
 
 
  

 
 

Geomorphic Transport laws:  Non-local Flux with Classical Mass Balance  
  
 
 
 

By  
 

Efi Foufoula-Georgiou, Vamsi Ganti and Paola Passalacqua 
 

St. Anthony Falls Laboratory 
National Center for Earth Surface Dynamics 

University of Minnesota 
Minneapolis, MN 55414 

efi@umn.edu 
 

 
 

November 15, 2007 
 
 

ABSTRACT 
 

Most geomorphic transport laws proposed to date are local in character, i.e., they express 
the sediment flux at a point as a function of the elevation gradient or curvature or other 
geomorphic quantities at that point only.  We argue that non-local constitutive laws, in 
which the flux at a point depends on the conditions in some larger neighborhood around 
this point in space and/or time, present a physically-motivated alternative which can 
handle the presence of heterogeneities known to exist in landscapes over a large range of 
scales.  A particularly attractive subclass of these non-local constitute laws involves 
fractional (non-integer) derivatives in time and/or space and provides a rich class of 
models extensively studied in other fields of science.  We draw on two examples to 
illustrate the scale dependency of the parameters of local geomorphic transport equations 
and suggest that this dependency has the potential to be alleviated by non-local 
constitutive laws.    
 
 
 

 
 



 
INTRODUCTION 
 

Paraphrasing Dietrich et al (2003), we use the term “geomorphic transport law” to 
refer to a mathematical statement that expresses the flux or erosion caused by one or 
more processes, in a manner that it can be parameterized from field observations, it can 
be verified,  and it can be applied over geomorphically significant spatial and temporal 
scales.  Although geomorphic transport laws have their origin in physical laws and 
mechanisms, they are not always fully derivable from first principles. Rather, they are 
minimum complexity models that are physically-motivated and capture the essential 
features of landscapes.      

A starting point of geomorphic transport theories is the conservation of mass 
which (assuming a constant bulk density for simplicity) says that the divergence of the 
sediment transport vector is balanced by the storage and production of sediment: 
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where is elevation of the ground surface (or soil or sediment thickness), is a 
sediment production term, and 

h P
sq is the sediment flux.   

The simplest, and still most commonly used, sediment flux expression was 
proposed by Culling (1960) in analogy to Fick’s law of diffusion.  The conventional 
Fickian constitutive theory maintains that the dispersive flux is proportional to the 
gradient of the concentration field and thus, by analogy, the sediment flux was considered 
to be proportional to the topographic gradient: 
 
 sq D h= ⋅∇  (3) 
 
where  is the diffusivity coefficient.  Coupling this equation with the conservation 
equation results in the standard diffusion equation: 
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It is easy to see that the linear transport law of (3) and the diffusion equation it 

results in, imply that under equilibrium conditions ( / 0)h t∂ ∂ = the hillslope profiles will 
have a constant curvature at all points along the profile, and thus a parabolic shape. Field 
observations do not support this purely diffusive behavior in many hillslopes and have 
prompted the proposal of more complex transport laws which have a nonlinear 
dependence of sediment flux on topographic gradient.  A review of several of these laws 
can be found in Dietrich et al. (2003).  For example, for soil mantled hillslopes, Roering 



et al (1999) proposed transport that varies linearly with slope at low gradients but 
increases nonlinearly as slope approaches a critical value.  In particular, using the balance 
between frictional and gravitational forces in a soil undergoing disturbance they derived 
the following transport equation:  
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where K is a transport coefficient (involving the power expenditure per unit area, soil 
bulk density, coefficient of friction, and gravitational acceleration), and  is a critical 
hillslope gradient (equal to the effective coefficient of friction) both of which have to be 
estimated from field observations.    Similar equations have been derived before by others 
(e.g., Andrews and Buckman, 1987; Howard 1994; see also the review of Dietrich et al., 
2003).  It is interesting to note that the above mechanistically-derived expression for 
sediment flux is identical to the so-called Perona-Malik non-linear diffusivity model:  
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where is a parameter, used to preserve both fine scale features (edges) and large 
scale features in image processing of DEMs (e.g. see Braunmandl et al., 2003).  

0k >

For other than hillslope fluvial transport systems, e.g., bedrock or alluvial channel 
incision, landslide transport, Horton overland flow erosion, river sediment transport etc., 
similar expressions for sediment transport have been proposed.  Several of these transport 
laws end up expressing sq as a function of local gradient, upstream area (a surrogate for 
flow), shear stress and other geomorphic parameters (see Tucker and Bras, 1998 and also 
Dietrich et al., 2003 for a review).    

We note that the geomorphic transport laws existing to date are all local 
constitutive laws, i.e., they relate the sediment flux at a point in space and time to the 
elevation gradient or other quantities at that same point.  We argue in this paper that this 
locality is a limiting factor both theoretically and practically.  Theoretically, because the 
extension of the classical definition of divergence (which applies as the control volume 
shrinks to zero) to a finite-size volume is ill-defined for a medium that exhibits 
heterogeneities at all scales (e.g., see Benson, 1998).  Practically, because the 
manifestation of the above inappropriate extension is a dependence of the model 
parameters on scale which presents a problem in practical applications using DEM data.   

We propose a deviation from local geomorphic transport theories, namely the 
exploration of non-local constitutive laws which consider that the flux at a point depends 
on the conditions in some larger neighborhood around this point in space and/or time.  
For example, the flux at a point can be considered to be a weighted average of the 
topographic gradients in this larger space-time neighborhood.   It is shown that this 
nonlocal flux notion is equivalent to introducing a non-integer order (fractional) notion of 
divergence of sediment flux.  This allows the exploration of a large class of fractional 
(pseudo-differential) models that have been explored extensively in the literature for 
modeling subsurface transport, hydrodynamics, statistical mechanics, molecular biology, 



and turbulence (e.g., see Bouchaud and Georges, 1990; Pekalski and Sznajd-Weron, 
1999; Shlesinger et al, 1995 and references therein). 
 
DIVERGENCE OF THE SEDIMENT FLUX VECTOR  
 
The advection-dispersion equation (ADE) is based on the classical definition of 
divergence of a vector field.  The divergence is defined as the ratio of total flux through a 
closed surface to the volume enclosed by the surface when the volume shrinks to zero 
(e.g., Schey, 1992; see also Benson, 1998, for a nice exposition relevant to subsurface 
transport) 
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where sq is a vector field, V is an arbitrary volume enclosed by surface , and S η is a unit 
normal vector.  Implicit in this equation is that the limit of the integral exists, i.e, the 
vector sq exists and is smooth as .   0V →

The classical notion of divergence maintains that as an arbitrary control volume 
shrinks, the ratio of total surface flux to volume must converge to a single value.  
However, the sediment flux is primarily due to fluctuations in topography (i.e., elevation 
gradients) which are known to exhibit variability down to very small scales including 
abrupt  changes and discontinuities.  For this reason, the classical divergence theorem is 
of little use in geomorphology. Rather, a divergence associated with a finite volume and 
defined as the first derivative of total flux to volume is more relevant.  However, one 
notes that by increasing the arbitrary volume, a larger variability of topographic gradients 
is sampled and it is known that this variability depends on scale.  Thus, the ratio of total 
flux to volume does not remain constant but varies with the size of the volume.  As a 
result, the classical diffusion equation is no longer self-contained with a close form 
solution at all scales.  To adopt the classical theory, the best approximation that can be 
done is to assume that the total flux to volume can be assumed piece-wise constant within 
small ranges of scales, allowing one to talk about an “effective” scale-dependent 
dispersion coefficient.   

Several techniques have been proposed in the subsurface transport literature to 
tackle the problem of scale-dependent dispersivity which arises for similar reasons, 
namely, the presence of inhomogeneities at all scales, or the fractality of the porous 
medium.  These vary from small perturbation approaches and effective parameterizations 
(e.g., Gelhar and Axness, 1983; Dagan, 1997), to power law dependence of on scale 
(e.g., Su, 1995), to volume statistical averaging (e.g., Cushman, 1991, 1997) and to 
fractional advection dispersion equations (FADE) (e.g., Benson, 1998; Benson et al., 
2001; Bauemer et al., 2001; and Schumer et al., 2001 ).  A review of these methodologies 
can be found in Benson (1998).   
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NONLOCAL GEOMORPHIC TRANSPORT LAWS 
 
We propose the introduction of a non-local conservation law which (omitting the 
sediment production term of equ 1 for simplicity) reads:  
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where the sediment flux *

sq at a point ( , )x t does not depend on the elevation gradient at 
that point only but on the elevation gradients at a collection of surrounding points, i.e.,  
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In the above expression, the dispersion coefficient is a function of spatial and temporal 
lags and the flux can be seen as a convolution of a “generalized dispersion coefficient”  
with the elevation gradient field.  In other words, this generalized dispersion coefficient 
(called the “memory kernel”) introduces a memory effect that accounts for the 
contribution of the surrounding points to the sediment flux at the local point ( , )x t .  This 
type of dispersion has been termed “convolution-Fickian” dispersion by Cushman (1991; 
1997).   

There are several forms of the memory kernel that can be explored but one form 
of particular interest is a power law function on the lag.  Considering only spatial 
memory (extension to temporal memory is also possible), this kernel reads: 
 
 2( , )D l l ατ −∼  (10) 
 
It is noted that for 2α = there is no memory (reducing to the local conservation law), and 
for values 1 2α< ≤  there is a power law decrease of the influence of surrounding points.  
As is shown below (following Cushman and Ginn, 2000) this specific form of the kernel 
is equivalent to considering a fractional (non-integer) notion of divergence of flux of the 
form 
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 and thus a non-Fickian fractional dispersion equation of the form 
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To be able to prove the above assertion, we need to define fractional derivatives.  

The fractional derivative /( )d dxα α of a function ( )f x in one dimension and for 
1 2α< ≤ is defined as:  
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with the smallest integer larger than n α (in our case then, 2n = ).  After some algebra 
(see Cushman and Ginn, 2000) one can show that  
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when the kernel ( , )D l τ takes the form:  
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with ( )δ τ , 0 tτ≤ ≤ , the Dirac delta, ( )H l  the Heaviside function on , and the 
Gamma function.   
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There is an interesting observation to be made.  Namely, that the non-local 

conservation law (eqs 8 and 9) with memory on the surrounding points such that each 
local elevation gradient is appropriately weighted with a dispersion coefficient ( , )D l τ , 
has now been replaced with a “local” conservation equation (eq. 12) with a single 
constant dispersion coefficient but with a non-integer differential operator on elevation 

.   
D

ah∇
 

The above integral form of non-local constitutive laws with power law memory 
kernel, is of course a special case of the general theory.   However, it results into a very 
important class of models (fractional advection dispersion equations – FADE and also 
further  extensions that include nonlinear terms, as will be discussed later) that has been 
extensively studied and a wealth of theoretical developments and practical applications 
exist to draw upon.  Besides, it is a natural class for geomorphology for two reasons.   
First, if one accepts that elevation fields exhibit variability down to very small scales and 
specifically that they have a variance which exhibits power law scaling (e.g., see example 
spectrum in Passalacqua et al., 2006 and also in Rodriguez-Iturbe and Rinaldo, 1997), 
then mathematically the first derivative of this (fractal) field does not exist.  Rather one 
has to “regularize” this field by an integrating or smoothing kernel to be able to take 
derivatives (notion of non-local flux computation above) or, equivalently, to take 
derivatives not of degree one but of a lesser (fractional) degree, as much as allowed by 
the fractality of the elevation field.  Second, as will be demonstrated below, the use of 
classical (local) conservations laws in geomorphology results in a power law dependence 
of the coefficients in order for the flux to be preserved, which as seen theoretically above 
suggests the use of fractional transport equations for this scale-dependency to be 
eliminated.      
 
SCALE-DEPENDENCY OF CLASSICAL GEOMOPRHIC TRANSPORT LAWS 
 
When the classical transport laws are implemented in practice using “local” gradients and 
curvatures computed from Digital Elevation Models (DEMs) of varying resolutions, the 
resulting sediment flux is expected to differ depending on the resolution (scale) of the 



DEMs.  This is because, the larger the scale of the DEMs, the “smoother” the topography 
is perceived and thus the less the variance of the gradients and curvatures (see for 
example, Lashermes et al., 2007 for the way the pdfs of curvatures change as a function 
of the scale).  Obviously, this is not a desirable effect (see also Stark and Stark, 2001) and 
poses the problem of understanding this scale-dependency and parameterizing it in a way 
that does not require much calibration or tuning.   
 
This problem was recently addressed in Passalacqua et al. (2006).  Using a simplified 
model of erosion, corresponding to the so-called Burgers equation (e.g., see Somfai and 
Sander, 1997; Sornette and Zhang, 1993; Banavar et al., 2001; Pelletier, 2004, 2007 for 
use of this model in landscape evolution) a dynamic self-tuning methodology of deriving 
scale-dependent parameters using principles of dynamic sub-grid scale parameterization 
was proposed.    The landscape evolution model used involves a nonlinear dependence on 
topography gradient:  
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where is the water flux, a is a parameter and U is a constant uplift rate.  As shown in 
Passalacqua et al. (2006) keeping the parameter constant and changing the resolution of 
the DEM data resulted in sediment flux from the domain boundaries which was strongly 
dependent of scale (see Figure 6 of that paper).  Akin to the dynamic sub-grid scale 
parameterization formulations used in turbulence (e.g. Gernamo et al., 1991) , it was 
proposed that the parameter is not kept constant but rather made scale-dependent in the 
following way: 
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where now β is a constant.  By applying equation (16) at the coarse-grained (filtered) 
elevation field at scales and Δ 2Δ , the coefficient β was derived to be: 
 

 
�

�

2

2
2

h

h
β

Δ

Δ

∇
=

∇
 (18) 

 
where denotes spatial averaging over the entire field, < >i ihΔ denotes the filtered field at 
scale Δ and the overbar denotes spatial averaging using a filter of 2Δ  (see Passalacqua et 
al., 2006 for derivation). 
 
It is important to note that in essence the above expression informs the local coefficient at 
scale Δ by the elevation gradients at scales Δ and 2Δ and by a proportionality factor that 
accounts for the ratio of the statistics of elevation gradients over the whole field at these 
two scales.  In a sense, one can see this as an attempt to introduce non-local information 



as one went to a larger scale (larger vicinity around the point of interest) to borrow 
information about the elevation gradient field.  Using this new coefficient, the sediment 
flux dependence on scale was alleviated somewhat but not completely (see Fig. 7 of that 
paper).   
 
A further refinement was proposed by following the dynamic sub-grid scale approach of 
Porte-Agel et al. (2000) in which the assumption was made that β is not constant 
anymore but that the ratio 2/β βΔ Δ is constant.  This latest assumption implies that one 
goes out to even larger scales to get information about the local value of the coefficient 

.  Specifically, as is shown in Passalacqua et al., (2006), the coefficient aΔ αΔ takes the 
form  
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i.e., one involves scales and 42Δ Δ into deriving the coefficient at scale .  The exact 
expressions for deriving adaptively those coefficients as the landscape simulation 
proceeds can be found in Passalacqua et al. (2006).  This new approach completely 
eliminated the scale dependence of the sediment flux as can be seen in Fig 8 of that 
paper.   

Δ

 
The point we make here is that the sub-grid scale parameterization approach capitalizes 
on the assumption of a self-similarity in topography elevations and “borrows” the 
topography pixels surrounding a particular pixel to derive the “local” coefficient of the 
transport law.  Moreover, it does this adaptively as the model evolves over time and 
space.  This approach is fine when a landscape evolution model is to be used for 
simulation purposes but it is not helpful when one has to compute sediment transport 
from a particular landscape.  Besides, it is important to point out that in both of the above 
sub-grid scale parameterization approaches, the form of the coefficient of the nonlinear 
term can be shown to be expressable as a power law on scaleΔ , where the exponent and 
pre-exponent are computed adoptively.  For example, equ (17) implies that 2log βαΔ Δ∼  
with β  as given by equ (18).  We suggest that this provides another hint that a power law 
dependent memory kernel in the definition of non-local flux (equ 15), and thus the use of 
fractional derivatives in sediment flux, might be a natural choice or at least not an 
inconsistent choice with the scale dependent coefficients derived above to account for the 
sub-grid scale variability.   
 
NONLINEARITY OR FRACTIONAL DIFFUSION OR BOTH?  
 
In this section we make an interesting observation.  Namely that the nonlinear transport 
model (equ 5) derived by Roering et al. (1999), to explain hillslope forms that do not 
conform to standard diffusion, ends up having a coefficient of the nonlinear term which is 
scale dependent and specifically has a power law dependence on scale.  Performing a 
Taylor series expansion on the equation of Roering et al. (equ 5), one obtains  
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and inserting this form into the continuity equation, one obtains  
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with  
 2 2( )cD S hλ = ∇  (22) 
 
It is observed that the coefficient of the nonlinear term is proportional to the local 
curvature.  First,  local curvature is a second order derivative of the elevation field and as 
such the above formulation suggests that in computing it from DEMs one has to go 
further than the local point (to at least twice the resolution of the grid size) to estimate the 
coefficient of the nolinear term.  Second, it is well known that computation of “local 
curvature” from very high resolution DEMs (e.g., 1m LIDAR data) requires a smoothing 
in the vicinity of the point of interest to obtain robust estimates.  For example, Roering et 
al. (1999) used a second degree polynomial fitted around each pixel over areas of the 
order of 10 m, and then computed the curvature from the coefficients of this polynomial.  
In a recent study of Lashermes et al. (2007) a wavelet-based formalism was proposed for 
computation of local curvature at different scales.  As was explained in that study, this 
“local” curvature was really a non-local quantity which was computed as a weighted 
average of elevations at surrounding pixels with weights proportional to a kernel (in that 
study this kernel was the second derivative of the Gaussian function, the so-called 
Mexican hat wavelet).  It was also shown that depending on the width of the kernel 
(neighborhood around the point of interest) the statistics of the curvature changed and in 
fact, the variance of curvature ended up having a power law dependence on the kernel 
width (see Fig. 1 of that paper).   
 
Putting it all together, we suggest that the semi-mechanistically derived transport law of 
Roering et al.,  which by the way tried to balance the upslope and downslope transport 
components so inherently included a notion of non-locality, ends up having a coefficient 
of the nonlinear term which depends on scale and specifically in a power law way.  This 
is similar to the adjustment of the coefficient of the nonlinear term in Passalacqua et al., 
(2006) and both point to the observation that the heterogeneity and particularly the self-
similarity (fractality) of landscapes  supports the adoption of a non-local conservation law 
with a memory kernel of power law form (equ 12) which gives rise to a fractional (non-
integer) transport equation.   
 
It is noted that although the theoretical results presented in section 2 were for dispersion 
only, both geomorphology examples involved a non-linear term.  It goes beyond the 
scope of this paper to discuss the more general fractional non-local transport laws which 
include both a fractional power in the Laplacian Δ (fractional dispersive term) and a 
general algebraic  nonlinearity (e.g., Biler et al., 1998).  These laws take the form  
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with (0,2], 1rα ∈ ≥ and λ a fixed parameter and are extensively discussed in 
Woyczynski (1998), and also Biler et al. (1998, 2001). It is noted that the above equation 
reduces to the standard advection-dispersion equation for 2α = and 1r =  and to the 
classical Burgers equation for 2α = and 2r = .  Of interest in most applications is the so-
called the “critical” case, when the diffusion and the nonlinear terms balance, that is, are 
of the same importance over the entire time scale.  In this case, it can be shown (see 
Biller et al., 1991) that the parameters satisfy the equation 1 ( 1) /r n= α+ − n,with is the 
dimension of the flux vector, and that the equation admits a self-similar solution.  These 
models are of specific interest in geomorphology due to their scale invariance properties 
as will become apparent in the next section.   
 
A STOCHASTIC POINT OF VIEW 
 
It is noted that the geomorphic transport laws discussed in section 1 are deterministic and 
physically or mechanistically motivated.  There is another class of models that has been 
used for landscape evolution motivated by the literature on stochastic growth equations. 
In physics, chemistry etc. a useful approach in understanding the behavior of various 
growth processes has been to derive the underlying continuum equation (stochastic 
differential equation) for the process under study following some symmetry pronciples 
(e.g., see Hwa and Kardar, 1992 and Barabasi and Stanley, 1995).  The guiding principle 
is that the derived continuum equation is the simplest possible equation compatible with 
the symmetries of the problem.  In general, the growth of an interface can be described by 
the continuum equation:  

 ( , ) ( , , ) ( , )h x t G h x t x t
t

η∂
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where is a general function that depends on the interface height, position and 
time and 

( , , )G h x t
( , )x tη is a noise term describing the roughening of the surface by a random 

process.  It is noted that higher order derivatives in time are ignored since they can be 
shown to be irrelevant to the long-term behavior of the system (see Barabasi and Stanley, 
1995).  Using basic symmetry principles, i.e., invariance under time translation, 
translation invariance along and perpendicular to the growth direction, rotation and 
inversion symmetry about the growth direction and up-down symmetry for  ) the 
simplest equation describing the equilibrium interface is the so-called Edwards-
Wilkerson (EW) equation  

h

 2( , ) ( , )h x t h x t
t

ν η∂
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∂
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The parameter ν (akin to dispersivity) is often called “surface tension” since the term 
2hν ⋅∇ tends to smooth the surface by redistributing its irregularities on the interface 

while maintaining average height.  Note that a non-zero velocity of the interface ( ) can 
be added to the above equation in the RHS term.   The EW equation is a linear equation 
(diffusion with external noise).   

u

The first extension to include nonlinear terms was proposed by Kardar Parisi and 
Zhang (KPZ; see Kardar et al., 1986).  The construction of the KPZ equation follows the 



symmetry principles discussed above except that the up-down symmetry of the interface 
is broken.  The source of this symmetry breaking is a force (not necessarily 

external) perpendicular to the interface, which selects a particular growth direction for the 
interface.  The physical motivation is to allow lateral growth, i.e., growth in the direction 
of the local normal to the interface.  It can be shown that to include the presence of lateral 
growth, terms such as must be added to the growth equation (see Barabasi and 
Stanley, 1995).  The lowest order term of this sort is the nonlinear term which 
added to the EW equation results in the KPZ equation  
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 (26) 
where the first term in the RHS describes the surface smoothing, the second nonlinear 
term is caused by the slope-dependence of the surface growth rate and the third term is a 
noise term.  It is noted that the presence of a nonlinear term makes the mean velocity of 
the interface  
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nonzero even in the absence of an external driving force.  The geometrical interpretation 
of the nonlinear term can be understood by noting that it adds material to the interface 
when 0λ > and takes away material when 0λ < ; it is this term that generates the excess 
velocity in (26).  This is in contrast to the linear term which redistributes the material 
keeping the total mass unchanged.   

An important property of these stochastic growth equations is that they exhibit 
time and space scaling, that is, the width (standard deviation) of the surface as it evolves 
over time, exhibits a power law relationship with time and once it reaches a statistical 
equilibrium, it exhibits a power law dependence on the system size, that is, the spatial 
averaging length, L , i.e.,  
 ( ) ~ Hw L L  (28) 
where 
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The scaling exponents that arise from these continuum equations fall in universality 
classes and speak for the fact that not all the “details” but only a few essential factors of 
the system determine its form.  Given the much reported scale invariance in many natural 
processes,  the above model have found extensive application as the governing equations 
of many physical phenomena (e.g., see references in Barabasi and Stanley, 1995) 
including landscape evolution (e.g., Somfai and Sander, 1997; Pelletier, 2007; 
Passalacqua et al., 2006; among others) and rainfall modeling (e.g., Sapoznhikov and 
Foufoula-Georgiou, 2007).  In the next section, a particular observation that relates the 
Roering et al. (1999) model to the KPZ equation is made.   
 
 



 
EMERGENT SCALING FROM A MECHANISTIC MODEL? 
 

A question of great interest is as to whether models that are physically-derived 
show any specific scale invariance properties.  If that were the case, it could serve as an 
indication that only a few factors dominate the process dynamics and could also provide 
an additional model diagnostic.   

Here we make an interesting observation, namely that the model of Roering et al. 
(1999) (after the expansion proposed before) takes the form of the KPZ equation where 
however the coefficient of the nonlinear term λ is not constant but depends on the local 
curvature and the noise term is missing, i.e, compare equations (21) and (22) to (26).  
(We term equ (26) a KPZ-like equation).   Knowing that the KPZ equation with constant 
λ and noise gives rise to scaling, the question arises as to whether the Roering et al. 
model (or the KPZ-like equation) gives also rise to scaling and, if yes, what kind of 
scaling.   

We approach this question both theoretically and by simulation.  Theoretically, 
we note that the randomness in the KPZ-like equation (equ. 21) comes not from an 
external noise term but from the medium itself (spatial variability of topographic 
curvatures).  As such, we maintain that the KPZ-like model falls under the class of 
stochastic growth equations with quenched noise (randomness depends on space only and 
not time; see also Pelletier, 2007 for a recent model that incorporates quenched noise) 
and specifically the class of pinning-depinning (DPD) models (see Barabasi and Stanley, 
1995).  Moreover, we observe that the parameter λ can “diverge” at locations of high 
curvature or at points at which a transition happens from convergent to divergent 
topography (passing from erosion to deposition).  For models with locally divergent λ , 
Barabasi and Stanley shows that the universality class they belong to shows spatial 
scaling with exponent .   0.63H �

It is interesting to note that the KPZ-like model of Roering et al., with the term 
λ varying proportional to curvature, can be shown by simulation (starting with a random 
initial surface) to indeed result in a scaling exponent of approximately 0.6 (unpublished 
work) which is very close to the theoretical exponent of 0.63 expected from the pinning-
depinning class of KPZ models.  The importance of this observation is two-fold.  First, 
statistical scaling quantified from observations in a landscape can serve as a model 
diagnostic of possible classes of models governing the underlying dynamics, since these 
models must be consistent with the observed scaling.  On the other hand, it is important 
to know whether adopting a specific model carries with it a specific self-similar solution 
which would imply that the surface self-organizes over time to a statistical steady state 
for which certain “details” of the system are unimportant.  It is noted that the steady-state 
scaling arising from a purely diffusive model is  which can from an additional 
(statistical) test for hillslope transport laws.   

0.50H �

Recent studies have documented the presence of simple-scaling or multi-scaling 
in several attributes of landscapes including width functions (e.g., see the recent study of 
Lashermes and Foufoula-Georgiou, 2007) and river corridor width series (see 
Gangodagamage et al., 2007 who report values of  H ranging from 0.3 to 0.8).  An 
important question is what class of evolution equations is rich enough to give rise to 
dynamic steady-state forms which exhibit scaling consistent with the broad range of 



scaling observed in nature.  This is an important subject of research in several fields of 
physical science (e.g., see for example, Woyczynski, 1998; Schmidt and Marsan, 2001).   

 
 
CONCLUDING REMARKS 
 
In this paper, we have proposed the idea that the fractality of landscapes (expressed as 
power law variability down to very small scales) demands the exploration of non-local 
constitutive laws which express the flux at a point in terms of elevation gradients in the 
neighborhood around that point.  We suggest that an attractive form of the memory 
kernel, which dictates how the neigborhood contributes to the local flux, has a power law 
form.  We argue that this form is both consistent with the form of effective scale-
dependent coefficients that result from a Large Eddy Simulation (LES) approach and 
from a mechanistically-derived model of hillslope evolution.  Besides, this class of non-
local constitutive laws leads to the class of fractional differential models which have been 
extensively studied in other physical phenomena and make sense physically and 
mathematically for geomorphology.  We argue that the proposed non-local transport laws 
promise to alleviate the scale-dependence of coefficients which is an important limitation 
in practical applications.   

We suggest that further study of these fractional transport laws is needed in 
several geomorphic transport processes.  Notably, advances can be made in sediment 
transport modeling (due to the connection of generalized Continuous Time Random 
Walks, CTRWs,  describing particle movement to limiting governing equations, some of 
which might need fractional derivatives to explain the observed sub- and super-diffusion 
– see Meltzler and Compte, 2002 -- and also the observed scaling in bed elevation and 
sediment flux fluctuations e.g., see Nikora and Welsh, 2007; and Sighn et al, 2007), in 
hillslope transport as discussed in this paper, and in environmental transport on fractal 
river networks (e.g., Campos et al., 2005; and Bertuzzo et al., 2007).    
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