the detection itself is concerned, the use 
of a wavelet such as the Mexican hat, which yields zero-crossings whenever 
large discontinuities occur in the series, provides a simple detection scheme 
which does not require adjustment of an empirical threshold. Conditional 
averaging of the detected patterns can then be performed, enabling one to 
extract from the time series a clean picture of the signatures of these mo-
tions. Compared to more traditional analysis techniques, this procedure 
has the major advantage of being based upon a unique, self-consistent 
line of mathematical treatments, which rely on the combined time- and 
frequency-localization properties of the wavelet transform. 

These properties have also been used for partitioning the original series 
into large- and small-scale components, using a cut-off scale defined as the 
gap scale between two peaks in the wavelet variances and covariances. This 
has promising applications, for instance in the study of wave-turbulence 
interactions. 
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Wavelet Spectrum Analysis 
and Ocean Wind Waves 

Paul C. Liu 

Abstract. Wavelet spectrum analysis is applied to a set of measured ocean wind 
waves data collected during the 1990 SWADE (Surface Wave Dynamics Experi-
ment) program. The results reveal significantly new and previously unexplored 
insights on wave grouping parameterizations, phase relations during wind wave 
growth, and detecting wave breaking characteristics. These insights are due to 
the nature of the wavelet transform that would not be immediately evident using 
a traditional Fourier transform approach. 

§1. Introduction 

Ever since Willard J. Pierson [18] adopted the works of John W. Tukey 
[22] and introduced the power spectrum analysis to ocean wave studies, 
Fourier spectrum analysis has been successfully and persistently used in 
data analysis of wind-generated ocean waves. Over the past four decades, 
with the increased availability of new instruments for measuring wind and 
waves, spectrum analysis has continued to be the fundamental standard 
procedure used for analyzing wind and wave data. 

Fourier spectrum analysis generally provides frequency information 
about the energy content of measured, and presumed stationary, time-
series data. Characteristic properties of waves such as total energy and 
dominant or average frequency can be readily derived from the estimated 
spectrum. This information, however, pertains only to the time span of 
the measured data. Changes and variations within a time series cannot be 
easily unraveled. As stationarity in the data simply represents a mathe-
matical idealization, its validity is usually regarded as an approximation of 
the real wave field. The effectiveness of applying Fourier spectrum analysis 
to a rapidly changing wave field, such as during wave growth or decay, is 
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uncertain. The emergence of wavelet transform analysis which can yield 
localized time-frequency information without requiring that the time-series 
be stationary has presented a rewarding and complementary approach to 
the traditional Fourier spectrum analysis and has advanced significant new 
perspectives for improved wave data analysis. 

While wavelet analysis has been widely recognized as a revolutionary 
approach applicable to many fields of studies, the application of wavelet 
transform to wind wave data analysis is still in its infancy. This article 
mainly presents the author's own attempt at understanding wind-generated 
waves using the wavelet decomposition. 

§2. Wavele t S p e c t r u m 

Following a standard formulation [3], we briefly summarize the wavelet 
transform. We start with a family of functions, the so-called analyzing 
wavelets, ißab(t)i that are generated by dilations a and translations b from 
a mother wavelet, ip(t), as 

φα,(ή = ^ = φ ( ^ ) (1) 

where a > 0, —oo < b < +oo, and f_™ ψ(ί)<ϋ = 0. The continuous wavelet 
transform of a time-series, X(t), is then defined as the inner product of ipab 
and X as 

X(a, b) =< ψα1), X >= - = / X(t)tl>*( )dt (2) 
y/\a\J-oo a 

or equivalently in terms of their corresponding Fourier transforms 

/

+00 
Χ(ω)ψ*(αω)βίοωαω (3) 

-oo 
where an asterisk superscript indicates the complex conjugate. In essence 
the wavelet transform takes a one-dimensional function of time into a two-
dimensional function of time and scale (or equivalently, frequency). 

In practical applications, the wavelets can be conveniently discretized 
by setting a = 2s and b = T2S in octaves [4] to obtain 

V.r(t) = 2 - / V ( 2 - t - r ) , (4) 

where s and r are integers. Then the continuous wavelet transforms (2) 
and (3) for time series data X(t) become 

1 /*+°° t 
x{s'T) = 7Ploo x{t)r{v "T)dt (5) 
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In general, the studies of wavelet transforms and wavelet analysis are 
centered on two basic questions [4]: (1) Do the wavelet coefficients com-
pletely characterize the time-series data? (2) Can the original t ime series 
be reconstructed from the wavelet coefficients? The answers to bo th of 
these questions are clearly yes as evidenced by the voluminous li terature 
in recent years. In this paper we rely on the affirmative answer to the first 
question and concentrate on exploring the wavelet transform of measured 
wind waves. It is an exciting and fruitful area for practical application of 
the wavelet transform . As da ta analysis on wind wave studies comprises 
mainly of applications of statistics and Fourier transforms, the summary 
shown in Table 1 indicates tha t wavelet transform analysis is a logical ex-
tension to the currently available analyses. 

In analogy with Fourier energy density spectrum, we can readily define 
a wavelet spectrum for a data series X(t) as 

WX(S,T)=X(S,T)X*(S,T) = \X(S,T)\2. (7) 

There are other designations in the li terature for Wx(s, r) [21]. Results 
from the application of short-time Fourier transforms have been called spec-
trograms, whereas results from the application of wavelet transforms have 
been called scalograms. Since in practice the scale, s, and translation, 
r , can be associated with a corresponding frequency, CJ, and t ime, £, (7) 
can be considered as a representation of the time-varying, localized energy 
spectrum for a given time series. 

We can similarly define a cross wavelet spectrum for the study of two 
simultaneously measured da ta sets X(t) and Y(t) as 

WXY(S,T) = X(S,T)Y*(S,T) (8) 

and accordingly, 
T ( s τ ) = WXY(S,T) 

VWXk(s,T)Wyk(s,T) 

and 

WXk(s,T)WYk(s,T) 

as the complex-valued wavelet coherency and its square, the real valued 
wavelet coherence, respectively, between the two da ta sets. The functions 
S W x y ( s , r ) and 3 W x y ( s , r ) in (10) are respectively the real and imagi-
nary par ts of WXY (s, r ) , and hence the co- and quadrature- wavelet spectra 
of X(t) and Y(t). 

(6) 

and 
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Table 1· Analogy of statistics, Fourier transform and wavelet transform 
analysis. 

Statistics 

Variance 

E(X2) 

Covariance 

E(XY) 

Coefficient of 
Correlation 

r - E(XY) 
y/E{X)E{Y) 

Coefficient of 
Determination 

2 _ \Ε[ΧΥ)γ 
' — E(X)E(Y) 

Fourier Transform 

Frequency Spectrum 

SxH = xx* = |x|2 

Cross Spectrum 

SXY(u,) = ΧΫ* 

Coherency 

SXYM 
1 y/SxWSyW 

Coherence 

^2 _ P x y M 2 

Wavelet Transform 

Wavelet Spectrum 

Wx(s,r)=XX* = \X\2 

Cross Wavelet Spectrum 

WXY(S,T) = XY* 

Wavelet Coherency 

p _ WXY(S,T) 

y/Wx(s,T)WY(s,T) 

Wavelet Coherence 

Γ 2 _ ΡΥχγ(8,τ)\2 

~ WX(S,T)WY(S,T) 

In implementing the applications, there are a number of well-defined 
continuous wavelet forms available [6]. In this study we choose to use 
the complex-valued, modulated Gaussian analyzing wavelet known as the 
Morlet wavelet. This wavelet, originally proposed by Morlet et al. [16], 
ushered in the present wavelet era and is given by 

_ Jmt -t2/2 

Its Fourier transform is 

ψ(ή = etmte 

φ(ω) = y/2^e-("-m^2. 

( H ) 

(12) 
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Here we should point out that this wavelet is not an admissible wavelet 
since a correction term is needed because φ(0) Φ 0. However, in prac-
tice choice of a large enough value for the parameter m, (e.g. m > 5) 
generally renders the correction term negligible. In this study, we follow 
Daubechies [5] and use m = π v/27^2. While there are admissible wavelets 
available, the Morlet wavelet has been widely used in signal analysis and 
sound pattern studies. Aside from its convenient formulation and histori-
cal significance, its localized frequency is independent of time, a feature of 
particular advantage for wind wave studies. 
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Figure 1. A sample plot of a time series of wind waves and its respec-
tive wavelet spectrum. 

§3. Applications 
In the following three subsections we present three wavelet transform 

analyses of wind wave data leading to distinct results that would be dif-
ficult, if not impossible, to obtain from the usual Fourier transform. The 
data used in the applications were measured during the recent SWADE 
(Surface Wave Dynamics Experiment) program [25]. The wind and wave 
data were recorded from a 3 m discus buoy during the severe storm of Oc-
tober 26, 1990. The buoy was located at latitude 38°22.1' N and longitude 
73°38.9' W, with a water depth of 115 m near the edge of the continental 
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shelf offshore of Virginia in the Atlantic Ocean. Time series of wind and 
waves were both recorded at 1 Hz from a combined design of a three-axis 
accelerometer and magnetometer along with the Datawell Hippy system. 
A total of 100 sets of data, each 1024 s in length, were used in the anal-
yses. The data, predominantly wind-generated waves, covered the entire 
duration of the storm with wind speeds ranging from calm to 18 m/s and 
significant wave heights approaching 7 m. 

3.1. Wave grouping effects 

Wind waves appear in groups; i.e., higher waves occur successively in 
separated sequences. This phenomenon is well-known to seasoned sailors 
and can sometimes be seen in wind wave recordings. Apart from being 
a confirmed natural phenomenon, the existence of wave groups tends to 
challenge the conventional notion that wave data can be considered as a 
stationary process. 

Wave data analysis, aimed at studying wave group characteristics, has 
been confined to identifying individual groups by counting the number of 
wave heights that exceed a prescribed height. A group is simply measured 
by a group length which is the number of waves counted. While statistics 
of the group lengths can be assessed, efforts have been generally directed 
at correlating the mean group length with spectral properties of the data 
[14]. 

In a wavelet transform analysis of wave data, an examination of a 
contour plot of resulting wavelet spectrum of waves shows distinct energy 
density parcels in the time-frequency domain. Figure 1 presents a simulta-
neous plot of sea surface elevations and the contours of their corresponding 
wavelet spectrum. The contour patches shown in the figure clearly indi-
cate wave groupings that are visibly identifiable in the time series. The 
boundary of a wave group can be readily specified by setting an appropri-
ate threshold energy level in the wavelet spectrum. Essentially there is a 
localized time-frequency energy spectrum for each group of waves, which 
is potentially more informative than previous approaches. 

Based on the boundary specified for each wave group from the wavelet 
spectrum, we have at least four relevant group parameters to characterize 
a wave group: 

(i) The group time length, tgy which is the difference between the max-
imum and minimum time scales the group boundary covered. 

(ii) The total group energy, Eg, which is an integration of the local 
wavelet spectrum over the time length tg. 

(iii) The dominant group frequency, / p , which is the frequency of the 
peak energy over the time length tg. 



Wavelet Spectrum Analysis 157 

(iv) The dominant group wave height, hp, which can be obtained from 
the time series as the maximum trough-to-crest wave height over 
the time length tg. 

The variability of these parameters indicates that wave groups are ap-
parently diverse, irregular, nonperiodic, and independent from each other. 
The formidable task is to determine the significance and usefulness of these 
parameters. Here we consider a simplified approach of forming two nor-
malized parameters: 

• normalized group time length = tg * fp, and 

• normalized total group energy = Eg/h'i. 

W 1 10° 101 102 

Normalized Group Time Length 

Figure 2. A scatter plot of normalized total group energy versus nor-
malized group time length, the solid line is a linear least square fit for 
the data. 

A scatter plot of these two normalized parameters, shown in Figure 2, 
indicates a fairly well-defined linear relationship. As the normalized total 
group energy is a measure of energy content, and the normalized group 
time length is a measure of the number of waves with possibly the same 
peak energy frequency, Figure 2 implies, that higher energy content in a 
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wave group tends to generate more waves in the group. This interesting 
result, while intuitively understandable, is new. 

A scatter plot of averages of dominant group wave heights versus sig-
nificant wave heights is shown in Figure 3. The significant wave height, 
defined as the average of the highest one-third wave heights in the wave 
record, is a familiar and widely-used parameter. For practical applications, 
such as in engineering design, mean dominant group wave height would be 
more pertinent than the significant wave height. Figure 3 shows that sig-
nificant wave heights are slightly less than the averages of dominant group 
wave heights. 

Figure 3. A scatter plot of mean group wave height versus significant-
wave height. 

3.2. How do wind waves grow? 

The wind and waves measurements in the S WADE program introduced 
a new data collection practice, namely, that wind and waves were mea-
sured at the same resolution simultaneously. Previously, wind data were 
merely collected as hourly averages. The availability of simultaneous high-
resolution wind and wave data has provided an unparalleled opportunity 
to directly examine detailed wind action on waves, especially during wave 
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growth. 
How do wind waves grow? It is a question that several generations of 

scientists have addressed. In addition to the early work of Jeffreys [11] and 
Ursell's [23] famous "nothing very satisfying" summary, modern conceptual 
perceptions of wind waves primarily stem from the theoretical conjectures 
of Phillips [17], Miles [15], and Hasselmann [8]. The current proliferation 
of numerical wave models is basically developed from these early theories. 
Numerous measurements of wave energy spectra with average wind speeds 
have been conducted for the validation and possible enhancement of the 
available models. Now with the latest SWADE measurements and the 
advancement of wavelet transforms, we are able to examine wind wave 
processes from new perspectives. 

Time Series of Wind Speeds 

1550 1600 1650 1700 1750 1800 

Wavelet Spectrum 

Figure 4. The time series of wind speeds corresponding to the wave 
data of Figure 1 and its respective wavelet spectrum. 

One way of analyzing simultaneously recorded wind and wave measure-
ments is through cross wavelet spectrum analysis. Figure 4 shows a part 
of the wind speeds and their wavelet spectrum corresponding to the wave 
data of Figure 1. There is no obvious relationship between the two time 
series that we can deduce from the top parts of Figures 1 and 4. However, if 
we consider the wavelet spectrum, a tract of high energy density contours 
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appears in both spectra over the same frequency ranges and during the 
time when highest wave heights occurred in the wave t ime series. Quali-
tatively we might infer tha t wind and waves interact immediately during 
wave growth. 

frequency = 0.1131 : 0.1199- : 0.127... Hz 

Figure 5. Plots of three peak-energy frequency components versus 
time. The five subgraphs from top down are, respectively, wavelet spec-
trum for wind speeds, wavelet spectrum for waves, the real part, the 
imaginary, and the phase of coherence. 

To see if we can verify this inference quantitatively, we calculate the 
cross wavelet spectrum and their corresponding wavelet coherence for the 
simultaneous wind and wave data . The results, expressed either in contour 
or three-dimensional plots, are rather intricate and perplexing. It is not at 
all clear what we can meanfully deduce. If, however, we plot the results for 
individual frequencies, we can see some interesting results. Figure 5, corre-
sponding to the same da ta of Figures 1 and 4, is an example of what these 
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plots can tell us. The five separate graphs in Figure 5 display, respectively 
from top down, the wavelet spectrum for wind, the wavelet spectrum for 
waves, the real par t , the imaginary par t , and the phase of wavelet coher-
ence. All of the plots contain the three frequency components of 0.1131, 
0.1199, and 0.127 Hz for which the energy density is highest. 

Note tha t in Figure 1 there are five groups of waves tha t can be iden-
tified from the wavelet spectrum. In the second graph of Figure 5 in which 
energy densities increase and decrease with respect to t ime, only three 
stronger groups (i.e., at t ime marks 1570, 1630, and 1695) are reflected 
from the fluctations of these frequency components. The top graph of Fig-
ure 5 shows tha t the wavelet spectrum components for wind speeds exhibit 
similar, but more, energy fluctations with time. Some of the fluctuations 
correspond closely to those of the waves. By examining the bo t tom three 
graphs of Figure 5, it shows quite clearly tha t for the three wave groups 
identified with appreciable energy contents, the real par t of their coherence 
is close to 1 1, their imaginary part close to 0, and their phase is also close 
to 0. Therefore, during wave growth, the frequency components for peak 
wave energy between wind and waves are inherently in phase. Wave groups 
constitute the basic elements of wind wave processes, and the wave growth 
are primarily taking place within the wave group. 

As the growth of wind waves is an extremely complicated process, 
the above results contribute still qualitatively toward an understanding of 
the nature of how do waves grow. While we are accustomed to correlate 
wave growth with "average" wind speeds, the results presented here clearly 
show tha t waves are in fact responding to wind speeds instantly. Further 
detailed studies may challenge or counter more familiar notions of wind 
waves. Using cross wavelet spectrum analysis not only introduces new 
da ta analysis techniques, it may also leads to new courses of exploration. 

3 .3 . D e t e c t i n g breaking waves 

Wave breaking is a familiar phenomenon tha t occurs intermittently 
and ubiquitously on the ocean surface. It is visible from the appearance 
of the whitecaps, yet it can not be readily measured with customary in-
struments. Wave breaking has been recognized as playing a crucial role 
in accurate estimations of the exchange of gases between the ocean and 
the atmosphere [24] and in the transfer of momentum from wind to the 
ocean surface [1]. Most of the practical works on wave breaking [2], bo th 

1 Unlike the Fourier cross spectrum analysis where averaging can be used to avoid 
coherence being identically one, we have to use the real and imaginary parts of the 
coherence separately here, since their sum, the coherence, is indeed identically one in 
this formulation. On the other hand, this approach successfully substantiates the use 
of the co- and quadrature spectra [19] to signify their "in phase" and "out of phase" 
properties, respectively. 
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in the laboratory and in the field, have been done with specialized methods 
based on radar reflectivity, optical contrast, or acoustic output of the ocean 
surface. Here we show that with the help of wavelet spectra [12], instead 
of using specialized measurement devices, a basic wave-breaking criterion 
can be easily implemented to wind wave time series to distinguish breaking 
from non-breaking waves. This simple and fairly efficient approach can 
be readily applied to indirectly estimate wave breaking statistics from any 
available time series of wind-generated waves. 
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Figure 6. A sample plot of a time series of wind waves, same as Figure 
1, with possible breaking waves marked by o's and x's indicating different 
high frequency ranges \ωρ : ωη defined by the λ values given at the top 
of the figure. 

One of the most frequently used approaches for the study of wave break-
ing is the use of a limiting value of the wave steepness beyond which the 
surface cannot be sustained [13]. Alternatively, assuming a linear dispersion 
relationship, the wave surface will break when its downward acceleration 
exceeds a limiting fraction, 7, of the gravitational acceleration, g, that is 
ασ2 ^ 7#. The quantity ασ2 can be calculated for a time series of wave 
data since the local wave amplitude, a, is available from the measured time 
series while the local wave frequency, σ, can be obtained from the wavelet 
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spectrum. In classical studies, it has generally been assumed that 7 = 0.5. 
Recent laboratory studies [10] have shown that 7 is closer to 0.4. Some field 
measurements [9] further indicate that the value of 7 should even be lower. 
In this study we chose to follow the laboratory results and use 7 = 0.4. 
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Figure 7. Plot of the percentage of breaking waves with respect to 
wind speeds. The o's and x's are the same as defined in Figure 6. 

Since the wavelet transform provides an equivalent time-frequency spec-
trum, Wx(cj,f), for the wind wave time series, then there is a localized 
frequency spectrum at each data point, X(U), given by 

$iH = [Wx(u;,t)]t=ti. 

It is not immediately clear which frequency should be used for σ in calcu-
lating ασ2. Because breaking events are generally associated with the high 
frequency part of the spectrum, for each X{U) we chose to define a σ,· as 
the average frequency [20] over the high frequency range, \ωρ : u>„, of the 
localized spectrum at t = £,· as 

l 1/2 

Gi -
f:;yH")d" 
S£9*M&» J 

where ωρ is the localized frequency at the energy peak, ωη is the cut-off 



164 P. Liu 

frequency, and λ is a number greater than 1 that denotes the start of the 
high frequency range beyond ωρ. The exact location of this high frequency 
range has not been clearly defined. Considering this range as corresponding 
to the familiar equilibrium range, one frequently used value of λ has been 
1.35 [7]. 

To test this approach, Figure 6 presents an illustration of the analysis 
where estimated breaking waves are marked on the same time series seg-
ment given in figure 1. The x's and o's represent the results with a high 
frequency range between 1.15 and 1.35 times, respectively, of the local peak 
energy frequency, CJP, and cut-off frequency, ωη. While the λ values of 1.15 
or 1.35 has been chosen rather arbitrarily for comparisons, they are clearly 
not always recognizing the same breaking waves. In general with the same 
cut-off frequency, the lower end of the frequency range farther away from 
the local peak frequency, i.e. large λ value, would yield higher local average 
frequency σ and more breaking waves. Therefore an exploration of break-
ing waves could potentially serve to resolve the definition of the well-known 
but still not yet well-defined equilibrium range. Figures 7 present plots of 
overall percentages of breaking waves from all the data analyzed in this 
study as a function of wind speed. While the data points are scattered 
considerably, there is an approximate linear trend indicating an increase 
in the percentage of breaking waves with an increase in wind speed. The 
results shown in Figure 7 are in general accord with various available ob-
servations [9]. According to these results, breaking waves become prevalent 
when wind speeds exceed 10 m/s. 

At the present, the limiting fraction of downward wave acceleration 
from the gravitational acceleration, 7, and the parameter locating the lo-
cal equilibrium range beyond local peak frequency, λ, are both tentative. 
Therefore, the wavelet transform approach that leads to these results is 
useful, convenient, and also exploratory. Perhaps a better simultaneous 
measurement of wind-wave time series and wave breaking would suffice to 
substantiate the approach. Unfortunately operational and sufficient instru-
ment for this simple purpose is still lacking. 

§4. Concluding Remarks 

We anticipate two groups of readers who might be benefit from this 
paper, namely, those interested in wavelet applications and those interested 
in wind wave studies. As this is a first attempt in applying the wavelet 
transform to wind waves, the results are inevitably primitive. We hope we 
have succeeded at least in demonstrating the rich potentials for wavelet 
analysis. There are many important analysis issues that must yet be ad-
dressed, including rigorous basis for the cross wavelet spectrum analysis 
which we have used here. For the wind wave studies, wavelets certainly 
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provide ample opportunities for da ta analysis. From the encouraging re-
sults we reported here, we are justified in being optimistic. 
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Wavele t Analys i s of Seafloor B a t h y m e t r y : A n E x a m p l e 

Sarah A. Little 

Abstract. 1-D wavelet analysis has been shown to be useful in studying bathy-
métrie profiles [7]. 2-D bathymétrie maps are less common than 1-D profiles, 
but offer immensely more information about seafloor generation processes. 2-
D wavelet analysis is applied to swath-mapped bathymétrie data from the Mid-
Atlantic Ridge. Both image enhancement and feature identification are performed 
with excellent results in the identification of the location and scarp facing direction 
of ridge-parallel faulting. Wavelet image processing techniques enable computer 
analysis of distribution and spatial patterns in faults to be performed without the 
tedious job of transcribing hand picked and ruler-measured fault parameters from 
printed images to a digital data base. 

§1. Introduct ion 

The wavelet decomposition of bathymétrie da ta reveals structures and 
pat terns which are easily overlooked in the raw data. In addition, it can 
be used to isolate features of interest, such as fault scarps, for use in subse-
quent quantitative analysis. This paper describes the application of wavelet 
analysis to seafloor topography. Much of seafloor bathymetry has been col-
lected by ships of opportunity traversing various sections of ocean. These 
depth measurements are closely spaced in the along-track direction, but 
the tracks are often many kilometers apart . The resultant da t a sets are es-
sentially 1-dimensional spatial series. In a few areas of the seafloor, swath 
bathymétrie surveys have been conducted which return detailed, 2-D, maps 
of limited sections of the ocean. 1-D spatial series are more common, and 
1-D wavelet analysis of bathymétrie profiles can be used to improve our un-
derstanding of the shape of the seafloor. Swath mapped areas have much 
more information than single topographic profiles, of course, and I present 
an example of image enhancement and fault scarp identification using 2-D 
wavelet analysis. 

Wavelets in Geophysics 167 
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§2· 1-D Topographie Profile 

Little et al. [7] recently applied a wavelet decomposition to a 1-D, 
1600 km long, bathymétrie profile from the northeast Pacific near Hawaii. 
The profile runs parallel to the Murray Fracture Zone near 32°N, 152°W, 
and crosses directly over a small Pacific bathymétrie high [9]. A 200 km 
anomalous zone was discovered with the wavelet decomposition, which has 
high-amplitude, long-wavelength topography and lacks the short-wavelength 
topography which dominates both to the east and west. This "low-frequency" 
zone is located between two fracture zones and the regional setting for this 
area includes a bend in the Pioneer Fracture Zone to the north and a 
break in the Murray Fracture Zone to the south. It is clear tha t in this 
topographically anomalous zone either the volcanism, tectonics or crustal 
s tructure is significantly different from the surroundings. They interpreted 
the anomalous crust to be the site of a short-lived, abandoned spreading 
center which is associated with a regional, thermally induced, topographic 
high. 

The wavelet decomposition was particularly useful in finding the aban-
doned spreading center because these sites are marked by changes in the 
roughness of the topography [10] which remain permanently frozen in the 
crust after the spreading has ceased. The amplitude of the features of this 
particular site were smaller than other, known abandoned spreading cen-
ters, and these features are easily overlooked without the application of the 
wavelet transform to decompose the signal into events at different scales. 

The wavelet transform can be used to decompose a spatial series into 
energy in a given frequency band and at a given location [4]. This can be 
contrasted to Fourier analysis which gives the energy in a given frequency 
band for an entire signal. Although windowed Fourier transforms (or spec-
trograms) do give an estimate of frequency content as a function of location, 
the spatial window is fixed, and the spatial resolution generally coarse. The 
advantage of the wavelet transform is tha t it matches its spatial localization 
to the frequency of interest—fine spatial resolution for high frequencies and 
broad spatial localization for low frequencies. In many cases, especially for 
transient and variable signals such as faults and volcanic constructions, the 
wavelet transform is superior to the Fourier transform for space-frequency 
decomposition and event localization. 

For spatial data, such as a bathymétrie profile, da ta are decomposed 
into energy at a given wavelet scale and at a given distance along track. In 
the case of the Morlet wavelet used by Little et. al. [7], the wavelet scale 
has a natural correspondence to spatial frequency. 

The Morlet wavelet [5] has the properties of rapid decay in bo th the 
space and frequency domains, so as to maximally localize information in 
bo th domains, smooth so tha t it is narrow-band and differentiable, and 
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complex so as to preserve phase information about the signal. The Morlet 
wavelet is defined as a complex exponential, at some fixed frequency, times 
a Gaussian with fixed variance: 

w{t) = e^ikth-£ 

where t is space, k is wavenumber, and σ is the Gaussian variance. 
A single scale wavelet transform is the convolution of the wavelet at 

tha t scale with the data , both of which are functions of the spatial domain. 
For increased computational speed, this convolution may be computed in 
the Fourier domain by multiplying the Fourier transform of the da ta by 
the Fourier transform of the wavelet, then taking the inverse transform of 
the product . On a single scale, the wavelet transform can be thought of 
as a linear filter. For a multiscale analysis, the wavelet shape is rescaled, 
in powers of 2, to longer and shorter lengths, creating a bank of filters 
of different sizes. The power in each size wavelet is normalized to one, 
and then the wavelet is convolved with the data. In this way the series of 
wavelet filters is used to scan for small- and large-scale events in the data . 

When a wavelet of a given size and shape is convolved with a spa-
tial series, the magnitude of the resultant series is a measure of the match 
between the wavelet and da ta series—small-scale events will match small 
wavelets but not large wavelets. Therefore, when a bank of wavelets is 
applied to a spatial series, one can both identify transient events and dis-
tinguish events on different scales. In this way one can scan a da ta series 
for interesting features on a broad range of scales, and also identify re-
gions of the da ta where events of a certain scale are entirely missing. Little 
et. al. [7] used the Morlet wavelet transform, in this way, to discover the 
anomalous low-frequency zone in a 1-D bathymétrie profile. 

§3. 2 -D B a t h y m e t r y 

The following section describes the application of wavelets generated 
from spline functions to image enhancement and fault scarp identification 
in 2-D swath-mapped bathymétrie data. The bathymétrie da ta cover an 
approximately 100 km x 70 km section of Mid-Atlantic Ridge near 29°N, 
43°W, which is about 1/10 of the da ta available in this region [13]. 

Topography near the Mid-Atlantic Ridge (MAR) is characterized by a 
deep central median valley surrounded by faulted blocks leading out over 
crestal mountains and down the outer flanks. These faulted blocks tend 
to be long linear ridges running parallel to the axis of spreading, ranging 
in width from order of 10 m to 10 km. Swath mapped areas of the MAR 
reveal scales ranging from order of 100 m up to 100 km, and hence offer a 
reasonable da ta set with which to examine this major faulting process at 
the MAR. Two major questions to ask about the MAR are 1) what does 
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it look like? and 2) where are the faults located? 
Two types of spline filters are used, a linear B-spline wavelet for visual 

image enhancement to improve intuitive understanding, and the derivative 
of a cubic spline for quantitative fault scarp edge detection. 

3 .1 . D a t a 

The da ta used in this analysis was collected by a 16-beam Sea Beam 
swath echo sounder. This instrument is mounted on the hull of a ship 
and sends out sound in beams whose individual footprints are 2 | x 2 | 
degrees, which translates to about 150 m on a side in a water depth of 
3000 m. As the ship steams forward, it continuously collects an approxi-
mately 2 km wide swath of depth readings. These da ta are tied to lat i tude 
and longitude via satellite navigation and put together in a regional map 
of bathymetry. There are places where the swaths do not overlap, and a 
linear interpolation has been performed in these gaps so tha t the da ta can 
be smoothly represented in a 2-D matrix of depth values. The da ta are 
shown in Figure 1 in a contour/gray scale image. There are 755 points 
of longitude between 43.567°W and 42.552°W, and 495 points of lat i tude 
between 28.581°N and 29.917°N. Depths range from 4000 m in the deep-
est areas (black) to 1800 m in the shallowest areas (white). There are two 
white areas inside the image which represent no data, a large one centered 
on longitude point number 200 and latitude point number 50, and a small 
gap located at longitude point number 240, lati tude point number 100. The 
white areas to the left and right of the image also contain no bathymétrie 
information. The central valley of the MAR runs up the middle of the 
image at about 20° off vertical. On each side of the central valley are the 
crestal mountains, and beyond them a small portion of the flanks. This 
area of the Mid-Atlantic Ridge contains a ridge offset, visible in the upper 
central par t of the image, where the two major valleys are offset from one 
another. The da ta used in this paper have previously been analyzed for 
fault locations using a curvature method [14], [15]. 

3.2 . Fi l ter des ign 

In two-dimensions, the wavelet transform can be used to decompose 
an image into a series of images, each of which contains information at a 
specific location of features at a single scale (or spatial frequency). Further, 
since images are 2-dimensional, each spatial frequency is coupled with an 
orientation. These two parameters can be varied to produce a filter tuned 
for features of nearly any width, length and orientation. The filter is a 
matr ix of coefficients which is convolved with a 2-dimensional image. The 
resolution of location of a given feature in the wavelet transform is matched 
to the scale of tha t feature. Precision in location of fault scarps will be 
comparable to their width. 
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Figure 1. A contour/gray scale image of interpolated Sea Beam 
bathymetry between 42.552-43.567°W and 28.917-29.58ΓΝ, approxi-
mately an area of 100 km X 70 km. Depth ranges from approximately 
4000 m (darkest areas) to 1200 m (lightest areas) and contours are shown 
in 560 m intervals. The white areas represent no data, and there are 
two no-data islands within the image: a large island centered at latitude 
point 50 and longitude point 200; and a small one centered at latitude 
point 100, longitude point 250. The nearly-vertical dark central valley 
runs from south to north and is offset to the east at latitude point num-
ber 150. The crestal mountains are the light gray areas to the east and 
west of the central valley before and after the offset zone. 

The first step in the design of a suitable wavelet transform for image 
analysis is the selection of a proper wavelet which, when convolved with 
the data , will enhance features of interest. A wavelet needs to be a function 
which integrates to zero and is square integrable [3]; (see also Kumar and 
Foufoula-Georgiou, this volume). There are a number of wavelet classes 
in the l i terature which have been shown to meet these criteria and have 
been used in da ta analysis. These include the Morlet wavelet [11], the 
Haar wavelet [4], [6], the B-spline wavelets [1], [2], [4], [8], [16], and the 
Daubechies wavelets [3], [4]. 
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F igure 2. A bathymétrie profile running from west to east across the 
image at latitude point 300 showing the profiles of ridges associated 
with faulting. The plateaus at the far left and right are zones of no 
data. From left to right, the profile comes up the flanks of the western 
crest al mountains, crosses over seven or so major ridges associated with 
faulting in the mountains, runs down to the central valley, up the eastern 
crestal mountains and across five or so major ridges. 

In the 2-D bathymetry da ta under analysis, the features of interest 
are relatively long, linear and narrow ridges with a preferred orientation 
parallel to the axis of spreading. These fault blocks resemble straight lines 
with cross sections tha t look like ridges. An example of a profile across the 
MAR, perpendicular to the axis of spreading, is shown in Figure 2. The 
high plateaus at the extreme left and right are artifacts where no bathy-
métrie da ta exist. Moving from left to right, one travels up the flanks, over 
the western crestal mountains, across approximately 7 major fault ridges 
(visible at this Sea Beam resolution), down into the central valley, up the 
other side and over the eastern crestal mountains, crossing approximately 
5 major fault ridges, and finally reaches the edge of available data. The 
cross-section of these fault ridges suggests that an edge detector would be 
a good choice for a wavelet. For visual image enhancement it is desirable 
to "bring out" the ridges, so that they are easily seen by eye. For this, a 
wavelet which would transform a given size class of ridges into highs and 
valleys into lows would create an image where the ridges and valleys would 
visibly stand out. One such detector for this purpose is a linear B-spline 
wavelet [4], [2], [16]. For quantitative analysis, however, it is desirable to 
have a wavelet which will transform the location of the fault scarp—that is 
the transition from a low to a high (or vice versa) into a single high. The 
filter formed from the derivative of the cubic B-spline achieves this [1] and 
moreover, it can distinguish between a left facing edge and a right facing 
edge (in profile), as described below and in Figure 3. This is very useful 

Central valley 
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for the analysis of fault distribution at the MAR because faults facing in 
towards the central valley have been observed to be structurally different 
from faults facing outward. 

These two types of edge detecting filters will now be discussed. 

3 .3 . Linear B-spl ine wavelet 

Spline wavelets are constructed by a shifting, weighting and summing 
of the B-spline functions, Ni(x), where x is the spatial variable, and i is 
the order of the spline. Details of the construction of the linear and other 
B-spline wavelets can be found in [2], 

The linear B-spline function, N2(x), is defined as: 

r o 

ι o 
The linear B-spline wavelet, W2, is formulated from N2 as follows: 

W2 = ^[N2(2x)-W2(2x-l) + 10N2(2x-2)-W2(2x-3) + N2(2x-4)]. 

Figure 3a shows this wavelet (at 16 points) and the 1-D convolution 
of this wavelet with three, noise free, 1-D ridges of different sizes. Notice 
tha t , in the transform, each step edge is converted to a low and a high. 
The ridge whose width is most similar to the central portion of the wavelet 
is transformed into a single high with two lower amplitude lows on either 
side. This creates contrast which will visually "bring out" ridges. 

The 2-dimensional filter is formulated to take advantage of the strongly 
linear and oriented nature of the faults. Each linear ridge is qualitatively 
like a long series of 1-D ridge-edges stacked together. Therefore, a 2-D filter 
can be built by stacking up a number of 1-D ridge-edge detecting wavelets. 
This is a departure from strict wavelet construction because the ridge-edge 
parallel direction of this 2-D filter is not a wavelet. The 2-dimensional 
version of the filter is specifically created in the following way: generate a 
1-dimensional linear B-spline wavelet of a desired length; replicate this filter 
to create a 2-dimensional matr ix of identical filters; taper the edge-parallel 
direction with a Hanning window [12]; and rotate the entire matr ix to the 
desired orientation. A 3-D plot, contour/gray scale plot, and horizontal and 
vertical profiles are presented in Figure 4 for this filter. Figure 4e shows 
the filter rotated by —110 degrees from horizontal to match the dominant 
orientation of the faults in the bathymetry. The length of the 1-dimensional 
B-spline (BS) determines the width of the faults to be isolated. The number 
of identical filters (NF) in the 2-dimensional matr ix determines the fault 
length over which to average (or smooth). If NF is large, then very long 

x < 0 
0<x < 1 
1 <x < 2 
x>2. 
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F igure 3. a) The top of the figure shows a 16 point linear B-spline 
wavelet. Below is shown this wavelet convolved with ridge-edges of three 
different sizes. The solid lines are the edges, and the solid-dot lines are 
the resultant convolution. High amplitude is associated with narrow 
ridges, and the edges of wide ridges. In addition, the high amplitude 
is preceded by a low amplitude, which enhances visual contrast at the 
edges, b) The top of the figure shows a 16 point derivative of a cubic B-
spline function. Below this is shown this filter convolved with the same 
ridge-edges as shown in a). Notice that left-facing steps transform to 
highs, while right-facing steps transform to lows. The location of these 
edges is marked by the local maximum of the transform. 

and straight faults will be identified; if NF is small, short and curved faults 
will be identified as well as long and straight. A small NF, although it picks 
up bo th short and long faults, also picks up short curved features which are 
volcanic rather than faults, and hence there is a trade-off between getting 
all the curved faults and getting too many short, non-fault features. 

The 2-D linear B-spline filter, with BS=16 and N F = 7 is convolved, via 
the 2-D Fourier transform, with the Sea Beam bathymetry and the results 
shown in gray scale in Figure 5. Light areas correspond to topographic 
ridges, and dark areas correspond loosely to valleys. The fabric of the 
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Figure 4. a) A 3-D mesh plot of the 2-D linear B-spline filter with 
BS=16 and NF=7. b) Contour/gray scale plot of this filter, dark is 
high, c) Profile of this filter in the B-spline direction, d) Profile of 
this filter in the NF direction, e) Contour/gray scale plot of this filter 
rotated by —110° to match the dominant orientation of MAR-parallel 
fault ridges. 

topography is brought out visually in this image. Note tha t although this 
is a small scale wavelet, it is still possible to see large scale topographic 
trends, e.g. the central valleys and crestal mountains. This is due to the 
fact tha t the 2-D filter used was not exactly zero mean. This filter makes 
the image easier to study because most of the large scale topography has 
been removed, but just enough allowed through to visually locate small 
scale features in relation to the large trends such as the median valley and 
crestal mountains. For instance, approximately 7 large bright linear ridges 
are clearly on the left of the central valley, and fade out as they reach 
the offset zone at lat i tude point 150. This filter transforms the da ta to 
an image which helps the viewer gain a qualitative understanding of the 
topography. 
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Figure 5. Application of filter shown in Figure 4e to bathymétrie data 
shown in Figure 1. This is a filter for visually enhancing the image to 
improve intuitive understanding of the topography. The lighter areas 
correspond to bathymétrie ridges. The large scale topography is still 
slightly visible, the dark central valley and lighter crestal mountains, due 
to the non-zero mean of the filter. This enhances visual interpretation of 
the image by enabling correlation between small scale ridges and larger 
features while removing most of the effects of the large scale topography. 

3.4, Der ivat ive of cubic B-spl ine 

Quantitative analysis of fault location, spacing and distribution re-
quires more than the intuitive information gained from image enhancement. 
The derivative of the cubic B-spline provides a filter which transforms a 
step up into a positive peak and a step down into a negative peak. This 
provides a mechanism for locating fault scarps, tha t is, the transitions from 
valley to ridge (or vice versa), and classifying their facing direction. The 
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Figure 6. a) A 3-D mesh plot of the 2-D derivative of the cubic B-
spline function with BS=8 and NF=7. b) Contour/gray scale plot of 
this filter, dark is high, c) Profile of this filter in the B-spline direction. 
d) profile of this filter in the NF direction, e) Contour/gray scale plot 
of this filter rotated by —110° to match the dominant orientation of 
MAR-parallel fault scarps. 

cubic B-spline function, N^x), is defined as: 

N4(x) = { 

0 

§ - ( x - 2 ) 2 + I ( * - 2 ) 3 

| _ I X + I ( X _ 3 ) 2 _ I ( X _ 3 ) 3 
0 

£ < 0 
0<x < 1 
1 <x < 2 
2 < x < 3 
3 < x <4 
x > 4 . 

A sixteen point long, 1-D filter created from the derivative of this 
function is shown in Figure 3b. This filter is convolved with ridge edges of 
three different sizes to show how it transforms a rising slope to a numerical 
high, and a falling slope to a numerical low. In this way it locates fault 
scarps and identifies the direction they face. 

The 2-D filter is created from the derivative of the cubic B-spline the 
same way as for the linear B-spline wavelet: Generate a 1-D filter of a de-
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Figure 7. A gray scale plot of the application of filter shown in Figure 
6e to bathymétrie data shown in Figure 1. Dark corresponds to right-
facing fault scarps and light corresponds to left-facing fault scarps. This 
image does not correspond to illuminated bathymetry and apparent 3-D 
texture is misleading. The fault scarps predominantly face in toward the 
central valley, dark on the left and light on the left. The faults also fade 
out as they reach the offset zone. 

sired length; replicate this filter to create a 2-dimensional matrix of identical 
filters; taper the edge-parallel direction with a Hanning window; and rotate 
the entire matrix to the desired orientation. The resulting filter is shown 
in Figure 6 in a 3-D plot, a contour/gray scale plot, and horizontal and 
vertical profiles. Figure 6e shows the filter rotated by —110 degrees from 
horizontal to match the dominant fault scarp orientation. 

A BS=8 and NF=7, 2-D derivative of a cubic B-spline filter is now 
convolved with the bathymetry and the results, shown in Figure 7, show 
excellent fault scarp identification. Dark gray corresponds to faults which 
face easterly (to the right) and light gray corresponds to faults which face 
westerly (to the left). The apparent surface texture in this figure is some-
what deceiving because it appears at a glance to be illuminated bathymetry. 
It is not, as there are no true shadows in which features are hidden and 
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Right-Facing Scarps: BS=8, NF=7, cubic spline derivative 
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Figure 8. A plot of large-amplitude local minima (in horizontal rows) 
of the transform shown in Figure 7. The local minima correspond to 
the centers of right-facing fault scarps. There is a predominance of large 
right-facing faults on the west side of the central valley, both below and 
above the offset zone. 

the 3-D effect is somewhat misleading. However, this da ta can be pro-
cessed quantitatively. A plot of large-amplitude local minima (calculated 
in west-to-east lines) is shown in Figure 8. This figure shows the location 
of large faults which face easterly. There are more large east facing faults 
on the left-hand side of the central valley. Figure 9 shows large-amplitude 
local maxima, and clearly identifies more large west facing faults on the 
right-hand side. This implies tha t there are larger faults facing in toward 
the central valley than facing away. This characteristic of the MAR has 
been noted before from visual observations of bathymétrie maps. The 2-D 
derivative filters offers a chance to quantify this qualitative observation. 
Figure 10 shows both left and right facing fault scarps, which gives a good 
picture of the distribution of faulting, and also shows tha t the faults fade 
out in the offset zone which runs from the upper left, lat i tude point number 
150, to the lower right, lat i tude point number 200. 
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Left-Facing Scarps: BS=8, NF=7, cubic spline derivative 
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Figure 9. A plot of large-amplitude local maxima (in horizontal rows) 
of the transform shown in Figure 7. The local maxima correspond to 
the centers of left-facing fault scarps. There is a predominance of large 
left-facing faults on the east side of the central valley, both below and 
above the offset zone. 

§4. Conclus ions 

Bathymétrie da ta from the seafloor contain the superposition of ridges, 
valleys, and volcanos at many different scales. Wavelet analysis offers a use-
ful method for decomposing the texture of the seafloor to help understand 
processes which occur at many different scales. Much of the bathymétrie 
da ta available is in the form of 1-D spatial series. Scale decomposition 
of these series has been shown to yield an understanding of geophysical 
processes which originally were overlooked in the raw data . Smaller por-
tions of the seafloor have been swath-mapped, and these 2-D da ta sets 
offer an unusually good opportunity to decipher the complexity of seafloor 
topography. This paper has presented two wavelet techniques for working 
with swath-mapped bathymetry, one a qualitative image enhancement, and 
the other a quantitative fault scarp identifier. A linear B-spline wavelet is 
used to design a 2-D filter which produces an image in which the linear, 
MAR-parallel fault ridges are easily seen in the context of the broader to-
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F igure 10. A plot of both local minima and local maxima, showing 
the locations of fault scarps, regardless of facing direction. These data 
can be used for quantitative analysis of fault spacing, orientation and 
distribution. 

pographic undulations. A second filter, designed from the derivative of a 
cubic B-spline, is used to obtain quantitative information on the locations 
and facing directions of fault scarps, tha t is, the zones where the crustal 
material was actually sheared. This quantitative information can be fur-
ther processed to obtain fault spacing, preferred orientation, density and 
distribution, parameters which can be used to understand the underlying 
geophysical processes which occur at the MAR. 
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Analys i s of H i g h Reso lu t ion Marine Seismic D a t a U s i n g t h e 
Wavele t Transform 

Chris J. Pike 

Abstract. A method is proposed for the analysis of high resolution acoustic 
signals using the wavelet transform. For signals with intensities exhibiting fre-
quencies ranging from 100 Hz to 10 kHz, time-frequency displays of the signal 
can lead to more robust means of estimating attenuation as well as quantification 
of wavefield scatterers within shallow marine sediments. The time-frequency de-
compositions of the signals are accomplished using the wavelet transform and a 
Morlet analyzing wavelet. Zero offset acoustic signals are analyzed and the mod-
ulus of the wavelet transform is displayed as a function of depth below seabed 
versus wavelength. The results are discussed and related to the subseabed soil 
conditions at an experimental field site. 

§1. Introduct ion 

The Centre for Cold Ocean Resources Engineering (C-CORE) is an 
independently-funded research insti tute of Memorial University of New-
foundland in St. John's , Newfoundland, Canada. C-CORE is involved in 
solving engineering problems related to resource development in the ocean 
environment. The Centre has traditionally focused on a limited number of 
research areas related to ocean resources and has built up expertise reflected 
by the four research groups operating at C-CORE. They are the Remote 
Sensing group, the Geotechnical Engineering group, the Ice Engineering 
group and the Seabed Geophysics group. 

One of the areas of research engaged by the Seabed Geophysics group 
has been the high resolution acoustic investigation of the sub-seabed. A 
central goal of the acoustic program is the development of methods for 
extracting marine soil properties by correlating acoustic properties derived 
from acoustic signals with the geotechnical properties of the soil. During 
the course of this research it was evident tha t the high frequency acoustic 
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signals (500 Hz to 10,000 Hz) used were rapidly attenuated, especially the 
higher frequencies, in those soils that contained many scatterers - boulders 
and cobbles with dimensions comparable to the wavelengths of the acoustic 
waves generated by the source. Spectra for the acoustic signals are usually 
calculated by using the Fourier transform (FT) or the fast Fourier transform 
(FFT). From the equation for the Fourier transform it is evident that this 
equation is not well suited to the study of localized (in time) disturbances 
in a signal nor is it appropriate to apply it to non-stationary time series. 
The power spectrum of an acoustic signal is often analyzed in an attempt 
to investigate attenuation of an acoustic signal. Techniques that compare 
the spectra of the emitted and transmitted or reflected pulse are used to 
assess attenuation as a function of frequency. The typical frequency range 
for explortion seismic data is between 10 and 100 Hz. Over this range, 
and for the length of duration of the seismic record, the basic assumptions 
of stationarity are not grossly violated. High resolution seismic signals 
can often exhibit severe loss of high frequencies as they travel down into 
the earth and return again. A method that reflected the time-frequency 
structure in high resolution signals would be more diagnostic and more 
appropriate for the analysis of very high resolution signals. 

Experiments designed to measure attenuation within the earth some-
times use down hole geophones to record the direct pulse from a source 
near the surface or a core sample may be taken to the laboratory where 
a high frequency acoustic wave is transmitted through the sample. If the 
outgoing pulse and the transmitted pulse can be isolated then the spectra 
can be compared. The isolation of the first arrival is usually accomplished 
by using a short window Fourier transform (SWFT) and often the spectra 
exhibit properties associated with the window function used as well as the 
signal. The wavelet transform offers a means of avoiding this problem. 

High resolving power of the acoustic wave is desirable for a range of 
depths but this ability is compromised when multiple scatterers are present. 
Morlet et al. ([21] and [22]) investigated the propagation of plane waves for 
normal incidence, through periodic multi-layered media for wavelengths 
ranging from much greater than the spatial period to periods on the or-
der of the spatial period. They found that for large wavelengths (16 times 
the spatial period of the medium) the composite medium was transpar-
ent but phase-delaying; for short wavelengths (2 times the spatial period 
of the medium) the signal was strongly attenuated and super-reflectivity 
could occur; for intermediate wavelengths (8 times the spatial period of the 
medium) velocity dispersion versus frequency appeared. 

These observations are quite diagnostic of the medium, offering the geo-
physical investigators of shallow marine soils a new and potentially pow-
erful means of quantifying subseabed soil conditions through the use of 
time-frequency methods. Morlet et al. ([21] and [22]) conclude that when 
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frequency bandwidth spans four or five octaves, time-frequency methods 
will be more sensitive to at tenuation and velocity dispersion. 

The wavelet transform ([21], [22], [6], [17], [27], [5] and [7]) is an appro-
priate tool for investigating the time-frequency nature of high resolution 
acoustic signals. Displaying the energy distribution in the time-frequency 
plane describes a signal more uniquely than the F T spectra and could 
provide a means for evaluating or quantifying the degree of backscatter 
in different frequency bands and at different times. A complete map of 
at tenuat ion as a function of depth and frequency or wavelength can be 
constructed and this type of information may be more readily correlated 
to selected marine soil properties. 

The main objective of this paper is to report on the application of 
the wavelet transform to high resolution marine acoustic signals and its 
use in the estimation of at tenuation of acoustic wave energy for signals 
reflected from subseabed reflectors. Usefulness of the wavelet transform 
as a classifier for backscatter is discussed briefly with reference to wavelet 
transform plots and depth-wavelength displays. 

§2. Acous t i c -Geotechnica l Correlat ions: Phys ica l and Historical 
C o n t e x t 

The motivation for research into correlations between acoustic/seismic 
responses of a marine soil and the soil's geotechnical properties is to provide 
the geotechnical engineer with cost-effective and reliable estimates of the 
geotechnical properties of submerged soils. Reliable estimates of geotech-
nical properties are needed, for example, in the selection of a site and the 
design of a s tructure tha t is intended to be supported by the seabed. Such 
structures can include gravity-based oil production platforms or support 
columns for causeways or bridges. Porosity, density and grain size distri-
bution are some of the soil properties tha t affect the acoustic response of 
a signal and are also of interest to the geotechnical engineer [31]. Acoustic 
wave properties related to these parameters through empirical relationships 
include acoustic impedance, velocity and at tenuation ([1], [9], [20] and [13]). 
These properties can be determined from digital acoustic da ta with greater 
accuracy than was possible in the past using analogue records. 

The recent and rapid development of smaller, faster, and more power-
ful computers has had an impact upon many branches of science but none 
so dramatic , perhaps, as in the area of high resolution sub-bottom marine 
seismic reflection profiling. At about the same time as the first papers on 
wavelet transforms were being written, analogue paper recordings of acous-
tic returns from the seabed and sub-seabed represented the current practice 
in da ta collection and presentation. Practit ioners of land-based engineer-
ing seismic da ta acquisition, and the oil and gas exploration industry, have 
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been acquiring and processing digital data for almost as many years as there 
have been computers. During the past ten years the marine high-resolution 
(> 500 Hz) or site surveying industry has made the leap from analogue data 
acquisition systems to digital data acquisition systems. This technological 
leap can be attributed to the development of high-speed analogue-to-digital 
computer boards and digital signal-processing chips, which together effec-
tively allow real-time data acquisition and processing of high-resolution 
acoustic data. 

The availability of digital acoustic data has led to the desire for a more 
quantitative assessment of seismic signals. Empirical relationships between 
acoustic properties and soil properties have been reported ([1], [32] and 
[10]). Studies that relate acoustic properties to rock or sediment properties 
involve the use of frequencies below 100 Hz ([26] and [12]) or above 10 
kHz ([10] and [11]) but very few studies provide information in the 100 
to 10,000 Hz range which is the typical range for many high-resolution 
sub-bottom marine surveys. In soils characterized by large scatterers, such 
as boulders in glacial tills, the 100-1,000 Hz range of frequencies is more 
efficient in achieving greater depth penetration. Testing carried out in 
laboratories, usually at very high (> 100 kHz) frequencies, on samples 
collected in the field or on cone-penetrometer data acquired in situ, provide 
data for correlations that are sometimes biased toward high frequencies. 
But the means to correlate geotechnical properties of a soil over a more 
complete range of frequencies is also needed. Some commercial acoustic 
systems already offer classification schemes based upon how the transmitted 
pulse is modified by the water-sediment interface upon reflection [18] or 
internally upon transmission to deeper layers and subsequent return to the 
receiver [29]. It is the seafloor sediment type that is most easily determined 
by evaluating the seabed return as in Leblanc et al. [18] but characterization 
derived from deeper returns becomes quite complex due to constructive and 
destructive interference by scattered waves. Time-frequency analyses would 
aid in assessing the degree of interference as well as capitalizing upon the 
tuning or detuning of acoustic waves that can occur within the sub-bottom 
layers. 

There are several factors that contribute to the attenuation of an acous-
tic wave. Acoustic energy attenuates with increasing distance from the 
source, a function described by the term geometrical spreading loss. Ge-
ometrical spreading losses are not related directly to the properties of the 
medium in which the energy is propagating. Usually a means of correcting 
or nullifying this effect is sought before attenuation due to the medium is 
determined. Attenuation of acoustic energy can be divided into two basic 
categories, intrinsic attenuation and apparent attenuation. Intrinsic atten-
uation is the process that degrades the amplitude of the signal such as 
absorption due to frictional heating or viscous losses [14]. Apparent atten-
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uation is due to processes like scattering, energy partitioning at acoustic 
impedance contrasts, interbed multiples and mode conversions ([14] and 
[30]). W h a t is more generally observed, however, is effective at tenuat ion 
which is a combination of intrinsic at tenuation and apparent at tenuation. 

Est imation of intrinsic at tenuation of propagating acoustic pulses can 
provide information concerning grain size, moisture content, shear modulus 
and Atterburg limits [13]. Estimates for effective at tenuation are useful as 
they can be related to the degree of scattering, and possibly to quantifi-
cation of the size of the scatterers within a soil. There are many methods 
for measuring or estimating at tenuation of acoustic energy in sediments. 
Da ta collected for the determination of at tenuation generally fall into two 
categories, in situ measurements and laboratory measurements, The fre-
quency content of the acoustic energy used to investigate the sediment can 
be vastly different - from several hertz to millions of hertz. The connection 
between the range of frequencies and measurements is not always clear. 

Laboratory methods generally rely upon free vibration, forced vibra-
tion, wave propagation and observation of stress-strain curves [35]. Labo-
ratory studies involving wave propagation methods use frequencies in the 
100 kHz to 1 MHz range [34]. In situ measurements tha t rely upon wave 
propagation can range from a few hertz to hundreds of kilohertz but as 
noted in the preceding text there is a need for more information in the 
range of frequencies between 100 Hz to 10 kHz range. 

The estimation of at tenuation using field or in situ measurements has 
spawned many methods. In some situations it is possible to record the 
outgoing acoustic pulse as a reference for comparison with the energy from 
acoustic or seismic waves refracted through the sediments and returned to 
the surface to be recorded by geophones or hydrophones ([15], [14], [8] and 
[33]). More reliable measurements can be made by drilling a hole down 
through the sediment and recording the direct arrival of acoustic energy 
from a source near the surface to a geophone placed at successively deeper 
depths within the hole ([12], [24] and [26]). Similarly measurements can 
be made between two holes drilled through the rock or sediments [25] by 
placing a source in one hole and a receiver in the other and varying the 
depth of each. 

Attention has been focused on extracting at tenuation estimates from 
seismic reflection data, particularly in the marine setting ([18], [29], [3] and 
[36]). Schock et al. [29] estimate at tenuation in the seabed by comparing 
the correlated chirp signal from a reflector with a synthetically a t tenuated 
chirp wavelet. From this measurement the frequency roll-off is determined 
and plotted as a function of depth. The slope then gives the at tenuat ion 
coefficient in units of d B / m kHz. LeBlanc et al. [18], also using a chirp 
system, a t t empt to estimate the surficial soil properties of the seabed by 
correlating reflection losses at the water sediment interface with soil prop-
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erties. Tyce [36] took advantage of naturally occurring sedimentary wedges 
to estimate attenuation. This situation is useful because the decrease in 
energy is easily observed and calculated as the wedge of sediment thickens. 

A common technique for characterizing attenuation of acoustic signals 
utilizes the spectral ratio between two pulses ([15], [14] and [12]). This 
technique uses the ratio of the amplitude spectrum of the known unat-
tenuated source function with the amplitude spectrum of the a t tenuated 
amplitude spectrum. A slope of this ratio against frequency yields the 
at tenuation, and terms that are assumed to be independent of frequency 
such as geometrical spreading or reflected energy can be ignored. A more 
recent technique, introduced by Courtney and Mayer [2], employs a filter 
correlation method tha t uses a series of bandpass filters on the a t tenuated 
pulse and compares each pulse to the similarly bandpassed source pulse. 

§3. T h e Wavele t Transform for Acoust ic Soil Analys i s 

3.1· T h e wavelet transform and Morlet wavelet 

The form of the wavelet transform used in this application is given by 
Equation (6) of Goupillaud et al. [6]. Adopting the terminology common 
to this volume the wavelet transform of / with respect to the analyzing 
wavelet is: 

(W f)(u, a) = |a|-i J Φ(^) / ( ί ) dt. (1) 

Where f(t) is the time series or signal, Φ(£) is the analyzing wavelet and 
^(^ϊτ) represents the dilated (a) and translated (u) wavelets. The | a | - 1 / 2 

term serves to ensure tha t the dilated wavelets have the same total energy 
as the analyzing, or mother wavelet. In the analyses presented in this 
paper, frequency or the natural logarithm of the frequency, is given by the 
vertical axis and the time shifts are given by the horizontal axis for the 
time-frequency displays. The frequency associated with each scale value, 
a, was determined directly from the equation for the Morlet wavelet [6]. 
The Morlet wavelet used in these examples is described by the following 
equation, 

φ 6 ( ί ) = eibte~^ - V2e-^eibte-t2. (2) 

The Fourier transform of Equation (2) is 

FT(9b(t)) = Φ6(ω) = e ^ ^ 1 - e~* e ^ ^ . (3) 

This wavelet is shown in Figure 1. The envelope of the wavelet and its 
amplitude spectrum are Gaussian-modulated functions. The variable b in 
Equations (2) and (3) has the same value of 5.336 and is the same as t ha t 
given by Goupillaud et al. [6]. 
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Figure 1. Morlet analyzing wavelet. 

3.2 . E s t i m a t i n g a t tenuat ion: a s imple example 

The following example demonstrates the mechanics of the at tenuat ion 
analysis. A synthetic trace with the direct pulse from one of the normal inci-
dence traces collected at an offshore experimental field site in Terrenceville, 
Newfoundland (described later), was convolved with a series of five spikes 
placed at the 0.0003, 0.002, 0.004, 0.006 and 0.008 second time marks. A 
geometrical spreading factor was then applied as well as an at tenuat ion 
factor, a , as follows: 

A(t) = G(t)A0e-°vt. (4) 

The geometrical spreading factor, G(£), is given by 1/vt where v is a con-
stant velocity of 1500 m / s in this example, but it can also be a function 
of depth, and t is t ime in seconds. The definition used for the at tenuat ion 
coefficient, a, is tha t given by Johnston and Toksöz [16] and it is assumed 
to be linear with frequency for the range of frequencies under investigation. 
For the synthetic example a was assigned a value of 0.25 m _ 1 . In Figure 2a 
the 0.010 second at tenuated trace (without spreading losses) is displayed. 
Figure 2b depicts the modulus of the wavelet transform, with the horizon-
tal axis representing t ime and the vertical axis the natural logarithm of the 
frequency. The values range from —13.55 (black) to 10.35 (white). For all 
the wavelet analyses presented the axes are labelled in this manner unless 
otherwise noted. 

Figure 2c depicts the spectral ratio for the wavelet transform of the 
synthetic signal. The spectral ratio is a measure of the ratio between the 
spectrum for the direct or emitted pulse and the spectrum for the reflected 
of t ransmit ted pulse. Values range from —22.87 dB (white) to —2.47 dB 
(black). This display, as well as the method used to calculate the spectral 
ratios ([34] and [16]), bears further explanation by way of presenting the 
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F i g u r e 2 . Synthetic example; (a) 0.25 d B / m a t tenua ted synthetic seis-
mic t race ( the direct water borne arrival from the sparker was used as 
the wavelet for the synthetic); (b) modulus of the wavelet transform of 
synthet ic t race in (a); (c) spectral ra t io calculated from wavelet t rans-
form in (b). 
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relevant part of the derivation of the spectral ratio equation. After John-
ston and Toksöz [16], a plane wave propagating in a homogeneous medium 
can be described by: 

A(x,t) = A0e^kx-^ (5) 

where attenuation may be represented by allowing either A:, the wavenum-
ber, or ω, the angular frequency, to be complex. Following [16] and in-
cluding a geometrical spreading term as in [34], the ratio of the reference 
amplitude spectrum versus the spectrum at some time, ίχ, after taking the 
natural logarithm of the ratio of the two amplitude spectra can be written 
as: 

A G In —^ = (7m - 7i)vtf + In -^ (6) 
A\ Cxi 

where v is velocity, t is one-way travel time, / is frequency, a(f) = 7 / is 
the attenuation at / , and the left hand side of Equation (6), the spectral 
ratio, is represented by the data displayed in Figure 2c. Equation (6) can 
be interpreted in two ways; first the free variable can be the frequency, / , 
and then the slope, of a line fitted to the data when the spectral ratio is 
plotted against frequency, would be: 

slope = (7m - 7i)ttf. (7) 

The geometrical term, ln(G?i/G2), can be ignored if one assumes that the 
geometrical spreading terms are independent of frequency. Alternatively, 
travel time can be taken as the free variable but in this case the geometrical 
factor does depend upon t and it will influence the value of the attenuation 
derived from the slope of a line fitted to the curve of the spectral ratio 
versus time calculation. 

For this study the spectral ratio method was applied by taking the 
frequency distribution for the time at which the maximum magnitude for 
the direct pulse is greatest and using this spectrum as the reference spec-
trum. This occurs at approximately 0.0007 sec. in Figure 2b. Therefore, 
any determination of the slopes of lines fitted to the data in the direction 
parallel to the vertical axis satisfies Equation (7) and those that are fitted 
to the data in the direction parallel to the horizontal axis are subject to 
the time-dependency condition. 

The procedure for estimating the attenuation from normally-incident 
acoustic waves is demonstrated using the simple synthetic seismic example 
described in the preceding text. The results of a comparison of the value 
of the attenuation obtained using the synthetic trace corrected for geomet-
rical spreading losses and an uncorrected synthetic trace are displayed in 
Figures 3a and 3b respectively. The synthetic trace was corrected for the 
known geometrical spreading factor and the wavelet transform was then 
calculated and the modulus displayed (Figure 2b). The mean power at 
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each time and for all frequencies in the transform was calculated and plot-
ted in Figure 3a. There are five broad peaks shown in Figure 3a associated 
with each of the at tenuated pulses in Figure 2a. The largest local maxima 
for a particular broad peak was chosen interactively and a least squares 
fit was made to these selected values. The criterion for selecting the local 
maxima is based upon providing a guideline for consistent picking, and in 
selecting the large broad peaks it was assumed that boundaries or acoustic 
reflectors will reflect energy independent of frequency content which would 
not be the case for random scatterers. The line and the points chosen 
for the least squares fit are indicated (straight black line and black x's re-
spectively). The value of the slope was found to be 360 nepers/sec which, 
when converted to meters by dividing out the velocity term, yields a value 
of 0.24 nepers/meter . The conversion between nepers/unit length and dB 
(decibels) per unit length is a (dB/unit length) = 8.686π (nepers/unit 
length). The actual value used was 0.25 nepers/meter, a 4% difference be-
tween the actual and estimated value. If the geometrical spreading losses 
are not removed then there should be some effect on the result for the 
at tenuation calculation, and this is observed in Figure 3b. Using the spec-
tral ratio da ta from Figure 2c, the variance in the direction parallel to 
the frequency axis was calculated for every time sample. The slope of a 
least squares fit to the user-selected points from this plot yielded a value of 
277 nepers/sec or 0.185 nepers/meter, a 27% difference. When all digital 
sample values are considered, the least squares estimate for the corrected 
da ta is 0.29 nepers/meter, a 16% difference. As a final comparison the 
primary event was windowed (150-point window) as well as the event at 
0.008 sec. The amplitude spectrum was calculated for each event using the 
fast Fourier transform and then the difference was divided by the separa-
tion between the two events yielding a value of 0.22 nepers/meter or a 13% 
difference between the actual and estimated value. 

The results given in Figures 3a and 3b are very encouraging, and in 
spite of the large difference (16%) for the case where all values for a cor-
rected transform were used an order of magnitude for the at tenuation is 
nevertheless achievable. For real acoustic signals the zones or valleys in 
Figure 3b, where the spectral ratio falls below 5 nepers with respect to 
the primary signal, the interference due to scattering of acoustic energy 
would tend to fill in these valleys possibly resulting in a lower value for the 
at tenuation estimate when including all values in the estimation. 

Application of the wavelet transform to the problem of determining 
at tenuation offers the potential for automated order-of-magnitude deter-
minations of at tenuation from digitally-recorded acoustic signals. As well, 
the potential to surgically isolate energy in time and frequency can enhance 
its application for sub-bottom attenuation measurements using reflected 
seismic signals. 
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Figure 3. (a) Attenuation curve for synthetic trace with correction 
for geometrical spreading losses and (b) without correction for spreading 
losses. (Note: see text for conversion between nepers and decibels) 
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§4. Experimental Field Program 

Three-dimensional multichannel data were collected at a seabed test 
site at Terrenceville near St. John's, Newfoundland. These data were 
processed and interpreted conventionally [23]. Within the circular 78 m2 

test site the marine sediment was between 4 and 5 m thick overlying an 
undulose and fractured bedrock. The depth of the water at the site was 10 
m. Three distinct programs were carried out at the test site, an acoustic 
program, a physical sampling program and a geotechnical program. 

The acoustic program comprised four acoustic lines that intersected at 
45 degrees at the centre of the test site (Figure 4a). Figure 4b shows a 
simple schematic of the source/receiver geometry which was manipulated 
into the survey grid shown in Figure 4a by scuba divers from the Ocean Sci-
ence Centre at Memorial University of Newfoundland. The 16 hydrophones 
were arranged in four banks of four hydrophones per bank for recording 
purposes and are labelled A through D. The acoustic source was mounted 
on a tripod and was positioned approximately 40 cm directly above each 
hydrophone of bank D (stations 5 through 8). These four stations were the 
shot point locations for each profile of the survey. The hydrophones posi-
tioned beneath the source are referred to as normal incidence hydrophones. 
The horizontal spacing between receiver stations was 1.42 m. The average 
height above the seabed for hydrophones comprising bank A and C was 1.7 
m and for bank D it was 1.3 m. The average source height was the same 
as that for hydrophone banks A and C. 

The sparker source used was developed specifically for the high res-
olution seismic research program at C-CORE [4] to deliver a repeatable, 
broadband acoustic pulse. Up to 1080 joules ( J) of energy was delivered to 
this source using a Huntec seismic energy power supply. Brüel and Kjœr 
(B&K) 8105 omnidirectional hydrophones, with a flat frequency response 
from 0.1 Hz-180 kHz, were used to measure the pressure field. Brüel and 
Kjœr 2635 charge amplifiers, with built-in antialias filters, conditioned the 
signals prior to digitizing. The data were sampled at 10 microseconds with 
antialias filters of 0.2 Hz (low cut) and 30 kHz (high cut). The automated 
acquisition system directed the analogue-to-digital recorder to trigger the 
seismic energy source and then record the acoustic signals. The emitted 
acoustic pulse, recorded on the normal incidence hydrophone, was then 
correlated with a previously recorded reference pulse. If the correlation 
coefficient exceeded a user-defined threshold, set at 0.95 for this survey, 
the trace was accepted and all recorded channels were transferred to the 
acquisition computers memory. The automated procedure continued, and 
traces were summed with their respective counterparts in memory, un-
til each trace in memory consisted of 50 stacked or summed traces. These 
summed traces were then written to the computer's hard drive. The acous-
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Figure 4. (a) Site plan for experimental field program and (b) cross-
section of seabed recording geometry. 
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tic source was then moved to stations 6, 7 and 8 with the above acquisition 
procedure repeated for each source position. After the shot at station 8 the 
entire beam was rotated about its central point in 45 degree increments and 
the recording process described above was repeated. The complete source 
receiver coverage is shown in Figure 4a. The four recorded profiles are la-
belled Beams 1 to 4 and station number 1 is identified for each beam with 
a total of twelve stations per beam. The outer ring of sparker source point 
locations, at a radius of 2.13 m, defines the extent of the subsurface normal 
incidence coverage. The common depth point (CDP) coverage is defined 
by a circle of radius 4.87 m, passing through stations 3 and 10 on beams 1 
through 4. 

The entire procedure described above was carried out for two separate 
power settings, 480 J and 1080 J. Thus two complete surveys were acquired 
for this site, and are referred to as the low and high power surveys. 

The physical-sampling program provided marine soils and bedrock 
cores for analysis and a geotechnical program provided some in situ mea-
surements using a limited series of cone penetrometer tests (CPT's) as well 
as a series of seismic cone penetrometer tests (SCPT's) to acquire velocity 
information. Figure 4a shows the locations of the CPT ' s and boreholes. 

The cone penetrometer was capable of recording shear (S) and com-
pressional (P) wave data. This information was acquired when the cone 
penetrometer was stopped at 1 meter intervals as the cone was pushed into 
the seabed. The compressional wave arrival times were used to calculate 
average and pseudo interval velocity values for the soils. The horizontal 
offset between the three acoustic sources and the cone rods and the off-
set of the geophones from the cone tip were accounted for in all velocity 
calculations. 

Three continuously-sampled boreholes were drilled by rotary techniques, 
using N-size casing. Standard penetration tests were conducted and repre-
sentative but disturbed soil samples were obtained in the overburden, using 
a conventional 51 mm OD split-spoon (SS) sampler. Bedrock was cored in 
NQ size. All borehole depths reported are with respect to the sea floor. 
The exact hole locations were measured with respect to the underwater 
acoustic survey by divers. 

§5. D a t a Analys is 

Acoustic da ta analysis was divided into two phases with the first fo-
cused on determining subsurface stratigraphy by using the multichannel 
acoustic data , the subsurface samples and results from the penetrometer 
tests. The second phase involved analysis of the normal-incidence da ta and 
was concerned with measuring and quantifying changes in the waveform of 
the reflected energy as well as finding some means to visually compare the 
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16 normal-incidence acoustic signals. Use of the wavelet transform was 
investigated for this particular analysis. 

5 .1 . Convent iona l d a t a analysis and process ing 

Core samples extracted from the site confirmed the composition of 
the marine sediments for this area. The sediments consisted of a fine to 
medium-grained gravelly sand with some organic content overlying a sand-
gravel deposit of between 4.2 and 4.6 m thick. Sandwiched between the 
fractured, layered bedrock and the sand-gravel deposit was a thin ( < 1.0 
meter) till. The depth to bedrock ranged between 4.7 and 5.1 m below the 
sea-bot torn. 

The cone penetrometer da ta were of limited value as this tool is de-
signed for use with fine-grained soils. However, some useful da t a included 
the cone tip resistance which provided information on soil stiffness. The 
seismic da ta were used to estimate independently the compressional (P) 
wave velocity of the soil. 

Da ta from the acoustic program were processed using conventional 
common depth point procedures for multichannel seismic analysis [38]. An 
example of a brute stack from the Beam 3 profile (Figure 4a) is given in 
Figure 5. Two principal acoustic horizons are easily observed; the seabed 
event, a positive (black) peak (trace excursions to the right), at about 2.0 
ms and a second event, a trough at about 5.0 ms, both indicated by the 
arrow heads on either side of the plot. The seismic section is displayed with 
two-way vertical travel times versus horizontal position in the profile. There 
are many other weaker events evident but below about 6 ms the events 
become more disjointed and incoherent. Figure 6 shows (a) a brute stack for 
the Beam 3 profile, (b) filtered and gained normal incidence trace (repeated 
four times as a visual aid), (c) stratigraphie indicators from Borehole 1 and 
(d) the geotechnical field report of the samples showing stratigraphy. The 
reflection even at 5.0 ms in Figure 6a correlates with a boundary tha t was 
not inferred from the sampling program possibly due to low sample recovery 
rates (see Figure 6d). A boundary was evident in the geotechnical analyses 
and its existence corroborated from the force needed to push the cone 
penetrometer past this boundary. It is indicated by the triangle symbol 
(Figure 6c). 

5.2 . Wave le t transform analysis of an acoust ic s ignal 

Using a Morlet analyzing wavelet, the wavelet transform was applied to 
the normal incidence da ta from the field program. These da ta are recorded 
at the locations in Figure 4 where the sparker source and hydrophones are 
coincident. Figure 7a shows the normal incidence trace from profile Beam 3, 
station 5 with a geometrical spreading correction applied to the data . The 
geometrical spreading correction was estimated using the average velocity 
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Figure 5. Brute stack for profile Beam 1 (refer Figure 4a). Bandpass 
filtered and gained for display. 

function determined in phase I of the acoustic field program. The modulus 
of the wavelet transform is presented in Figure 7b and the spectral ratio is 
shown in Figure 7c. 

The primary or direct arrival has a direct travel t ime of 0.0003 sec (Fig-
ure 7a). The next significant event is the reflection from the seabed, which 
arrives at 0.0021 sec, followed by another clear event arriving at about the 
0.005 sec mark at 8.4 ln(Hz). There are no distinct events between the 
0.0021 sec event and the event at 0.005 sec but there is high frequency 
energy in the signal which may be related to internal scattering of acous-
tic waves by cobbles and small boulders buried in the seabed. Following 
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F igure 6. (a) Brute stack for profile Beam 3; (b) filtered normal in-
cidence trace for station 5, Beam 3 (trace is replicated four times for 
visual aid); (c) borehole 1 showing identified stratigraphie boundaries; 
(d) soil profile description based on physical samples and cores. 

the 0.005 sec event are several more pronounced excursions from the signal 
and these could be due to scattering from the fractured bedrock or internal 
multiple reflections. 

The modulus of the wavelet transform for the acoustic signal (Fig-
ure 7b) exhibits bright areas (shown as white) where the signal s trength is 
strong (note the direct arrival and the seabed event in Figure 7a). There 
is more detail represented in this display than would be found in a con-
ventional power spectra display. The modulus of the wavelet transform 
associated with the direct pulse exhibits three lighter areas (see Figure 7b, 
between 7.5 and 10 ln(Hz) and 0.00025 and 0.001 sec). Comparison be-
tween the waveform of the direct pulse (Figure 7a) and the modulus of the 
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wavelet transform for this pulse (Figure 7b) demonstrates the strength of 
the transform for signal decomposition. The direct pulse (Figure 7a) has 
an onset t ime of 0.0003 sec. Following this onset is the first positive peak, 
followed immediately by the first trough, and then a second smaller positive 
doublet. In Figure 7b the modulus of the wavelet transform of this pulse 
indicates tha t it consists of three primary frequency groupings. The large 
main energy burst at about 8.5 ln(Hz) and 0.0004 sec associated with the 
trough; the higher frequency elongated region between 8.7 and 9.2 ln(Hz) 
associated with the first peak and the high frequency event at 9.8 ln(Hz) 
associated with the doublet peak at 0.00075 sec. From this examination of 
the direct water-borne pulse it can be seen tha t the wavelet transform can 
resolve very high frequencies in a signal, and that interference pat terns due 
to scattering are resolved well in time and space. 

Recordings of this source in deeper water shows the possible cause of 
the interference in this pulse. In deeper water the bubble pulse separates 
completely from the initial pulse. In the water depths for these examples 
the bubble pulse is on top of the initial pulse making the pulse appear as 
a single burst . Detailed evaluation of the direct pulse allows for a bet ter 
assessment of the subsequent reflected pulses and this assessment is possible 
with the wavelet transform. 

The first echo is a reflection from the seabed, an event at 0.0021 sec. 
The source pulse has now undergone modification by the seabed as result 
of the reflection and subsequent partitioning of the energy at the water-
seabed boundary. The two lower-frequency features are still present, but 
the region tha t was at the higher frequency appears brighter relative to 
the other two lower-frequency events (Figure 7b. Possible explanations 
for these differences are: the lower frequency energy transmits more of 
its energy into the seabed whereas more of the higher-frequency energy is 
reflected, or more of the higher-frequency energy is scattered generating a 
high degree of interference both constructively and destructively. 

At 9.1 ln(Hz) following the seabed event there is a line of bright, almost 
merged regions extending for the length of the display. It is not very likely 
tha t 8100 Hz energy penetrated the seabed to any significant depth so this 
energy probably represents energy backscattered from the sub-seabed. Fre-
quencies below 8100 Hz, for example the event at 0.005 sec, have values of 
about 3600 Hz, which are of similar intensity in frequency content to the 
direct pulse. There is not much energy evident between the seabed and 
0.005 ms events for spectral values less than about 3000 Hz possibly indi-
cating no major boundaries or acoustic impedances in this interval. This 
interpretation is corroborated by the stratigraphie information presented 
in Figure 6. Sediments at the test site included pebbles between 3 and 
6 cm diameter which is approximately one quarter of the wavelength for 
the dominant scattered energy above the 8100 Hz (9 ln(Hz)) line. Larger 
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F i g u r e 7. (a) Unfiltered, normal incident t race, from s ta t ion 5, pro-
file Beam 3 corrected for geometrical spreading losses, (b) Modulus of 
the wavelet t ransform of the t race in (a), (c) Spectral ra t io based on 
modulus of wavelet transform of ungained t race. 
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scatterers were assumed to be present as the cone penetrometer test en-
countered large rocks on several occasions requiring the boreholes to be 
drilled out in order to proceed past these points. During the process of 
drilling through the sediments to obtain a bedrock core a large boulder 
was encountered resulting in the recovery of a core through a portion of 
this boulder. 

The spectral ratio, calculated in the same way as the synthetic trace 
example (Figure 2c), is displayed in Figure 7c. Small spectral ratios are 
shown as dark or black regions and values for large spectral differences with 
respect to the direct or source pulse are displayed in white. 

The average velocity function determined from the multichannel pro-
cessing of the common depth point acoustic da ta in phase I [23] was used to 
convert the scales for the axes of the wavelet transform modulus plots from 
time into depth beneath the seabed and a constant velocity of 1800 m / s 
was used to convert frequency to wavelength. The modulus was replotted 
with the new axes and is shown in Figure 8 as a function of depth below 
the seabed against wavelength values. The scattered energy observed above 
8100 Hz in Figure 7 now corresponds to wavelength values in the 0.10 to 
0.30 m range. The strong event at a depth of 3 m (Figure 8) corresponds 
to reflected energy with a dominant wavelength of 0.4 m. Another event 
at about 4.5 m has a wavelength of 0.7 m. Figure 9 shows the modulus 
of the wavelet transform for four normal incidence examples from Beam 3 
plotted as a function of depth below seabed versus wavelength. The strong 
energy event observed at 3 m depth in Figure 8 is evident on all of the 
panels for this profile indicating a continuous boundary reflector (note the 
5.0 ms event in Figure 5 and 7). 

The preceding discussion highlights some of the potential features of 
the wavelet transform display tha t offers a new diagnostic tool to the high-
resolution geophysicist. The analysis should lend itself well to two- dimen-
sional image analysis procedures for feature extraction and correlation. By 
utilizing an energy threshold condition coupled with a density measure 
for the number of events per meter a classification system for subsurface 
scatterers could be developed. 

5.3 . E s t i m a t i o n of a t tenuat ion 

For the at tenuation analysis a similar procedure was followed as de-
scribed in section 3.2. Figure 10 shows a comparison between the variance 
of the spectral ratio (black dots) and the value for the variance of the cor-
rected da ta using the estimated spherical spreading correction (solid line). 
The points cluster fairly closely about the solid line indicating tha t either 
the spectral ratio or the corrected da ta could be taken for analysis. Atten-
uation estimates were derived from the modulus of the wavelet transform 
of the da ta corrected for geometrical spreading losses. This approach was 
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Figure 8. Modulus of the wavelet transform for the trace in Figure 7a 
plotted against depth and wavelength (units are meters). 

the most successful in the synthetic example. 
Curves, similar to the one in Figure 3a, were produced for all four 

stations (Figure 11) from profile Beam 3, but t ime axes were converted to 
depth axes using the average velocity function. Peaks near the seabed and 
at or near the 3.0 m depth were selected for each station. This procedure 
was repeated for profile Beam 1 and the values for the at tenuat ion in the 
first 3 m are given in Table I. 

The mean value is 4.6 nepers /m (40 d B / m ) with a s tandard deviation 
of 1.9 nepers /m (17 d B / m ) . Data for coarse gravelly soils is sparse but 
values for shallow (3 m) depth are similar [37]. Lee and Malloy [19] report 
values for compressional wave at tenuation tha t range from a low of 5.3 
d B / m for metalliferous sediments to a high of 80 d B / m for a silty clay. 
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Figure 9. Modulus of the wavelet transform, for normal incidence 
traces along profile Beam 3 at stations 5 and 6 (a and b respectively) 
plotted as in Figure 8. 
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Figure 9. (contd.) Modulus of the wavelet transform, for normal 
incidence traces along profile Beam 3 at stations 7 and 8 (c and d re-
spectively) plotted as in Figure 8. 
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Figure 10. Attenuation curves for station 5, Beam 3 (see text for 
conversion between nepers and decibels). 

Table I 
Wavelet Transform Attenuation Values 

1 Station 5 
| Station 6 
| Station 7 
| Station 8 

Beam 1 (nepers/m) 
4.4 
3.5 
3.5 
5.6 

Beam 3 (nepers/m) | 
ÉÛ f 
2.9 
2.8 
6^ [ 

§6. Conclus ion 

Two analyses based upon the wavelet transform have been presented. 
The qualitative analysis discusses the features observed in the modulus 
of the wavelet transform in relation to the acoustic signal and the sub-
seabed. It represents a starting point from which feature extraction and a 
quantitative analysis can begin with the goal of developing classifiers for 
the scatterers. It should be noted tha t only the Morlet analyzing wavelet 
has been utilized in this study. Examination of alternate wavelets tha t may 
be more diagnostic for classification of scattering should be pursued. The 
next stage of the study of wavelets for this application will employ other 
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Figure 11 . Attenuation curves for profile Beam 3, stations 5 to 8 (a-d 
respectively), plotted against depth. 

analyzing wavelets in the evaluation of a finite difference model of wavefield 
scattering. Investigation into interference, tuning and detuning of acoustic 
energy should provide a model for assessing complex scattering phenomena 
which may answer questions concerning the size and nature of scatterers 
and their effect upon acoustic wavelengths of the same order. 

The at tenuat ion analyses suffers from the short da ta record length at 
the TerrenceviUe test site, and limits the full potential of the analysis. 
Digital sub-bottom profiler records with longer recording times of 20 ms 
and greater were recently acquired using the same sparker source as used 
at the field test site in TerrenceviUe. These da ta were collected as par t of 
a U.S. navy seabed imaging program off Panama City, Florida. Extensive 
tests were carried out at this site and all da ta will be made available to 
the participants. The wavelet transform attenuation process will be refined 
and applied in an analysis of these data. 

Based upon the review of the current l i terature on acoustic-geotechnical 
correlations for marine soils, there are several applications tha t should ben-
efit from the wavelet transform analysis. Using C-CORE's 200-gravity 
centrifuge facility, very high frequency acoustic da ta will be collected in a 
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study of sediment loading and transport . The attenuation of high frequency 
waves (> 100 kHz) propagated through centrifuged sediment will be ana-
lyzed using s tandard techniques tha t rely on windowed Fourier transforms 
or bandpassed signals which can then be compared to results obtained using 
wavelet analysis. 

Some authors have questioned the validity of estimating at tenuation 
using the method of spectral ratios. Sams and Goldberg [28] point out tha t 
the effect of windowing compressional waves to isolate them from slower 
waves is included in the calculation of the spectral ratio. They conclude 
tha t for borehole studies the spectral ratio technique will not give good 
results. This problem presents a good test for the application of the wavelet 
transform and the results should prove superior since the window functions 
can be avoided. 
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Including Multi-Scale Information in the Characterization of 
Hydraulic Conductivity Distributions 

Kevin E. Brewer and Stephen W. Wheatcraft 

Abstract . Transport in heterogeneous porous media is highly dependent on the 
spatial variability of aquifer properties, particularly hydraulic conductivity. It is 
impractical, however, when modeling a real situation, to obtain aquifer properties 
at the scale of each grid block. Wavelet transforms are investigated as a tool to 
assess the movement of information between scales, and to incorporate the scale 
and location of hydraulic conductivity test data when interpolating to a fine grid. 
Wavelet transforms are particularly useful as they include parameters that define 
a spatial localization center that can be positioned in space, and changed in size. 
As a result, one can incorporate multiple measured hydraulic conductivity values 
in the wavelet transformation at a resolution matched to each measurement scale. 

A multi-scale reconstruction method is developed here which uses forward 
and inverse wavelet transforms in conjunction with a pseudo-fractal distribution 
to fill in missing information around sparse data. This wavelet reconstruction 
method is compared to several more traditional interpolation schemes with respect 
to accuracy of solute transport prediction. The wavelet reconstruction algorithm 
is then used to examine the issue of optimum sample size and density for stationary 
and fractal random fields. 

§1. Introduction 

Various authors ([14] and [19]) have shown that the spatial variability 
of hydraulic conductivity, K, produces most of the transport dispersion ob-
served at the field scale. If we could accurately reproduce the K-distribution 
at a fine scale in a numerical model, there would be no need for stochas-
tic theories. However, it is impractical to collect fine scale K values for 
each grid block in a high resolution model. Moreover, even if we had the 
information, the model would likely contain enough grid blocks (and there-
fore enough unknowns) that it would take excessive computation time to 
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be practical for routine use. Both of these factors (lack of information 
and large number of unknowns) lead to development of stochastic theories, 
upscaling methods, and concepts of effective parameters at coarser scales. 

Our work is based on the premise tha t it would be useful to have a 
rigorous method of creating a K-distribution at a particular scale, using K 
information from larger and (perhaps) smaller scales. As a first step, we 
have restricted ourselves to the problem of reproducing (or reconstructing) 
a K-distribution at "the finest scale." By this, we mean tha t given a limited 
number of K test values from the smallest scale, and from several larger 
scales, how do we reconstruct a complete K-distribution (or equivalently, a 
complete K-grid) at the finest scale. 

By test values, we mean the value of K obtained from an aquifer test , 
permeameter test, etc. It is important to realize tha t each K value has 
an associated scale determined by the volume of the porous media used 
to obtain the K value. For porous media properties, different K sampling 
techniques inherently average different sample volumes, which can result 
in different sample scales and values at the same physical location. We 
have focused our research on how to best use this scale information from K 
samples to enhance the characterization of porous media. Our results, with 
appropriate modification, could also be applied to any other scale affected 
property. 

Summarizing, we know tha t field (coarse) scale contaminant disper-
sion is mostly caused by the fine scale variability of the K distribution. 
Ultimately, however, we cannot adequately sample at the fine scale to ac-
count for this variability, nor can we justify the excessive computation t ime 
for solving practical fine grid problems. Therefore, we have two possible 
options: (1) develop a method to adequately reconstruct the fine scale vari-
ability from coarser, multi-scale samples, and/or (2), develop a method to 
properly coarsen the fine scale variability to more accessible scales. In bo th 
cases, the central issue is how K variability moves, or transforms, in bo th 
directions between scales. 

In this paper we will develop a method tha t uses the wavelet transform 
to include multi-scale sample information in the characterization of K-
distributions. Figure 1 poses such a multi-scale reconstruction question 
for a hypothetical situation of only two scales of measurement. Although 
this figure shows the movement of coarse information to a fine scale, the 
problem of coarsening fine scale information is similar. These problems are 
somewhat analogous to, in electrical engineering terminology, a da ta fusion 
problem with incomplete information. 

For our contaminant t ransport problems, the measure of reconstruction 
accuracy of the K-grid at the finest scale is best determined by comparison 
of the results of flow and transport models, since it is the variability of 
the finest scale K values tha t primarily controls t ransport . Although the 



Characterization of Hydraulic Conductivity Distributions 215 

Figure 1. Schematic showing the problem of characterizing heteroge-
neous porous media on a fine grid utilizing information from different 
scales. 

accuracy of the individual reconstructed fine scale K-grid values at each 
grid block is of some importance, it is of secondary interest. Better re-
construction techniques will result in higher accuracy of the reconstructed 
breakthrough curves compared to the t rue (or known) breakthrough curves. 
Reconstruction techniques should also honor the multi-scale sample values 
exactly. Therefore, our primary concern in determining the success of a 
reconstruction is not how individual finest scale element or node interpo-
lated values match known values, but how accurately simulated t ranspor t 
through each reconstructed media compares to the t rue t ransport results. 

Our (or any) reconstruction method can only be said to be success-
ful if it reconstructs actual field distributions. However, actual field da ta is 
rarely (if ever) available in enough detail to properly test our reconstruction 
method. Even in cases where high resolution field studies have been col-
lected [5], there are no field scale tracer tests associated with such da ta sets. 
Therefore, we have used various synthetic fine grid da ta sets as "truth," 
with comparisons made primarily with simulated t ransport results. 

We will first show how wavelet transforms can be used for multi-scale 
reconstruction by exploiting the inherent localization and frequency resolu-
tion of the wavelet transform. We have developed a wavelet reconstruction 
method in which sample location, scale, and values are all used to recon-
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struct a fine scale grid. For this initial work, we have assumed tha t there 
is no noise in our sample data; tha t is, our sample values perfectly rep-
resent the unknown information for the given sample location and scale. 
Inclusion of measurement uncertainty is delegated to future research, and 
might possibly follow along the lines of [2]. The wavelet reconstruction 
technique is compared with other traditional interpolation techniques by 
using a 256 x 256 node synthetically generated two-dimensional porous 
media and solving the flow and transport equations. 

Additionally, we have used a modification of the wavelet reconstruc-
tion technique, dubbed wavelet extrapolation, to investigate what, if any, 
important scales of information exist in various synthetic representations 
of porous media K distributions. This extrapolation method creates es-
t imates at each location for any scale finer than the given, completely 
sampled, scale. Here, we a t tempt to understand the relative importance of 
each scale to identify the inherently significant coarse scale representations 
of the fine scale variability. 

§2. Wavelet Based Interpolat ion 

2 .1 . D i scre te transform introduct ion 

To understand our wavelet based reconstruction and extrapolation 
techniques, we must first familiarize ourselves with some mathematical 
details of wavelet transforms. The wavelet transformation is similar to 
the Fourier transform in tha t a da ta set is transformed into the frequency 
(or scale) domain. The Fourier transform (via spectral analysis) has been 
used extensively to study the characterization of porous media [7], but a 
limitation of the Fourier analysis technique is the assumption tha t the in-
formation at each scale is homogeneous and can be essentially represented 
by a single "power" value. What makes the wavelet transform useful as 
a tool for multi-scale reconstruction of porous media is tha t this assump-
tion is not necessary, resulting in the preservation of positional information 
(i.e. the heterogeneity) at each scale. Daubechies in [6] best expresses the 
wavelet transform as "a tool tha t cuts up da ta or functions or operators 
into different frequency components, and then studies each component with 
a resolution matched to its scale." Thus, with the wavelet transform, one 
can analyze da ta sets with heterogeneous information at each scale, which 
is commonly the case for porous media distributions. 

The forward discrete wavelet transform consists of a convolution of a 
basis function (sometimes confusingly called the wavelet function) with a 
da ta set. Unlike the Fourier transform, which uses only sines and cosines 
as basis functions, the wavelet transform can use a variety of basis func-
tions. Basis functions are discussed in detail in [6], among others. Here we 
discuss the important basis function characteristics tha t will concern our 
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1 (a) 

π U 
Figure 2. Graphs of the (a) (left) Haar basis function, (b) (middle) 
Daubechies4, and (c) (right) Daubechiesl2 basis functions. 

reconstruction and extrapolation techniques. 
Every basis function has localization (or positional) and frequency com-

ponents which control the scale-to-scale relationships, and the in-scale posi-
tional relationships. By scale-to-scale relationships we mean the amount of 
coarsening (or conversely, the fining) from scale-to-scale. The basis function 
components are commonly set is such a way tha t the wavelet coefficients 
on each scale are related to the next coarser or finer scale by a factor of 2, 
and tha t the transform convolution begins with every odd-indexed element 
on each scale. 

Tha t is, if for a one-dimensional da ta set whose finest scale is 128 
elements of 1 length unit, the next coarser scale will consist of 64 elements 
representing 2 original-scale length units. Similarly, the next coarser scale 
will consist of 32 elements representing 4 length units, and so on, until the 
coarsest possible scale, which will consist of only one element representing 
the entire 128 original-scale length. For our work, we have used the common 
Haar and Daubechies family basis functions [6] which have a scale-to-scale 
factor of 2. Each of these basis functions are also orthogonal, and so can 
be conveniently used on two-dimensional da ta sets by first performing each 
transform on the row data , then the column data. 

Figure 2 shows graphs of the basis functions themselves. The Haar 
basis function is highly discontinuous, and as such, is often used to analyze 
discontinuous da ta sets. The Daubechies family basis functions are less 
discontinuous, with the higher order functions becoming more smooth. The 
basis function coefficients we used in the discrete transform equations are 
listed in Table I. 

The discrete wavelet transform is a transformation of information from 
a fine scale to a coarser scale by extracting information tha t describes the 



218 K. Brewer and S. Wheatcrafi 

Table I 
Basis function coefficients for the Haar and Daubechies4 functions. 

Haar 
ci 0.70710678 
c2 0.70710678 

Daubechies4 
d 0.48296291 
c2 0.83651630 
c3 0.22414387 
c4 -0.12940952 

fine scale variability (the detail coefficients) and the coarser scale smooth-
ness (the smooth coefficients) according to: 

{sm} = [H]{sm+1}; {dm} = [G]{sm+l} (1) 

where s represent smooth coefficients, d represent detail coefficients, m is 
the level, and H and G are the convolution matrices based on the wavelet 
basis function. Higher values of m signify finer scales of information. The 
complete wavelet transform is a process that recursively applies Equa-
tion (1) from the finest to the coarsest level (scale). This describes a scale 
by scale extraction of the variability information at each scale. The smooth 
coefficients generated at each scale are used for the extraction in the next 
coarser scale. 

The matrices H and G are created from the coefficients of the basis 
functions, and represent the convolution of the basis function with the data. 
The following is the general makeup for the H and G matrices for a four 
coefficient basis function that has a scale-to-scale relationship of 2 (basis 
functions that have more or less coefficients would be similar): 

G = 

H = 

c4 

0 
0 

C\ C2 C3 C4 0 0 0 0 

0 0 Ci C2 C3 C4 0 0 

0 0 0 0 ci c2 c3 c4 

c3 c4 0 0 0 0 0 0 

- c 3 c2 - c i 0 0 0 0 
0 c4 —c3 c2 — c\ 0 0 
0 0 0 c4 —c3 c2 —ci 

C2 -d 0 0 0 0 0 0 

0 0 
0 0 
0 0 

c\ c2 

(2) 

c4 - c 3 

(3) 

As a forward wavelet transform example, Figure 3a shows a simple 4 
element one-dimensional data set {6,4,5,3} and the first convolution appli-
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cation using the simple Haar basis function resulting in two m = 2 level 
detail coefficients and two m = 2 level smooth coefficients. Continuing in 
Figure 3b, the transform convolution is applied to the two m = 2 level 
smooth coefficients resulting in a single ra = 1 level smooth coefficient and 
detail coefficient. Note tha t the m = 2 level detail coefficients have not 
been altered. 

Alternatively, we can represent Figure 3a following the form of Equa-
tion (1) as: 

(4) 
Γ i 

V2 0 

1 
x/2 
0 

0 
1 

V2 

0 
1 

V2 . 
< 

r 6 
4 
5 
3 

for the smooth coefficient upscaling, and: 

2 ^ -

2 — 

1 
V2 
0 

1 
"V2 
0 1 1 

[ 6 
4 
5 
3 

(5) 

for the detail coefficient calculation. Continuing, we can represent the 
final calculation in Figure 3b in matr ix notation for the smooth coefficient 
upscaling, and the detail coefficient calculation as, respectively: 

H* }̂ 

1-{V5 *}{"£ 

(6) 

(7) 

Traditionally, only the detail coefficients at every scale, and the coarsest 
level smooth coefficients, are considered a complete set of wavelet coeffi-
cients. In our example of Figure 3, the complete set is {9, 1, 1.414, 1.414 
}. In our work however, we are not so much interested with just the tra-
ditional wavelet coefficients, but in the entire suite of smooth and detail 
coefficients at each scale (or level) since we will show in the next section 
tha t our multi-scale samples can be related to smooth coefficients at various 
scales and locations. 

The inverse discrete wavelet transform is similarly implemented via 
a recursive recombination of the smooth and detail information from the 
coarsest to finest level (scale): 

{sm+1} = [H]'{sm} + [G]'{dm} (8) 

where H' and G' indicate the transpose of the H and G matrices. 
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Figure 3. Discrete wavelet transform using the Haar basis function on 
an example data set {6,4,5,3}: (a) the transform of the original data, (b) 
the completed transform resulting in a single m = 1 smooth coefficient, 
and a single m = 1 detail coefficient, and two m = 2 detail coefficients. 

Using the generated wavelet coefficients in our previous example of 
Figure 3, the inverse transform using the Haar basis function initially pro-
ceeds to generate the m = 2 smooth coefficients from the m = 1 smooth 
and detail coefficients, as shown in Figure 4a. Continuing, the finest scale 
(third-level) coefficients are generated using the m = 2 level information, 
as shown in Figure 4b. 

In matr ix notation, the Figure 4a transform is: 

m-itH-%} (9) 
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Figure 4. Discrete inverse wavelet transform using the Haar basis 
function on the wavelet coefficients from Figure 3: (a) the inverse trans-
form from the first-level, (b) the completed inverse transform resulting 
in the original fine scale data values. 

and the Figure 4b transform is: 

r 6 1 
4 
5 
3 

4 r 0 
0 ± 

0 
0 4 r 

1 

V2 J 

4 r 0 

0 

1 

0 
0 —fe 

1 

s/2 

2 — • (io) 

Note tha t the resulting finest level smooth information is exactly the 
same as the original da ta set. Overall, both the forward and inverse wavelet 
transformations, when applied over many scales (levels), can be pictorially 
represented as in Figure 5. 
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Level 
(m) 

Figure 5. Exploded view of an one-dimensional wavelet transform. 
Reprinted with permission from the SI AM Review, 31(4), pp. 614-627. 
Copyright 1989 by the Society for Industrial and Applied Mathematics, 
Philadelphia, Pennsylvania. All rights reserved. 

2.2 . Mult i - sca le reconstruct ion 

The objective of multi-scale reconstruction is to completely determine 
all finest scale values given a limited number of sample values from the 
finest and several coarser scales, and possibly other necessary information. 
This section introduces a multi-scale reconstruction algorithm based on the 
wavelet transform. 

As previously shown (see Figure 3 and Figure 4), the wavelet transform 
can be represented by a linked pyramid (or lattice) of smooth and detail 
coefficients. Because hydraulic conductivity (K) samples contain scale in-
formation and are an inherent average over some area or volume, they are 
multi-scale samples and should be amenable to this reconstruction algo-
ri thm. Therefore, our K samples at different scales and locations, for input 
to our reconstruction algorithm, are equivalent to the smooth coefficients 
on the lattice, both representing an average of finer scale information. 

To generate the desired finest scale values from coarser scale smooth 
coefficients, the lattice relationships necessitate tha t all other smooth and 
detail coefficients, if unknown, also be generated. Tha t is, to generate 
all the unknown finest scale values via application of the discrete inverse 
wavelet transform, all the next coarsest scale smooth and detail coefficients 
must be known or calculated. Since the discrete forward and inverse wavelet 
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transforms create relationships between adjacent levels (scales) of smooth 
and detail coefficients, these coarser smooth coefficients can be calculated 
from even coarser scale (via interpolation using the inverse transform) and 
from the finer scale (via upscaling using the forward transform) coefficients. 
The same will be t rue for all unknown coefficients at any coarser scale, 
except the coarsest possible scale, where only finer scale information can 
be used. The problem is then of solving for all the unknown smooth and 
detail coefficients on all levels with a limited number of known coefficients. 

There are different potential solution techniques to solve this wavelet 
transform based multi-scale reconstruction problem. Since our known sam-
ple da ta is sparse (i.e., a large number of unknown smooth coefficients on 
a number of different scales) and we are limiting our application to two-
dimensions, we have elected to use a simple cyclic iteration and averaging 
technique which is in some ways similar to multigrid cycling. Other possible 
techniques have been proposed [3], and may be utilized in future work. 

Cyclic iteration essentially consists of starting at the coarsest scale, 
proceeds to the finest scale, and then cycles to the coarsest and back down 
to the finest until convergence is reached for each finest scale value. At 
each scale, each unknown coefficient is calculated. For all, but the finest 
and coarsest scales of interest, this means tha t the value interpolated from 
coarser information and the value upscaled from finer information is weight 
averaged to the final estimate. In our work, we used equal weights for the 
interpolated and upscaled values. The cyclic iteration (coarsest-to-finest-
to-coarsest, etc.) is necessary to "move" the limited information around 
the lattice, as appropriate. Algorithm convergence is determined when 
the mean, maximum, and variance of change in fine scale values between 
iterations is below predetermined criteria, typically equal to two or three 
orders of magnitude less than the precision of the sample values. 

The scales of interest, i.e. the scales inclusive of the finest and coarsest 
in our cyclic iterations, are bounded on the fine-end and the coarsest-end 
by the scales in the sample set. Our implementation requires complete 
test value coverage at the coarsest scale to ensure each fine scale generated 
value is supported by at least one known test value, and to bring closure 
to the algorithm. It is important to note tha t each smooth coefficient (i.e., 
sample value) contains all detail and coarse information from all higher 
(coarser) scales. 

In general, the requirement for complete test value coverage at the 
coarsest scale is not necessary. For site characterization problems tha t 
have a statistically significant number of test values on any one particular 
scale, a statistical relationship could be derived to assign stochastic sample 
values to the remaining unknown sample locations at tha t level. Tha t level 
would become fully populated with real and stochastic values, and any 
coarser scale test values would not be necessary. 
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Essentially all detail coefficient values at any scale cannot typically 
be calculated, since enough spatial coverage of known smooth coefficients 
to directly calculate detail coefficients will rarely occur. Therefore, based 
on a pseudo-fractal relationship, we assign stochastic values for all detail 
coefficients assuming an underlying infinite correlation at the finest scale. 
The choice of a pseudo-fractal relationship for detail coefficients is arbitrary, 
but reasonable, based on recent work such as [17] and [20]. It is possible to 
use log-normally-distributed stationary random fields or a variety of other 
statistical distributions. There is no inherent algorithmic limitation for use 
of any other desired detail coefficient relationship. 

Wornell and Oppenheim in [21] showed the fractal relationship between 
expected values of the detail coefficients as: 

E[(dmf] = σ 2 2 - ^ (11) 

where σ2 is a positive constant tha t depends on the choice of the wavelet 
basis function, 7 is related to the desired fractal dimension, and m is the 
scale. Adopting Equation (11) for the assignment of specific detail coeffi-
cients, we have for our two-dimensional algorithm: 

dm = / ( / 2 - i 6 ^ - 1 ) (12) 

b = 2(3-D) + l (13) 
where / is a fitting parameter, D is the desired fractal dimension (3.0 > 
D > 2.0), and g is a Gaussian random number. We found / = 100 to be the 
best fitting parameter value based on visual analysis of the reconstructed 
da ta sets. The random component in our work was generated via the 
RANI and GASDEV random number generators given in [13]. The choice 
of fractal dimension is discussed below. 

The reconstruction algorithm begins with the assignment of the sample 
values to smooth coefficients at the appropriate location and level (based on 
the location and scale of the sample). Since the wavelet transform smooth 
coefficients are not normalized, the sample values are adjusted prior to their 
assignment. For example, given a completely smooth da ta set {1,1,1,1}, 
the m = 2 level smooth coefficients would not be 1 as expected from a 
statistical mean, but would be 1.414 (for the Haar basis). In this case, a 
m = 2 level sample value of 1 would be adjusted to 1.414 before assignment 
to the smooth coefficient. This adjustment assumes tha t the sample values 
are representative of a statistical mean with the amount of adjustment 
based on the basis function used. Fut her research is needed to determine 
the proper adjustment for actual hydraulic conductivity test values. 

After the assignment of the sample values, the detail coefficients are 
assigned during the initial downward (coarsest to finest scale) leg. After 
calculating the finest scale estimates, the cyclic iterations begin, with con-
vergence calculations after each finest scale estimation. The algorithm ends 
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when convergence is reached. Pseudo-code for our wavelet reconstruction 
algorithm is given in Table II. 

Since the calculation for each coefficient is independent on each level, 
the algorithm is inherently parallelizable. Using either distributed and /o r 
parallel computing capabilities, a significant decrease in the execution t ime 
for large problems would be experienced. Although not necessary for our 
work, this capability may be highly desirable for large problems (especially 
three-dimensional da ta sets). 

Wavelet reconstruction can also accommodate use of multiple detail 
coefficient relationships and /or wavelet basis functions. This allows incor-
poration of soft-information, such as known geologic relationships of values 
which are different between scales. For example, large scale information 
might be best modeled by a smoothing basis function, whereas the finer 
scales could be bet ter modeled by a discontinuous (erratic) basis function. 
This scenario could represent an interbedded sand and gravel river deposit 
influenced by an overall hydraulic downstream particle sorting. In our ini-
tial work, however, we have not implemented these extensions and only use 
one wavelet basis function and one stochastic detail coefficient distribution 
for all scales. 

2.3 . Mult i - sca le ex trapo la t ion 

We have also developed a pure stochastic extrapolation algorithm based 
on the wavelet transform to study important scales of interest. This ex-
trapolation method could be combined with the multi-scale reconstruction 
algorithm for situations where the desired grid level is smaller than the at-
tainable sample values, or when it is desirable to maintain the similarity of 
the variable distribution upon closer inspection of a subset area of interest. 

The algorithm requires complete sample coverage at only one scale, 
and outputs all values at the desired finest scale. Detail coefficients are 
stochastically generated, as discussed above, for all scales down to the 
finest scale desired. Then, level-by-level, the smooth and detail coefficients 
are used to interpolate the finer scale smooth coefficients via the inverse 
wavelet transform. The algorithm stops when all the finest desired level 
smooth values are generated. Pseudo-code for the extrapolation algorithm 
is given in Table III . 

§3. Tradit ional Interpolat ion M e t h o d s 

The wavelet reconstruction technique was compared to three tradi-
tional interpolation methods: simple assignment, kriging, and conditional 
simulation. These methods are briefly reviewed below. Kriging and con-
ditional simulation are classical geostatistical methods tha t have been in 
use in mining engineering and geological fields for over a decade. Journel 
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Table II 
Pseudo-code of the wavelet multi-scale reconstruction algorithm. 

C SETUP 
READ D — FRACTAL DIMENSION 
BETA = 2*(3-D)+l 
C READ IN SAMPLE INFORMATION 
FOR ALL SAMPLES 
READ SAMPLE => LOCATION, VALUE, LEVEL 
SMOOTH_COEF(LOCATION, LEVEL) = ADJUST_VALUE(SAMPLE VALUE) 
KNOWN_FLAG(LOCATION, LEVEL) = 1 

END FOR 
C ASSIGN DETAIL COEFFICIENTS 
FOR EVERY LEVEL 
FOR EVERY LOCATION 

DETAIL_COEF(LOCATION, LEVEL) = GAUSS*2**(-0.5*(LEVEL-1)*BETA) 
END FOR 

END FOR 
C PERFORM INITIAL DOWN SWEEP 
FOR LEVEL = MINLEVEL+1 TO MAXLEVEL-1 
FOR EVERY LOCATION 

IF KNOWN_FLAG(LOCATION, LEVEL) IS NOT 1 THEN 
XWT = WAVELET_TRANSFORM(LEVEL, LOCATION, FORWARD_FLAG) 
XIWT = WAVELET_TRANSFORM(LEVEL, LOCATION, INVERSE_FLAG) 
SMOOTH_COEF(LOCATION, LEVEL) = AVERAGE(XWT, XIWT) 

END IF 
END FOR 

END FOR 
C CALCULATE THE FINEST SCALE (NO FORWARD TRANSFORM POSSIBLE) 
LEVEL = MAXLEVEL 
FOR EVERY LOCATION 
IF KNOWN_FLAG(LOCATION, LEVEL) IS NOT 1 THEN 

XIWT = WAVELET_TRANSFORM(LEVEL, LOCATION, INVERSE_FLAG) 
SMOOTH_COEF(LOCATION, LEVEL) = XIWT 

END IF 
END FOR 
C GO UP AND DOWN UNTIL CONVERGENCE IS ACHIEVED 
CONVERGENCE_FLAG IS FALSE 
DO UNTIL CONVERGENCE_FLAG IS TRUE 
C GO UP 
FOR LEVEL = MAXLEVEL-1 TO MINLEVEL+1 BY -1 
FOR EVERY LOCATION 

IF KNOWN_FLAG(LOCATION, LEVEL) IS NOT 1 THEN 
XWT = WAVELET_TRANSFORM(LEVEL, LOCATION, FORWARD_FLAG) 
XIWT = WAVELET_TRANSFORM(LEVEL, LOCATION, INVERSE_FLAG) 
SMOOTH_COEF(LOCATION, LEVEL) = AVERAGE(XWT, XIWT) 

END IF 
END FOR 

END FOR 
C GO DOWN 
FOR LEVEL = MINLEVEL+2 TO MAXLEVEL-1 
FOR EVERY LOCATION 

IF KNOWN_FLAG(LOCATION, LEVEL) IS NOT 1 THEN 
XWT = WAVELET_TRANSFORM(LEVEL, LOCATION, FORWARD_FLAG) 
XIWT = WAVELET_TRANSFORM(LEVEL, LOCATION, INVERSE_FLAG) 
SMOOTH_COEF(LOCATION, LEVEL) = AVERAGE(XWT, XIWT) 

END IF 
END FOR 

END FOR 
C DO FINEST LEVEL 
LEVEL = MAXLEVEL 
FOR EVERY LOCATION 
IF KNOWN_FLAG(LOCATION, LEVEL) IS NOT 1 THEN 

XIWT = WAVELET_TRANSFORM(LEVEL, LOCATION, INVERSE_FLAG) 
SMOOTH_COEF(LOCATION, LEVEL) = XIWT 
UPDATE MEAN_CHANGE AND MAX_CHANGE 

END IF 
END FOR 
IF MEAN_CHANGE < DESIRED_MEAN_CONVERGENCE _AND_ 

MAX_CHANGE < DESIRED_MAX_CONVERGENCE THEN 
CONVERGENCE_FLAG IS TRUE 

END IF 
END DO 
C WRITE THE FINEST LEVEL VALUES 
FOR EVERY LOCATION 
WRITE SMOOTH_COEF(LOCATION, MAXLEVEL) 

END FOR 
STOP END 

226 
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Table III 
Pseudo-code of the wavelet multi-scale extrapolation algorithm. 

C SETUP 
READ D — FRACTAL DIMENSION 
BETA = 2*(3-D)+l 
READ MAXLEVEL 
READ OTHER VARIABLES 
C READ IN SAMPLE INFORMATION ~ COMPLETE ON ONE SCALE 
FOR ALL SAMPLES 
READ SAMPLE => LOCATION, VALUE, LEVEL 
SMOOTH_COEF(LOCATION, LEVEL) = SAMPLE VALUE 
MINLEVEL = LEVEL 

END FOR 
C ASSIGN DETAIL COEFFICIENTS WHEN SWEEPING DOWN 
FOR LEVEL = MINLEVEL+1 TO MAXLEVEL 
FOR EVERY LOCATION 

DETAIL_COEF(LOCATION, LEVEL) = GAUSS*2**(-0.5*(LEVEL-1)*BETA) 
XIWT = WAVELET_TRANSFORM(LEVEL, LOCATION, INVERSE_FLAG) 
SMOOTH_COEF(LOCATION, LEVEL) = AVERAGE(XWT, XIWT) 

END FOR 
END FOR 
C WRITE THE FINEST LEVEL VALUES 
FOR EVERY LOCATION 
WRITE SMOOTH_COEF(LOCATION, MAXLEVEL) 

END FOR 
STOP END 

and Huijbregts [9] and Hohn [8] detail the development and mathematical 
justification behind these and other geostatistical methods. 

3 .1 . S imple ass ignment 

The first and simplest of the traditional methods is actually an assign-
ment method, rather than an interpolation one, and consists of assigning a 
sample value to each fine scale grid location based on the finest scale sample 
encompassing tha t fine scale grid location. For example, if an unknown fine 
scale grid location was contained in the sampling area of a medium scale 
sample and a coarse scale sample, the medium scale sample value would be 
assigned to this fine grid location. In other words, the medium scale sample 
is the finest scale sample encompassing the unknown fine grid location. In 
another example, if a different unknown fine scale grid location is only en-
compassed by a coarse scale sample, tha t coarse scale sample value would 
be assigned to the fine scale target location. Assignments are determined 
in a like manner for all unknown fine grid locations. We have included the 
simple assignment method in our analysis primarily because it is expected 
to represent the worst case in our reconstruction accuracy comparison. 
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3.2. Kriging 

Kriging is a best linear unbiased estimator (BLUE) and uses the spatial 
covariance of the samples to determine the best estimate at a particular 
point. All samples are assumed to have point support and thus to be from 
only one scale. As developed in [9], the kriging system consists of solving 
for sample weights, λ: 

[W}{\} = {B} (14) 

where W is the sample-point to sample-point covariance matrix and B is 
the sample-point to target-point covariance vector. The weights are then 
used on the sample values to calculate an estimate at the target point. This 
procedure is applied at each unknown grid point. The kriging algorithm in 
[1] was used with a slight modification to incorporate the simple assignment 
technique, described above, for those fine grid locations which were beyond 
the algorithm range. 

3.3. Conditional simulation 

Conditional simulation is a method by which a correlated stochastic 
random field on a fine scale, known as a simulation field, is conditioned to 
limited sample information. The result is a correlated stochastic realiza-
tion that exactly matches sample values at the point these samples occur. 
The unconditioned correlated random field is generated from the second 
order statistics (correlation and mean) of the samples. The conditioning 
is performed with a kriging-like algorithm. Like kriging, sample values are 
expected to be from a single scale (the scale of the unconditioned field). 

Proper generation of the unconditioned random field is very important 
as an incorrect field will result in poor conditional simulation results. Turn-
ing bands methods are typically used to generate the correlated random 
fields, and as pointed out by [16], using an inadequate number of bands 
can result in striations or banding in the simulation field. For our work we 
have incorporated the turning bands generator in [16] with a conditioning 
algorithm based in part on the algorithm given in [12]. 

§4. Evaluation of Methods 

4.1. Reconstruction comparison 

The applicability and potential accuracy of the wavelet reconstruction 
technique was investigated by comparing various reconstruction techniques 
using a single generated sample set from a known synthetic two-dimensional 
hydraulic conductivity distribution. A synthetic fine scale grid was used to 
know, with certainty, the actual fine scale values and the resulting "true" 
particle breakthrough curve. An equitable comparison could therefore be 
made for each reconstruction technique. 
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Figure 6. Sampling schematic. 

The known fine scale grid was a two-dimensional set (128 x 128) of 
K values ranging four orders of magnitude. The ln(üf) values were gener-
ated as a pseudo-fractal from a spectral fractional Brownian motion (fBm) 
algorithm [18]. The input fractal dimension of 2.4 was representative of 
geologic media scaling relationships ([10] and [17]). 

The known grid was sampled at three different scales, as schematically 
shown in Figure 6. There were four sample values (representing complete 
area coverage) at the largest scale, nine sample values at a medium scale, 
and 227 fine scale samples values grouped in three primary areas. All the 
sample locations were chosen to mimic a typical site characterization sam-
pling plan using "best professional judgement," without regard to whether 
it would favor one method over another. 

Obviously, "best professional judgement" is a limited method for sam-
ple selection as it is based entirely on so called best guesses. A more 
rigorous approach would have been to evaluate multiple sample sets in a 
type of Monte Carlo process, in an effort to obtain the best sample suite 
for each method. These issues will be discussed in future work. 

In general, the sample locating philosophy was: (1) to spread a limited 
number of samples over the entire study area in an a t tempt to understand 
the overall variability on each sampled scale, and (2), to group some of the 
samples on each scale in areas of high variability. The nine medium scale 
samples were therefore located throughout the domain, with a subset of 
four samples grouped near the domain center. The three areas of dense 
fine scale samples were located in areas of interesting medium and large 
scale sample value variability. These fine scale sample groups were oriented 
in line with the flow direction to maximize information tha t directly affects 
dispersion. 
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Figure 7. Semivariograms for the entire, known pseudo-fractal syn-
thetic fine scale grid and the resulting sample set. 

The medium and large scale sample values were calculated using a sim-
ple geometric mean of all known K values in each sample area [11]. This 
sample set (sample value, location, and scale) was used as input for the 
simple assignment and wavelet interpolation techniques. For the kriging 
and conditional simulation interpolation techniques, the sample set was 
modified by locating the medium and large scale samples at each sample 
centroid, and discarding the sample scale information. The sample semi-
variogram, Figure 7, was used for determining the covariance structure for 
the kriging and conditional simulation reconstruction techniques. A range 
of 12, sill of 0.5, and a nugget of 0.0 was determined from the sample 
semivariogram. The sample semivariogram is not similar to the known 
semivariogram, and this difference is a likely cause for par t of any resulting 
error for the kriging and conditional simulation techniques. 

Only one fine scale reconstruction realization from the sample set was 
required for the deterministic simple assignment and kriging techniques. 
The wavelet interpolation and the conditional simulation techniques, how-
ever, used a Monte Carlo ensemble average. The Daubechies4 wavelet basis 
function [6] was used for the wavelet reconstruction technique. 

For each of the fine scale reconstructions, as well as for the known grid, 
the flow equation was solved with a multigrid approach [4] with no-flow side 
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Figure 8. Cumulative Monte Carlo breakthrough curve statistics for 
(a) the wavelet reconstruction, and (b) the conditional simulation tech-
niques. 

boundaries and constant head up- and down-gradient boundaries. Part i -
cle tracking was used on each solved flow domain to simulate t ranspor t . 
Particles were released at the up-gradient boundary and tracked through 
the flow domain. Since the sides were no-flow boundaries, all particles ex-
ited at the down-gradient boundary. The individual particle travel t imes 
were used to create breakthrough curves. For the wavelet and conditional 
simulation techniques, 50 Monte-Carlo realizations were found to be suffi-
cient to generate stable ensemble breakthrough curve statistics, as shown 
in Figure 8. 

The shaded contour maps shown in Figure 9 are the fine scale ln(AT) 
values from the known grid, and the simple, kriged, conditional simula-
tion, and wavelet reconstructions. As shown, the fractal characteristic of 
the known ln(AT) grid, the blocks of assigned values for the simple recon-
struction, as well as the expected smoothing of the point samples on the 
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kriged ln(K) reconstruction are readily observable. The conditional simu-
lation realization exhibits the correlated stochastic nature underlying the 
technique. Although the wavelet In (if) reconstruction is not exact, it does 
show the influence of the test scales (evidenced by the generally high grid 
values in the southwest corner, consistent with large scale sample values), 
indicating the coarser level information is indeed being t ransmit ted to finer 
scales. Resampling the wavelet reconstructions gives exact reproduction of 
the original sample set values. 

The simple and kriged particle breakthrough curves (Figure 10) exhibit 
a "bench" which is not evident in the known breakthrough curve. This 
bench is apparently due to the large difference in K values at the coarsest 
sample scale directly influencing the reconstructions, since at tha t scale, a 
sample covers 50% of the domain perpendicular to the flow direction. The 
wavelet breakthrough curve appears to exhibit some of the characteristics 
of the known curve. The conditional simulation ensemble curve is very 
smooth and generally indicates early breakthrough at most concentrations. 

The mean error of each breakthrough curve can be calculated by: 

where r; is the t ime for the i th particle to travel through the reconstructed 
domain, k{ is the time for the ith particle to travel through the known 
domain, and for each of the n particles. These resulting mean error values 
are shown in Table IV. As the percentages show, the wavelet and condi-
tional simulation techniques recreate breakthrough curves bet ter than the 
simple and kriging techniques. For this particular sample set, it appears 
tha t conditional simulation technique is slightly bet ter than wavelet recon-
struction. This result may be an artifact of the sample suite or the basis 
function used in the wavelet method. 

4 .2 . O p t i m u m scale 

Addressing the question of whether there are optimum sample scales 
for various synthetic two-dimensional hydraulic conductivity distributions, 
the wavelet extrapolation technique was used with complete sample cover-
age at various scales. An optimum sample scale is defined as one where the 
greatest reduction in breakthrough curve error occurs, which is indicative 
of important scales representing the coarsening process of the fine scale 
variability. Identification of optimum sample scales are also important in 
developing an effective and efficient site characterization procedure. The 
experiments consisted of using the wavelet extrapolation technique to ex-
trapolate complete sample information at each scale down to the original 
finest scale. The Daubechies4 wavelet basis function was again used for all 
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Figure 9. Fine scale ln(K) shaded contour maps for: (a) The known 
grid. 
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Figure 9. (contd.) (b) The simple assignment reconstruction. 
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Figure 9. (contd.) (c) The kriging reconstruction. 



236 K. Brewer and S. Wheatcraft 

Figure 9. (contd.) (d) One realization of the conditional simulation 
reconstruction. 
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Figure 9. (contd.) (e) One realization of the wavelet reconstruction. 
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Figure 10. Particle breakthrough curves. 

Table IV 
Mean breakthrough curve error for reconstruction 
techniques. 

Reconstruction Technique 

Simple Assignment 

Kriging 

Wavelet Reconstruction Ensemble 

Conditional Simulation Ensemble 

Mean BTC error 

50% 

48% 

31% 

25% 

extrapolations. 
With a 128 x 128 regular grid, 6 separate levels can be completely sam-

pled. Samples at each level were generated using the geometric mean of the 
known fine scale values. Each complete level sample set is then used, sepa-
rately, to reconstruct the fine grid via the wavelet extrapolation technique. 
The flow equations are solved and particle breakthrough curves are gener-
ated. Since the extrapolation technique is stochastic, a Monte Carlo suite 
of thirty reconstruction realizations was necessary to ensure stability of the 
first and second order moments of the ensemble breakthrough curve. These 
techniques are similar to those described in Subsection 4.1. An example 
of a breakthrough curve suite for all levels is given in Figure 11. This fig-
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Figure 11 . Suite of breakthrough curves showing the increasing ac-
curacy of the reconstructions as finer levels of information are used. 

ure visually shows the decrease in error (or equivalently, an increase in the 
incorporation of the fine scale variability) as increasingly detailed sample 
information is used. 

The first group of numerical experiments used a synthetically generated 
12 grid length (approximately 9% of the domain) correlated stochastic fine 
scale 1η(/ίΓ) grid as the known values. The known field was generated via 
the turning bands algorithm used previously. Figure 12 shows the resulting 
mean and variance of the ensemble breakthrough curve mean error for each 
level. The horizontal axis shows the number of samples in each level's 
sample set. At the known fine grid level, 16,384 "samples," shows zero 
error. This plot shows the expected continual decrease in mean error and 
variance with finer sampling. 

Using the mean values from the high slope par t of Figure 12, and 
differencing the error values between levels, we obtain Figure 13 which 
shows the decrease in error from each previous level. This plot shows tha t 
the greatest decrease in error occurs at 64 samples, which is a sample size 
of 16 x 16 grid units. This is very close to the correlation length of 12 and 
appears to indicate tha t for correlated random fields, the opt imum scale is 
equivalent to the correlation length. 

To confirm tha t this result was not due to the particular grid size 
used, the experiment was re-run with a 512 x 512 correlated stochastic 
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Figure 13. Mean error change for increasing finer samples levels, 128 X 
128 correlated stochastic field with a correlation length of 12 units. 
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Figure 14. Mean error change for (a) 128 X 128:12, (b) 512 X 512:12, 
and (c) 512 x 512:48 correlated stochastic fields. 

two-dimensional field with a correlation length of 12 units, and also with 
a correlation length of 48 units. The first field is effectively a reduction in 
relative correlation length from 9% (12/128) of the overall domain length, 
to 2% (12/512). The second field has the same percentage correlation 
length as the first experiment (9%), except tha t a finer overall grid is used. 
The results for these two new experiments and the original experiments are 
shown in Figure 14. 

The results show tha t the peak has shifted in the 512 x 512:12 case to 
1024 samples. This is equivalent to a 16 x 16 unit sample size, which is again 
nearly equivalent to the correlation length (12) of the field. The peak for 
the 512 x 512:48 case is approximately equivalent to the first experiment, 
and is again approximately equivalent to the correlation length of the field. 
Although results from only one realization for each experiment is shown, 
numerous other experimental replications of the stochastic fine grid field 
confirm these results. 

The second group of numerical experiments used a pseudo-fractal (i.e., 
infinite correlation) fine scale ln(K) grid for the known fine grid. The 
pseudo-fractal field was generated with the spectral fBm algorithm de-
scribed before, with a representative fractal dimension (D=2.4). Figure 15 
shows the resulting plot for a 128 x 128 grid, where 64 samples (16 x 16 
grid units) appears optimum. Rerunning the experiment with a known fine 
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F i g u r e 15 . Mean error change for increasing finer samples, 128 X 128 
pseudo-fractal field. 

100 1000 10000 

Number of Samples 

100000 

F i g u r e 16 . Mean error change for increasing finer samples, 512 X 512 
pseudo-fractal field. 
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grid of 512 x 512 and the same fractal dimension, no change in the sample 
opt imum (64 samples) was evident, as shown in Figure 16. In this case, 
however, the sample size is 64 x 64 grid units. The cause for the difference 
in opt imum sample size, yet consistency in sample quantity is not clear. 

4 .3 . Wave le t basis effects 

As noted in Subsection 2.1, many different wavelet basis functions can 
be used in the wavelet transform, and consequently, also in the wavelet 
reconstruction and extrapolation techniques. Different wavelet basis func-
tions will preferentially move, between scales, different characteristics of 
the target dataset . For example, use of the Haar basis function will em-
phasize discontinuities in the target dataset, and similarly, would enhance 
reconstruction of a "discontinuous" fine grid field from a sample set. Other 
wavelet basis functions, such as the Daubechies family used throughout 
this research, emphasize the smoothness of the examined data . 

The wavelet reconstruction experiments for fine scale ln(JiT) grids proved 
to be highly dependent on the wavelet basis chosen. Figure 17 shows a 
Haar basis wavelet reconstruction realization ln(Ä') shaded contour map . 
The resulting discontinuous field is evident, especially compared with the 
Daubechies4 reconstruction in Figure 9e. These discontinuities in the Haar 
reconstruction, which are not inherent in the known grid, made it unsuit-
able as a basis function for reconstructing our known fractal distributions. 

An example of the effect on breakthrough curve error by utilizing dif-
ferent wavelet basis functions is shown in Figure 18. The Haar wavelet 
basis function has greater breakthrough curve error than the Daubechies4 
wavelet function at all sample scales. The error decrease between scales 
is also generally slower for the Haar basis. This indicates tha t the Haar 
wavelet basis function does not interpolate the finer scale variability as 
well as the Daubechies family. This effect is again primarily due to the 
difference in the smoothing properties between the Haar and Daubechies 
wavelet basis functions. Since our known field (a pseudo-fractal) is rela-
tively smooth, the Daubechies4 wavelet function performs bet ter . Similar 
results should be expected for correlated stochastic grids. 

§5. Conclus ions and R e c o m m e n d a t i o n s 

A primary purpose of this initial work was to investigate the usefulness 
of the wavelet technique for reconstructing fine scale variability and mov-
ing multi-scale information. A secondary purpose was to use the wavelet 
extrapolation technique to begin to understand what, if any, optimal scales 
may exist. Based on the results discussed in Section 4, a number of con-
clusions can be stated: 
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Figure 17. Shaded contour map of fine scale ln(JsT) field reconstructed 
using Haar basis function wavelet. 
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Figure 18. Effect of different wavelet functions on the mean break-
through curve error for the 128 X 128 pseudo-fractal field. 

• First, we have demonstrated tha t the wavelet reconstruction tech-
nique is able to incorporate the location and scale of each sample 
in reconstructing a fine grid as evidenced visually and by the ex-
act resampling. The wavelet reconstruction provides a subjectively 
bet ter representation of the known values than the other compared 
methods as shown by Figure 9. The resulting breakthrough curve 
mean error for the wavelet technique was similar to the conditional 
simulation technique error, and bet ter than the others. Thus, we 
are confident in stating tha t the wavelet reconstruction technique is 
a viable method to incorporate scale information in fine scale recon-
structions. Further work is needed to understand the sensitivity of 
this method to the sample suite, and to determine optimum sample 
suite characteristics. 

• Second, our present results indicate tha t choice of wavelet function 
is important . Smoother wavelet functions, like the Daubechies fam-
ily, recreated the synthetic fractal and correlated stochastic distri-
butions bet ter , as well as enabled a more rapid reduction in break-
through curve error. Future work is needed to determine what qual-
ities or properties of a wavelet basis function best aid reconstruction 
of various porous media properties. It is hoped tha t these wavelet 
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basis qualities might be directly related to geologic properties of 
porous media. 

• Third, an optimum sample scale appears to be related to the corre-
lation length of a correlated stochastic fine scale field. This implies 
tha t the maximum sampling benefit would be from samples at the 
scale of the correlation length. Practically, this implies tha t a site 
characterization procedure should first be designed to determine the 
correlation length of the hydraulic conductivity field, possibly via 
sampling in one area at different scales. The procedure would be to 
then cover the remaining site with samples at the correlation scale. 
This type of site characterization procedure is quite different than 
what is currently considered "best professional judgement." 

§6, Concluding R e m a r k s 

Since fractals have correlation at all scales, the consistency of the opti-
mum sample quantity (not scale) for the fractal field experiments is some-
what puzzling. One possible explanation might be tha t there is a similarity 
in the way wavelet techniques function compared to statistical relationships 
of the number of required samples necessary for adequate representation 
of a normal distribution. This may be an indication tha t fractal distribu-
tions are best modeled by the wavelet method. Additional experiments are 
needed. 

Besides the areas of future research described above, part of a future 
research plan should include increasing the robustness of the wavelet tech-
nique to handle irregular sample locations and overlapping sample volumes. 
In addition, applying the reconstruction technique to a tightly controlled 
field-generated multi-scale da ta set is needed. Comparison of the recon-
struction of a fine scale grid, and various contaminant plumes should fur-
ther clarify the limitations and expectations of the wavelet reconstruction 
application. 
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Wavelet-Based Multifractal Analysis of Non-Stationary and/or 
Intermittent Geophysical Signals 

Anthony Davis, Alexander Marshak, and Warren Wiscombe 

A b s t r a c t . We show how some of the most popular wavelet transforms can be 
used to compute simple yet dynamically meaningful statistical properties of a 
one-dimensional dataset representative of a geophysical field or time-series. The 
observed properties of turbulent velocity fields and of liquid water density in clouds 
are used throughout as examples along with theoretical models drawn from the 
literature. We introduce a diagnostic tool called the "mean multifractal plane," 
simpler than (but representative of) the two well-known multifractal hierarchies 
of exponents H(p) and D(q), associated with structure functions and singular-
ity analysis respectively. It is used to demonstrate the pressing need for a new 
class of stochastic models having both additive/non-stationary and multiplica-
tive/intermittent features. 

§1. Introduction and Overview 
Geophysical systems are notoriously complex, driven by external forc-

ing and ridden with internal instability due to their generically nonlinear 
dynamics. Whether traceable to the break-up of larger ones or the am-
plification of smaller ones, structures are present on all observable scales. 
The signals we depend on to probe these systems are naturally "rough" 
and/or "jumpy" (i.e., non-differentiable and/or discontinuous) and little in-
sight is gained by statistical analysis unless the methods we adopt are fully 
adapted to this situation. Traditional approaches include one-point his-
tograms (typically searching for Gaussianity), two-point auto-correlations 
(typically searching for an exponential decay) and energy spectra (typically 
searching for dominant frequencies). They are better suited for electrical 
engineering applications than for geophysical research, although all of the 
above listed statistics can be used in ways and circumstances we will de-
scribe in various parts of this paper. In the last couple of decades, we have 
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seen Fourier analysis complemented by wavelet analysis, an increasing in-
terest in lognormal and power-law distributions and an explosion of ideas 
centered on scale-invariance and fractals. 

Scale-invariance is the natural framework for developing statistical 
tools that account for all scales in presence at once. We focus on random 
quantities that depend parameterically on scale - an idea idiosyncratic to 
wavelet theory as well - and seek power-law behavior with respect to the 
scale parameter for their statistical properties. If a single power-law expo-
nent is sufficient to describe all the statistics within a whole family, we talk 
about monoscaling and a "monofractal" model is called for; otherwise (the 
most general case), we are dealing with multiscaling and "multifractal" 
models are in order. Multifractal statistics have proven useful in almost 
every reach of nonlinear science, in the laboratory as well as in computa-
tional experiments (including the exploration of deterministic chaos). It 
is hardly surprising that geophysical applications of multifractal and/or 
chaos theory have been so successful, judging by the growing number of 
researchers involved. However this says more about the geophysical com-
munity's data analysis needs and about the expectations raised by the 
scaling paradigm than about the degree of maturity reached by multifrac-
tal statistical methodology. Many questions remain open on issues ranging 
from the preprocessing required by certain procedures (cf. introductory re-
marks to section 4) to the validation of multiscaling studies (e.g., "Is the 
observed multiplicity simply due to finite size effects?" ) but also on more 
fundamental issues, for instance, the role of stationarity. 

Because we depend on the spatial coordinate to perform all averaging 
operations when analyzing data, our first task is to determine which aspects 
of the signal are more likely to be stationary. In the upcoming section (and 
the Appendix) we show that, within the framework of scale-invariance, this 
can be done using spectral analysis. Assuming thereafter that the geophys-
ical process of interest is non-stationary but with stationary increments (a 
frequent occurrence in nature), we turn to p-th order structure functions 
in section 3. How can they be obtained from the wavelet transform of the 
data? What are the general properties of the associated family of expo-
nents C(p)? How do they relate to geometrical, spectral and dynamical 
concepts? Another option altogether is to derive a stationary "measure" 
from the non-stationary signal, e.g., by taking absolute differences between 
(appropriately separated) points; one can then apply some form of sin-
gularity analysis to it (we simply consider here the g-th order moments 
of the coarse-grained measure). The same questions as above are asked 
about this approach and associated family of exponents K(q) in section 4. 
The most important outcome is the mapping of structure functions to non-
stationarity and of singularity analysis to intermittency, two challenging 
aspects of nonlinear dynamics that happen to have well-defined statistical 
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meanings. Often however, two large families of exponents is too much to 
handle on practical grounds. In section 5 we briefly describe a way of re-
lating them in an (almost) one-to-one fashion and go on to select a single 
exponent from each approach. This enables us to devise a plot where one 
axis, H\ = C(l)5 measures the non-stationarity of the system and the other, 
C\ = K'(l), its intermittency; we call this the "mean multifractal plane" 
and discuss some possible applications, most importantly to the relatively 
new field of multi-afline [57] stochastic modeling. Finally we summarize 
and offer some concluding remarks in section 6. 

We have surveyed the li terature on a per topic basis: stationarity 
and spectral analysis (section 2, Appendix), s tructure functions and multi-
affinity (section 3), singularity analysis and multiplicative cascade models 
(section 4). The wavelet l i terature per se is already enormous but by-
and-large wavelet practitioners rely heavily on the existence of the inverse 
wavelet transform [14]. Signal reconstruction is exact (no information is 
lost) and, when made approximate, it is generally in the spirit of da ta 
compression. Computational efficiency is often sought using the orthonor-
mality of many well-known wavelet bases [15]. These are not our concerns. 
In statistical analysis, a large amount of information is thrown away in 
the process of extracting a small number of sure quantities (i.e., averages) 
from a large number of random ones (i.e., the data) and furthermore the 
computational burden is slight in comparison to the overhead in da ta pro-
duction. There is also a large body of multifractal l i terature, reviewed here 
as needed. We will borrow heavily from the relatively small (but steadily 
growing) number of papers tha t use wavelets in connection with multi-
fractal models and /or da ta structures (generally pertaining to turbulence). 
Most of these publications appeared in physics journals, emanating from 
the group spearheaded by Alain Arnéodo of the Centre de Recherche Paul 
Pascal (Pessac, France). His lectures and the papers he co-authored gave 
us the impetus for this study. 

§2. Pre l iminary Cons iderat ions on Stat ionarity , Ergodic i ty and 

Scale-Invariance 

2 .1 . D a t a specif ication and spectra l analysis 

We consider given a discrete set of N + 1 da ta points: 

fi = f(xi), Xi = U (i = 0 , l , . . . , J V ) , (1) 

sampled from / ( # ) , x G [0, L], some scalar geophysical field (x is position) or 
time-series (x is t ime). The overall length of the one-dimensional dataset is 
L and / is the grid constant (or 1// , the sampling ra te) . We will furthermore 
assume tha t 

i V = y » l . (2) 
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In many cases, a time-series is really a picture of a geophysical field. 
Consider for instance the time-series f(x) in Figure la . It represents liq-
uid water content (LWC) captured from an airborne platform during FIRE 
(First ISCCP Regional Experiment) while flying through an extended ma-
rine stratocumulus (StCu) deck off the southern coast of California on June 
30, 1987. (This type of cloud is of particular interest to climate modelers 
due to its frequent occurrence over vast regions, hence a first order effect 
on the planetary radiation budget.) Since the aircraft was flying at roughly 
constant speed and altitude, we can view this as a snap-shot of the local 
atmospheric LWC field, sampled along a linear transect (Taylor's frozen 
turbulence hypothesis). The parameters of this dataset are / « 5 m and 
N = 21 4 = 16384, hence L « 82 km. We note the "roughness" of this graph 
which we will quantify in section 3. Figure l b presents a related dataset 
ε(χ) based on absolute differences over a certain scale (to be discussed 
shortly). We note the inhomogeneous "spikiness" of this field which, in the 
tradition of turbulence studies, we view as a direct manifestation of inter-
mittency (sudden bursts of high frequency activity) in the original signal. 
We will quantify intermittency in this sense in section 4. 

The information in Equation (1) can be represented by a discrete 
Fourier transform: fi-N/2 = îi^i-N/2)^ h-N/2 = (* — N/2)/L (i = 
0 , 1 , . . . ,iV). Being interested in finding the statistically robust features 
of f(x), we start with the energy spectrum: 

E/(k) = ( £ | / (±*) | 2 > , 1/L < fc < 1/2/, (3) 
± 

dropping subscripts for simplicity. This is probably the most popular statis-
tic in time-series analysis, beyond 1-point p.d.f.'s (i.e., simple histograms 
of /-values as in Figure l a ) . The energy spectrum E£(k) of the ε-field in 
Figure l b is computed in the same way and both spectra for the da ta in 
Figure 1 are plotted in Figure 2. 

In Equation (3) we use (·) to denote an "ensemble" average which in-
volves in principle every possible realization of the random process f(x). 
In geophysical practice however, we are generally provided with the out-
come of a small number of experiments - possibly even a single one - and 
we are forced to sacrifice spatial information to obtain spatial averages, 
as estimates of their ensemble counterparts. Processes for which spatial 
averages converge to the corresponding ensemble statistics in the limit of 
large averaging sets are called "ergodic." Estimating an energy spectrum 
with a single realization, dropping the triangular brackets in Equation (3), 
amounts to making an ergodicity assumption. Throughout this paper, we 
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use the same notation for ensemble averages and their spatially obtained 
estimates. The interested reader is referred to [32] and [29] for a detailed 
analytical study of multiplicative cascade models where cases of ergodic-
ity violations can be found; this important class of models will be briefly 
discussed in section 4 and in the Appendix. 

410 
time (sec) 

F i g u r e 1. A horizontal probing of atmospheric liquid water content 
(LWC), showing the internal structure of a marine stratocumulus deck 
during FIRE, (a) The raw LWC data / ( x ) , sampled at 20 Hz (every / « 5 
m, aircraft speed « 100 m/s) for 820 s (L « 82 km). Also indicated is 
the negatively skewed 1-point p.d.f. (the downwards spikes responsible 
for this skewness are probably related to instabilities that entrain of dry 
air from cloud top), (b) An absolute gradient field ε(χ) associated with 
f(x) in panel (a). The differences are taken at the lower end (η) of 
the non-stationary scaling regime defined by the structure functions (cf. 
Figure 5a) or the energy spectrum (cf. Figure 2); in this case, we use a 
distance of 4 pixels (η « 20 m). 
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F i g u r e 2 . Scale-invariance of the spectral densities for the datasets in 
Figure 1. Log (base 2) of the energy E(k) versus log2(fcL) for 2/L < 
k < 1/2/. These bounds are set upwardly by the Nyquist frequency 
and downwardly by the minimal noise reduction option using routine 
SPCTRM (two non-overlapping partial spectra are averaged) in [50]. 
We also give a corresponding log-scale for r/l (using r « 1/k with L/l = 
21 4) with several remarkable values highlighted. We notice the lack 
of small scale (high k) information for the e-field which is formed by 
taking differences over 4 grid points (corresponding to a distance η « 
20 m). As advocated by Marshak et ai [40], the energy as well as 
the (linearly discretized) wavenumbers are averaged inside octave-sized 
bins. Absolute slopes (power-law exponents) are indicated in both cases, 
showing this LWC dataset to be non-stationary (β > 1) over scales from 
20 m to at least 5 km (50 s in Figure 1) while its associated ε-field 
is stationary (ße < 1). Davis et ai [18] show that the transition to 
stationary behavior (E(k) « constant) at r > R « 3 -5 km (log2(fcL) < 
2.5) is traceable to a single event (namely, the intense « tf-sized "dip 
at « 700 s in Figure 1) and therefore is not robust with respect to the 
addition of new data. (An improved estimate of this "integral" scale for 
LWC in marine StCu is found to be « 20 km.) 
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2.2 . S tat ionar i ty and t h e spectra l e x p o n e n t 

Spectral analysis is often used to find dominant frequencies (hence 
time-scales) in a time-series, viewed as a harmonic (and possibly determin-
istic) signal contaminated with random noise, the lat ter having a charac-
teristically continuous spectrum. However, in natural systems it is usually 
futile to try to separate a smooth signal from the noise. These systems are 
turbulent and the signals they produce are noise. The prevailing type of 
noise in Nature is furthermore "scale-invariant," meaning tha t it is free of 
characteristic scales, at least over some large "scaling" range: 

q<r<R (4) 

which will depend on the type of geophysical signal. The corresponding 
spectral densities reflect this by showing power-law distributions of energy 
with respect to scale (r ~ 1/&): 

Ef(k) oc k'ß, Ee{k) oc k~ß' (5) 

over the associated range of wavenumbers. In the following, we will assume 
for simplicity tha t the dataset is scale-invariant in the full instrumentally 
accessible range of scales (/ < r < L) in our general discussions. In our 
data-specific discussions (Section 3.4 and Section 4.4), we relax this as-
sumption. It is noteworthy tha t the exponent ß can be retrieved from a 
"wavelet spectrum" [21] under conditions spelled out by Fantodji et al. [20]. 

As shown in Figure 2, the LWC datasets scale over most of the accessi-
ble range of scales with ß « 1.4 for the LWC da ta in Figure l a and ße « 0.7 
for the associated absolute gradient field in Figure lb ; details on these and 
several other related LWC time-series are given by Marshak et al. [40] and 
Davis et al. [16]. Duroure and Fantodji [19] compare the scaling of Fourier-
and wavelet spectra for droplet density (rather than LWC) in StCu as well 
as for several stochastic models, similarly for Gollmer et al. [27] with liquid 
water pa th (the vertical integral of LWC retrieved from passive microwave 
radiometry). 

One-point p.d.f.'s make no use of the ordering of the data , leaving wide 
open the possibility of correlations between /-values at different points 
(more loosely, "structures" or "patterns" in the da ta ) . The energy spec-
t rum partially describes these correlations and has one advantage over 
many other popular statistics, including auto-correlation functions: it re-
mains well-defined whether or not the process is "stationary," i.e., statisti-
cally invariant under translation. In the Appendix, we discuss stationarity 
in some detail because, being a prerequisite for ergodicity, it is necessarily 
invoked in every da ta analysis task where spatial averaging is performed as 
a surrogate for ensemble averaging. In the same Appendix, we argue tha t 
the spectral exponent can in fact be used to distinguish between stationary 
(ß < 1) and non-stationary (ß > 1) scaling situations. 
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According to this criterion, Figure l a illustrates non-stationarity, at 
least for scales in the range 20 m « 4/ < r < L /16 « 5 km (cf. Figure 2). 
Although this may seem paradoxical to the casual observer, Figure l b il-
lustrates a stationary process. Indeed it is characterized visually by long 
stretches with little activity suddenly interrupted by spikes coming in a 
wide variety of heights and with different degrees of clustering. A priori 
this sounds rather non-stationary. Conventional wisdom wants stationar-
ity to be the tendency tha t "things are sort of the same at all times;" a 
bet ter way of envisioning it would be a tendency to "quickly come back to 
typical (i.e., most probable) values." The picture conveyed by the former 
description is too restrictive, apparently excluding the strong deviations 
from average values observed in Figure l b . We will substantiate this view 
in the Appendix as well. 

§3. Quantifying and Qualifying Non-Sta t ionar i ty w i t h Structure 
Funct ions 

In this section we interest ourselves primarily in non-stationary pro-
cesses with stationary increments (1 < ß < 3) which are ubiquitous in na-
ture. So, following the ideas surveyed in the Appendix, we will focus on the 
field of increments of a random process f(x) over a distance r: Δ / ( Γ ; X) = 
f(x + r / 2 ) - f(x - r / 2 ) , r / 2 < x < L - r / 2 (0 < r < L). The statistical 
moments of | Δ / ( Γ ; Χ ) | are a two-point statistic known as "structure func-
tions of order p " and they are independent of x: ( | Δ / ( Γ ; X)\P) = ( | Δ / ( Γ ) | Ρ ) ; 
this incremental stationarity is a necessary condition to feel justified in es-
t imating ( | Δ / ( Γ ) | Ρ ) by averaging | Δ / ( Γ ; Χ ) | Ρ over x. In most cases small 
increments are a frequent occurrence so one cannot take arbitrarily large 
negative values for p. 

Arnéodo, Bacry and Muzy have shown in a series of papers ([5], [7], [9] 
and [45]) how wavelets can be explicitly used to perform structure function 
analysis in its s tandard and more general forms. We summarize their ideas 
in the upcoming subsection then review the implications of scale-invariance; 
finally, we discuss turbulence studies and apply the technique to the LWC 
data presented above, underscoring the dynamical meaning of s tructure 
function exponents in connection with non-stationarity. 

3 .1 . Wave le t s for s tructure function analysis 

Define the "indicator" function of the open r-sized interval (—r/2, + r / 2 ) , 
r > 0 : 

τ ( λ / 1 \x\ < r / 2 fa Λ 

W = ( 0 |*| > r/2 ' ( 6 a ) 
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In the following, we will also need 

Ψσ{χ) = -^-= exp(-x2/2a% (6b) 

a Gaussian with vanishing mean and s tandard deviation σ. 
The field Δ / ( Γ ; X) can be viewed as the convolution product of f(x) 

with dlr(x) = δ(χ + r / 2 ) — S(x — r / 2 ) where δ(-) designates Dirac's gener-
alized function. So we have 

Af(r;x) = [f*dlr](x)= If(xf)[S(x + r/2-x,)-S(x-r/2-x,)]dx\ (7) 

where boundary complications are dealt with by making f(x) periodic with 
period L. Since the kernel dlr of the integral operator in Equation (7) is 
parameterized by a variable scale r, we are reminded of a wavelet transform. 
Indeed, it is easy to show tha t 

Δ/(Γ; x) = lj f(x')[-dh(^-)] dx'. (8) 

Muzy et al. [45] call -dli(x) = S(x - 1/2) - δ(χ+ 1/2) a "poor-man's 
wavelet" and suggest a more general approach to increment estimation 
based a priori on a restricted class of anti-symmetric wavelets Ψ(#), or-
thogonal in particular to constant functions but not to linear ones, tha t 
furthermore contain a single oscillation. Along with —dli(x), Figure 3 
shows classical examples: 

Φσ(α) = -Vi / 2 0*0 = 4 ^ i / 2 ( z ) , (9a) 

on the one hand, and 

*«M = { r W W>; <9b) 

on the other. The latter and simpler (piece-wise constant) case is the 
well-known Haar wavelet. In analogy with Equation (8), we consider the 
continuous wavelet transform 

ΓΦ[/](α,6) = - [ f(x)y(ZzlL)dxJ a > 0, b e ft, (10) 
a J a 

where the wavelet is real (so Φ is used instead of its conjugate Φ*). Notice 
the non-standard normalization in Equation (10): 1/a appears, ra ther than 
1/y/a. This inhibits the strict orthonormality of the wavelet basis (not 
required in the following) but ensures the constancy with respect to a of 
the integral of the positive par t of the rescaled wavelet, a~l θ [Φ(χ /α ) ] where 
θ ( · ) is the Heaviside step function. This facilitates scaling comparisons. 
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ψΗ(χ) > 

λ 
ψβ(χ) i i 

\ 

dl,(x) 

Γ 

Figure 3. Acceptable wavelets for structure function analysis. The 
first derivative VG(x) of (2/π)~1 / 2 exp(-2z2); Haar' s piecewise-constant 
wavelet Φ Η ( # ) and — dii(#), the "poor-man's wavelet" of Muzy et al. 
[45], i.e., two J-functions of opposite sign. Notice that all three are anti-
symmetric but have ever smaller supports: all of 9ft, a compact subset, 
two discrete points. 

The premise of Arnéodo and his co-workers is tha t , being increment-
like, the random wavelet coefficients in Equation (10) have statistical prop-
erties similar to those of Δ / ( Γ ; X) with scale r playing the role of the di-
lation parameter a and position x tha t of the translation parameter b. In 
particular, ( |Τψ[/](α,6)|ρ) will be independent of b and we are justified 
in estimating this (absolute) moment by averaging over the location. In 
summary, we expect tha t 

< | Δ / ( Γ ) | * > «- j r y | r*[ / ] ( r ,6 ) |*db , 0 < r < L , p > - l , (11) 

independently of the choice of Φ (say) in Equations (9a) and (9b). Using 
a variety of numerical and analytical methods, Arnéodo et al. ([5], [7]), 
Bacry et al. [9] and Muzy et al. [45] have shown this conjecture to hold 
(in the sense of scaling described below) for a wide class of random pro-
cesses. We refer to [45] (and references therein) for the restriction on p 
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in Equation (11). These authors also show how wavelets with more os-
cillations (e.g., successive derivatives of φσ(χ), orthogonal to higher order 
polynomials) can be used to find the scale-invariant properties of a struc-
ture function-like statistic in Equation (11) for p < — 1, which is dominated 
by regular points where the signal f(x) is differentiate. 

3.2 . Scale-invariant s tructure funct ions , general i t ies 

Random scale invariant fields/signals f(x) are characterized by scale-
conditioned statistics tha t follow power-laws with respect to the scale pa-
rameter. Equation (11) describes a way of estimating such a statistic (r is 
held constant during the spatial averaging), we thus anticipate 

< | Δ / ( Γ ) | * > « Γ « * > , (12) 

over some large range of scales [77, R] which may partially or entirely overlap 
with the instrumentally accessible range [/,L]. 

Some general s tatements can be made about the family of exponents 
ζ(ρ). Firstly, one exponent is known a priori, from definitions: ζ(0) = 0. 
Secondly, ζ(ρ) will be a smooth differentiate function of p no ma t t e r how 
rough the da ta / ( # ) , being essentially a sum of many exponential functions 
of p . Thirdly, it can be shown tha t , if the signal f{x) has absolute bounds, 
then ζ(ρ) is monotonically non-decreasing ([23] and [39]). Finally, it can 
be shown on more general grounds tha t ζ(ρ) is concave (ζ"(ρ) < 0). 

To see this, choose units of length where L = 1 and / -un i t s where 
(\Af(l;x)\p) « 0 ( 1 ) ; we then have (\Af(r;x)\P) « r<&\ making explicit 
the weak dependence of the prefactors on p. It follows tha t — £ ( p ) l n r is 
the second characteristic (or cumulant generating) function ln(exp(— ρξΓ)) 
of the random variables £r = — In | Δ / ( Γ ; Χ)\ and is therefore convex [22]. 

Stationary processes of course have stationary increments but these 
will scale trivially due to the invariance under translation: ζ(ρ) = 0 (scale-
independent increments). However, due to the effects of finite spatial res-
olution, even theoretical models lead to numerically small C(p)'s ( s e e [39] 
for an example). At the other end of the non-stationarity scale, we have 
continuous functions with bounded non-vanishing first derivatives, yielding 
| Δ / ( Γ ; X)\ OC r (for almost every x) hence ζ(ρ) = p. 

Any concave ζ(ρ) with ζ(0) = 0 allows the definition of a hierarchy of 
exponents: 

Hip) = ζ-ψ- (13) 
By "hierarchy" we mean a monotonie function, in this case non-increasing. 
The reader is referred to Parisi and Frisch's [48] original paper on the mul-
tifractality of turbulent velocity signals/fields for the interpretation of the 
ζ(ρ) and H (p) functions in terms of variable orders of singularity. ( "Sin-
gularity" is used here in the sense of Hölder-Lipshitz heuristics: how does 
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h(x) in | Δ / ( Γ ; : Τ ) | OC rh^ vary, statistically speaking, with xl) 
Obtaining ζ(ρ) and/or H(p) is the goal of this whole approach, provid-

ing us with a means to characterize non-stationarity, in both quantitative 
and qualitative terms (examples to follow). 

3.3· Geometrical, spectral and dynamical implications of 
structure function statistics 

Processes with a variable H(p) have recently been described as "multi-
affine" [57] or "non-stationary multifractals" [39], leaving processes with 
a constant H(p) or linear ζ(ρ) to be "mono-affine" or "non-stationary 
monofractals." This last class of random functions is indistinguishable 
from "fractional" Brownian motions (used as examples in Section 3.4). 
Such cases are often referred to as "self-affine" in the literature but this is 
an unnecessarily restrictive view of statistical self-affinity. 

The expressions multi- and mono-affinity refer in fact to a well-known 
geometrical meaning of the p = 1 structure function. The quantity ( | Δ / ( Γ ) | ) 
can indeed be related to the fractal structure of the graph g(f) of / (#) , 
viewed as a statistically self-affine geometrical object in 2-dimensional Eu-
clidean space. We have [38] 

Hx = H(l) = C(l) = 2 - DgU) > 0, (14a) 

where Dg^ is the fractal dimension of g(f) or, in slightly different words, 
Ηχ is the codimension of g(f) and is also known as the "roughness" ex-
ponent. This immediately tells us that the largest possible value for Hi 
is 1, attained for (almost everywhere) differentiable functions which have 
smooth graphs of non-fractal dimension Dg^ = 1, like any line or other-
wise rectifiable curve. At the opposite limit of Hi = 0 (stationarity), we 
find graphs that fill space: £>#(/) = 2, a direct consequence of the necessary 
discontinuity of stationary scaling processes discussed in the Appendix. 

An infinite number of exponents is needed to describe multi-affine pro-
cesses completely. For instance, there is no general relation between Hi 
and the spectral exponent which is however connected with the p = 2 case: 

β = C(2) + 1 = 2H(2) + 1 > 1, (14b) 

the Wiener-Khintchine relation for non-stationary scaling processes (cf. 
Appendix). We will nevertheless retain Hi as the single most important 
exponent in the whole H(p) hierarchy. The geometrical significance given 
in Equation (14a) is not as important as the fact that Hi defines as simply 
as possible the linear trend in C(p)? cf· Figure 5b. In summary, we view 
Hi as a direct quantifier of the system's non-stationarity and the complete 
ζ(ρ) or H(p) functions as a means to qualify this non-stationarity. 

We can take this statement one step further than its purely statistical 
sense. In the present circumstances, the expression "non-stationarity" is 
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dynamically correct. In the Appendix we recall that non-stationary scale-
invariant random processes, ubiquitous in nature, are characterized by large 
wanderings from mean (or rather most probable) values with relatively long 
return times. At very long times we expect a transition to stationary be-
havior to occur at least for geophysical fields which have absolute bounds. 
In nonlinear dynamical systems (of ODEs), stationary (time-independent) 
solutions generally occupy a very small portion of parameter space; an 
even smaller portion are stable and even these are generally unstable with 
respect to finite perturbations. In the chaotic regime time-dependent (non-
stationary) solutions starting close to each other wander away exponentially 
fast at small times; at long times the outer size of the (usually strange) 
attractor puts bounds on their relative deviation. Shifting from computa-
tional to natural systems we know, at best, the governing nonlinear system 
of coupled PDEs (usually with forcing and dissipation terms); these are 
also generically unstable and their solutions are attracted into a certain 
state of "turbulence." At worst, we have no clue of the governing equa-
tions and rely primarily on observations for insight. The case of clouds 
and many other geophysical systems is intermediate; we advocate a more 
systematic use of structure functions, wavelet-based or not, to characterize 
the non-stationary aspects of their dynamics. 

3,4. Examples from theory, turbulence and cloud structure 

In Figure 4 we see five random processes, all theoretical, with different 
degrees of non-stationarity. At the top, we find a sample of "flicker" or 1 / / 
noise (ß = 1) which is marginally stationary: ζ(ρ) = H(p) = 0. At the bot-
tom, we find a noiseless trend which represents everywhere differentiability: 
£(p) = p and H{p) = 1. Between these two extremes, we find three samples 
of "fractional" Brownian motion (fBm), illustrating less-and-less station-
a r y : C(p) = pHi or H(p) = Hi with Hi = 1/3,1/2,2/3. The relation 
C(p) = pH\ n a s a simple probabilistic meaning. Using Equation (13), it 
implies (\Af(r)\*>) « ( |A/(r) |)p , i.e., that the p.d.f. of \Af(r;x)\ is narrow 
enough to enable a simple dimensional argument to relate quantitatively all 
moments. The Gaussian p.d.f.'s used in Figure 4 for fBm are good exam-
ples of weakly variable increments. These models however are monoscaling 
(indeed mono-affine) whereas the next two examples argue that natural 
processes tend to be multiscaling (hence multi-affine). 

The most notable structure function analysis in the turbulence liter-
ature is due to Anselmet et al. [1] who determined ζ(ρ) for wind tunnel 
flows at high Reynolds numbers. The authors find Hi « 1/3 and, more im-
portantly, confirm Kolmogorov's [34] prediction that £(3) = 1 (cf. section 
5). They also extend their averaging procedures up to p = 18; this is not a 
simple task because the larger the order p of the statistical moment in Equa-
tion (12), the more it is dominated by extreme events in Δ / ( Γ ; Χ ) which 
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Ηι=0 

Η,-1/2 

Hi=2/3 

F i g u r e 4 . Different amounts of the same kind of non-stationarity. 
Samples of Mandelbrot's [38] fractional Brownian motion, B(x), 0 < 
x < L = 1024, for # i = 0 , 1 / 3 , 1 / 2 , 2 / 3 and 1, from top to bottom. 
The mid-point displacement algorithm was used [49]: take B(0) = 0 
and B(L) = 1; generate a zero-mean Gaussian deviate with standard 
deviation σ = y/21-^ - 1 (0 < # i < 1) and add it to [J5(0) + B(L)]/2 
to obtain B(L/2)\ divide σ by 2Hl and repeat between x = 0, L/2 for 
B(L/4), and x = L / 2 , L for B(3L/4); proceed similarly to smaller scales 
(10 divisions in this case). The basic non-stationarity parameter H\ in-
creases from the marginally stationary case ( 1 / / noise at H\ = 0) to the 
extreme case of a noiseless linear trend (B(x) = x/L at Hi = 1 ) . This 
family of processes are all non-stationary (β = 2i?i + l > 1) with station-
ary increments (β < 3) and can be said to have the same "kind" of non-
stationarity, namely, the monoscaling (or mono-affine) kind: H(p) = H\. 
Other (multi-scaling) types of scale-invariant non-stationary models are 
listed in the text. 
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are poorly sampled (by definition) in da ta analysis situations. The authors 
found not only a nonlinear C(p)> thus establishing the multiscaling, but 
used it for discriminating between the competing so-called "intermittency" 
models. Anselmet and his co-workers used s tandard s t ructure functions 
based on two discrete values in their time-series. Applications of bone fide 
wavelets to the analysis of turbulent signals abound and have been exten-
sively reviewed by Farge [21]. Of particular interest here are results on 
velocity time-series generated in three-dimensional turbulent flows: Argoul 
et al. [2] use the symmetric wavelets discussed in Section 4.1 below to visu-
alize the turbulent cascade process (rather than perform scaling analyses) 
while Muzy et al. [44] use the same symmetric wavelets as well as their 
anti-symmetric counterparts discussed above in scaling analyses. 

Figure 5a shows ( | Δ / ( Γ ) | Ρ ) for the LWC da ta in Figure la , using the 
traditional discrete value calculation of s tructure functions. The scaling 
range [77, R] where the exponents are defined is clearly marked. However, 
Davis et al. [18] show tha t the break tha t defines the upper limit of R « 5 
km can be traced to a single event (a "dip" in LWC of approximately tha t 
width tha t occurs c. 700 sec. into the flight on Figure l a ) . In other words, 
this est imate of this transition point to large-scale stat ionary behavior, 
( | A / ( r ) | p ) « constant, is not robust with respect to adding to the average 
the four other LWC datasets obtained from the same instrument during 
FIRE. A bet ter estimate (using all five flights) is found to be « 20 km 
and, viewing R as a statistic, we are simply in presence of a violation of 
ergodicity (another one is described in Figure 9). Assuming it is robust, 
the special scale R is known as the "integral" scale of the process (see Ap-
pendix). In Figure 5b we have plotted ζ(ρ) and highlighted two remarkable 
values: ζ(1) = H\ « 0.28, not unlike turbulent velocity, and ζ(2) which is 
simply related to the spectral exponent β, as described in Equation (14b). 
We notice the strong evidence of non-stationarity (ζ(ρ) is non-vanishing) 
in marine StCu and their multifractality (in the sense of multi-affinity, ζ(ρ) 
is nonlinear). 

Multi-affine modeling is the synthetic counterpart of s t ructure function 
analysis, a relatively new field judging by the following li terature survey 
tha t we believe to be exhaustive at the t ime of publication. Schertzer and 
Lovejoy [52] suggested the idea of low-pass power-law filtering in Fourier 
space (or "fractionally" integrating) singular multiplicative cascade models; 
the lat ter are described in some detail below. Cahalan et al. [12] describe 
a class of "bounded" cascade models, shown by Marshak et al. [39] to have 
ζ(ρ) = min[pii , 1] where the smoothing parameter H goes from 0 (singu-
lar cascades) to 00 (Heaviside step functions). Viscek and Barabâsi [57] 
describe a variant of the mid-point displacement algorithm for generating 
fBm tha t yields processes with multiscaling structure functions and com-
pares their theoretical C(p)'s to those empirically determined for turbulent 
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F i g u r e 5. Structure function analysis of cloud LWC. (a) T h e quant i-
ties l o g 2 ( | A / ( r ) | p ) are plotted for log 2 (r / / ) = 0 , . . . , 13 and p = 1 ,2 ,3 ,4 . 
We have indicated the scaling range [?/, R] and the slopes are the expo-
nents ζ(ρ). (b) The corresponding ζ(ρ) function, demonstrating the 
multi-affinity of LWC and highlighting the remarkable values at p = 1,2 
discussed in connection with Equations (14a,b). 
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velocity. Arnéodo et al. [5] and Muzy et al. [44] use recursively gener-
ated fields (akin to cascades but with negative weights as well as positive 
ones) smoothed by fractional integration. Finally, Benzi et al. [11] have 
recently proposed a wavelet-based technique for generating fields with any 
prescribed ζ(ρ) function. 

We now turn to an alternative (and currently more popular) multifrac-
tal approach to statistical data characterization, singularity analysis, and 
another challenging issue in nonlinear processes, namely intermittency. 

§4. Quantifying and Qualifying Intermittency with Singular 
Measures 

In this section we turn our interest to random measures ε(χ) that are 
stationary (βε < 1); "measures" are non-negative processes defined in prin-
ciple only through integrals. Geophysical data generally does not come in 
this (stationary, non-negative) format, a notable exception being rain rate 
[29]. However, a stationary measure can always be derived from a signal 
(say) by finite differencing and taking absolute values (cf. Figures la,b). 
Other options are possible. For instance, working with one-dimensional tur-
bulent velocity signals, Meneveau and Sreenivasan [41] take squares rather 
than absolute values while Schmitt et al. [54] use "fractional" differenti-
ation (a high-pass power-law filtering). Working on two-dimensional im-
agery, Tessier et al. [56] experiment with gradients and Laplacians and, 
working with cascade models, Lavallée et al. [36] demonstrate numerically 
this makes little difference in the ensuing singularity analysis anyway. 

We will assume given some stationary random measure ε(χ) > 0, 0 < 
x < L, either on a grid (as for data) or in the continuum limit (as in the case 
of a theoretical model). Here again, wavelet-based techniques in singularity 
analysis were first investigated by Arnéodo et al. ([3], [4]). Their basic ideas 
are surveyed in the first subsection before reviewing the consequences of 
scaling; finally, we illustrate the whole approach with turbulence results 
from the literature and with our own LWC data, relating the new exponents 
to the dynamical concept of intermittency. 

4.1. Wavelets and "scaling functions" for singularity analysis 

The basic idea in singularity analysis is to degrade the resolution with 
which the measure e{x) is "observed" (mathematically speaking, via inte-
grals over intervals of variable lengths). This is very close to the concept 
of wavelet analysis (viewed as a mathematical microscope with a variable 
magnification or, more precisely, field of view). The simplest approach is 
to generate a sequence of spatially degraded or coarse-grained measures 
e(r;x), r /2 < x < L — r /2 (0 < r < L), obtained by averaging ε(χ) over 
[x — r /2 , x + r/2]. This is equivalent to a series of convolution products of 
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ε{χ) with Ir(x), as defined in Equation (6a): 

e(r;x) = - [ e{x')dx' = - [ ε(χ')ΙΓ(χ-χ')αχ' = ~[ε*/Γ](χ); (15) 
r Jx-r/2 r J r 

again eventual boundary complications are eliminated by making ε(χ) L-
periodic. Making use of the symmetry of Ir(x), we can rewrite Equa-
tion (15) as a wavelet-type transform: 

e(r;x) = l fs(X>)Ii(^)dx'. (16) 
r J r 

The kernel Ιχ (χ) is however more akin to a "scaling function" than a wavelet 
since it is everywhere non-negative, hence a non-vanishing integral. In fact 
h{x) is the scaling function of the Haar wavelet Φ//(χ) defined in Equa-
tion (9b). In the spirit of wavelet analysis however, there is no reason 
not to consider other weighting functions than I\(x) in Equation (16). A 
priori likely candidates need only to be symmetric, non-negative and to 
have a unit integral as well as an 0(1) "width" (say, at half-height). For 
instance, one could take a Gaussian-shaped function, ψ\/2 (x) in Equa-
tion (6b); a piece-wise linear function defined as the integral of — Φ//(χ) in 
Equation (9b), namely ΨΗ(Χ) = max{0,min[l — x, 1 + #]}, would do just 
as well. Figure 6a illustrates all three possibilities. 

More in step with standard wavelet analysis, Arnéodo et al. ([3], [4]) 
relax the conditions of non-negativity and having unit integrals; such well-
known wavelets as Mexican and French "hats" can therefore be considered. 
Figure 6b shows these famous examples: 

ψ Μ (χ) = - x / 2 ^ y ' ( x ) = >/2π[1 - χ2]ψι{χ), (17a) 
and 

f i W < i 
VF(x) = I - 1/2 1 < \x\ < 3 (17b) 

[ 0 |a?|>3 

The latter being a piece-wise constant approximation of the former, using 
a compact support. Here again there is no need for an orthonormal basis of 
functions. The common feature of the wavelets Φ ^ a n d ^ F · , currently used 
in singular measure analysis, as well as the scaling-type functions Ji, φχ/2 

and φπ is symmetry (hence orthogonality to linear functions in particular) 
and a degree of simplicity (i.e., less than two oscillations). In analogy with 
Equation (16), we consider the wavelet-type transform 

1 /* x — b 
Τφ[ε)(α,ο) = - ε(χ)φ( )dx, a > 0, b G 9ft, (18) 

G J G 

where φ(-) designates any of the above analyzing functions. Notice the 
same non-standard normalization here as in Equation (10), ensuring that 
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F i g u r e 6. (a) Weighting functions for singularity analysis. T h e sim-
plest is the indicator function of the interval of interest (all points are 
equally weighted), I\{x) in Equation 6a. A (non-normalized) Gaus-
sian centered on the interval and of the same width can be used, 
φο(χ) = ψ\/2{χ) m Equation (6b), or else a piece-wise linear func-
tion, ΨΗ(Χ) — max{0,min[ l — #, 1 -f #]} . Notice the positive values, the 
symmetry and the relative simplicity (i.e., one peak at most). These 
kernels are not unlike the "scaling functions" of wavelet theory, (b) 
Acceptable wavelets for singularity analysis. T h e second derivative of 
exp(—x2/2) or "Mexican hat" Ψ Μ ( # ) is illustrated as well as the sim-
pler (piecewise-constant, compact supported) "French top hat" Φ^(^) in 
Equation (17b). Notice again the symmetry and the relative simplicity 
(i.e., less than two complete oscillations occur). 
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the integral of the positive part of φ(χ/α), i.e., θ[φ(χ/α)], is oc a. This 
facilitates the following scaling comparisons; if ε(χ) varies little, then so 
will 7^[ε](α, b) with respect to both b and a. 

Arnéodo et al. ([3] and [4]) show tha t , within the general framework 
of scale-invariant (fractal- and multifractal) measures, the random wavelet 
coefficients in Equation (18) behave statistically like e ( r ;x ) with r « a 
and x « b; see also Ghez and Vaienti ([25] and [26]). In particular, the 
(|Τ^[ε](α,6)|9) will be independent of b and comparable to the 1-point sta-
tistical moment of order q for s(r ; x), namely (e(r; x)q) = (e(r)q). Although 
a weaker statement than ergodicity, the statistical stationarity of e(r; x) jus-
tifies estimating these moments by averaging Equation (18) with respect 
to b. In summary, we have 

(e(ry) « j-J fo[e](r,b)\* db, 0 < r < L, q G » , (19) 

independently of the choice of φ. Some restrictions might have to be im-
posed on the domain of q. For instance, if s(r; x) can take null values then 
we must take q > 0. If, over and above the spatial averaging in the r.h.s. of 
Equation (19), bona fide ensemble-averages are taken then non-trivial sta-
tistical effects lead to the divergence of the higher positive order moments 
for many interesting theoretical models of e(x) ([37], [33], [52] and [53]). 
The divergence of moments is also discussed by Holley and Waymire [32] 
and Gupta and Waymire [29] who furthermore clarify the issue of ergodic-
ity within the theoretical framework of multiplicative cascades as models 
for ε(χ). 

One might object to using coefficients for continuously overlapping 
wavelets in Equation (19) for the averaging, not being independent random 
numbers. If required, this minor problem (redundancy is often viewed as 
desirable) can be fixed by replacing the integral in Equation (19) by a sum 
over wavelets with somewhat more disjoint supports: 

^ 0 L ' J BL(r) 

where [·] means integer value and BL(T) = {b G [0, L], b = ir (i = 
0 , . . . , [L/r] — 1)} is the relevant set of disjoint "boxes" of size r . 

Before considering the scaling properties of the average measures (s ( r ) 9 ) , 
we must point out tha t Arnéodo's group does not systematically average 
away the localization information in Τ^[ε](α, 6). On the contrary, its mem-
bers are actively researching "inverse" fractal problems. This consists in 
retrieving from the structures they see in Τ^[ε](α, 6), viewed as a field in 
(a, fc)-space, the dynamics of the system used to generate ε(χ) in the first 
place. To this effect they have developed the "modulus maxima wavelet 
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transform" method and have successfully applied it to a variety of systems 
ranging from the deterministic Cantor measure (e.g., Arnéodo et al., [3] 
and [4]) to random diffusion limited aggregates (e.g., Arnéodo et al., [6] 
and [8]). 

4.2 . Scale-invariant singular measures , general i t ies 

For scale-invariant measures, we will seek the exponent K(q) in 

( e ( r ) ' ) o c r ^ ) . (20) 

We are following the notations and conventions suggested by Schertzer and 
Lovejoy [52]. An alternative but more widely used approach uses sums 
rather averages over r-sized sets, i.e., the focus is on p(r;x) — re(r\x) « 
Γ|Τ^[ε](Γ,χ)\ in one spatial dimension. One then defines the "partition 
function" Zq(r) = (Ep(rlx)q) a n ( ^ where, as suggested above, the sum 
carries over disjoint r-sized boxes rather than all possible x's as in Equa-
tion (19). There are precisely [L/r] such boxes at scale r in one dimension. 
For scale-invariant measures, the scaling of Zq(r) is parameterized as rT^. 
A little algebra leads to r(q) = (q — 1) — K(q). 

Some general results follow from the above definitions. For the same 
reasons as for s tructure functions, (s(r)q) and K(q) are smooth functions 
of q and, in analogy with — ζ(ρ) in Equation (12), K{q) will be convex 
(Kf,(q) > 0), although we must still require tha t the prefactors in Equa-
tion (20) depend only weakly on q. Proper normalization of the 1-point 
p.d.f.'s of the measures e(r;x) requires K(0) = 0 in Equation (20), just 
as ζ(0) = 0 in Equation (12). There is also an essential difference with 
s tructure functions. Consider the case q = 1; the two averages in Equa-
tions (15)-(18) and (19) - inside one-dimensional "boxes" and over these 
boxes when using I\ (·) - commute and we find (s(r)) = constant, hence 
K(l) = 0. Since K(0) = K(1) = 0, convexity implies K(q) < 0 for 
0 < q < 1 and K(q) > 0 elsewhere as well as K'(0) < 0 and K'{\) > 0. 

It is important to know what to expect for weakly variable e(r; x) fields, 
i.e., where (e(r)q) « (e(r))q. Equation (20) then yields K(q) = qK{l) = 0, 
the (s(r ) 9 ) ' s are constant with respect to r; also the = ' s will apply in all 
of the inequalities discussed in connection with Equation (20). Conversely, 
it is easy to show tha t finite K(q) 's (q φ 0,1) imply extremely singular 
measures. To see this we first adopt units of length where L = 1 and 
units for ε(χ) where (e(r)) = 1, 0 < r < 1. As soon as r < 1, we have 
{e(r)q) < 1 for 0 < q < 1 (due to -K(q) > 0) and (e{r)q) » 1 for 
q > 1 (—K(q) < 0). Taking the qr-th power of a non-negative random 
variable considerably reduces its range if 0 < q < 1 so, in order to obtain 
(s(r) 9 ) <̂C 1, we need a p.d.f. for e(r; x) tha t is concentrated on vanishingly 
small values. This is however incompatible with (s(r)) = 1 unless the 
said p.d.f. is also very skewed in the positive direction. We can envision 
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broad expanses of very small ε-values interrupted by many narrow "spikes," 
defined (say) by ε > 1, with a variety of heights, the larger the rarer. This 
is what we mean by an "intermittent" process, i.e., one characterized by 
sudden bursts of high-frequency activity, recalling that e(x) is computed 
from gradients in the first place (a high-pass filtered version of the signal). 

In the above discussion it is important to bear in mind that in practical 
data-analysis situations a finite K(q) does not automatically imply a high 
degree of intermittency. Indeed, at finite spatial resolution - necessarily the 
case with data - a weakly variable measure will always yield small values 
of K(q) (for q φ 0,1), a "residual" or "spurious" multiscaling. An example 
of this behavior is discussed by Marshak et al. [39]. 

An extreme case of intermittency arises when e(x) is a single J-function 
placed at random on [0,1]; our definitions lead to K(q) = q—l for q > 0 ([17] 
and [39]). However, we will generally be dealing with measures which are 
not as singular - nor intermittent - as this; instead of being concentrated 
onto a single point, the measure is distributed over many smaller peaks. 

Here too a hierarchy of exponents can be defined, this time a non-
decreasing one: 

C(q) = ^ , (21a) 

recalling that K(q) is convex and that K(l) = 0. It can be directly related 
to the well-known non-increasing hierarchy of "generalized" dimensions 

D(q)=l-C(q), (21b) 

first introduced by Grassberger [28] and Hentschel and Procaccia [31] with 
dynamical systems and strange attractors in mind. Following Parisi and 
Frisch [48] who where focusing explicitly on structure functions, Halsey et 
al. [30] established an interpretation for D(q) in terms of variable orders 
of singularity. (In this case, "singularity" is used in the sense of measures: 
how does a(x) in p(r;x) = rs(r;x) oc r _ a ( x ) vary with χΊ) 

Obtaining K(q) and C(q) or D(q) is the goal of this approach, providing 
us with a means to characterize intermittency, in both quantitative and 
qualitative terms (examples to follow). 

4.3. Geometrical, spectral and dynamical implications of 
statistical singularity analysis 

Measures with a variable C(q) are known as "multifractals" (one should 
specify stationary). This leaves measures with non-vanishing constant C(q) 
- hence K{q) oc (q—l) - to be "monofractals" (again stationarity being 
implicit). In essence, a random (deterministic) fractal is a sparse subset of 
space that can be described statistically (exactly) with a single exponent, 
its fractal dimension. Whether viewed as a stationary random measure 
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(present section) or as a non-stationary random function (previous section), 
a multifractal calls for many exponents; each of these is dominated by 
a specific kind of event and can therefore be associated with the fractal 
dimension of the set where such events occur. 

Following as closely as possible our discussion of s t ructure function 
analysis, it is of interest to seek a simple but meaningful way of charac-
terizing the sparseness and /or intermittency in the system, using a single 
exponent rather than a whole family. It is natural to consider the mean 
(i.e., the case q = 1). We already know tha t (s(r)) is unit , independently 
of r (K(l) = 0), when the measure is appropriately non-dimensionalized. 
We would however like to know where the events tha t contribute most to 
{s(r)) occur. Recall tha t an overwhelming majority of ε-values (i.e., the 
most probable ones) are <C 1; these "typical" events fill space, leaving only 
a sparse (fractal) set where e(r;x) > (e(r)) = 1. If "average" events (i.e., 
e(r;x) « 1) are already a rare occurrence, they cannot contribute enough 
to the mean (e(r)) to offset the effect of the numerous small values. We 
must go to much higher values hence somewhat rarer events. It can be 
shown tha t the codimension of the set where these "singularities" live is 

d = C(l) = 1 - D(l) = K'(l) > 0, (22a) 

where -D(l), the fractal dimension of this set, is known as the "information" 
dimension ([28] and [31]). This tells us tha t we can set the largest value 
for C\ at 1 for D(l) = 0, at tained in particular for randomly positioned 
J-functions (all the measure is concentrated into a single point) . Processes 
with C\ > 1 are called "degenerate:" almost every realization is empty and, 
every now-and-then, one occurs with a huge peak, perturbing the ensemble 
average each time. At the opposite limit, C\ —> 0 (weak variability), we 
find information everywhere: D{1) = 1. 

An infinite number of exponents is needed to describe multifractals 
completely. For instance, there is no general relation between C\ and the 
spectral exponent which is however connected with the q = 2 moment: 

βε = 1 - K(2) = 1 - C(2) = D(2) < D(0) = 1, (22b) 

a special case of the Wiener-Khintchine theorem for stationary scaling pro-
cesses (cf. Appendix). We will nevertheless retain C\ as the single most 
important exponent in the whole C(q) hierarchy. The geometrical signifi-
cance given in connection with Equation (22a) is not as important as the 
fact tha t C\ defines as simply as possible the linear t rend in C(q) or D{q). 
In other words, we have a first order estimate of the departure of the ε-field 
from weak variability (non-intermittency) tha t is readily obtained from a 
K(q) graph (cf. Figure 8b). In summary, we view C\ as a direct quanti-
fier of intermittency in the system and the complete /*T(g)-, C(q)~ or D(q) 
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function as a means to qualify this intermittency. 
Unlike the concept of non-stationarity for structure functions, there is 

no need to argue the dynamical relevance of intermittency. The concept 
was imported from turbulence into statistics in the first place. We now 
provide some examples both theoretical and empirical. 

4.4. Examples from theory, turbulence and cloud structure 

In Figure 7 we show four random processes, all theoretical cascade mod-
els ε(/; x) with / = L/1024 and log-normal multiplicative weights W, as first 
proposed by Kolmogorov [35] and Obukhov [47] to emulate the variability 
of the dissipation field in turbulence (ε oc du2 /dt). Clearly different degrees 
of intermittency are present. At the top, we find a flat field (corresponding 
to degenerate weights) which is trivially stationary and non-intermittent: 
C(q) = 0. At the bottom, we find a very intermittent process: C(q) = qC\ 
for q < 1/Ci with Cx = 1/2 In 2 « 0.72 (σ2

ηΐν = 1) and divergent mo-
ments for q > 2 In 2 « 1.34 (including q = 2). Between these two extremes, 
we find two intermediate examples of log-normality, illustrating more-and-
more intermittency with C\ « 0.05 and 0.18. However, these models all 
have the same "kind" of intermittency or multifractality. The same form 
of C(q) applies throughout, there is no change in qualitative behavior (in 
particular, there is always a threshold for divergence of higher moments). 

Within the framework of the statistical theory of turbulence alone, 
many other cascade-type intermittency models have been and are still be-
ing proposed (and discussed at length). Novikov and Stewart's [46] model 
of "pulses within pulses," Mandelbrot's [37] model of "absolute curdling" 
and Frisch et α/.'s [24] "/?-model" are all characterized by the frequent oc-
currence of null multiplicative weights; they are generically described by 
K(q) = Ci(q— 1) or C(q) = C\ (i.e., monoscaling) with 0 < C\ < 1, for 
q > 0 and K(q) = oo for q < 0. Schertzer and Lovejoy's [51] "a-model" 
and Meneveau and Sreenivasan's [42] "p-model" have log-binomial weights; 
they are generically described by K(q) = log2\pWq + p'W,g], assuming for 
simplicity that the cascade proceeds by divisions into two sub-intervals in 
one spatial dimension, with q € U and parameters verifying p + pf = 1 
(from K(0) = 0) and pW + p'W = 1 (from K(l) = 0), hence from Equa-
tion (22a) Ci = pW \og2 W + p W l o g 2 W. Benzi et al. [10] proposed a 
"random /?-model" which also exhibits multiscaling. Schertzer and Lovejoy 
[52] advocate a family of "universal" cascade models with log-Levy stable 
weights that are generically described by K(q) = C\{qQ — q)/(a— 1) with 
0 < a < 2 , f o r g > 0 and K(q) = oo for q < 0, the limiting cases a —> 0+ 

and a —y 2~ leading back to monofractality and log-normality respectively. 
Certain choices of parameters in the above can lead to the divergence of 
higher moments, hence to an upper bound on the range of ςτ, namely q < qD 
where qD is the solution of K{q) = q - 1 for q > 1 ([33], [37], [53] and [32]). 
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F i g u r e 7. Different amounts of the same kind of intermittency. T h e 
construction of an ε(1; x) field using a cascade model calls for recursively 
dividing subsets of [0, L] into (say, twice) smaller ones and multiplying 
the current value of ε(/; x) {l/L = 2 , 4 , 8 , . . . ) by independently chosen 
non-negative random numbers W with unit mean. It can be shown 
that, apart from the effects of divergence of higher order moments (see 
text) , K(q) = l og 2 (W 9 ) [43]. We used log-normal deviates which lead to 
K(q) = C\q(q— 1), q < 1 /Ci , and varied the fundamental intermittency 
parameter C\ as indicated by changing the log-variance of the W s : 
C\ = σι2

ηνν/21η2 with σ = 0.0,0.25,0.5,1.0. However, by enforcing 
throughout the log-normality, we obtain the same "flavor" of intermit-
tency in different amounts. Other types of scale-invariant intermittency 
are discussed in the text. 
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F i g u r e 8. Singularity analysis of cloud LWC. (a) T h e quant i t ies 
(e(r)q) are plotted for log 2 (r / / ) = 2 , . . . , 4 and q = 1 ,2 ,3 ,4 . We have 
indicated the lower end of the scaling range η and the absolute slopes 
are the exponents K(q). (b) The corresponding K(q) function, demon-
strating the multifractality of absolute gradients of the LWC field such 
as in Figure lb . We have highlighted the remarkable values at q = 1,2 
discussed in connection with Equations (22a,b). 
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The most quoted singularity analysis of the dissipation field in turbu-
lence is due to Meneveau and Sreenivasan ([41], [42]) who determined (an 
exponent family closely related to) K(q) for wind tunnel and atmospheric 
boundary layer flows at high Reynolds numbers; see also [54]. Empirical 
values for C\ fall in the range 0.2-0.3. Argoul et al. [2] show graphic evi-
dence of the cascade process using the wavelet in Equation (17a) directly on 
the velocity field. In the same spirit of "inverse fractal theory" (i.e., finding 
the internal dynamics from the data), Arnéodo et al. ([3], [4]) investigate 
deterministic cascade models. 

Figure 8a shows log2[(|s(r)|^)/(|ε(£)|9)] versus log2(r//) for q = 1,2,3,4 
and r > η = 41 prepared for the time-series of LWC in Figure la. Specifi-
cally, we formed absolute differences over distances of 4 grid points (η — 20 
m, the lower bound of the scaling regime as defined by the structure func-
tions in Figure 5a). Four such absolute gradient fields can be obtained and 
one of these is illustrated in Figure lb. The (|e(r)|9)'s are then computed 
in the standard (Jr(x)-based) way by averaging first over space, as in Equa-
tions (15)-(19) and using disjoint r-sized boxes; then an average over all 
four cases is performed. A priori, we wish to characterize intermittency in 
the same range of scales [77, R] as for the non-stationarity previously but we 
recall that, being caused by a single event, the break in scaling observed 
at R « 5 km in Figure 5a is not robust [18] and we are justified in seeking 
scaling behavior in (|e(r)|9) up to r = L. The absolute slopes in Figure 8a 
give the corresponding value of K(q). In Figure 8b we have plotted K(q) 
and highlighted two remarkable values: K'(l) = C\ « 0.1 and K{2) which 
is related to the spectral exponent βε of the ε-field, as described in the 
Appendix. We notice the strong evidence of intermittency in the structure 
of marine StCu (K(q) is non-vanishing) and that it is multifractal in nature 
(in the sense of "multi-singular" measures, K(q) is nonlinear). 

§5. Summary and Bi-Multifractal Statistics 

5.1. Comparative multifractal analysis from the wavelet 
theoretical standpoint 

In the course of our survey, we have drawn many parallels between 
the two multifractal statistical data analysis techniques. There are also 
fundamental differences. To better appreciate these, we compare item-per-
item definitions, results and related concepts for structure functions and 
singular measures. 
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Statistical 
Operation : 
input : 
nature : 
condition 

(E(k)~k-P)-: 
Define £(r; x) > 0 : 

A(z) in (ξ(ν;χΥ) 
ex rA^ : 

solution (s) of 
A(z) = 0 : 

exponent hierarchy : 

spectral property : 
analytical properties : 

geometrical property : 
statistical/dynamical 

property : 

Structure 
Functions 

/oo 
function 
non-stationary 
(ßf > 1) 
| Δ / ( Γ ; Χ ) | = 

\f(x + r)-f(x)\ 

C(*) 

z = 0 

H(z) = ζ(ζ)/ζ 

ßf = C(2) + 1 > 1 
continuity but 
non-differentiability 
roughness 

non-stationarity 

Singular 
Measures 

Φ) 
measure (ε(χ) > 0) 
stationary 

(A < i) 
e(r;x) = 

H:+rs{y)dy 
-K(z) 

z = 0,l 

C(z) = 
K(z)/(z-l) 

ββ = 1- K{2) < 1 
discontinuity 
and singularity 
sparseness 

intermit tency 

Although wavelets yield only variants of existing techniques rather 
than radically new approaches in multifractal analysis, one does achieve 
a higher degree of unification. In section 3 we had "differencing" (high-
pass) wavelets acting on the raw data. In section 4 we have "averaging" 
(low-pass) wavelets acting on the absolute differences derived from the same 
da ta (or some other measure sensitive to the high frequencies). One way 
or another, we are focusing on the singularities of the gradient field and 
this seems to imply tha t the two kinds of multifractality we observe (say, 
in clouds) are really just two facets of a deeper one, independent of how 
it is characterized. In this spirit, we now describe a merger of the two 
approaches and its potential benefits. 

5.2 . O n Ç(p)-to-/f(çr) connect ions 

Recalling tha t e{x) is derived from f(x) for a given geophysical process 
(e.g., governing cloud structure), both / ( # ) ' s s tructure functions and s(#) 's 
singularity analysis can produce evidence of multifractality. It is therefore 
natural to ask "Is it fundamentally the same multifractality?" and, if so, 
"Is there a connection between ζ(ρ) and K(q)T\ The answer to the former 
and more philosophical question is probably "yes." Davis et al. [17] address 
the lat ter question from an empirical perspective, suggesting tha t the fields 
| Δ / ( Γ ; Χ)\ and e(r; x) be studied jointly. This can of course be done within 
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the framework of wavelets by computing 

( | Δ / ( Γ ; x)\"e(r; x)") *±J |T*[/](r, b)\f\^[e](r, b)\" db oc r*<™\ (23) 

with the appropriate ranges for p and q defined in Equations (11) and (19); 
concerning r, one should of course remain in the scaling regime defined in 
Equation (4). The new exponent function X(p,q) reverts to known cases 
for q = 0 and p = 0 and will be concave (dppX < 0, dgqX < 0) on its 
domain of definition. 

Davis et al. [17] show how the X(p,q) can be used to test the scaling 
hypothesis that there exists two exponents t > 0 and s > 0 such that 

ε ( Γ ; ι ) = Μ . (24) 

This generalizes Kolmogorov's [34] relation for fully developed turbulence 
corresponding to s = 1 and t = 3; more precisely, Kolmogorov argued 
Equation (24) not at every x but on average only, hence Ç(£ = 3) = s = l 
since we know that (s(r)) is independent of r. If however Equation (24) 
applies everywhere, then it follows (by taking p/t-th powers and averaging) 
that 

C(p) = (f)p-if(f), (25) 
as often quoted in the case of turbulence in spite of the fact that Equa-
tion (24) has not been verified beyond Kolmogorov's average at p = t = 3 
([55]; and references therein). So it appears that at least two new pa-
rameters are needed to connect £(·) and ΛΓ(·), the essential one being 
s = ζ(ί) which allows Equation (24) to relate a stationary field (ε) to a 
non-stationary one (/) . Indeed, for small enough C\ the values of K(p/t) 
in Equation (25) will be small as well (except possibly when p ^> i); in 
turbulence theory K(p/3) is called an "intermittency correction" (usually 
at p = 2). This makes (s/t)p reflect, to first order, the non-stationarity of 
f(x) in Equation (25) since we then get ζ(ρ) « (s/t)p hence Hi « s/t (1/3 
for turbulence). 

5.3. The mean multifractal plane 

The above ideas are important since they can in principle be used to 
establish, from data alone, relations such as Equation (24) that can be 
viewed as effective constitutive laws [17]. However in many practical situa-
tions we are not interested in dealing with the large number of exponents in 
ζ(ρ) and/or K(q), let alone the larger number needed to represent X(p, q). 
Can we restrict ourselves to a single exponent from each multifractal ap-
proach? The natural choices are Hi and Ci with no risk of redundancy, 
even if Equation (25) applies. This minimal multifractal parameteriza-
tion enables us to define the "mean multifractal plane" with coordinates 



278 A. Davis et al. 

(Hi, Ci) G [0,1] ® [0,1], the upper limit on Ci being imposed only to ex-
clude degenerate gradient fields. Figure 9 represents an (ifi,Ci)-plot that 
we have populated with empirical findings from the turbulence literature 
(approximate positioning) and some of our LWC studies (precise position-
ing). 

We notice on Figure 9 that the models discussed in this paper fall pri-
marily on either axis: additive processes (Section 3.3) have Ci = 0 and 
Hi > 0 (they are neither intermittent nor stationary) while multiplicative 
cascades (Section 4.3) have Hi = 0 and Ci > 0 (they are both stationary 
and intermittent). We have added Mandelbrot's [38] "Devil's staircases" 
which are simply integrals of cascade models, obeying Equations (24)-(25) 
with s = t = 1 according to Equation (15). They are found at Hi = 1 and 
finite Ci (they are almost everywhere differentiable but, having fully devel-
oped cascades as gradient fields, they are intermittent). A more familiar 
case is found at Hι = Ci = 1: Heaviside steps, the integrals of Dirac £'s. It 
seems that these standard scale-invariant models carefully avoid the locus 
of the data, inside the square domain. This clearly demonstrates the need 
for a new class of stochastic models that can access the whole multifrac-
tal domain and which are likely to have both additive and multiplicative 
ingredients. A list of publications where such multi-affine models are de-
scribed is provided at the end of section 3; we believe this list (of five) to 
be exhaustive at the time of publication but there is little doubt that many 
more will follow. We also anticipate numerous geophysical applications for 
(Hi, Ci )-plots. In particular, we foresee all sorts of data-to-data and data-
to-model intercomparisons for the purposes of validating numerical models 
or retrievals from remote sensing for instance ([16] and [18]). 

§6. Conclusions 
Wavelets have been extensively used to show in graphic detail how 

structures occur on all observable scales in many geophysical signals. A 
natural environment for modeling such signals is provided by stochastic 
processes which have no characteristic scale (sporting, e.g., power-law en-
ergy spectra) and these are best described by multiscaling or "multifractal" 
statistics. Since scale-invariance prevails in nature as well, we are urged to 
blend wavelet- and multifractal analysis techniques. The major benefit of 
this merger for the wavelet community is the fact that multifractal statis-
tics have strong dynamical overtones; they can be used to characterize in 
quantitative and qualitative terms both intermittency and non-stationarity. 
The benefit for the multifractal community is a somewhat more unified view 
of their two main tools, singularity analysis (targeting the intermittency) 
and structure functions (targeting the non-stationarity). This connection 
is timely because many important questions are still open about the inter-
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F i g u r e 9 . The "Mean Multifractal Plane" or ( # i , C i ) - p l o t . See text 
for details on the various models and the point for LWC in marine 
StCu (FIRE, 30 /06 /87 ) . Also indicated are points mapped to the av-
erages over whole LWC databases captured during FIRE in 1987 off 
the southern Californien coast and the Atlantic Stratocumulus Transi-
tion Experiment (ASTEX) in 1992 near the Açores; see [18] and [16] 
respectively for details. The proximity of these two points argues for 
a degree of universality in the nonlinear dynamics that determines the 
internal distribution of liquid water in marine StCu under rather dif-
ferent climatological conditions. The distance between these points and 
the one obtained for the 30 /06 flight during FIRE illustrates a dramatic 
violation of ergodicity in this rather typical atmospheric process, hence 
the need for vast databases to define the behavior of this and other 
atmospheric fields in statistically robust quantitative terms. 



280 A. Davis et al. 

action of intermittent cascade-type fields and directly observable ones; for 
instance, how does the intermittency of the dissipation field affect locally 
the velocity field in turbulence? 

The main ideas of multifractal analysis are presented from a wavelet 
standpoint and amply illustrated with theoretical models and empirical 
results drawn from the turbulence literature. New analyses of the liq-
uid water density field are also presented in sufficient detail to serve as 
a tutorial. We describe how to systematically seek and how to interpret 
connections between structure functions and singular measures for a given 
type of data. Arguing that these connections are non-trivial to say the 
least, we define the "mean multifractal plane" by judiciously selecting a 
single exponent from each multiscaling approach, H\ for structure func-
tions and C\ for singular measures. Finally, we use the (i?i,Ci)-plot to 
discuss several theoretical and empirical findings. This simple diagnostic 
device will be helpful in many outstanding geophysical problems of find-
ing statistically robust and physically meaningful ways of intercomparing 
data of different but related origins, numerical model output included. It 
is used here to show the need for a newly introduced class of stochastic 
models known in the physics literature as "multi-affine," to demonstrate 
a violation of ergodicity in the distribution of liquid water in a particular 
marine stratocumulus cloud deck, and to argue for a degree of universality 
in the dynamics that determine these distributions. 

A. Stationarity, Intermittency, Integral Scales and Stochastic 
Continuity - A Tutorial in the Framework of 
Scale-Invariance and Second Order Statistics 

A . l . Stationarity versus ergodicity 

A property of fundamental importance in the theory of stochastic pro-
cesses, especially from the standpoint of data analysis, is statistical "sta-
tionarity." In essence, a stationary quantity is statistically invariant under 
translation. In principle one should talk about statistical "homogeneity" in 
the spatial domain but we prefer the term "stationarity" borrowed from the 
time domain; in this way we avoid any confusion with the idea of constant 
fields. 

When analyzing data, one generally uses the spatial coordinate to per-
form various averaging operations, as described in the main text. This 
amounts to making an "ergodicity" assumption (i.e., that spatial averages 
will converge towards their ensemble counterparts as the amount of data 
increases). Stationarity is a far weaker assumption than ergodicity, but eas-
ier to work with on theoretical grounds and more reasonable in empirical 
situations. For example, Holley and Waymire [32] and Gupta and Waymire 
[29] show that multiplicative cascade models (which we will use to illustrate 
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stationarity further on) are generally non-ergodic. The highly correlated 
fluctuations that characterize these models cause the (spatial) law of large 
numbers to fail. Schertzer and Lovejoy [53] pursue these issues in more 
quantitative terms, dependent on what portion of probability space (the 
set of all possible realizations) is sampled. 

Neither ergodicity nor stationarity can be established rigorously for 
a dataset, no matter how long. We must rely on consistency checks and 
we show here how scale-invariance eases this task. The central role of the 
"integral scale" is also underscored. Throughout, we illustrate the con-
cepts with additive (non-stationary and non-intermittent) and multiplica-
tive (stationary and intermittent) scale-invariant models as well as a well-
known non-scaling example (Ornstein-Uhlenbeck processes). Finally, we 
show that there exists a strong connection between stochastic continuity 
and non-stationarity for scaling processes. 

A.2. Stationarity and scale-invariance in physical space, the 
integral scale 

Let f(x) be a real random process defined either continuously (for a 
theoretical model) or discretely (for data) on the interval [0,L]. A first 
consequence of stationarity concerns 1-point statistics, e.g., for the mean 
we find (f(x + r)) = (/(#)), 0 < r < L , 0 < # < L — r. A 2-point statistic 
of obvious interest in time series analysis is {[f(x + r) — (f(x + r))][f(x) — 
(f(x))]}', under stationary conditions, it reduces to the auto-correlation 
function 

{f(x + r)f(x)) = G(r), (A.l) 

using a linear transformation that reduces (f(x)) to zero. The identity in 
Equation (A.l) follows from stationarity and we notice that G(0) = (/(#)2), 
1-point variance. A popular application of G(r) is the estimation of the 
"integral" correlation length: 

R = W)fG{r)dr· ( Α · 2 ) 

To a first approximation, this length scale draws the line between correlated 
(r < R) and uncorrelated (r > R) values of f(x) and f(x + r), a sort of 
statistical period in the data. 

For scale-invariant processes (i.e., with power-law 2-point statistics), 
we can anticipate 

G(r) oc Γ~μ, μ>0 (Α.3) 
in stationary situations. The exponent μ must be positive since we gen-
erally expect less correlation as r increases. Equation (A.3) cannot be 
substituted directly into Equation (A.2). Firstly, there is always an outer 
limit to the range of scales where Equation (A.3) can apply; for a process 
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defined on [0,L], we must require G(r) = 0 for r > L. There is also an in-
ner scale in most situations of practical interest; for 0 < r < /, we can take 
f(x + r) « / ( # ) hence G(r) « G(0). Between these limits (with / <^ £ ) , we 
assume Equation (A.3) to apply; more precisely, we take G(r) « G(0)[l/ry. 
It follows tha t 

y « (l)m i n[M. (A.4) 

So, for all practical purposes, the exponent μ in Equation (A.3) cannot ex-
ceed unity without leading to fields tha t are uncorrelated from one pixel to 
the next. If μ -> 0 (hence R& L), there is no t rend towards decorrelation; 
we view this as a symptom of non-stationarity and in Section A.5 will intro-
duce a 2-point statistic bet ter adapted to this situation than ( / ( # 4 - r ) / ( # ) ) . 

A . 3 . A Fourier space criterion for s tat ionäri ty 

The Wiener-Khintchine theorem states tha t , under necessarily station-
ary conditions, G(r) in Equation (A.l) and E(k) in Equation (3) form a 
Fourier transform pair. So, in particular, the integral scale R can be more 
efficiently computed from 

/»OO 

R = E(0)/ E(k)dk, (A.5) 
Jo 

using fast Fourier transforms. 
In their scaling versions Equations (A.l) and Equation (5), the Wiener-

Khintchine theorem translates to 

β + μ = 1, (Α.6) 

which implies, in particular (μ > 0), tha t 

β < 1. (A.7) 

This criterion for stationarity is readily applicable to any kind of da ta tha t 
comes on a grid and exhibits scaling behavior. Although not a proof of 
stationarity for data , Equation (A.7) should be verified before computing 
(f(x + r)f(x))-or any other statistic requiring stationarity - via spatial 
averaging. 

The simplest possible stochastic process is a sequence of independent 
random numbers; viewed as a field /o(#) , x > 0, it is uncorrelated - or 
rather "δ-correlated" - and stationary by construction: Go(r) oc S(r). The 
subscript "0" stands for vanishing R in Equation (A.2) or (A.5), due to the 
infinite denominator. Figure A l a provides a sample of such white (β = 0) 
noise tha t we will denote fo(x) for 0 < x < L = 4096 using zero-mean 
unit-variance Gaussian deviates. We now describe a more interesting case 
of scale-invariant stationarity. 
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K(x) 

f f ( x ) 

F i g u r e A l . Scale-Invariant Stationary and Non-Stationary Noises, 
Along with an Intermediate Non-Scaling Case, (a) Unit-variance zero-
mean Gaussian white noise fo(x), 0 < x < L = 4096, which is scaling, 
stationary (ß = 0 < 1) and discontinuous, (b) Brownian motion foo(x) 
- essentially the running integral of (a) - is scaling, continuous and non-
stationary (ß = 2 > 1). (c) An Ornstein-Uhlenbeck process obeying 
a simple stochastic ODE, Rf'n + /R — /o with an integral scale pa-
rameter R = L /8 . Its spectrum is E(k) = £ ( 0 ) / [ l + (kR)2]. Being 
non-scaling, this model can be at once stationary ( ( / R ( X + r)fn(x)) = 
G(r) = G(0)exp[-r/R]) and continuous ({[fR(x + r ) - / Ä ( X ) ] 2 ) = 
2[G(0) — G(r)] -¥ 0 when r - > 0 ) . However, the scaling cases in panels 
(a) and (b) are retrieved in the limits R —> 0 and R —> oo respectively, 
hence the subscripts. 
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step no. Ί (3Ί=3 points) 

< R ^ -

F i g u r e A 2 . Development of a Log-Normal Multiplicative Cascade. 
The inset shows the growth of the "singularities" (spikes) through the 
1-st, 2-nd and 4-th cascade steps. The 6-th step is illustrated in more 
detail: ε(χ) is represented for 0 < x < L = 1 with a grid constant 
/ = 3 ~ 6 = 1/729. Because it uses unbounded multiplicative weights, 
this type of cascade process is patently non-ergodic ([32], [53]). How-
ever, the spatial average of this particular realization is approximately 
equal to the ensemble average (namely, unity). Below the horizontal 
axis, we have indicated the integral length scale, R « L / 5 in this case 
(see text for details). 
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A.4. Multiplicative cascade models, stationarity and 
intermittency 

As a further illustration of scale-invariant stationarity, consider a mul-
tiplicative cascade process, traditionally denoted ε(#), 0 < x < L. These 
are constructed by initially setting ε(χ) = EL then subdividing [0, L] into 
(say) ra = 2 equal parts, [G, L/2] and [L/2, L], and multiplying e{x) in each 
one by W\ and W[, both unit-mean non-negative random variables drawn 
from the same distribution. This defines ε(/; x) for / = L/2. The procedure 
is repeated ad infinitum: 

n 

Φ x) = eL fi W{, l/L = τη~η -+ 0. (A.8) 
1 

In Figure A2 we used m = 3, log-normal Ws with log-standard devi-
ation σιη \y = 0.5 and log-mean — σ2

η w/2 in order to ensure proper nor-
malization (i.e., (W) = 1); cascade steps n = 1,2,4 (inset) and 6 are 
illustrated. The statistical properties of 

oo 

ε(χ) = lim ε(Ζ; x) = [ J W{ (A.9) 
""* î 

have been investigated primarily in the turbulence literature ([35], [47] and 
[37]), as a model for the intermittency of the dissipation field in very high 
Reynolds number flows. These processes, known as "multifractals" [48], 
are now widely applied in deterministic chaos [30]. 

Stationarity in the above sense [Equations (A.3)-(A.7)] follows from 
[43] 

(ε(χ + r)e(x)) ~ r~K^, K(2) = logm<W?> (A.10) 

using notations consistent with those of section 4. Comparing with Equa-
tion (A.3), we have 

με = K(2) > 0, (A.ll) 

which is known as the "intermittency" parameter. The inequality in Equa-
tion (A.ll) follows directly from Schwartz's: (Wf) > (Wi)2 = 1. This 
establishes stationarity (βε = 1 — με < 1) as soon as the variance of the 
weights is finite, (W?) — (Wi)2 > 0. In this case "=" corresponds to degen-
erate multiplicative weights (Wi = 1) hence flat fields which are trivially 
stationary. In Figure A2 we take m = 3 and the numerical values lead 
to με « 0.23 and from Equation A.4 we find R/L « 0.22 for L/l = 729 
(n = 6). 
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Α.5· Non-stationary scale-invariant situations, up to the integral 
scale 

In non-stationary cases where 

/ ? > 1 , (A.12) 

the field f(x) can fluctuate wildly, given enough space, since there is rela-
tively more energy (variance) in the large scales. Being dependent on x as 
well as r, the quantity in the l.h.s. of Equation (A.l) is no longer a simple 
statistic, dependent only on the lag r. One can however work with incre-
ments of f(x): Δ / ( Γ ; X) = f(x + r) - f(x) with 0 < r < L, 0<x <L-r, 
which will be less sensitive to the local value of / ( · ) . The (2-nd order 
2-point) statistical counterpart of Equation (A.l) is 

< Δ / ( Γ ; 2 0 2 ) = ( Δ / ( Γ ) 2 ) (Α.13) 

where the identity assumes "stationary increments." The statistic in Equa-
tion (A. 13) is known in turbulence studies as a "structure function" [43] 
and in geostatistics as a "variogram" [13]. 

In scale-invariant situations, we expect the 2-nd order structure func-
tion in Equation (A. 13) to obey a power-law: 

( Δ / ( Γ ) 2 ) OC r«2\ 0 < C(2) < 2, (A.14) 

where the exponent is denoted ζ(2) for consistency with section 3 in the 
main text. We generally expect ( Δ / ( Γ ) 2 ) to be a non-decreasing function 
of r, hence the sign of the exponent. The limit ζ(2) -> 0 (increments 
independent of the scale involved) leads back to a stationary statistical 
regime. The opposite limit ζ(2) —» 2 can be associated with the class of 
(almost surely everywhere) differentiable functions since \f(x + r) — f(x)\ oc 
r will not be a rare occurrence in this case. 

It is easy to see why there is always an upper bound to the non-
stationary range for the scale parameter r in physical processes. If r —> oo 
in Equation (A.14) then Δ / ( Γ ; Χ ) , hence f(x) itself, must also take arbi-
trarily large values whereas most geophysical fields have natural bounds. 
Some are necessarily non-negative (e.g., albedo, rain rate, density of an ad-
mixture in turbulence); others are limited by in absolute value, often by the 
input mechanism of some conserved quantity (e.g., albedo by the incident 
radiant energy, velocity by the kinetic energy forced into the system). This 
underscores the physical importance of the integral scale R; for chunks of 
data of size r > R, we will find fluctuations of comparable magnitude and, 
equivalently, a flatter spectrum for wavenumbers 0 < k < 1/R; from both 
stand points, we are dealing with more stationary behavior. 

The Wiener-Khintchine theorem can be generalized to non-stationary 
situations where stationary increments prevail, leading to a Fourier con-
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nection between ( Δ / ( Γ ) 2 ) and E(k) [43]. For their scaling versions, Equa-
tions (A. 14) and (5), this yields 

β-ζ(2) = 1, (Α.15) 

in analogy with Equations (A.6) and (A. 11). Notice that the spectral crite-
rion for non-stationarity in Equation (A. 12) is retrieved from (A14-A15). 
We must furthermore require β < 3 in order to have stationary incre-
ments by requiring the gradient field (E\r/(k) = k2E/(k)) to be stationary 
( / ? - 2 < l ) . 

A.6. Additive scale-invariant models, non-intermittent and 
non-stationary 

The classic example of a non-stationary stochastic process is Brownian 
motion (often referred to as a Wiener-Lévy process): 

foo(x) = /oo(0) + Γ /o(s') dx\ (A.16) 
Jo 

where we notice the additive nature of the resulting field, in contrast with 
the multiplicative character of ε(/; χ) in Equation (A.8). Brownian motion 
is not intermittent in the sense of Section A.4, even if the intermittency 
is sought in the absolute gradient field |V/oo(#)| = |/o(#)|, as custom-
ary in turbulence studies (cf. section 4). If not completely flat, |/o(#)| is 
very weakly variable in comparison with ε(1; χ) due to its close relation to 
Gaussian white noise. Other examples of non-intermittent non-stationary 
processes are discussed in the main text ("fractional" Brownian motions). 
An important new class of non-stationary models with intermittent gradi-
ent fields ( "multi-affine" processes) is also evoked. 

In Equation (A.16), we are essentially computing the position of a 
particle performing a random walk as a function of time x > 0, the white 
noise Jo(x) representing the independently distributed random steps. We 
have (foo(x)) = {fo)x + /<x>(0) where both r.h.s. terms can be made to 
vanish, leaving (/oo(#)) = 0? but this has no bearing on stationarity. To 
wit, it can be shown that, still for (/0) = /oo(0) = 0, the 1-point p.d.f. 
of /oo(#) is Gaussian with variance (foo(x)2) which is known to increase 
linearly with x > 0. This consequence of the law of large numbers is already 
proof of non-stationarity. In Fourier space, we come to the same conclusion 
using Equation (A. 12) since the integral in Equation (A.16) corresponds 
to a 1/k filtering which brings the vanishing spectral exponent of fo(x) to 
β = 2 for /oo(#)· (This justifies the subscript "oo" standing for a formally 
divergent R in Equation (A.5) due to the infinite numerator, symptom of 
an incipient "infra-red catastrophe.") It is easy to see that Afoo(r;y) is 
simply the integral of fo(x) over [y, y + r] and behaves statistically like 
/oo(x) in Equation (A.16) with /oo(0) = 0 and x = r, independently of 
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y. So (Δ/οο(^)2) oc r, which proves tha t ζ(2) = 1 in Equation (A. 14) for 
this special case and, in turn, this confirms Equation (A. 15) for Brownian 
motion. 

A typical sample of Brownian motion is provided in Figure A l b . Like 
e{l\x) in turbulent cascades Equation (A.8), there is no limit to how big 
Brownian motion can become, starting at /oo(0) = 0, but it takes a long 
time to get there and, when |/oo(#)| is large, it will of course take an equally 
long time for it to come back to zero, in all probability. As can be seen in 
Figure A l b , the "zero-crossing" set {x > 0, foo(%) = 0} where foo(x) is at 
its most probable value is in fact a very sparse set with a fractal dimension 
of 1/2 [38]. This is a direct consequence of /oo(#)'s lack of stationarity. In 
sharp contrast, the stationary cascade models ε(/; χ) will re turn to their 
most probable value (which is very small when / < L ) very quickly after 
a strong (necessarily positive) fluctuation. The typical delay will be « R 
which is <C L for well-developed multiplicative cascades but « L (formally 
oo, hence the choice of subscript) in Brownian motion. 

A . 7 . Stochast ic cont inuity w i th s tat ionari ty or scale-invariance 
but not b o t h 

If ( Δ / ( Γ ) 2 ) -+ 0 when r -» 0, then / ( · ) is said to be "stochastically" 
continuous and this is the case for all non-stationary scaling processes obey-
ing Equation (A. 14). Of course processes tha t are stationary per se have 
stationary increments (if scaling prevails, then β < 1 implies β < 3). It is 
easy to see tha t 

<A/( r ) 2 ) = 2 [ G ( 0 ) - G ( r ) ] . (A.17) 

So stationary processes are stochastically continuous as long as G(r) is 
continuous at r = 0; in particular, this implies G(0) < oo (finite 1-point 
variance). This is not the case for exactly scaling processes since G(r) —> oo 
if r —y 0 in Equation (3), one of the numerous reasons why there is always 
a lower limit to scaling regimes in physical systems. For smaller values of 
the scale parameter , fields can be viewed as smoothly varying (an incipient 
"ultra-violet catastrophe" is thus avoided). 

The log-normal multiplicative cascade process in Figure A2 obeys Equa-
tion (A.2) and therefore illustrates stochastic discontinuity, as does the 
white noise in Figure A l a (independent Gaussian deviates assigned to ev-
ery pixel) for which G(r) oc S(r). The Brownian motion in Figure A l b is 
stochastically continuous since ( Δ / ( Γ ) 2 ) OC r. Finally, in Figure A l e we il-
lustrate an Ornstein-Uhlenbeck process denoted / # ( # ) , 0 < x < L = 4096, 
which is at once continuous and stationary but non-scaling. Apart from the 
variance σ2 = GR(Q) of its 1-point Gaussian p.d.f., the only parameter of 
an Ornstein-Uhlenbeck process is the integral scale R in its auto-correlation 
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function 
GR(r) = GR(0) exp(-r/R). (A.18) 

In Figure Ale, we took R = L/8 = 512. For the same process the structure 
function is therefore 

( Δ / Λ ( Γ ) 2 ) = 2Gß(0)[l - exp(-r/ i?)] . (A.19) 

Notice the cross-over from non-stationary and continuous behavior (i.e., 
( Δ / Λ ( Γ ) 2 ) OC r) to stationary and discontinuous behavior (i.e., (A/#(r)2) « 
constant) as r goes from <C R to ^> R. In essence, we are dealing with 
Brownian motion (on scales r <& R) that is forced to come back to the 
origin on a regular basis (at intervals of length « R). In the limit R —> 0 
(vanishing correlation length) white noise is retrieved. For R —> oo (diverg-
ing correlation length) "unconstrained" Brownian motion is retrieved and 
the fact that (//*(#)/#(#+ r)) —> constant > 0 in this case is characteristic 
of non-stationary behavior, as anticipated in Section A.2. 

A.8. Summary with analysis and modeling of geophysical data 
in mind 

Geophysical processes are driven by complex nonlinear dynamics that 
typically unfold in both space and time. Can we view these as statistically 
periodic above some scale and treat portions of equal or greater size as 
statistically independent realizations? Or must we view the whole as one 
single irreproducible experiment and hope that space/time averages con-
verge to a statistically meaningful value? In statistical jargon the former 
hypothesis is called stationarity (statistical invariance under translation), 
the latter as ergodicity (space/time and ensemble averages yield identical 
answers). In all cases, we are required to characterize these processes from 
data that always comes in finite quantities with some finite resolution and 
neither stationarity nor ergodicity can be established rigorously. We ar-
gue that stationarity, the more general concept, is also more useful in data 
analysis endeavors; it is also the more physically reasonable when it comes 
to modeling the data. 

In the framework of scale-invariance, even in the widespread physical 
sense where a finite range of scales is involved, one can use a specific spec-
tral criterion for stationarity: the spectral exponent (β) is less than unity. 
In numerous situations there exists a range of scales where non-stationary 
behavior (β > 1) is observed; one can then study a stationary feature of 
the data such as increments (as long as β < 3). Even if a strict ergodicity 
assumption is physically unreasonable, we must still use spatial averag-
ing to some degree and it is important to focus exclusively on stationary 
quantities. So an operational procedure for defining stationary conditions 
and/or features is welcome. 
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A given geophysical field can be stationary at large scales and non-
stationary at small ones. In fact this is to be expected on physical grounds 
and the transition scale is known as the integral scale. Bearing this in 
mind, there are two classes of stationary theoretical models that we find 
particularly useful for tutorial purposes: Ornstein-Uhlenbeck processes and 
multiplicative cascade processes. 

• The former are patently non-scaling but have two distinct scaling 
regimes: at large scales it behaves like (stationary) white noise and 
at small ones like (non-stationary) Brownian motion, roughly mim-
icking natural processes. These processes are non-differentiable but 
stochastically (i.e., almost everywhere) continuous and this is di-
rectly traceable to their non-stationary behavior in the small scale 
limit. 

• The latter are currently being used in turbulence studies (to model 
the intermittency of the dissipation field), in hydrology (to model 
the spatial distribution of rain), and in deterministic chaos (to model 
the invariant measure supported by the strange attractor) amongst 
many other applications. They are characterized by small scale 
discontinuity (almost everywhere), itself traceable to very singular 
behavior on sparse fractal sets. 

The concept of intermittency - sudden and intense bursts of high frequency 
activity - apparently conflicts with the conventional wisdom about station-
arity: "Things are almost the same at all times." We argue that this is an 
unnecessarily restrictive outlook, excluding in particular strong deviations 
from mean or most probable states. A better description of stationarity 
that is compatible with extreme forms of variability (represented in par-
ticular by cascade models) is: "On short notice, things can quickly depart 
from and return to typical values." By "short notice" and "quickly" we 
understand one integral scale or so; to illustrate this point we show that 
many integral scales fit into the overall length of the process in the case 
of multiplicative cascades (although each one is still many pixels long, at 
least for a large but finite number of cascade steps). 

LIST OF SYMBOLS 
Scale parameters: 

• general 

r temporal or spatial scale on which a statistic is to be 
conditioned 

k « 1/r, wavenumber (in absolute value) 

• instrumental and/or computational 
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/ inner scale, sampling scale (data), grid constant (model) 
L outer scale, overall physical size of dataset or model 

• physical (to be viewed as statistical properties) 

η lower bound of non-stationary scaling regime (where β > 1) 
R upper bound of non-stationary scaling regime, integral scale 

Stochastic processes or geophysical data-streams and related random 
quantities: 

• for general purpose 

x time or space coordinate 
B(x) fractional Brownian motion 
f(x) a generic random function 
fo(x) uncorrelated Gaussian fluctuations (white noise) 
foo(x) Levy-Wiener process (Brownian motion), integral of fo(x) 
ÎR(X) Ornstein-Uhlenbeck process with integral scale R 
ε(χ) a generic random measure (ε(χ) > 0) 
ε(/; x) cascade process on [0, L] (developed down to scale /) 

• for structure functions 

Δ / ( Γ ; X) increment of f(x) over scale r at x, e.g., f(x + r) — f(x) 
h(x) local Holder exponent (in | Δ / ( Γ ; Χ ) | OC rh^) 

• for singularity analysis 

ε(η; χ) = |Δ / (^; χ)\, absolute small scale gradients used in 
singularity analysis 

p(r; x) integral of ε(χ) or ε(η; χ) over an r-sized box at x, 
e.g., [x,x + r ] i n D = l 

a(x) local order of singularity (in p(r; x) oc rQ^) 
e(r; x) average of ε(χ) or ε(η; χ) over an r-sized box at x, 

i.e., p(r;x)/rD 

• for either 

£(r;x) = \&f(r;x)\,-e(r;x) or p(r;x) 
((£(r;x)z) scales like rA^) 

Statistical properties: 

E{k) energy (or power) spectrum, spectral density 
G(r) = ( / ( r + x)f(x)), auto-correlation function (of a 

stationary zero-mean process) 
( | Δ / ( Γ ; Χ)\Ρ) p-th moment of stationary increments | Δ / ( Γ ; Χ ) | , 

structure function of order p 
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(e(r; x)q) q-th moment of stationary measures e(r; x), used in 
singularity analysis 

σ s tandard deviation of a Gaussian random variable 

Wavelet-related quantities: 

• scaling-type functions 

lr{x) = θ(χ + r / 2 ) — θ(χ — r / 2 ) , indicator function 
of the interval ( - r / 2 , + r / 2 ) 

φσ(χ) = βχρ(—χ2/2σ2)/σ\/2π, 
Gaussian function with variance σ2 

ΨΗ{Χ) = max[0,min{l — x, 1 -f- x}], integral of Haar wavelet 

• wavelet shapes 

Φσ(*) = -Vi/20O 
Φ # ( # ) Haar wavelet, see Equation (9b) 
Φ Μ (Χ) Mexican hat , see Equation (17a) 
Φ^(χ) French top hat , see Equation (17b) 
-o i l (a?) = -I[ (x) = S(x - r / 2 ) - i(a? + r / 2 ) , 

"poor man's" wavelet [45] 

• wavelet transforms of random processes 

ϊφ [ / ] (α ; b) for structure functions of / ( · ) : Φ = -dh, Φ # , ^ G ; 
a = r and 6 = x 

Τφ[ε] (α; 6) for singularity analysis of ε(·) : 
0 = h, Ψ\, ΨΗ, ΨΜ, VF\ α = r and b = x 

Exponents 

D dimensionality of da ta (e.g., number of points « (L/l)D) 

• for second order statistics 

β spectral exponent for D > l(E(k) ~ 1/k^) 
μ = 1 — β > 0, scaling of autö-correlation function in 

D = 1 (G(r) ~ 1/r") 

• for structure functions (D = 1) 

p order of statistical moment of | Δ / ( Γ ; # ) | in s tructure 
function analysis 

ζ(ρ) scaling of s tructure functions ( ( | Δ / ( Γ ; X)\P) ~ r ^ p ) ) 
H(p) = ζ(ρ)/ρ, a non-increasing hierarchy 
Hi = JET(l) = C(l), index of non-stationarity (0 < Hi < 1) 
Dg(f) = 2 — H\, fractal dimension of two-dimensional graph 

of da ta 
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• for singular measures (D > 1) 

q order of statistical moment of s(r ; x) in 
singularity analysis 

K(q) scaling of singular measures ({e(r; x)q) ~ r~K^) 
r(q) = (q — 1)D — i f (<?), scaling of ΣΡ(Γ1 x ) 9 (using disjoint 

boxes) ~ r r ^ 
C(g) = K(q)/(q — 1), a non-decreasing hierarchy 
D(q) = r(q)/(q — 1) = D — C{q), a non-decreasing hierarchy 
d = C ( l ) = ^ ' ( 1 ) , index of intermittency (0 < Cx < D) 

• for bi-multifractal analysis (Section 5.2) 

X(p , q) scaling of joint moments ((\Af (r; x)\pe(r; x)q) ~ r x ^ ) 
s, t generalized Kolmogorov exponents in Equations (24)-(25) 

Miscellaneous computational quantities: 

Xi discrete t ime or space (a?,· = «7, i = 0 , . . . , N) 
fi / -value associated with X{ 
m dividing ratio in cascade process 
n number of cascade steps 
N = L/l, number of g r id /da ta points in D = 1 (also m " in cascade 

models 

Mathematical functions: 

θ(χ) = 0 for x < 0, = 1/2 for x = 0, = 1 for x > 0, Heaviside's 
step function 

S(x) = #'(·), Dirac's generalized function 
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Simultaneous Noise Suppression and Signal Compression 
Using a Library of Orthonormal Bases 

and the Minimum Description Length Criterion 

Naoki Saito 

Abstract. We describe an algorithm to estimate a discrete signal from its noisy 
observation, using a library of orthonormal bases (consisting of various wavelets, 
wavelet packets, and local trigonometric bases) and the information-theoretic cri-
terion called minimum description length (MDL). The key to effective random 
noise suppression is that the signal component in the data may be represented 
efficiently by one or more of the bases in the library, whereas the noise component 
cannot be represented efficiently by any basis in the library. The MDL criterion 
gives the best compromise between the fidelity of the estimation result to the data 
(noise suppression) and the efficiency of the representation of the estimated signal 
(signal compression): it selects the "best" basis and the "best" number of terms 
to be retained out of various bases in the library in an objective manner. Because 
of the use of the MDL criterion, our algorithm is free from any parameter setting 
or subjective judgments. 

This method has been applied usefully to various geophysical datasets con-
taining many transient features. 

§1. Introduction 

Wavelet transforms and their relatives such as wavelet packet trans-
forms and local trigonometric transforms are becoming increasingly popular 
in many fields of applied sciences. So far their most successful application 
area seems to be data compression; see e.g., [14], [6], [35], [30]. Meanwhile, 
several researchers claimed that wavelets and these transforms are also use-
ful for reducing noise in (or denoising) signals/images [16], [7], [10], [21]. 
In this paper, we take advantage of both sides: we propose an algorithm 
for simultaneously suppressing random noise in data and compressing the 
signal, i.e., we try to "kill two birds with one stone." 
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Throughout this paper, we consider a simple degradation model: ob-
served data consists of a signal component and additive white Gaussian 
noise. Our algorithm estimates the signal component from the data using 
a library of orthonormal bases (including various wavelets, wavelet pack-
ets, and local trigonometric bases) and the information-theoretic criterion 
called the Minimum Description Length (MDL) criterion for discriminating 
signal from noise. 

The key motivation here is that the signal component in the data can 
often be efficiently represented by one or more of the bases in the library 
whereas the noise component cannot be represented efficiently by any basis 
in the library. 

The use of the MDL criterion frees us from any subjective parameter 
setting such as threshold selection. This is particularly important for real 
field data where the noise level is difficult to obtain or estimate a priori. 

The organization of this paper is as follows. In Section 2, we re-
view some of the important properties of wavelets, wavelet packets, lo-
cal trigonometric transforms which constitute the "library of orthonormal 
bases" which will be used for efficiently representing nonstationary signals. 
In Section 3, we formulate our problem. We view the problem of simultane-
ous noise suppression and signal compression as a model selection problem 
out of models generated by the library of orthonormal bases. In Section 4, 
we review the MDL principle which plays a critical role in this paper. We 
also give some simple examples to help understand its concept. In Sec-
tion 5, we develop an actual algorithm of simultaneous noise suppression 
and signal compression. We also give the computational complexity of our 
algorithm. Then, we extend our algorithm for higher dimensional signals 
(images) in Section 6. In Section 7, we apply our algorithm to several geo-
physical datasets, both synthetic and real, and compare the results with 
other competing methods. We discuss the connection of our algorithm with 
other approaches in Section 8, and finally, we conclude in Section 9. 

§2. A Library of Orthonormal Bases 

For our purpose we need to represent signals containing many transient 
features and edges in an efficient manner. Wavelets and their relatives, i.e., 
wavelet packets and local trigonometric transforms, have been found very 
useful for this purpose; see e.g., [14], [6], [35], [30]. As shown below, each 
of these transforms (or basis functions) has different characteristics. In 
other words, the best transform to compress a particular signal may not be 
good for another signal. Therefore, instead of restricting our attention to a 
particular basis, we consider a library of bases. The most suitable basis for 
a particular signal is selected from this collection of bases. This approach 
leads to a vastly more efficient representation for the signal, compared with 
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confining ourselves to a single basis. 
In this section, we briefly describe the most important properties of 

these transforms. Throughout this paper, we only consider real-valued 
discrete signals (or vectors) with finite length N (= 2n). Also we limit our 
discussions to orthonormal transforms. Hence it suffices here to consider 
discrete orthonormal transforms, i.e., the orthonormal bases of £2(N), the 
iV-dimensional space of vectors of finite energy. 

More detailed properties of these bases can be found in the literature, 
most notably, in [2], [9], [13], [23], [22], [26], [33]. 

2 .1 . Wavelet bases 
The wavelet transform (e.g., [13], [23]) can be considered as a smooth 

partition of the frequency axis. The signal is first decomposed into low 
and high frequency components by the convolution-subsamphng operations 
with the pair consisting of a "lowpass" filter {hk} and a "highpass" filter 
{gk } directly on the discrete time domain. Let H and G be the convolution-
subsamphng operators using these filters and H* and G* be their adjoint 
(i.e., upsampling-anticonvolution) operations. It turns out that we can 
choose finite-length (L) filters and satisfy the following orthogonality (or 
perfect reconstruction) conditions: 

HG* = GH* = 0, and H*H + G*G = / , 

where I is the identity operator of i2(N). Also we have the relation gk = 
(—l)fc/i£_i_fc. The pair of filters {hk}klQ and {gk)k=o satisfying these 
conditions are called quadrature mirror filters (QMFs). 

This decomposition (or expansion, or analysis) process is iterated on 
the low frequency components and each time the high frequency coefficients 
are retained intact and at the last iteration, both low and high frequency 
coefficients are kept. In other words, let / = {fk}%=o £ £2(N) be a vector 
to be expanded. Then, the convolution-subsamphng operations transform 
the vector / into two subsequences Hf and Gf of lengths N/2. Next, the 
same operations are applied to the vector Hf to obtain H2f and GHf 
of lengths N/4. If the process is iterated J (< n) times, we have the dis-
crete wavelet coefficients (Gf, GHf, GH2f,..., GHJ/, HJ+l / ) of length 
N. As a result, the wavelet transform analyzes the data by partitioning 
its frequency content dyadically finer and finer toward the low frequency 
region (i.e., coarser and coarser in the original time or space domains). 

If we were to partition the frequency axis sharply using the charac-
teristic functions (or box-car functions), then we would have ended up the 
so-called Shannon (or Littlewood-Paley) wavelets, i.e., the difference of two 
sine functions. Clearly, however, we cannot have a finite-length filter in the 
time domain in this case. The other extreme is the Haar basis which par-
titions the frequency axis quite badly but gives the shortest filter length 
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(L = 2) in the time domain. 
The reconstruction (or synthesis) process is also very simple: start-

ing from the lowest frequency components (or coarsest scale coefficients) 
ffJ+1 / and the second lowest frequency components GHJ/, the adjoint 
operations are applied and added to obtain HJ f = H*HJ+1/ + G*GHJ f. 
This process is iterated to reconstruct the original vector / . The compu-
tational complexity of the decomposition and reconstruction process is in 
both cases O(N) as easily seen. 

We can construct the basis vector w jtk at scale j and position k simply 
by putting (GH3 / ) / = J/^, where δι^ denotes the Kronecker delta, and 
synthesizing / = Wj^ by the reconstruction algorithm. Using these basis 
vectors, we can express the wavelet transform in a vector-matrix form as 

a = WTf, 

where a G R ^ contains the wavelet coefficients and W G HNxN is an 
orthogonal matrix consisting of column vectors Wj^· This basis vector has 
the following important properties: 

• vanishing moments: Σ/=ο ^mtüj,fc(0 = 0 for m = 0 , 1 , . . . , M — 1. 

The higher the degrees of vanishing moments the basis has, the better 
it compresses the smooth part of the signal. In the original construction 
of Daubechies [12], it turns out that L = 2M. There are several other 
possibilities. One of them is a family of the so-called "coiflets" with L = 3M 
which are less asymmetric than the original wavelets of Daubechies [13]. 

• regularity: \wj)k(l + 1) - v*j,k(l)\ ^ c 2~ja> 

where c > 0 is a constant and a > 0 is called the regularity of the wavelets. 
The larger the value of a is, the smoother the basis vector becomes. This 
property may be important if one requires high compression rate since the 
shapes of the basis vectors become "visible" in those cases and one might 
want to avoid fractal-like shapes in the compressed signals/images [25]. 

• compact support: wj)k(l) = 0 for / £ [2'fc, Vk + (2j - 1)(L - 1)]. 

The compact support property is important for efficient and exact numer-
ical implementation. 

2.2. Wavelet packet best-bases 

For oscillating signals such as acoustic signals, the analysis by the 
wavelet transform is sometimes inefficient because it only partitions the 
frequency axis finely toward the low frequency. The wavelet packet trans-
form (e.g., [9], [22], [33]) decomposes even the high frequency bands which 
are kept intact in the wavelet transform. The first level decomposition 
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is Hf and Gf just like in the wavelet transform. The second level is 
H2f,GHf,HGf,G2f. If we repeat this process for J times, we end 
up having JN expansion coefficients. Clearly, we have a redundant set 
of expansion coefficients, in fact, there are more than 22 possible or-
thonormal bases. One way of selecting an efficient basis for representing 
the signal or vector is to use the entropy criterion [9], [33]. We can think 
of the wavelet packet bases as a set of different coordinate systems of R . 
Then a signal of length N is a point in R ^ , and we try to select the most 
efficient coordinate system out of the given set of coordinate systems to 
represent this signal. The signal in an efficient coordinate system should 
have large magnitudes along a few axes and small magnitudes along most 
axes. In particular, the wavelet packet basis function becomes a unit vec-
tor along an axis of the coordinate systems. Then, it is very natural to 
use the entropy as a measure of efficiency of the coordinate system. The 
best-basis is the basis or coordinate system giving the minimum entropy for 
its coordinate distribution. The computational complexity of computing 
the best-basis is 0(N log2 N) as is the reconstruction of the original vector 
from the best-basis coefficients. 

Remark . We would like to note that given a set of signals, the Karhunen-
Loève basis gives the global minimum entropy. However, it is very expensive 
to compute; the cost is 0(N3) since it involves solving an eigenvalue prob-
lem. On the other hand, the wavelet packet best-basis can be computed 
cheaply and is defined even for a single signal; see [34] for a comparison of 
these two bases using images of human faces. 

2.3. Local trigonometric best-bases 

Local trigonometric transforms ([9], [22], [33], [2]) can be considered as 
conjugates of wavelet packet transforms: they partition the time (or space) 
axis smoothly. In fact, Coifman and Meyer [8] showed that it is possible to 
partition the real-line into any disjoint intervals smoothly and construct or-
thonormal bases on each interval. In the actual numerical implementation, 
the data is first partitioned into disjoint intervals by the smooth window 
function, and then on each interval the data is transformed by the discrete 
cosine or sine transforms (DCT/DST). Since it partitions the axis smoothly, 
these transforms, i.e., local cosine or sine transforms (LCT/LST), have less 
edge (or blocking) effects than the conventional DCT/DST. Wickerhauser 
[33] proposed the method of dyadically partitioning the time axis and com-
puting the best-basis using the entropy criterion similarly to the wavelet 
packet best-basis construction. The computational complexity in this case 
is about 0(iV[log2 N]2). Local trigonometric transforms are clearly efficient 
for the signals with localized oscillating features such as musical notes. 
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§3. P r o b l e m Formulat ion 

Let us consider a discrete degradation model 

d = / + n, 

where d, / , n G R and N = 2 n . The vector d represents the noisy 
observed da ta and / is the unknown true signal to be estimated. The 
vector n is white Gaussian noise (WGN), i.e., n ~ Λ/^Ο, σ2Ι). Let us 
assume tha t σ2 is unknown. 

We now consider an algorithm to estimate / from the noisy observation 
d. First, we prepare the library of orthonormal bases mentioned in the 
previous section. This library consists of the s tandard Euclidean basis 
of R ^ , the Haar-Walsh bases, various wavelet bases and wavelet packet 
best-bases generated by Daubechies' QMFs, their less asymmetric versions 
(i.e., coiflets), and local trigonometric best-bases. This collection of bases 
is highly adaptable and versatile for representing various transient signals 
[7]. For example, if the signal consists of blocky functions such as acoustic 
impedance profiles of subsurface structure, the Haar-Walsh bases capture 
those discontinuous features both accurately and efficiently. If the signal 
consists of piecewise polynomial functions of order p , then the Daubechies 
wavelets/wavelet packets with filter length L > 2(p + 1) or the coiflets 
with filter length L > 3(p + 1) would be efficient because of the vanishing 
moment property. If the signal has a sinusoidal shape or highly oscillating 
characteristics, the local trigonometric bases would do the job. Moreover, 
computational efficiency of this library is also attractive; the most expensive 
expansion in this library, i.e., the local trigonometric expansion, costs about 
0(iV[log2 N]2) as explained in the previous section. 

Let us denote this library by C = {#i,#2> · · · , ^ M } 5 where Bm repre-
sents one of the orthonormal bases in the library, and M (typically 5 to 
20) is the number of bases in this library. If we want, we can add other 
orthonormal bases in this library such as the Karhunen-Loève basis [1] or 
the prolate spheroidal wave functions [13], [36]. However, normally, the 
above-mentioned multiresolution bases are more than enough, considering 
their versatility and computational efficiency [7]. 

Since the bases in the library C compress signals/images very well, we 
make a strong assumption here: we suppose the unknown signal / can be 
completely represented by k (< N) elements of a basis # m , i.e., 

/ = Wraa£>, (1) 

where W m G R X is an orthogonal matr ix whose column vectors are the 
basis elements of ß m , and a m G R is the vector of expansion coefficients 
of / with only k non-zero coefficients. At this point, we do not know the 
actual value of k and the basis Bm. We would like to emphasize tha t in 
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reality the signal / might not be strictly represented by (1). We regard (1) 
as a model at hand rather than a rigid physical model exactly explaining f 
and we will try our best under this assumption. (This is often the case if we 
want to fit polynomials to some data.) Now the problem of simultaneous 
noise suppression and signal compression can be stated as follows: find 
the "best" k and m given the library C. In other words, we translate the 
estimation problem into a model selection problem where models are the 
bases Bm and the number of terms k under the additive WGN assumption. 

For the purpose of data compression, we want to have k as small as 
possible. At the same time, we want to minimize the distortion between 
the estimate and the true signal by choosing the most suitable basis ß m , 
keeping in mind that the larger k normally gives smaller value of error. 
How can we satisfy these seemingly conflicting demands? 

§4. The Minimum Description Length Principle 

To satisfy the above mentioned conflicting demands, we need a model 
selection criterion. One of the most suitable criteria for our purpose is the 
so-called Minimum Description Length (MDL) criterion proposed by Ris-
sanen [27], [28], [29]. The MDL principle suggests that the "best" model 
among the given collection of models is the one giving the shortest descrip-
tion of the data and the model itself. For each model in the collection, the 
length of description of the data is counted as the codelength of encoding 
the data using that model in binary digits (bits). The length of description 
of a model is the codelength of specifying that model, e.g., the number of 
parameters and their values if it is a parametric model. 

To help understand what "code" or "encoding" means, we give some 
simple examples. We assume that we want to transmit data by first en-
coding (mapping) them into a bitstream by an encoder, then receive the 
bitstream by a decoder, and finally try to reconstruct the data. Let L(x) 
denote the codelength (in bits) of a vector x of deterministic or probabilis-
tic parameters which are either real-valued, integer-valued, or taking values 
in a finite alphabet. 

Example 4 .1 . Codelength of symbols drawn from a finite alphabet. 
Let x = (xi,X2?··· Ϊ#ΛΓ) be a string of symbols drawn from a finite al-
phabet X, which are independently and identically distributed (i.i.d.) with 
probability mass function p(x), x £ X. In this case, clearly the frequently 
occurring symbols should have shorter codelengths than rarely occurring 
symbols for efficient communication. This leads to the so-called Shannon 
code [11] whose codelength (if we ignore the integer requirement for the 
codelength) can be written as 

L(x) = — logp(x) for x £ X. 
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(Prom now on, we denote the logarithm of base 2 by "log", and the nat-
ural logarithm, i.e., base e by "In".) The Shannon code has the shortest 
codelength on the average, and satisfies the so-called Kraft inequality [11]: 

Σ 2"L(x) < 1, (2) 

which is necessary and sufficient for the existence of an instantaneously 
decodable code, i.e., a code such that there is no codeword which is the 
prefix of any other codeword in the coding system. The shortest codelength 
on the average for the whole sequence x becomes 

TV N 

L(x) = Σι(χ{) = -Σ1ο&ρ(χί)' 
i=l t = l 

Example 4.2. Codelength of deterministic integers. 
For a deterministic parameter j € Ẑ v = ( 0 , 1 , . . . , N — 1) (i.e., both the 
encoder and decoder know TV), the codelength of describing j is written as 
L(j) = logN since logN bits are required to index N integers. This can 
also be interpreted as a codelength using Shannon code for a sample drawn 
from the uniform distribution over ( 0 , 1 , . . . , N — 1). 

Example 4.3. Codelength of an integer (universal prior for an integer). 
Suppose we do not know how large a natural number j is. Rissanen [27] 
proposed that the code of such j should be the binary representation of 
j , preceded by the code describing its length logj, preceded by the code 
describing the length of the code for log j , and so forth. This recursive 
strategy leads to 

L*(j) = log* j + log co = log j + log log j + · · · + logc0, 

where the sum involves only the non-negative terms and the constant 
Co « 2.865064 which was computed so that equality holds in (2), i.e., 
]Cjii 2~L*(iï = i. This can be generalized for an integer j by defining 

L * ( j ) = { l if i = 0, (3, 
^ ' ]̂  log* \j\ +log4c0 otherwise. ^ ' 

(We can easily see that (3) satisfies ^2^L_QO 2~L ^ = 1.) 

Example 4.4. Codelength of a truncated real-valued parameter. 
For a deterministic real-valued parameter v € R, the exact code generally 
requires infinite length of bits. Thus, in practice, some truncation must 
be done for transmission. Let S be the precision and vs be the truncated 
value, i.e., \v — v$\ < δ. Then, the number of bits required for v$ is the 
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sum of the codelength of its integer part [v] and the number of fractional 
binary digits of the truncation precision J, i.e., 

L(t,,) = L*(H)+ log ( l / i ) . (4) 

Having gone through the above examples, now we can state the MDL 
principle more clearly. Let M = {0m : m = l , 2 , . . . } b e a class or collection 
of models at hand. The integer m is simply an index of a model in the list. 
Let x be a sequence of observed data. Assume that we do not know the 
true model 0 generating the data x. As in [29], [24], given the index m, we 
can write the codelength for the whole process as 

L(x, 0 m , m) = L(m) + L(0m \ m) + L(x | 0 m , m). (5) 

This equation says that the codelength to rewrite the data is the sum of the 
codelengths to describe: (i) the index m, (ii) the model 0 m given ra, and 
(iii) the data x using the model 0 m . The MDL criterion suggests picking 
the model 0m* which gives the minimum of the total description length 
(5). 

The last term of the right-hand side (RHS) of (5) is the length of the 
Shannon code of the data assuming the model 0 m is the true model, i.e., 

L(x | 0 m ,m) = - logp(x | 0m , ra) , (6) 

and the maximum likelihood (ML) estimate 0 m minimizes (6) by the defi-
nition: 

L(x | 0 m ,m) = - logp(x | 0 m ,m) < - logp(x | 0m , ra) . (7) 

However, we should consider a further truncation of 0 m as shown in Ex-
ample 4.4 above to check that additional savings in the description length 
is possible. The finer truncation precision we use, the smaller the term 
(7), but the larger the term L(0m | m) becomes. Suppose that the model 
0 m has km real-valued parameters, i.e., 0 m = (0m > i , . . . ,0m,fcm)· Rissanen 
showed in [27], [29] that the optimized truncation precision (δ*) is of order 
1/v/ÏVand 

min L(x, 0m,<$, ra, δ) 
δ 

= L(m) + L(em>s' | m) + L(x \ 0m,*., m) + 0(km) 

« L(m) + ΣL*([0mj]) + ^logN + L(x | 0 m ,m) + 0(fcm), (8) 
i=i 

where 0 m is the optimal non-truncated value given m, 0mj$* is its opti-
mally truncated version, and L*(-) is defined in (4). We note that the last 
term 0(km) in the approximation in (8) includes the penalty codelength 
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necessary to describe the data x using the truncated ML estimate 0mj<$* 
instead of the true ML estimate 0m. In practice, we rarely need to obtain 
the optimally truncated value Bmj* and we should compute 0 m up to the 
machine precision, say, 10~15, and use that value as the true ML estimate 
in (8). For sufficiently large JV, the last term may be omitted, and instead 
of minimizing the ideal codelength (5), Rissanen proposed to minimize 

km u 

MDL(x, 0 m , m) = L(m) + ^L*([0mj]) + -f l oS N + L(x | 0 m ,m) . (9) 
i=i 

The minimum of (9) gives the best compromise between the low complexity 
in the model and high likelihood on the data. 

The first term of the RHS of (9) can be written as 

L(m) = - logp(m), (10) 

where p(m) is the probability of selecting m. If there is prior information 
about m as to which m is more likely, we should reflect this in p(m). 
Otherwise, we assume each m is equally likely, i.e., p(m) is a uniform 
distribution. 

Remark . Even though the list of models M does not include the true 
model, the MDL method achieves the best result among the available mod-
els. See Barron and Cover [4] for detailed information on the error between 
the MDL estimate and the true model. 

We also would like to note that the MDL principle does not attempt 
to find the absolutely minimum description of the data. The MDL always 
requires an available collection of models and simply suggests picking the 
best model from that collection. In other words, the MDL can be considered 
as an "oracle" for model selection [24]. This contrasts with the algorithmic 
complexities such as the Kolmogorov complexity which gives the absolutely 
minimum description of the data, however, in general, is impossible to 
obtain [27]. 

Before deriving our simultaneous noise suppression and signal compres-
sion algorithm in the context of the MDL criterion, let us give a closely 
related example: 

Example 4.5. A curve fitting problem using polynomials. 
Given N points of data (xj,yt) G R2, consider the problem of fitting a 
polynomial through these points. The model class we consider is a set of 
polynomials of orders 0 , 1 , . . . , N — 1. In this case, 0 m = (ao ,a i , . . . , am) 
represents the m + 1 coefficients of a polynomial of order m. We also assume 
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that the data is contaminated by the additive WGN with known variance 
σ2, i.e., 

Vi = /(«,·) +e<» 
where /( ·) is an unknown function to be estimated by the polynomial mod-
els, and e,· ~ JV(0, σ2). To invoke the MDL formalism, we pose this ques-
tion in the information transmission setting. First we prepare an encoder 
which computes the ML estimate of the coefficients of the polynomial, 
(3o,.. . ,Sm ) , of the given degree m from the data. (In the additive WGN 
assumption the ML estimate coincides with the least squares estimate.) 
This encoder transmits these m coefficients as well as the estimation errors. 
We also prepare a decoder which receives the coefficients of the polynomial 
and residual errors and reconstruct the data. (We assume that the abscis-
sas {xi}iLi and the noise variance σ2 are known to both the encoder and 
the decoder.) Then we ask how many bits of information should be trans-
mitted to reconstruct the data. If we used polynomials of degree N — 1, 
we could find a polynomial passing through all N points. In this case, we 
could describe the data extremely well. In fact, there is no error between 
the observed data and those reconstructed by the decoder. However, we 
do not gain anything in terms of data compression/transmission since we 
also have to encode the model which requires N coefficients of the polyno-
mial. In some sense, we did not "learn" anything in this case. If we used 
the polynomial of degree 0, i.e., a constant, then it would be an extremely 
efficient model, but we would need many bits to describe the deviations 
from that constant. (Of course, if the underlying data is really a constant, 
then the deviation would be 0.) 

Let us assume there is no prior preference on the order m. Then we 
can easily see that the total codelength (9) in this case becomes 

m -

MDL(y,em,m) = logN + V r ( [ 3 , · ] ) + ^ — logiV 
i=o l 

t = l \ j = 0 / 

The MDL criterion suggests to pick the "best" polynomial of order m* by 
minimizing this approximate codelength. 

The MDL criterion has been successfully used in various fields such 
as signal detection [32], image segmentation [19], and cluster analysis [31] 
where the optimal number of signals, regions, and clusters, respectively, 
should be determined. If one knows a priori the physical model to explain 
the observed data, that model should definitely be used, e.g., the complex 
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sinusoids in [32]. However, in general, as a descriptor of real-life signals 
which are full of transients or edges, the library of wavelets, wavelet packets, 
and local trigonometric transforms is more flexible and efficient than the 
set of polynomials or sinusoids. 

§5. A Simultaneous Noise Suppression and Signal Compression 
Algorithm 

We carry on our development of the algorithm based on the information 
transmission setting as the polynomial curve fitting problem described in 
the previous section. We consider again an encoder and a decoder for our 
problem. Given (fc,m) in (1), the encoder expands the data d in the basis 
# m , then transmits the number of terms fc, the specification of the basis 
m, and k expansion coefficients, the variance of the WGN model σ2, and 
finally the estimation errors. The decoder receives this information in bits 
and tries to reconstruct the data d. 

In this case, the total codelength to be minimized may be expressed 
as the sum of the codelengths of: (i) two natural numbers (fc, ra), (ii) (k + 
1) real-valued parameters (am\a2) given (k, m), and (iii) the deviations 
of the observed data d from the (estimated) signal / = Wmocm given 
(A:, ra, dm , σ2). The approximate total description length (9) now becomes 

MDL(d,a^\a2,k,m) 

= L(fc,ra) + L ( a ^ } , 5 2 \k,m) + L(d | a ^ , 5 2 , f c , m ) , (11) 

where OL^ and σ2 are the ML estimates of <Xm and σ2, respectively. 
Let us now derive these ML estimates. Since we assumed the noise 

component is additive WGN, the probability of observing the data given 
all model parameters is 

P(d I «LfcV,fc,m) = (2πσ2Γ"/2βχρ i - 1 1 * " ^ " " "Λ , (12) 

where || · || is the standard Euclidean norm on R^ . For the ML estimate 
of σ2, first consider the log-likelihood of (12) 

\np(d | a%\az,k,m) = - γ 1 η 2 π σ ζ - ^ — "-. (13) 

Taking the derivative with respect to σ2 and setting it to zero, we easily 
obtain 

5 2 = ^ | | d - W m a W | | 2 . (14) 
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Insert this equation back to (13) to get 

lnp(d | oti\d\k,m) = - | l n ( ^ | | d - W m a£> | | 2 ) _ E. ( i 5 ) 

Let dm = W^d denote the vector of the expansion coefficients of d in the 
basis Bm. Since this basis is orthonormal, i.e., Wm is orthogonal, and we 
use the £2 norm, we have 

||<f - Wma£\\* = \\Wm(Wld - «W)| |2 = \\dm - *%ψ. (16) 

From (15), (16), and the monotonicity of the In function, we find that 
maximizing (15) is equivalent to minimizing 

Κ , - α ^ Ι Ι 2 · (17) 

Considering that the vector a™ only contains k nonzero elements, we can 
easily conclude that the minimum of (17) is achieved by taking the largest 
k coefficients in magnitudes of dm as the ML estimate of ctm\ i.e., 

S « = 0 ( l ) d m = 0 ( t ) ( W l r f ) , (18) 

where Θ^ ^ is a thresholding operation which keeps the k largest elements in 
absolute value intact and sets all other elements to zero. Finally, inserting 
(18) into (14), we obtain 

σ2 = jjWWld - &^Wldf = 1 | | ( I - &^)Wld\\\ (19) 

where / represents the N dimensional identity operator (matrix). 
Let us further analyze (11) term by term. If we do not have any prior 

information on (fc,m), then the cost L(k,m) is the same for all cases, i.e., 
we can drop the first term of (11) for minimization purpose. However, if 
one has some prior preference about the choice of basis, knowing some prior 
information about the signal / , L(fc, m) should reflect this information. For 
instance, if we happen to know that the original function / consists of a 
linear combination of dyadic blocks, then we clearly should use the Haar 
basis. In this case, we may use the Dirac distribution, i.e., p(m) = Jm ,mo , 
where mo is the index for the Haar basis in the library £. By (10), this 
leads to 

L(h m)=f L(k) i f™ = ™o, 
^ ' ' \ +oo otherwise. 

On the other hand, if we either happen to know a priori or want to force 
the number of terms retained (k) to satisfy k\ < k < ki, then we may want 
to assume the uniform distribution for this range of k, i.e., 

L(k,m) = [ L ( m ) + l o g ( f c 2 - kl + X) i f ί1 ^ k ^ *2 ' (20) 
v ' ^ +oo otherwise. v ' 
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As for the second term of (11), which is critical for our algorithm, we 
have to encode k expansion coefficients â^J and σ2, i.e., (fc+1) real-valued 
parameters. However, in this case, by normalizing the whole sequence by 
||d||, we can safely assume that the magnitude of each coefficient in a ' ' 
is strictly less than one; in other words, the integer part of each coefficient 
is simply zero. Hence we do not need to encode the integer part as in (9) 
if we transmit the real-valued parameter ||d||. Now the description length 
of (œm ,σ2) given (fc, m) becomes approximately ^^ logiV-h L*([S2]) + 
L*([||d||]) bits since there are k + 2 real-valued parameters: k nonzero 
coefficients, σ2, and ||d||. After normalizing by ||d||, we clearly have σ2 < 1 
(see (19)), so that L*([52]) = 1 (see (3)). For each expansion coefficient, 
however, we still need to specify the index of the coefficient, i.e., where the 
k non-zero elements are in the vector orm . This requires klogN bits. As 
a result, we have 

L{o£\a2 |fc,m) = |felogN + c, (21) 

where c is a constant independent of (fc, m). 
Since the probability of observing d given all model parameters is given 

by (12), we have for the last term in (11) 

L(d | a<£>,9*,k,m) = jlog||(J- e<*>)W£d||2 + c', (22) 

where c' is a constant independent of (fc, m). 
Finally we can state our simultaneous noise suppression and signal 

compression algorithm. Let us assume that we do not have any prior infor-
mation on (fc, m) for now. Then, from (11), (21), and (22) with ignoring 
the constant terms c and c', our algorithm can be stated as: 
Pick the index (k*,m*) such that 

AMDL(k\m*)= min ( ^HogiV + ^ log \\{I - Q^W^df ) . 

\<m<M 

(23) 
Then reconstruct the signal estimate 

f = Wm.a{£). (24) 
Let us call the objective function to be minimized in (23), the approx-

imate MDL (AMDL) since we ignored the constant terms. Let us now 
show a typical behavior of the AMDL value as a function of the number 
of terms retained (k) in Figure 1. (In fact, this curve is generated using 
Example 7.1 below.) We see that the log(residual energy) always decreases 
as k increases. By adding the penalty term of retaining the expansion coef-
ficients, i.e., (3/2)fclogiV (which is just a straight line), we have the AMDL 
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Figure 1. Graphs of AMDL versus k: AMDL [solid line] which is the 
sum of the (3/2)fc log N term [dotted line] and the (ΑΓ/2) log(residual 
energy) term [dashed line]. 

curve which typically decreases for the small fc, then starts increasing be-
cause of the penalty term, then finally decreases again at some large k near 
from k = N because the residual error becomes very small. Now what we 
really want is the value of k achieving the minimum at the beginning of 
the fc-axis, and we want to avoid searching for k beyond the maximum oc-
curring for k near N. So, we can safely assume that k\ = 0 and &2 = N/2 
in (20) to avoid searching more than necessary. (In fact, setting &2 > N/2 
does not make much sense in terms of data compression either.) 

We briefly examine below the computational complexity of our algo-
rithm. To obtain (fc*,m*), we proceed as follows: 
Step 1: Expand the data d into bases B\,..., BM · Each expansion (includ-
ing the best-basis selection procedure) costs O(N) for wavelets, 0(iV log N) 
for wavelet packet best-bases, and 0(N[\ogN]2) for local trigonometric 
best-bases. 
Step2: Let K(= &2 — &i + 1) denote the length of the search range for k. 
For k\ < k < k*i, 1 < m < M, compute the expression in the parenthesis of 
the RHS in (23). This costs approximately 0(N + 3MK) multiplications 
and MK calls to the log function. 
Step 3: Search the minimum entry in this table, which costs MK compar-
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isons. 
Step 4: Reconstruct the signal estimate (24), which costs O(N) for wavelets, 
0(ΛΓ log N) for wavelet packet best-bases, and 0(7V[log ΛΓ]2) for local trigono-
metric best-bases. 

§6· Extension to Images 

For images or multidimensional signals, we can easily extend our al-
gorithm by using the multidimensional version of the wavelets, wavelet 
packets, and local trigonometric transforms. In this section, we briefly 
summarize the two-dimensional (2D) versions of these transforms. For the 
2D wavelets, there are several different approaches. The first one, which 
we call the sequential method, is the tensor product of the one-dimensional 
(ID) wavelets, i.e., applying the wavelet expansion algorithm separately 
along two axes t\ and t2 corresponding to column (vertical) and row (hor-
izontal) directions respectively. Let / G κΛ1*^2 and Η,, G, be the ID 
convolution-subsampling operations along axis t^i = 1,2. Then this ver-
sion of the 2D wavelet transform first applies the convolution-subsampling 
operations along the £χ axis to obtain fl = (Gif,GiHif,...,GiHl

lf), 
then applies the convolution-subsampling operations along the t2 axis to get 
the final 2D wavelet coefficients (G2fl,G2H2f1,... ,G2H2

2 fx) °f le ngth 
N\ x iV2, where J\ {< \ogN\) and J2 (< log7V"2) are maximum levels of 
decomposition along t\ and t2 axes respectively. We note that one can 
choose different ID wavelet bases for t\ and t2 axes independently. Given 
M different QMF pairs, there exist M2 possible 2D wavelets using this 
approach. 

The second approach is the basis generated from the tensor product 
of the multiresolution analysis. This decomposes an image / into four 
different sets of coefficients, H\H2f, G\H2f, H\G2f, and G\G2f, cor-
responding to "low-low", "high-low", "low-high", "high-high" frequency 
parts of the two variables, respectively. The decomposition is iterated on 
the "low-low" frequency part and this ends up in a "pyramid" structure of 
coefficients. Transforming the digital images by these wavelets to obtain 
the 2D wavelet coefficients are described in e.g., [20], [13]. 

There are also 2D wavelet bases which do not have a tensor-product 
structure, such as wavelets on the hexagonal grids and wavelets with matrix 
dilations. See e.g., [18], [17] for details. 

There has been some argument as to which version of the 2D wavelet 
bases should be used for various applications [5], [13]. Our strategy toward 
this problem is this: we can put as many versions of these bases in the 
library as we can afford it in terms of computational time. Then minimiz-
ing the AMDL values automatically selects the most suitable one for our 
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purpose. 
As for the 2D version of the wavelet packet best-basis, the sequen-

tial method may be generalized, but it is not easily interpreted; the ID 
best-bases may be different from column to column so that the resultant 
coefficients viewing along the row direction may not share the same fre-
quency bands and scales unlike the 2D wavelet bases. This also makes the 
reconstruction algorithm complicated. Therefore, we should use the other 
tensor-product 2D wavelet approach for the construction of the 2D wavelet 
packet best-basis: we recursively decompose not only the "low-low" com-
ponents but also the other three components. This process produces the 
"quad-tree" structure of wavelet packet coefficients instead of the "binary-
tree" structure for ID wavelet packets. Finally the 2D wavelet packet 
best-basis coefficients are selected using the entropy criterion [33]. 

The 2D version of the local trigonometric transforms can be con-
structed using the quad-tree structure again: the original image is smoothly 
folded and segmented into 4 subimages, 16 subimages, . . . , and in each 
subimage the separable DCT/DST is applied, and then the quad-tree struc-
ture of the coefficients is constructed. Finally, the local trigonometric best-
basis is selected using the entropy criterion [33]. 

For an image of N = Ni x ΛΓ2 pixels, the computational costs are 
approximately O(N), 0(N\og4 JV), 0(iV[log4 iV]2) for a 2D wavelet, a 2D 
wavelet packet best-basis, a 2D local trigonometric best-basis, respectively. 

§7. Examples 

In this section, we give several examples to show the usefulness of our 
algorithm. 

Example 7.1. The Synthetic Piecewise Constant Function of Donoho-
Johnstone. 
We compared the performance of our algorithm in terms of the visual qual-
ity of the estimation and the relative £2 error with Donoho-Johnstone's 
method using the piecewise constant function used in their experiments 
[16]. The results are shown in Figure 2. The true signal is the piecewise 
constant function with N = 2048, and its noisy observation was created 
by adding the WGN sequence with | | / | | / | |n | | = 7. The library C for this 
example consisted of 18 different bases: the standard Euclidean basis of 
Β Λ , the wavelet packet best-bases created with D02, D04, . . . , D20, C06, 
C12, . . . , C30, and the local cosine and sine best-bases (On represents the 
n-tap QMF of Daubechies and Cn represents the n-tap coiflet filter). In 
the Donoho-Johnstone method, we used the C06, i.e., 6-tap coiflet with 
2 vanishing moments. We also specified the scale parameter J = 7, and 
supplied the exact value of σ2. Next, we forced the Haar basis (D02) to 
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Figure 2. Results for the synthetic piecewise constant function: (a) 
Original piecewise constant function, (b) Noisy observation with (signal 
energy)/(noise energy) = 72. (c) Estimation by the Donoho-Johnstone 
method using coiflets C06. (d) Estimation by the Donoho-Johnstone 
method using Haar basis, (e) Estimation by the proposed method. 

be used in their method. Finally, we applied our algorithm without spec-
ifying anything. In this case, the Haar-Walsh best-basis with k* = 63 
was automatically selected. The relative £2 errors are 0.116, 0.089, 0.051, 
respectively. Although the visual quality of our result is not too differ-
ent from Donoho and Johnstone's (if we choose the appropriate basis for 
their method) , our method generated the estimate with the smallest rela-
tive £2 error and slightly sharper edges. (See Section 8 for more about the 
Donoho-Johnstone method and its relation to our method.) 

E x a m p l e 7 .2 . A Pure White Gaussian Noise. 
We generated a synthetic sequence of WGN with σ2 = 1.0 and N = 4096. 
The same library as in Example 7.1 (with the best-bases adapted to this 
pure WGN sequence) was used. We also set the upper limit of search range 
k2 = N/2 = 2048. Figure 3 shows the AMDL curves versus k for all bases 
in the library. As we can see, there is no single minimum in the graphs, 
and our algorithm satisfactorily decided k* = 0, i.e., there is nothing to 
"learn" in this dataset . 
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Figure 3. The AMDL curves of the White Gaussian Noise data for all 
bases. For each basis, k = 0 is the minimum value. The vertical dotted 
line indicates the upper limit of the search range for k. 

Example 7.3. A Natural Radioactivity Profile of Subsurface Formation. 
We tested our algorithm on the actual field data which are measurement of 
natural radioactivity of subsurface formation obtained at an oil-producing 
well. The length of the data is N = 1024. Again, the same library was used 
as in the previous examples. The results are shown in Figure 4. In this 
case, our algorithm selected the D12 wavelet packet best-basis (Daubechies' 
12-tap filter with 6 vanishing moments) with fc* = 77. The residual error is 
shown in Figure 4 (c) which consists mostly of a WGN-like high frequency 
component. The compression ratio is 1024/77 « 13.3. However, to be able 
to reconstruct the signal from the surviving coefficients, we still need to 
record the indices of those coefficients. 

Suppose we can store each index by &,· bytes of memory and the preci-
sion of the original data is bf bytes per sample. Then the storage reduction 
ratio Rs can be computed by 

Rs~—W^b}—-7il + b}>> (25) 

where r is a compression ratio. The original data precision was bf = 8 
(bytes) in this case. Since it is enough to use b{ = 2 (bytes) for indices and 
r = 13.3%, we have Rs « 9.40%, i.e., 90.60% of the original data can be 
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Figure 4. The estimate of the natural radioactivity profile of subsur-
face formation: (a) Original data which was measured in the borehole 
of an oil-producing well, (b) Estimation by the proposed method, (c) 
Residual error between (a) and (b). 

discarded. 

E x a m p l e 7.4. A Migrated Seismic Section. 
In this example, the da ta is a migrated seismic section as shown in Fig-
ure 5 (a). The da ta consist of 128 traces of 256 time samples. We selected 
six 2D wavelet packet best-bases (D02, C06, C12, C18, C24, C30) as the 
library. Figure 5 (b) shows the estimate by our algorithm. It automatically 
selected the filter C30 and the number of terms retained as k* = 1611. If 
we were to choose a good threshold in this example, it would be fairly dif-
ficult since we do not know the accurate estimate of σ2 . The compression 
rate, in this case, is (128 x 256)/1611 « 20.34. The original da ta precision 
was bf = 8 as in the previous example. In this case we have to use bi — 3 
(1 byte for row index, 1 byte for column index, and 1 byte for scale level). 
If we put these and r = 20.34% into (25), we have Rs « 6.76%, i.e., 93.24% 
of the original da ta can be discarded. Figure 5 (c) shows the residual er-
ror between the original and the estimate. We can clearly see the random 
noise and some strange high frequency pat terns (which are considered to 
be numerical artifacts from the migration algorithm applied). 
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(a) (b) (c) 

Figure 5. Results for the migrated seismic section: (a) Original seis-
mic section with 128 traces and 256 time samples, (b) Estimation by the 
proposed method, (c) Residual error between (a) and (b). (Dynamic 
range of display (c) is different from those of (a) and (b).) 

§8. D i scus s ions 

Our algorithm is intimately connected to the "denoising" algorithm 
of Coifman and Majid [7], [10]. Their algorithm first picks the best-basis 
from the collection of bases and sorts the best-basis coefficients in order of 
decreasing magnitude. Then they use the "theoretical compression ra te" of 
the sorted best-basis coefficients {α ι · }^ : 1 as a key criterion for separating 
a signal component from noise. The theoretical compression ra te of a unit 
vector u is defined as c(u) = 2H^/N(u), where H(u) is the ^2-entropy of 
TA, i.e., H(u) = — Σί=ι ul l °S w i -> ^ d N(u) is the length of u. We note 
tha t 0 < c(u) < 1 for any real unit vector u , and c(u) = 0 implies u = 
{Sifi0} for some z'o (the best possible compression), and c(u) = 1 implies 
u = ( 1 , . . . , I)/ y/N(u) ( the worst compression). Then to decide how many 
coefficients to keep as a signal component, they compare c{{ai]f_k+l)^ the 
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theoretical compression ra te of the noise component (defined as the smallest 
(N — k) coefficients), to the predetermined threshold r . They search k = 
0 , 1 , . . . which gives an unacceptably bad compression rate: c({#i}£Lfc+i) > 
τ . Their algorithm critically depends on the choice of the threshold r 
whereas our algorithm needs no threshold selection. On the other hand, 
their algorithm does not assume the WGN model we used in this paper; 
rather, they defined the noise component as a vector reconstructed from 
the best-basis coefficients of small magnitude. 

Our algorithm can also be viewed as a simple yet flexible and effi-
cient realization of the "complexity regularization" method for estimation 
of functions proposed by Barron [3]. He considered a general regression 
function estimation problem: given the da ta (χί,νί)^, where {xi £ R p } 
is a sequence of the (p-dimensional) sampling coordinates (or explanatory 
variables) and {y,· E R } is the observed da ta (or response variables), se-
lect a "best" regression function fa out of a list (library) Cjy of candidate 
functions (models). He did not impose any assumption on the noise distri-
bution, but assumed that the number of models in the list CN depends on 
the number of observations N. Now the complexity regularization method 
of Barron is to find //y such tha t 

R(fN) = min i l Σ d(yi, /(*,·)) + jjL(f)J , 

where d(·, ·) is a measure of distortion (such as the squared error), λ > 0 is 
a regularization constant, and L(f) is a complexity of a function / (such 
as the L(m) + L(0m \ m) term in (5)). He showed tha t various asymptotic 
properties of the estimator fa as N —> oo, such as bounds on the estimation 
error, the ra te of convergence, etc. If we restrict our at tention to the finite 
dimensional vector space, use the library of orthonormal bases described in 
Section 2, adopt the length of the Shannon code (6) as a distortion measure, 
assume the WGN model, and finally set λ = 1, then Barron's complexity 
regularization method reduces to our algorithm. Our approach, although 
restricted in the sense of Barron, provides a computationally efficient and 
yet flexible realization of the complexity regularization method, especially 
compared to the library consisting of polynomials, splines, trigonometric 
series discussed in [3]. 

Our algorithm also has a close relationship with the denoising algorithm 
via "wavelet shrinkage" developed by Donoho and Johnstone [16]. (A well-
written summary on the wavelet shrinkage and its applications can be found 
in [15].) Their algorithm first transforms the observed discrete da ta into a 
wavelet basis (specified by the user), then applies a "soft threshold" r = 
σχ/ΙηΛΓ to the coefficients, i.e., shrinks magnitudes of all the coefficients 
by the amount r toward zero. Finally the denoised da ta is obtained by 
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the inverse wavelet transform. Donoho claimed informally in [15] that the 
reason why their method works is the ability of wavelets to compress the 
signal energy into a few coefficients. The main differences between our 
algorithm and that of Donoho and Johnstone are: 

• Our method automatically selects the most suitable basis from a 
collection of bases whereas their method uses only a fixed basis 
specified by the user. 

• Our method includes adaptive expansion by means of wavelet pack-
ets and local trigonometric bases whereas their method only uses a 
wavelet transform. 

• Their method requires the user to set the coarsest scale parameter 
J <n and a good estimate of σ2 , and the resulting quality depends 
on these parameters. On the other hand, our method does not 
require any such parameter setting. 

• Their approach is based on the minimax decision theory in statistics 
and addresses the risk of the estimation whereas our approach uses 
the information-theoretic idea and combines denoising and the data 
compression capability of wavelets explicitly. 

• Their method thresholds the coefficients softly whereas our method 
can be said to threshold sharply. This might cause some Gibbs-like 
effects in the reconstruction using our method. 

Future extensions of this research are to: incorporate noise models 
other than Gaussian noise, extend the algorithm for highly nonstationary 
signals by segmenting them smoothly and adaptively, investigate the effect 
of sharp thresholding, and study more about the relation with the com-
plexity regularization method of Barron as well as the wavelet shrinkage of 
Donoho-Johnstone. 

§9. Conclus ions 

We have described an algorithm for simultaneously suppressing the ad-
ditive WGN component and compressing the signal component in a dataset. 
One or more of the bases in the library, consisting of wavelets, wavelet pack-
ets, and local trigonometric bases, compress the signal component quite 
well, whereas the WGN component cannot be compressed efficiently by any 
basis in the library. Based on this observation, we have tried to estimate 
the "best" basis and the "best" number of terms to retain for estimating the 
signal component in the data using the MDL criterion. Both synthetic and 
real field data examples have shown the wide applicability and usefulness 
of this algorithm. 
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L o n g - M e m o r y Proces se s , t h e Al lan Variance and Wave le t s 

Donald B. Percival and Peter Gut torp 

Abstract. Long term memory has frequently been observed in physical time 
series. Statistical theory for long-memory stochastic processes is radically different 
from the standard time series analysis, which assumes short term memory. The 
Allan variance is a particular measure of variability developed for long-memory 
processes. This variance can be interpreted as a Haar wavelet coefficient variance, 
suggesting an approach towards assessing the variability of general wavelet classes. 
The theory is applied to a 'time' series of vertical ocean shear measurements for 
which some drawbacks with the Haar wavelet are observed. 

§1. Introduct ion 

In a variety of applications, t ime series analysts have noticed tha t 
the est imated autocovariance sequence for their da ta tends to decrease 
rather slowly, indicating tha t the series has 'long memory' in the sense tha t 
changes in the remote past continue to affect the present value of the se-
ries. Beran (1992) gives a good review of statistical and historical aspects 
of long-memory processes. Time series tha t are well modelled by long-
memory processes have been observed, for example, by Newcomb (1895) in 
astronomy, by Gösset (Student, 1927) in chemistry, and by Smith (1938) in 
agriculture. In geophysics a famous early example is Hurst 's (1951) study of 
the minimum annual height of the river Nile. This series has a sample auto-
covariance sequence (acvs) sT tha t is approximately proportional to | τ | - 0 · 3 ; 
i.e., the sequence decays hyperbolically, thus ruling out such s tandard t ime 
series models as ARMA models tha t have exponentially decaying autoco-
variance sequences (here sT is an estimate of sT = cov {Xt,Xt+r} when 
{Xt} is a stationary process). The applicability of long-memory processes 
to climate da ta has been recently discussed by Raftery and Haslett (1989) 
and Smith (1992). 
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The statistical properties of a long-memory process can be quite dif-
ferent from those of a set of independent and identically distributed (iid) 
observations. For example, the familiar variability properties of sample 
averages of iid observations are far from valid for a long-memory process. 
In fact, Smith (1938) observed tha t sample averages in agricultural unifor-
mity trials had variances tha t did not decrease at the rate of the number of 
terms in the average, and deduced tha t there must be substantial spatial 
correlation. To see the effect of long memory on the variability of averages, 
consider a simple example of a long-memory process, namely, a fractional 
Gaussian process {Xt} with self-similarity parameter 1/2 < H < 1 (Man-
delbrot and Wallis, 1969; such a process is the first difference of the frac-
tional Brownian motion defined by Mandelbrot and Van Ness, 1968). By 
definition, this process has an acvs given by 

, τ = ! ( | τ + 1 | 2 " - 2 | τ | 2 " + | τ - ΐ Γ ) , r = ±l,±2,... , 

where so = var{X*} (note tha t the case H = 1/2 corresponds to the iid 
case because then sT = 0 for τ φ 0, whereas {Xt} has long-memory if 
1/2 < H < 1). Then var {X} = s0N

2H~2, where X is the sample mean of 
N observations (i.e., Σ*=ι Xt/N). Note that , for values of H close to 1, 
the rate of decrease of variability in X is markedly different from the 1/N 
rate of the iid case. Naive application of iid statistics to the sample mean 
of a long-memory process can thus be very misleading. For example, if we 
fit a fractional Gaussian process to the Nile data, we obtain an estimate 
of H = 0.85, implying tha t the variance of the sample mean decreases 
like 1/N03 instead of the usual 1/N rate. Numerically, obtaining 100 
observations from this fractional Gaussian process is equivalent to obtaining 
only 4 observations from an iid process! 

In spite of its slow rate of decay, the sample average of a long-memory 
process is still a surprisingly efficient estimator of the mean level of the 
process (Beran and Künsch, 1985; Percival, 1985). Unfortunately, the same 
cannot be said for other standard statistics. In particular, the sample 
variance is a poor estimator of the process variance for a long-memory 
process because it has both severe bias and low efficiency (Beran, 1992). 
Due to these problems in estimation, Allan (1966) criticised the use of 
the sample variance as a meaningful estimator of variability for stationary 
processes with long memory and for nonstationary processes with infinite 
variance. He proposed an alternative theoretical measure of variability 
tha t is now known as the Allan variance (see Section 2 below). In terms 
of filtering theory, the Allan variance can be interpreted as the variance of 
a process after it has been subjected to an approximate band-pass filter of 
'constant Q ' (i.e., the ratio of the center frequency of the pass-band and the 
width of the pass-band is a constant). The chief advantages of the Allan 
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variance for long-memory processes are two-fold: first, this variance can be 
est imated without bias and with good efficiency for such processes, and, 
second, estimates of the Allan variance can in turn be used to est imate 
the parameters of the long-memory process (as we note in Section 2, these 
s tatements also hold for certain nonstationary power-law processes). The 
Allan variance has been applied for over twenty-five years as the routine 
t ime domain measure of frequency stability in high-performance oscillators. 

In a recent article Flandrin (1992) briefly noted tha t the Allan variance 
can be interpreted in terms of the coefficients of a Haar wavelet transform 
of a t ime series. We explore this connection in detail in Section 2. As 
we note in Section 3, the notion of the Allan variance can be generalized 
to other wavelets to define a wavelet variance. The wavelet variance is 
a useful way of summarizing the properties of the wavelet transform for 
certain processes. In particular, the parameters of long-memory processes 
can be deduced from the wavelet variance. We also note in Section 3 tha t 
s tandard estimators for the Allan variance can be easily generalized to these 
other wavelet variances. 

In terms of computational complexity, the Allan variance is the sim-
plest of the wavelet variances. Unfortunately, it can be misleading for 
certain processes of interest in geophysics. In the particular example we 
consider in Section 4, we find tha t the wavelet variance for Daubechies's 
'least asymmetric ' wavelet of order 8 (Daubechies, 1992) yields markedly 
bet ter results (hereinafter we refer to this wavelet as the LA(8) wavelet). 
This example demonstrates the usefulness for da ta analysis of classes of 
wavelets beyond the simple Haar wavelet. Our analysis also demonstrates 
the importance of conducting a parallel spectral analysis to validate the 
interpretation of a wavelet variance in terms of the parameters for a long-
memory process. Finally, in Section 5 we discuss some possible extensions, 
including some general thoughts on assessing the variability of wavelet co-
efficients. 

§2. T h e Al lan Variance and t h e Haar Wave le t 

Suppose we have a time series of length N tha t can be regarded as one 
portion of one realization from the stochastic process {YJ,i = 0 , ± 1 , . . . } 
(for convenience, we assume tha t the sampling interval between consecutive 
observations is unity). Let 

^ « ^ Σ ^ Η (1) 
i=o 

represent the sample average of k consecutive observations, the latest one of 
which is Y%. The Allan variance at scale k is denoted by σ\ (k) and is defined 
to be half the mean square difference between adjacent nonoverlapping 
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Yt(kys; i.e., 

al(k)=\E{[Yt{k)-Yt-k{k)f}. 

In order for 0"y(fc) to be independent of the index £, we must impose a 
stationarity condition on the process {!*}, namely, tha t its first backward 
difference Zt = Yt — Yt-\ is a stationary process. Note tha t the Allan 
variance at scale k is a measure of how much averages of length k change 
from one t ime period of length k to the next. 

To see why the Allan variance might be of interest for long-memory 
processes, suppose momentarily tha t {Yt} is a fractional Gaussian process 
with self-similarity parameter 1/2 < H < 1. If we let 5y( · ) denote the 
spectral density function (sdf) for {Yt} defined for frequencies / between 
— 1/2 and 1/2, then we have 

Μ/) = Μ/)|/Γ -2H 

where Li( · ) is a slowly varying function for | / | —>> 0 (Beran, 1992). Thus, 
if we plot log(5y ( / ) ) versus log(/) for positive values of / close to zero, we 
will observe (to a good approximation) a line with a slope of 1 — 2H. A 
similar result holds for the Allan variance: we have 

a2
Y(k) = L2(k)k2H~2, 

where L 2 O is a slowly varying function for k —l· oo (Percival, 1983, The-
orem 2.19). Thus, if we plot log(ay(fc)) versus log(fc) for large fc, we will 
observe (to a good approximation) a line with a slope of 2H — 2. In the 
analysis of frequency stability, it is common practice to produce plots of the 
so-called 'σ-τ curve,' which is just a plot of an estimate of log^y(fc)) versus 
log(fc). On such a plot, a slope of β with —1/2 < β < 0 would be indicative 
of a stationary process with a self-similarity parameter H = ß -f 1. 

As we mentioned above, the Allan variance is also well-defined when 
{Yt} is not itself a stationary process but its associated first backward 
difference {Zt} is. In such cases, we can define an sdf 5y( · ) for {Yt} in 
terms of the sdf Sz{') for {Zt} via the relationship 

Sy(f) Ξ JgP-
4sin2(7r/) 

(this definition is motivated by the theory of linear filters). Suppose mo-
mentarily tha t 

Sy(f) = L3(f)\f\°, 

where Ls(·) is a slowly varying function for | / | -> 0, and —3 < a < 0; i.e., 
SY(-) is a 'red' power-law process with exponent a greater than —3. Then 
we have 

al(k) = L4(k)k~a-\ 
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where L±(') is a slowly varying function for k —► oo. Thus, in principle, 
the Allan variance can be used to deduce the parameters for certain 'red' 
power-law processes. 

Let us now consider the Haar wavelet transform of the time series Y\, 
. . . , YJV , where we now assume that the sample size TV is a power of 2 so that 
N = 2P for some positive integer p. By definition, this transform consists 
of N — 1 'detail' coefficients and one 'smooth' coefficient s\ = Y2t=l Yt/N. 
The detail coefficients djjk are defined for scales k = 1, 2, 4, . . . , N/2 and 
- within the kth scale - for indices j = 1, 2, 3, . . . , N/2k as 

1 p - i fc-i "I 
dj>k - ~frt Σ Y^k~l " Σ Y^Jk-k-i . (2) 

VZK li=o i=o J 
For example, we have 

dj,! = [Y2j - i2i-i]/v/2, l < j < i V / 2 
djl2 s [r4,· + n , - - i - Ytj-2 - YAJ-3]/2, l<J<N/4 
djA = [Y8j + ---+Y8j-3-Ysj-4 Yaj-7)/2^2, l<j<N/8 

djlN/2 = [YN + --- + YN/2+I-YN/2 Yi]/(V2)p. 

We can now state the relationship between the Allan variance and the 
Haar wavelet coefficients dj^. Using Equations 1 and 2, we have 

< * * * = ( £ ) [Y2jk(k)-Y2jk-k(k)]. 

If the first backward difference process {Zt} for {Yt} is stationary with zero 
mean, we then have 

var{di)fc} = E{d\k) = ^E{[Y2jk(k)-Y2jk_k(k)]2} = ka2
Y(k). (3) 

Thus the Allan variance at scale k is directly related to the variance of the 
Haar wavelet coefficient at that same scale. (Violation of the seemingly 
innocuous assumption that E{Zt} = 0 can seriously impact our ability 
to make sense of estimates of the Allan variance - see Percival, 1983, for 
further discussion.) 

In view of Equation 3, an obvious unbiased estimator for the Allan 
variance is 

N/2k N/2k 

ϊγ^ = jf Σ dh = ^ Σ Fwik) - Y2jk-k(k)}*. (4) 
j=l j = l 

The above estimator is known in the frequency stability literature as the 
'non-overlapped' estimator of the Allan variance because each value Yt in 
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the t ime series contributes to exactly one d2- k in the summation in Equa-
tion 4. The estimator <Ty(&) is not commonly used because of the superior 
statistical properties of a closely related estimator known as the maximal-
overlap estimator (Greenhall, 1991). This estimator is defined as 

* * < * > Ξ 2(N-\k+l) Σ (F<(fc) - F - ( f c ) ) 2 · (*) 

We can interpret the above estimator in terms of a filtering operation from 
which we can obtain the Haar wavelet coefficients dj^ by subsampling 
(also called 'downsampling'). At scale &, the filter tha t yields the dj^s is 
of length 2k and has coefficients 

7 (l/y/2k, Z = 0 , . . . , k - 1 ; 
Z , f c~ \ - l / > / 2 f c , Z = fe, . . . , 2 f e - l 

(cf. Equation 2). Note tha t Σζ=ό" "f k = 1. If we let 

2k-l 

Wt,k=^ïn,kYt-i, f = 2k,...,iV, (6) 
1=0 

then we have djtk — W2jk,kl i-e-> the drib's are obtained by appropriately 
subsampling every 2/cth value of the Wife's. We refer to the Wife's as 
the maximal-overlap Haar wavelet coefficients. We can now easily see the 
difference between the non-overlapped and maximal-overlap estimators: 

9 N / 2 k ~ 1 N ~ 
?v(fc) = Ü Σ ^ Μ > whereas *y(fc) = fe(^_2fc + 1) Σ w*%; (7) 

i.e., ôry(k) makes use of just the N/2k subsampled Wt,k% whereas <5"y(fc) 
makes use of all N — 2k -\- 1 of the Wtfk's. Thus the maximal-overlap 
estimator does not use the usual decimated subseries of the discrete Haar 
wavelet transform, but it can be said to use a uniformly sampled version 
of the corresponding continuous transform. Note tha t use of σ\ (k) ra ther 
than ^(k) imparts a certain degree of independence in the choice of the 
origin (i.e., if we form a new time series by discarding Y\ and adding Y/v+i, 
only one of the Wife's in the maximal-overlap estimator changes whereas 
all of them change in the nonoverlapped estimator). Note also tha t the 
definition of σ\(k) in Equation 5 holds for all sample sizes N (i.e., N need 
not be a power of 2). 

For computational purposes, it is more efficient to evaluate the right-
hand side of Equation 5 by computing the summations needed to obtain 
the y t(fc) 's just once. To do so, let XQ = 0, and let Xt = Xt-i + Y% for 



Long-Memory Processes and Wavelets 331 

t = 1, . . . , N. Since Xt = Σ ω = 1 Υμ, we have 

Yt{k) = -Y,Yt-j = {Xt-Xt-k)/k, 
j=0 

and hence we have 

Yt(k) -Yt-k(k) = (Xt - 2Xt-k+Xt-2k)/k 

and 
Wtik = (Xt - 2Xt-k + Xt-2k)/V2k. 

We can thus rewrite Equation 5 as 

* '<*> = 2kHN-2k+l) t < * - 2 * - * + * - » ) ' · 

§3. T h e Wavele t Variance 

It is easy to extend the ideas of the previous section to wavelets other 
than the Haar wavelet. There are two approaches tha t we can take to gen-
erate the maximal-overlap wavelet coefficients Wt,k based upon a wavelet 
of unit scale specified by the L\ filter coefficients /ΐο,ι, /ΐι,ι, . . . , /ΐχ,ι-ι,ι-
In the first approach, we start by generating the appropriate filter {h^k} 
for each scale k based upon the wavelet for unit scale. This can be done 
easily by taking the inverse discrete wavelet transform of a properly placed 
pulse (for details, see the subsection 'What Do Wavelets Look Like?' in 
Section 13.10 of Press et al., 1992). Let Lk be the length of the wavelet 
of scale k so tha t , for example, L\ = 2 for the Haar wavelet while L\ = 8 
for the LA(8) wavelet (the values of Lk for scales k = 2, 4, . . . , obey the 
relationship Lk = (2k — l ) ( I q — 1) + 1 and can also be obtained via the 
recursive formula L2k — 2Lk + L\ — 2). For each scale k we then filter our 
t ime series to obtain 

Lk-\ 

Wt,k= Σ Kkyt-h t = Lk,...,N 
1=0 

(cf. Equation 6). 
The second approach to obtaining the Wife's is to modify the pyramid 

algorithm for obtaining the usual wavelet coefficients (see Section 13.10 of 
Press et a/., 1992, for a lucid description of this algorithm). The usual pyra-
mid algorithm makes use of two filters, namely, the wavelet filter {^z,i} and 
the so-called scaling filter {<7/,i}. For the types of wavelets of interest here, 
the scaling filter is defined in terms of the wavelet filter via the 'quadrature 
mirror ' relationship g^i = (—l) / + 1 / iLi - / - i , i · Whereas the wavelet filter 
resembles a high-pass filter, the scaling filter resembles a low-pass filter. 
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The usual pyramid algorithm uses the same scaling and wavelet filters at 
each scale; i.e., at scale 2fc, these two filters are applied to the subsampled 
output from the scaling (low-pass) filter from scale k. For the maximal-
overlap estimator we must eliminate all subsampling, so formally we must 
use different filters as we move from scale k to scale 2k. Forming these new 
filters, however, is quite simple: the wavelet and scaling filters we need for 
scale k in the maximal-overlap pyramid algorithm are obtained by insert-
ing k — 1 zeros between each of the coefficients in the wavelet and scaling 
filters for unit scale (in effect, these zeros compensate for the elimination of 
subsampling). The maximal-overlap pyramid algorithm avoids all multipli-
cations involving coefficients equal to zero by keeping track of the indices 
of elements of the series tha t need to be multiplied by the nonzero filter 
coefficients. 

Given the wavelet filter {7i/,i} and corresponding scaling filter {37,1} 
for unit scale, the basic step of the maximal-overlap pyramid algorithm 
takes as input 

• a scale fc, which must be an integer power of 2, and 

• a series X i , X25 · · · 5 ^Mk of length M* = N — (k — l)(Li — 1), where 
N is the length of the time series (this need not be a power of 2); 

and returns as output two series of length M2A;, namely, 

• a low-pass series X\ , X%\ · · · , X)J and 

• a high-pass series Λ # 1 Μ „ + 1 , X^lM 2 f c+2> ■ ■ · > Xp· 

Given its two inputs k and {X*}, the basic step creates its two output series 
as follows. 

1. Set m = fc(Li - 1) + 1. 

2. For t = m, . . . , Μ&, do the outer loop of 2: 

S e t X t
( Î î m + 1 = f l b , i X t . 

Set XN_Mh+t — ho,ixt· 
Set u = t. 
For / = 1 to L\ — 1, do the inner loop of 2: 

Decrement u by k. 

Increment Xt_m+i by gi,iXu> 

Increment Xx_Mk+t by hlAXu. 

End of the inner loop of 2. 

End of the outer loop of 2. 
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With the basic step so defined, the maximal-overlap pyramid algorithm 
consists of the following steps. 

1. Evoke the basic step with scale k = 1 and Xt = Yt for t = 1, . . . , 
Mi = N to obtain as output the low-pass series X\ and high-pass 
series x\h\ both of length M 2 = N - Lx + 1. Set Vtyl = X{

t
l) and 

Wt}\ = Xt i i-e-> the maximal-overlap wavelet coefficients of scale 
1 are just the elements of the high-pass series. 

2. Evoke the basic step again, but this t ime with scale k = 2 and 
Xt = Vtti for t = 1, . . . , M-2 to obtain as output the low-pass series 
X[l) and high-pass series x[h\ both of length M 4 = TV - 3Li + 3. 
Set Vti2 = Xt a n d Wtt2 = Xt i i-e-5 the maximal-overlap wavelet 
coefficients of scale 2 are just the elements of the high-pass series. 

3. Evoke the basic step for k = 4, 8, . . . , 2^ l oS2([^+^i-2] /^i-1])J-1
5 

where [#J refers to the largest integer tha t is less than or equal to 
x. In particular, at the step in which the maximal-overlap wavelet 
coefficients for scale k are calculated, the basic step is evoked with 
Xt = Vttk/2 for t = 1, . . . , Mk = N - (k - l ) (L i - 1) to obtain as 
output the low-pass series X\ and high-pass series X\ , bo th of 
length M2k = N-(2k-l)(Ll-l). Set Vt,k = x\l) and Wt%k = Χ[Η); 
i.e., the maximal-overlap wavelet coefficients of scale k are just the 
elements of the high-pass series. 

Note tha t , in contrast to the Haar wavelet, we can obtain only some of 
the wavelet coefficients by subsampling the Wt,k'& - the missing coefficients 
are those tha t involve circularly wrapping the time series (see the discussion 
in Press et a/., 1992). Under the same assumptions on {Yt} tha t we used 
to define the Allan variance, we can define the wavelet variance at scale k 
as 

vï(k) = E{WÏik}/k 

(cf. Equation 3). The equivalent of the maximal-overlap estimator for this 
wavelet variance would be given by 

1 N 

ùr(k) = 771Γ7-Τ TT Y W h 
YK J k(N - Lk + 1) £f *'* 

(cf. Equation 7). A plot of the square root of this quantity versus scale 
A: on a log/log scale yields a generalization of the σ-τ curve, from which 
we can infer from regions of linearity tha t a power law process might be a 
good model for our data . 
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350 450 550 650 750 
meters 

850 950 1050 

Figure 1. Plot of vertical shear measurements (in inverse seconds) ver-
sus depth (in meters). This series was collected and supplied by Mike 
Gregg, Applied Physics Laboratory, University of Washington. As of 
1994, this series could be obtained via electronic mail by sending a mes-
sage with the single line 'send lmpavw from datas et s ' to the Internet 
address s ta t l ibQl ib . s ta t . cmu.edu - this is the address for StatLib, a 
statistical archive maintained by Carnegie Mellon University. 

§4. A n Appl icat ion t o Vertical Shear M e a s u r e m e n t s 

Here we illustrate the ideas of the previous section by examining a 
' t ime' series of vertical ocean shear measurements. The da ta were collected 
by an instrument tha t is dropped over the side of a ship and designed to 
then descend vertically into the ocean. As it descends, the probe collects 
measurements concerning the ocean as a function of depth. The ordering 
variable of our ' t ime' series is thus depth. One of the measurements is 
the x component of the velocity of water. This velocity is collected every 
0.1 meters, first differenced over an interval of 10 meters, and then low-pass 
filtered to obtain a series related to vertical shear in the ocean. Vertical 
shear is thought to obey a power-law process over certain ranges of spatial 
frequency, so this series is a useful candidate for examining how well the 
Allan variance and other wavelet variances can deduce such a process. 

Figure 1 shows the series of vertical shear measurements used in this 
study. The series extends from a depth of 350.0 meters down to 1037.4 me-
ters in increments of 0.1 meters (there are 6875 da ta values in all). There 
are two thin vertical lines marked on the plot, between which there are 4096 
values ranging from 489.5 meters to 899.0 meter. In what follows, we will 
assume tha t this subseries can be regarded as a portion of one realization of 
a process whose first backward difference is a stationary process (we need 
this assumption to apply meaningfully the methodology of Section 3). 

The thick curves in the four rows of plots in Figure 2 show, respectively, 
the squared modulus of the transfer function for the Haar wavelet (left-hand 
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Figure 2. Squared modulus of transfer functions (left-hand column of 
plots) and phase functions (right-hand column) versus frequency for the 
Haar wavelet (thick curves) and LA(8) wavelet (thin curves) for scales 
1, 2, 4 and 8 (top to bottom rows). 

column) and the associated phase function over the nominal pass-band of 
the wavelet (right-hand column) for the four scales 1, 2, 4 and 8 (top 
to bo t tom rows). The thin curves in each plot show the corresponding 
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functions for the LA(8) wavelet, which has the following filter coefficients: 

ho.i = 0.03222310060407815 h4A = 0.80373875180538600 
hiji = 0.01260396726226383 h5|i = -0.49761866763256290 
h2[i = -0.09921954357695636 h6[i = -0.02963552764596039 
Η3Λ = -0.29785779560560505 h7[i = 0.07576571478935668 

(the source of these coefficients is the 'N = 4' entry of Table 6.3, p . 198, 
Daubechies, 1992, which gives the LA(8) scaling filter coefficients normal-
ized to sum to 2 - the above hi y s were obtained via the 'quadrature mirror ' 
relationship between scaling and wavelet filters with a renormalization so 
tha t Σ / = ο ^ ? ι = -0· Note tha t the transfer functions for both wavelets 
roughly define a set of octave band filters; i.e., the transfer functions for 
scale k are approximately concentrated between frequencies and l/4k and 
l/2k (the spacing between the minor tick marks on the frequency axis is 
1/16). The plots show tha t the transfer functions for the LA(8) wavelet 
are a bet ter approximation to a set of octave band filters than those for the 
Haar wavelet. The phase functions for the Haar wavelet are approximately 
linear over the nominal pass-bands, whereas those for the LA(8) wavelet 
are approximately constant and fairly close to zero. Thus the output from 
the Haar wavelet filters will be phase-shifted with respect to the input, 
making it difficult to line up events at various scales with the original t ime 
series. In contrast, because the filters for the LA(8) wavelet are approxi-
mately zero phase, we can more easily line up events at various scales with 
the original t ime series. Note, however, tha t the spans of Haar wavelet 
filters for scales 1, 2, 4 and 8 are, respectively, 2, 4, 8 and 16, whereas 
the corresponding spans for the LA(8) wavelet are 8, 22, 50 and 106. If 
these wavelets are used as noncircular filters as discussed in Section 3, the 
output from the LA(8) wavelet will become increasingly shorter compared 
to tha t of the Haar wavelet as the scale increases. In fact, for the larger 
scales the length of the LA(8) wavelet will exceed the length of the t ime 
series, whereas the reverse will be true for the Haar wavelet. 

Figure 3 shows (from bot tom to top) the renormalized outputs from 
the Haar wavelet filters for physical scales 0.1, 0.2, 0.4, 0.8, 1.6 and 3.2 
meters (because the distance between adjacent observations is 0.1 meters, 
these physical scales correspond to, respectively, the unitless scales 1, 2, 
4, 8, 16 and 32). In order to obtain physically meaningful units, it is 
necessary to renormalize the Wife's by dividing by (2/c)1/2. Each of these 
renormalized filtered series is drawn with the same vertical scale, so we 
see tha t the variability gets progressively larger as we move from shorter 
to longer scales (the distance between minor tick marks on the vertical 
scale is 1/s). The usual Haar wavelet transform for these scales can be 
obtained by appropriately subsampling these filtered series. Note tha t all 
six of these filtered series appear to be approximately rescaled versions of 
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Figure 3. Renormalized outputs of Haar wavelet filters for physical 
scales 0.1, 0.2, 0.4, 0.8, 1.6 and 3.2 meters (bottom to top). 

each other. We will see below tha t this is caused by a form of 'leakage' 
evidently due to the fact tha t the Haar approximation to pass-band filters 
is not good enough for this series and tha t in effect longer scale fluctuations 
are 'leaking' into these shorter scale fluctuations. Note tha t there are two 
bursts in the filtered series for the smaller scales, one near 450 meters and 
the other near 1000 meters. 

Figure 4 is a repetition of Figure 3, with the LA(8) wavelet used instead 
of the Haar wavelet (again, we have renormalized the Wife's by dividing by 
(2&)1/2). The vertical scales on Figures 3 and 4 are identical, so it is evident 



338 D. Percival and P. Guttorp 

\^f^^jt^Hêjjl^ 

^'■"»"«flNi» 

■ » # » >WH"* iH ♦»« H"»fr»»M i»«»1 

Tf|r~ 

" » » M Ni '■«H " Νι . ι»ιΜρφ.. ι H"""-»"*' mp" Φ 

J_ _]_ X X _L X J 
350 450 550 650 750 850 950 1050 

meters 

Figure 4. Renormalized outputs of LA(8) wavelet filters for physical 
scales 0.1, 0.2, 0.4, 0.8, 1.6 and 3.2 meters (bottom to top). 

that there is much less variability at the smaller scales for the LA(8) wavelet 
than for the Haar wavelet. While there is some correspondence between the 
filtered series at different scales, the correspondence is much less marked 
for the LA(8) wavelet than for the Haar wavelet. Each of the filtered series 
in this figure is slightly shorter than the corresponding one in Figure 3 due 
to the longer span of the filters for the LA(8) wavelet. Note that only part 
of the usual LA(8) wavelet transform for these scales can be obtained by 
subsampling these filtered series because we are not filtering the data in 
Figure 1 as if it were circular (an assumption that would make no sense 
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Figure 5. 'σ-τ ' curves for the Haar wavelet (left-hand plot) and the 
LA(8) wavelet (right-hand). 

at all for a series of ocean depth measurements!). Again we can see the 
bursts in the filtered series for the smaller scales near 450 and 1000 meters. 
An examination of the renormalized filtered series for physical scales longer 
than 3.2 meters shows no indication of these bursts. In the region marked 
by the thin vertical lines between the two bursts, the filtered series for all 
scales appear to be consistent with a stationarity assumption, so we have 
chosen this subseries of 4096 values as a candidate for analysis using the 
ideas discussed in the previous two sections. 

The left-hand plot of Figure 5 shows the 'σ -τ ' curve, a popular analysis 
tool in the frequency stability literature. This plot shows the square root 
of the Allan variance (estimated using the maximal-overlap estimator) at 
different physical scales plotted versus scale on a log-log plot. Theory 
suggests tha t regions of linearity correspond to a power-law process over a 
particular region of frequencies, with the exponent of the power-law process 
being related to the slope of the line (in log-log space). The first 7 values of 
the σ-τ curve fall on such a line almost perfectly. The line drawn through 
them on the plot was calculated via least squares and has a slope of 0.83. 
Since ay{k) ( the square root of the Allan variance) varies approximately as 
£-(c*+i)/2 for a p 0 w e r _ i a w process with exponent a (see Section 2), the σ-τ 
curve strongly suggests the presence of a power-law process over scales of 
0.1 to 6.4 meters with an exponent of a = —2.66 = —8/3. The right-hand 
plot is the σ-τ curve corresponding to the LA(8) wavelet for the first 9 
scales (recall tha t filtered series for the longer scales cannot be obtained 
due to the span of the filters for this wavelet), and it tells quite a different 
story. The values are not aligned in an obvious straight line as in the case 
of the Allan variance, and the slope tha t we found using the first 7 scales 
of the Allan variance certainly does not look reasonable for portions of the 
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Figure 6. Comparison of spectral estimates implied by σ-τ curves 
with a WOSA spectral estimate. 

LA(8) wavelet variance. 
In Figure 6 we translate the σ-τ curves of the previous figure into es-

t imates of the sdf over different octave bands (these have constant spacing 
on a log frequency scale). For example, the wavelet variance for a scale of 
0.1 meters maps onto the highest octave band; the one for a scale of 0.2 me-
ters maps onto the second highest octave band; and so forth. The thick 
'staircase' on this plot corresponds to the Allan variance, while the thin 
staircase corresponds to the LA(8) wavelet variance. In general, the LA(8) 
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wavelet variance yields an sdf estimate tha t is lower than the estimate 
obtained from the Haar wavelet (i.e., the Allan variance). The difference 
between the two sdf estimates is almost one order of magnitude in three 
of the octave bands. The dots in this figure show a Welch's overlapped 
segment averaging (WOSA) sdf estimate using a Hanning da ta taper and 
a block size of 1024 da ta points with segments overlapping by 50%, yield-
ing an sdf estimate with 13.4 equivalent degrees of freedom (a comparison 
of the periodogram with direct sdf estimates using nontrivial da ta tapers 
indicated tha t the periodogram suffers from leakage and tha t tapering is 
required here; for details on the WOSA sdf estimate, see, for example, 
Section 6.17 of Percival and Waiden, 1993). Whereas the LA(8) wavelet 
sdf est imate agrees fairly well with the WOSA spectral estimate, the Haar 
wavelet sdf estimate is too high in several of the octave bands, indicating 
some form of leakage evidently due to the fact tha t the Haar wavelet forms 
a fairly crude set of octave band filters. 

§5. Concluding R e m a r k s 

Here we make several remarks concerning the results of the previous 
sections. First, a wavelet analysis of a t ime series tha t can be modelled as 
a power-law process can be used to deduce the properties of the underlying 
process, but it is dangerous to do so without a careful look at a traditional 
sdf est imate with good prevention against leakage. For example, if we had 
computed just the left-hand σ-τ curve of Figure 5, we might have been 
badly fooled by the degree to which the points line up as theory suggests 
they should in the presence of a power-law process. 

Second, as others have noted, the wavelet variance is a tool tha t is 
well-adapted for studying power-law processes; however, the wavelet vari-
ance can lead us to find 'power laws' (or 'fractal behavior') in da ta tha t 
might be best modelled in other ways. Consider, for example, the octave 
band centered at 1 0 _ 1 cycles/meter in Figure 6. The wavelet-based esti-
mates of the power in this band are both somewhat higher than what the 
WOSA sdf est imate suggests is reasonable (in fact, the deficiency of power 
here can be a t t r ibuted to the preprocessing operation in which the veloc-
ity series was first differenced over an interval of 10 meters). This octave 
band corresponds to a scale of 3.2 meters in the σ-τ curves of Figure 5. 
For bo th of these curves, the value at 3.2 meters can be obtained almost 
exactly by linearly interpolating (on a log/log scale) between the points at 
scales 1.6 and 6.4 meters. This suggests tha t the wavelet-based estimates 
might be biased in the sense tha t regions tha t do not agree with a nominal 
power-law behavior will tend to be 'filled in' in a manner consistent with 
the power-law assumption. What is vitally needed is a careful study of the 
bias and variance of wavelet-based estimates of the sdf for processes tha t 
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deviate from a power law in at least some octave bands. 
Third, for purposes of estimating the wavelet variance, results obtained 

by the frequency stability community using the Haar wavelet (i.e., the Allan 
variance) strongly favor the maximal-overlap estimator. The superiority of 
the maximal-overlap estimator is due to the fact that it is formed by taking 
the output from a filter, summing the square of each term and then dividing 
by the number of terms times the scale &, whereas the non-overlapped esti-
mator takes exactly the same filter output , subsamples it, sums the square 
of each subsampled term and then divides by the number of subsampled 
terms times the scale k. It is thus intuitively reasonable tha t the subsam-
pling operation yields an estimator of the Haar wavelet variance with larger 
variance than the nonoverlapped estimator (detailed analysis of the two es-
t imators supports our intuition - see Greenhall, 1991). While it seems 
obvious tha t this result holds at least to some extent for wavelets other 
than the Haar wavelet, more work is needed to verify tha t the maximal-
overlap estimator is indeed superior to the nonoverlapped estimator tha t 
would naturally fall out from the discrete wavelet transform (if we ignore 
those par ts of the transform tha t correspond to circularly filtering a t ime 
series). 

Fourth, in spite of its poor properties at small scales, the Haar wavelet 
seems to do quite well at long scales where in fact we cannot use the LA(8) 
wavelet at all (in a noncircular fashion) because the lengths of the wavelet 
and scaling filters are longer than our time series. 

Fifth, procedures have been worked out in the frequency stability com-
munity for placing confidence limits on the Allan variance under the fairly 
stringent assumption tha t the exponent of the power law is known a pri-
ori (see Greenhall, 1991, for details). In principle, we can obtain similar 
confidence intervals for other wavelet variances. Also, by defining an esti-
mator for the wavelet variance starting from a prewhitened direct spectral 
estimate, we can in fact easily obtain statistically valid confidence intervals 
based upon the sampling properties of direct spectral estimates. (Such an 
estimator would also allow us to get a handle on the covariance between 
estimates at different scales, a problem that has yet to be addressed even 
in the case of the Allan variance.) 

Finally, Figure 4 points out tha t the real potential value of wavelets is 
in the area of t ime series with transient events. In the case of vertical shear 
measurements, wavelet analysis shows tha t these transients happen at just 
a few small scales. Figure 4 shows tha t the transient near 450 meters is 
confined chiefly to scales of 0.8 meters and smaller and, moreover, tha t the 
interval of t ime over which the transient dissipates is shorter for a scale of 
0.8 meters than it is for smaller scales. These features in the da ta would 
be very hard to pick out using other analysis techniques. 
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