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[1] Improved estimation of hydrometeorological states from down-sampled observations
and background model forecasts in a noisy environment has been a subject of growing
research in the past decades. Here we introduce a unified variational framework that ties
together the problems of downscaling, data fusion, and data assimilation as ill-posed inverse
problems. This framework seeks solutions beyond the classic least squares estimation
paradigms by imposing a proper regularization, expressed as a constraint consistent with the
degree of smoothness and/or probabilistic structure of the underlying state. We review
relevant smoothing norm regularization methods in derivative space and extend classic
formulations of the aforementioned problems with particular emphasis on land surface
hydrometeorological applications. Our results demonstrate that proper regularization of
downscaling, data fusion, and data assimilation problems can lead to more accurate and
stable recovery of the underlying non-Gaussian state of interest with improved performance
in capturing isolated and jump singularities. In particular, we show that the Huber
regularization in the derivative space offers advantages, compared to the classic solution
and the Tikhonov regularization, for spatial downscaling and fusion of non-Gaussian
multisensor precipitation data. Furthermore, we explore the use of Huber regularization in a
variational data assimilation experiment while the initial state of interest exhibits jump
discontinuities and non-Gaussian probabilistic structure. To this end, we focus on the heat
equation motivated by its fundamental application in the study of land surface heat and

mass fluxes.
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1. Introduction

[2] In parallel to the growing technologies for earth
remote sensing, we have witnessed an increasing interest to
improve the accuracy of observations and integrate them
with predictive models for enhancing our environmental
forecast skills. Remote sensing observations are typically
noisy and coarse-scale representations of a true state vari-
able of interest, lacking sufficient details for fine-scale
environmental modeling. In addition, environmental pre-
dictions are not perfect as models often suffer either from
inadequate characterization of the underlying physics or
inaccurate initialization. Given these limitations, several
classes of estimation problems present themselves as con-
tinuous challenges for the atmospheric, hydrologic, and
oceanic science communities. These include (1) downscal-
ing (DS), which refers to the class of problems for
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enhancing the resolution of a measured or modeled state of
interest by producing a fine-scale representation of that
state with reduced uncertainty; (2) data fusion (DF), to pro-
duce an improved estimate from a suite of noisy observa-
tions at different scales; and (3) data assimilation (DA),
which deals with estimating initial conditions in a predic-
tive model consistent with the available observations and
the underlying model dynamics. In this paper, we revisit
the problems of downscaling, data fusion, and data assimi-
lation focusing on a common thread between them as varia-
tional ill-posed inverse problems. Proper regularization and
solution methods are proposed to efficiently handle large-
scale data sets while preserving key statistical and geomet-
rical properties of the underlying field of interest, namely,
non-Gaussian and structured variability in real or trans-
formed domains. Here, we only examine a few hydrome-
teorological inverse problems with particular emphasis on
land-surface applications.

[3] In land-surface hydrologic studies, DS of precipita-
tion and soil moisture observations has received consider-
able attention, using a relatively wide range of
methodologies. DS methods in hydrometeorology and cli-
mate studies generally fall into three main categories,
namely, dynamic downscaling, statistical downscaling, and
variational downscaling. Dynamic downscaling often uses
a regional physically based model to reproduce fine-scale
details of the state of interest consistent with the large-scale
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observations or outputs of a global circulation model [e.g.,
Reichle et al., 2001a; Castro et al., 2005; Zupanski et al.,
2010]. Statistical downscaling methods encompass a large
group of methods that typically use empirical multiscale
statistical relationships, parameterized by observations or
other environmental predictors, to reproduce realizations of
fine-scale fields. Precipitation and soil moisture statistical
downscaling has been mainly approached via spectral and
(multi)fractal interpolation methods, capitalizing on the
presence of a power law spectrum and a statistical self-sim-
ilarity/self-affinity in precipitation and soil moisture fields
[Lovejoy and Mandelbrot, 1985; Lovejoy and Schertzer,
1990; Gupta and Waymire, 1993 ; Kumar and Foufoula-
Georgiou, 1993; Perica and Foufoula-Georgiou, 1996;
Veneziano et al., 1996; Wilby et al., 1998a, 1998b; Deidda,
2000; Kim and Barros, 2002; Rebora et al., 2005; Badas
et al., 2006; Merlin et al., 2006; among others]. In varia-
tional approaches, a direct cost function is defined whose
optimal point is the desired fine-scale field which can be
obtained via using an optimization method. Recently along
this direction, Ebtehaj et al. [2012] cast the rainfall DS
problem as an inverse problem using sparse regularization
to address the intrinsic rainfall singularities and non-
Gaussian statistics. This variational approach belongs to
the class of methodologies presented and extended in this
paper.

[4] The DF problem has also been a subject of continu-
ous interest in the precipitation science community mainly
due to the availability of rainfall measurements from multi-
ple spaceborne (e.g., TRMM and GOES satellites) and
ground-based sensors (e.g., the NEXRAD network and rain
gauges). The accuracy and space-time coverage of
remotely sensed rainfall are typically conjugate variables.
In other words, more accurate observations are often avail-
able with lower space-time coverage and vice versa. For
instance, low-orbit microwave sensors provide more accu-
rate observations but with less space-time coverage com-
pared to the high-orbit geo-stationary infrared (GOES-IR)
sensors. Moreover, there are often multiple instruments on
a single satellite (e.g., precipitation radar and microwave
imager on TRMM), each of which measures rainfall with
different footprints and resolutions. A wide range of meth-
odologies, including weighted averaging, regression, filter-
ing, and neural networks, has been applied to combine
microwave and Geo-IR rainfall signals [e.g., Adler et al.,
2003 ; Huffman et al., 1995; Sorooshian et al., 2000; Huff-
man et al., 2001 ; Hong et al., 2004 ; Huffman et al., 2007].
Furthermore, a few studies have addressed methodologies
to optimally combine the products of the TRMM precipita-
tion radar (PR) with the TRMM microwave imager (TMI)
using Bayesian inversion and weighted least squares
(WLS) approaches [e.g., Masunaga and Kummerow, 2005 ;
Kummerow et al., 2010]. From another direction, Gaussian
filtering methods on Markovian tree-like structures, the so-
called scale recursive estimation (SRE), have been pro-
posed to merge spaceborne and ground-based rainfall
observations at multiple scales [e.g., Gorenburg et al.,
2001; Tustison et al., 2003; Bocchiola, 2007; Van de
Vyver and Roulin, 2009; Wang et al., 2011], see also
Kumar [1999] for soil moisture applications. Recently,
using the Gaussian-scale mixture probability model and an
adaptive filtering approach, FEbtehaj and Foufoula-

Georgiou [2011a] proposed a fusion methodology in the
wavelet domain to merge TRMM-PR and ground-based
NEXRAD measurements, aiming to preserve the non-
Gaussian structure and local extremes of precipitation fields.

[s] Data assimilation has played an important role in
improving the skill of environmental forecasts and has
become by now a necessary step in operational predictive
models [see Daley, 1993]. Data assimilation amounts to
integrating the underlying knowledge from the observa-
tions into the first guess or the background state, typically
provided by a physical model from the previous forecast
step. The goal is then to obtain an improved estimate of the
current state of the system with reduced uncertainty, the so-
called analysis. The analysis is then used to forecast the
state at the next time step and so on (see Daley [1993] and
Kalnay [2003] for a comprehensive review). One of the
most common approaches to the data assimilation problem
relies on variational techniques [e.g., Sasaki, 1958 ; Lorenc,
1986; Talagrand and Courtier, 1987; Courtier and Tala-
grand, 1990; Parrish and Derber, 1992 ; Zupanski, 1993 ;
Courtier et al., 1994; Reichle et al., 2001b; Margulis and
Entekhabi, 2003 ; among many others]. In these methods,
one explicitly defines a cost function, typically quadratic,
whose unique minimizer is the analysis state. On the other
hand, very recently, Freitag et al. [2012] proposed a regu-
larized variational data assimilation scheme to improve
assimilation results in advection-dominated flow in the
presence of sharp weather fronts.

[6] The common thread in the DS, DF, and DA problems
is that, in all of them, we seek an improved estimate of the
true state given a suite of noisy and down-sampled observa-
tions and/or uncertain model-predicted states. Specifically,
let us suppose that the unknown frue state in continuous
space is denoted by x(f) and its indirect observation (or
model output), by y(r). Let us also assume that x(¢) and y(r)
are related via a linear integral equation, called the Fred-
holm integral equation of the first kind, as follows:

/.IH(r,t)x(t)dt:y(r),OSrg 1, (1)
0

where H(r,t) is the known kernel relating x(¢) and y(r).
Recovery of x(7) knowing y(r) and H(r, ¢) is a classic linear
inverse problem. Clearly, the deconvolution problem is a
very special case with the kernel of the form H(r —¢),
which in its discrete form plays a central role in this paper.
Linear inverse problems are by nature ill-posed, in the
sense that they do not satisfy at least one of the following
three conditions: (1) existence, (2) uniqueness, and (3) sta-
bility of the solution. For instance, when due to the kernel
architecture, the dimension of the observation is smaller
than that of the true signal, infinite choices of x(f) may lead
to the same y(r) and there is no unique solution for the
problem. For the case when y(r) is noisy and has a larger
dimension than the true state, the solution is typically very
unstable because the high-frequency components in y(r) are
typically amplified and spoil the solution in the inversion
process. A common approach to make an inverse problem
well posed is via the so-called regularization methods [e.g.,
Hansen, 2010]. The goal of regularization is to properly
constrain the inverse problem aiming to obtain a unique
and sufficiently stable solution. The choice of regulariza-
tion typically depends on the continuity and degree of
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smoothness of the state variable of interest, often called the
regularity condition. For instance, some state variables or
environmental fluxes are very regular with high degree of
smoothness and differentiability (e.g., pressure), while
others might be more irregular and suffer from frequent
and different sorts of discontinuities (e.g., rainfall). In fact,
it can be shown that the proper choices of regularization
not only yield unique and stable solutions but also reinforce
the underlying regularity of the true state in the solution. It
is important to note that different regularity conditions are
theoretically consistent with different statistical signatures
in the true state, a fact that may guide proper design of the
regularization, as explored in this study.

[7]1 The central goal of this paper is to propose a unified
framework for the class of DS, DF, and DA problems by
recasting them as discrete linear inverse problems using a
relevant regularization in the derivative space, aiming to
solve them more accurately compared to the classic
weighted least squares (WLS) formulations. From a statisti-
cal standpoint, the main motivation is to explicitly incorpo-
rate non-Gaussianity of the underlying state in the
derivative domain as a prior knowledge to obtain an
improved estimate of jump and isolated extreme variabil-
ities in the time-space structure of the hydrometeorological
state of interest. Note that the proposed framework relies
on the seminal works by, for example, Tibshirani [1996],
Chen et al. [2001], Candes and Tao [2006], and recent
developments in mathematical formalisms of inverse prob-
lems [e.g., Hansen, 2010; Elad, 2010], which have
received a great deal of attention in statistical regression
and image processing, but are relatively new to the com-
munities of hydrologic and atmospheric sciences. To the
best of our knowledge, in these areas, the only studies that
explore these methodologies are Ebtehaj et al. [2012] and
Freitag et al. [2012] for rainfall downscaling and data
assimilation of sharp fronts, respectively.

[8] The presented methodologies for the DS and DF
problems are examined through downscaling and data
fusion of remotely sensed rainfall observations, which have
fundamental applications in flash flood predictions, espe-
cially in small watersheds [Rebora et al., 2005; Siccardi
et al., 2005; Rebora et al., 2006]. We show that the pre-
sented methodologies allow us to improve the quality of
rainfall estimation and reduce estimation uncertainty by
recovering the small-scale high-intensity rainfall extreme
features, which have been lost in the low-resolution sam-
pling of the sensor. For the DA family of problems, the
promise of the presented framework is demonstrated via an
elementary example using the heat equation, which plays a
key role in the study of land surface heat and mass fluxes
[e.g., Peter-Lidard et al., 1997; Liang et al., 1999]. The
results demonstrate that the accuracy of the analysis and
forecast cycles in a DA problem can be markedly
improved, compared to the classic variational methods,
especially when the initial state exhibits different forms of
discontinuities.

[o] Section 2 provides conceptual insight into the dis-
crete inverse problems. Section 3 describes the DS problem
in detail, as a primitive building block for the other studied
problems. Important classes of regularization methods are
explained and their statistical interpretation is briefly dis-
cussed from the Bayesian point of view. Examples on

rainfall downscaling are presented in this section by taking
into account the specific regularity and statistical distribu-
tion of the rainfall fields in the derivative space. Section 4
is devoted to the regularized DF class of problems with
examples and results on remotely sensed rainfall data. The
regularized DA problem is discussed in section 5. Conclud-
ing remarks and future research perspectives are presented
in section 6. The important duality between regularization
and its statistical interpretation is further presented in Ap-
pendix A, while Appendix B is devoted to algorithmic
details important for implementation of the proposed
methodologies.

2. Discrete Inverse Problems: Conceptual
Framework

[10] In this section, we briefly explain the conceptual
key elements of discrete linear inverse estimation relevant
to the problems at hand and leave further details for the
next sections. Analogous to equation (1), linear discrete
inverse problems typically amount to estimating the true
high-resolution m-element state vector x € R” from the
following observation model:

y=Hx+v, (2)

where y € R" denotes the observations (e.g., output of a
sensor), H € R™" is an n x m observation operator which
maps the state space onto the observation space, and v ~
N (0,R) is the Gaussian error in R". Note that the observa-
tion operator, which is a discrete representation of the ker-
nel in equation (1), and the noise covariance are supposed
to be known or properly calibrated. Depending on the rela-
tive dimension of y and x, this linear system can be under
determined (m > n) or overdetermined (m < n). In the
under-determined case, there are infinite different x’s that
satisfy equation (2), while for the overdetermined case a
unique solution may not exist. As is evident, the DS prob-
lem belongs to the class of under-determined systems
because the sensor output is a coarse-scale and noisy repre-
sentation of the true state. However, the class of DF and
DA problems falls into the category of overdetermined sys-
tems, as the total size of the observations and background
state exceeds the dimension of the true state.

[11] In each of the above cases, we may naturally try to
obtain a solution with minimum error variance by solving a
linear WLS problem. However, for the under-determined
case the solution still does not exist, while for the overde-
termined case it is commonly ill-conditioned and sensitive
to the observation noise (see section 4). Therefore, the min-
imum variance WLS treatment cannot properly make the
above inverse problems well posed. To obtain a unique and
stable solution, the basic idea of regularization is to further
constrain the solution. For instance, among many solutions
that fit the observation model in equation (2), we can obtain
the one with minimum energy, mean-squared curvature, or
total variation. The choice of this constraint or regulariza-
tion highly depends on a priori knowledge about the
underlying regularity of x. For sufficiently smooth x, we
naturally may promote a solution with minimum mean-
squared curvature to impose the desired smoothness on the
solution. However, if the state is nonsmooth and contains
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frequent jumps and discontinuities, a solution with mini-
mum total variation might be a better choice. In subsequent
sections, we explain these concepts in more detail for the
DS, DF, and DA problems with examples relevant to some
land-surface hydrometeorological problems.

3. Regularized Downscaling

3.1.

[12] To put the DS problem in a linear inverse estimation
framework, we recognize that in the observation model of
equation (2), the true high-resolution (HR) state x € R”
has a larger dimension than the low-resolution (LR) obser-
vation vector y € R", that is, m > n. Throughout this
work, a notation is adopted in which the vector x € R”
may also represent, for example, a 2-D field X € RY™xvm
which is vectorized in a fixed order (e.g., lexicographical).

[13] As explained in the previous section, the DS prob-
lem naturally amounts to obtaining the best WLS estimate
x of the HR or fine-scale true state as follows:

Problem Formulation

1
X = argmin {§||y — Hx|[3 } (3)

where ||x||3 = x"Ax denotes the quadratic norm, while A
is a positive definite matrix. Due to the ill-posed nature of
the problem, this optimization does not have a unique solu-
tion, as setting the derivative of the cost function to zero,
the Hessian (HTR’lH) is definitely singular. To narrow
down all possible solutions to a stable and unique one, a
common choice is to regularize the problem by constrain-
ing the squared Euclidean norm of the solution to be less
than a certain constant, that is, ||Lx||§ < const ., where L is

an appropriately chosen transformation and ||x|J3 =

Zi |x,~|2 denotes the Euclidean ¢,-norm. Note that, by put-

ting a constraint on the Euclidean norm of the state, we not
only narrow down the solutions but also implicitly suppress
the large components of the inverted noise and reduce their
spoiling effect on the solution.

[14] Using the theory of Lagrange multipliers, the dual
form of the constrained version of the optimization in equa-
tion (3) is

N . 1
< —argmin {3y~ @)

where A > 0 is the Lagrange multiplier or the so-called reg-
ularizer. This problem is a smooth convex quadratic pro-
gramming problem and is known as the Tikhonov
regularization with the following unique analytical
solution:

%= (H'R'H+2)L'L) 'H'R 'y, (5)

provided that LTL is positive definite [Tikhonov et al.,
1977; Hansen, 1998 ; Golub et al., 1999; Hansen, 2010].
As is evident, the L transformation also plays a key role in
the solution of the regularized DS problem. For instance,
choosing an identity matrix in equation (4) implies that we
are looking for a solution with the smallest Euclidean norm
(energy), while if L represents a derivative operator, the

above regularization term minimizes the energy in the de-
rivative space, which naturally imposes extra smoothness
on the solution.

[15] Depending on the intrinsic regularity of the underly-
ing state and the selected L, other choices of the regulariza-
tion term are also common. For example, in the case when
the L projects a major part of the state vector onto (near)
zero values, the preferred choice is the /;-norm regulariza-
tion [e.g., Tibshirani, 1996; Chen et al., 1998, 2001]. Such
a property is often called sparse representation in the L
space and gives rise to the following formulation of the
regularized DS problem:

. . (1
X = argmin {§||y — Hx||fr| —+ )\HLXHl}7 (6)

where the ¢;-norm is ||x||, = Zi |x;]. By choosing L as a

derivative operator in equation (6), in effect we minimize a
measure of total variation of the state of interest. It is well
understood that in this case, we typically better recover dis-
continuities and local jump singularities compared to the
£>,-norm regularization in the derivative domain. Note that,
contrary to the Tikhonov regularization in equation (4), the
£1-norm regularization is a nonsmooth convex optimization
as the regularization term is nondifferentiable and the con-
ventional iterative gradient descent methods are no longer
applicable in their standard forms.

[16] One of the common approaches to treat the nondif-
ferentiability in equation (6) is to replace the ¢;-norm with
a smooth approximation, the so-called Huber norm,

Xy = Zi pr(xi), where
2

9 ={ o

and 7 denotes a nonnegative threshold (Figure 1). The
Huber norm is a hybrid norm that behaves similarly to the
£1-norm for values greater than the threshold 7 while for
smaller values it is identical to the ¢,-norm. From the statis-
tical regression point of view, the sensitivity of a norm as a
penalty function to the outliers depends on the (relative)
values of the norm for large residuals. If we restrict our-
selves to convex norms, the least sensitive ones to the large
residuals or say the outliers are those with linear behavior
for large input arguments (i.e., ¢; and Huber). Because of
this property, these norms are often called robust norms
[Huber, 1964, 1981; Boyd and Vandenberghe, 2004].
Throughout this paper, for solving equation (6), we use the
Huber relaxation due to its simplicity, efficiency, and adap-
tivity to all of the concerning classes of DS, DF, and DA
problems. This issue is further discussed in Appendix B.
[17] In general, the first term in equations (4) and (6)
measures how well the solution approximates the given
(noisy) data, while the second term imposes a specific regu-
larity on the solution. In effect, the regularizer plays a
trade-off role between making the fidelity to the observa-
tions sufficiently large, while not imposing too much regu-
larity (degree of smoothness) on the solution. The smaller
the value of A\, the more weight is given to fitting the
(noisy) observations which typically results in solutions
that are less regular and prone to overfitting. On the other
hand, the larger the value of \, the more weight is given to

| <7
| > @)
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2.5

Figure 1. The Huber penalty is a smooth relaxation of
the ¢;-norm which acts quadratically for input values
smaller than the threshold 7, while it behaves linearly for
larger inputs. For heavy-tailed inputs, linear penalization in
the regularization term is advantageous compared to the
quadratic penalization in which the overall cost function
becomes dominated by a few large values in the tail of the
distribution.

the regularization term which may result in a biased and
overly smooth solution. Clearly, the goal is to find a bal-
ance between the two terms such that the solution is suffi-
ciently close to the observations while obeying the
underlying degree of regularity.

[18] It is important to note that, under the assumption of
Gaussian error, the WLS problem (3) can be viewed as the
maximum likelihood (ML) estimator of the HR field. On
the other hand, the regularized problems (4) and (6) can be
viewed as the Bayesian maximum a posteriori (MAP) esti-
mator of the HR field. Indeed, the regularization terms refer
to the prior knowledge about the probabilistic distribution
of the state of interest. In other words, in equations (4) and
(6), we implicitly assume that under the chosen transforma-
tion L, the state of interest can be well explained by the

family of multivariate Gaussian p(x) x exp (—)\||Lx|\§)

and Laplace p(x) o exp (—A||[Lx||,) densities, respectively.
Similarly, selecting the Huber norm can also be interpreted
as assuming that logp(x) o< Zi pr(x;), which is equiva-
lent to considering the Gibbs density function as the prior
probability model [Geman and Geman, 1984; Schultz and
Stevenson, 1994] (see Appendix A for details). The equiva-
lence between the regularization, which imposes con-
straints on the regularity of the solution, and its Bayesian
interpretation, which takes into account the prior probabil-
istic knowledge about the state of interest, is very insight-
ful. This relationship establishes an important duality
which can guide the selection of the regularization method
depending on the statistical properties of the state of inter-
est in the real or derivative space.

3.2. Application in Rainfall Downscaling

3.2.1. Problem Formulation
[19] As is evident, to downscale a remotely sensed
hydrometeorological state, using the explained discrete

regularization methods, we need to have proper mathemati-
cal models for the downgrading operator and also a priori
knowledge about the form of the regularization term.
Clearly, in the presented framework, the downgrading op-
erator needs to be a linear approximation of the sampling
property of the sensor. If a sensor directly measures the
state of interest while its maximum frequency channel is
smaller than the maximum frequency content of the state
(e.g., precipitation), the result of the sensing would be a
smoothed and possibly down-sampled version of the true
state. Thus, each element of the observed state in a grid
scale might be considered as an LR representation of the
true state, lacking the HR subgrid scale variability. To have
a simple and tractable mathematical model, the downgrad-
ing matrix might be considered translation invariant and
decomposed into H=DC, where C encodes the smoothing
effect and D contains information about the sampling rate
of the sensor. To this end, let us suppose that each grid
point in the LR observation is a (weighted) average of a fi-
nite size neighborhood of the true HR state around the cen-
ter of the grid. In this case, the sensor smoothing property
in C can be encoded by the filtering and convolution opera-
tions, while D acts as a linear operator to simulate down-
sampling properties of the sensor (Figure 2). Note that
these matrices can be formed explicitly, while direct
matrix-vector multiplication (e.g., Cx and C'x, x € R")
requires a computational cost in the order of O(m?). How-
ever, for large-scale problems, we do not need to explicitly
perform these matrix-vector multiplications as there are ef-
ficient algorithms such as the fast Fourier transformation
[Cooley and Tukey, 1965] that can perform convolution
operations with computational cost of O(m logm).

[20] As is evident, the smoothing kernel needs to be esti-
mated for each sensor, possibly by learning from a library
of coincidental HR and LR observations or through a direct
minimization of an associated cost [e.g., Ebtehaj et al.,
2012]. In the absence of prior knowledge, one possible
choice is to assume that the sensor observes a coarse
grained (i.e., nonoverlapping box averaging) and noisy ver-
sion of the true state. In other words, to produce a field at
the grid scale of s. x s. from a 1 x 1, this assumption is
equivalent to selecting a uniform smoothing kernel of size
s. X s., followed by a down-sampling operation with ratio
s. (Figure 3a).

[21] The error covariance matrix R in the observation
model (2) plays a very important role on the results of the
DS problem from both the mathematical and practical per-
spectives. Mathematically speaking, when the error is spa-
tially white, the error covariance matrix is diagonal without
any smoothing effect on the result [e.g., Gaspari and Cohn,
1999]; however, spatially correlated observation errors
give rise to smoother results. Moreover, correlated errors
with finite correlation length give rise to band error
covariance matrices, which are prone to ill conditioning.
This ill-conditioning is typically more severe in the case of
ensemble error covariance estimation when the number of
samples is typically much smaller than the observational
dimension of the problem [e.g., Ledoit and Wolf, 2004].
Practically speaking, this error term captures the instrumen-
tal (e.g., ground-based NEXRAD radar) error. Although
practical characterization of this error term is not in the
scope of this study, for operational purposes this term needs

5948



EBTEHAJ AND FOUFOULA-GEORGIOU: REGULARIZED DOWNSCALING, DATA FUSION, AND ASSIMILATION

a)

True Measured
X1 X4 X7
9
X X5 Xg é n= Z(Wixi) T
=1
X3 Xe X9
b) Filtering ¢) Convolution
cKecmelc 00000O0 00 0 0O 00000 00 0 0O
010467 00000 _ 0cocges0 00000 _ Ociecier0
p205p8 00100 = 0cc5 00 00100 — 0c2c5 ¢80
SO 00000 0Oeres 0 00000 0 ¢ ¢ co 0
00000 00 00O 00000 00 00O

Figure 2.

Two-dimensional mathematical models for the smoothing and down-sampling properties of

an LR sensor via the convolution operation. (a) A simple representation of an observation model for a
neighborhood of size 3 x 3 using a simple smoothing (averaging) observation operator. (b and ¢) A sam-
ple effect of the filtering operation (C) and its transpose (C") on a discrete 2-D unit pulse, given the 3 x
3 kernel on the left. (d) A sample effect of the 2-D down-sampling operator (D) and its transpose (D")

with scaling ratio 2.

to be properly estimated and calibrated based on observa-
tional and theoretical studies [e.g., Ciach and Krajewski,
1999; Hossain and Anagnostou, 2005, 2006; Krajewski et
al., 2011; Maggioni et al., 2012 ; AghaKouchak et al., 2012].
[22] The choice of the regularization term also plays a
very important role on the accuracy of the DS solution. Fig-
ure 4a demonstrates a NEXRAD reflectivity snapshot (re-
solution of 1 x 1 km) over the Texas TRMM satellite
ground validation site, while Figure 4b displays the stand-
ardized histogram of the discrete Laplacian coefficients
(second-order differences) and the fitted exponential of the

a b

) 1---1 ) E 1=k E

1 2 4 1én 4 1én

AR VST oL
I I 1 11

Figure 3. (a) A uniform smoothing (low pass) kernel of

size s. X .. (b) The discrete (high pass) generalized Lapla-
cian filter of size 3 x 3, where x is a parameter ranging
between 0 and 1. The Laplacian coefficients, obtained by
filtering the 2-D state with the Laplacian kernel, are ap-
proximate measures of the second-order derivative.
Throughout this paper, we choose x=0.5, which corre-
sponds to the standard second-order differencing operation.

form p(x) o< exp (—Alx|). It is seen that the analyzed rain-
fall image exhibits (nearly) sparse representation in the de-
rivative space with a large mass around zero and heavier
tail than the Gaussian.

[23] This well-behaved non-Gaussian structure in the de-
rivative space mainly arises due to the presence of spatial
coherent and correlated patterns in the rainfall fields which
contain sharp transitions (large gradients) and isolated sin-
gularities (high-intensity rain cells). In effect, over the large
areas of almost uniform rainfall reflectivity values, a mea-
sure of derivative translates those values into a large num-
ber of (near) zero coefficients; however, over the less
frequent jumps and isolated high-intensity rain cells, deriv-
ative coefficients are markedly larger than zero and form
the tails. Note that this non-Gaussianity is due to the intrin-
sic spatial structure of rainfall fields and cannot be resolved
by a logarithmic or power law transformation (e.g., Z-R
relationship). It is seen that after applying a relevant Z-R
relationship on the reflectivity fields, the shape of the rain-
fall histogram remains non-Gaussian and still can be
approximated by the Laplace density (not shown here).

[24] The universality of this statistical structure in the
distribution of derivative coefficients has been observed in
many rainfall reflectivity fields [Ebtehaj and Foufoula-
Georgiou, 2011b], denoting that the choice of the Laplace
prior and ¢;-norm regularization is preferred in the rainfall
DS problems rather than the choice of the Tikhonov
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Figure 4. A rainfall reflectivity field and the distribution of its standardized Laplacian coefficients,
Lx, = Lx/std (Lx), where std () is the standard deviation. (a) NEXRAD reflectivity snapshot at the
TRMM GV-site in Houston, TX (HSTN) on 11/13/1998 (00:02:00 UTC) at scale 1 x 1 km. (b) The his-
togram of the standardized Laplacian coefficients, with x=0.5 (Figure 3b) and (c) their corresponding
log histogram. Note that the zero coefficients over the nonrainy background have been excluded from
the histogram analysis. The solid line in Figure 4b is the least squares fitted exponential of the form
p(x) o< exp (—Alx|), and the dash-dot line shows a standard normal distribution for comparison. The log
histogram in Figure 4c contrasts the heavy-tailed structure of the Laplacian coefficients versus the Gaus-
sian distribution, clearer than the original histogram in Figure 4b.

regularization. Throughout this paper, we use the Laplacian
for L not only for its sparsifying effect on rainfall fields but
also because of our empirical evidence about its stabilizing
role and computational adaptability for rainfall downscal-
ing and data fusion problems.

[25] In practice, the histogram of the derivatives may ex-
hibit a thicker tail than the Laplace density, requiring a heav-
ier tail probability model, such as the Generalized Gaussian
Density (GGD) of the form p(x) o< exp (—A|x|"), where
p <1 [see Ebtehaj and Foufoula-Georgiou, 2011b]. How-
ever, using such a prior model gives rise to a nonconvex
optimization problem in which convergence to the global
minimum cannot be easily guaranteed. Therefore, the choice
of the /;-norm (the Laplace prior) for rainfall downscaling is
indeed the closest convex relaxation that can partially fulfill
the strict statistical interpretation of the rainfall fields in de-
rivative domains. Following our observations related to the
distribution of the rainfall derivatives, here we direct our
attention to the Huber penalty function as a smooth approxi-
mation of the ¢, regularization, and cast the rainfall DS as
the following constrained variational problem:

; . 1 2
= argmin, {31y~ Hxlf AL | (g

s.t. x>=0.

[26] Obviously, the constraint is due to the nonnegativity
of the rainfall fields. In this study, we adopted the gradient
projection (GP) method [Bertsekas, 1999, p. 228], to solve
the above variational problem (see Appendix B).

3.2.2. Rainfall Downscaling Results

[27] The same rainfall snapshot shown in Figure 4 has
been used to examine the performance of the proposed
regularized DS methodology. Throughout the paper, to
make the reported parameters independent of the intensity
range, the rainfall reflectivity fields are first scaled into the
range between 0 and 1; however, the downscaling results
are presented in the true range.

[28] To demonstrate the performance of the proposed
regularized DS methodology, the NEXRAD HR observa-
tion x was assumed as the true state, while the LR observa-
tions y were obtained by smoothing x with an average filter
of size 5. X s, followed by a down-sampling operator with
ratio s.. Given the true state and constructed LR observa-
tions, we can quantitatively examine the effectiveness of
the presented DS methodology by comparing the down-
scaled HR fields with the true HR field using some com-
mon quality metrics.

[29] Both the Huber and Tikhonov regularization meth-
ods were examined to downscale the observations from
scales 4 x 4 and 8 x 8 km down to 1 x 1 km (Figure 5). A
very small amount of white noise v with standard deviation
of le-2 (5% of the standard deviation of the reference rain-
fall field only over the wetted areas) was added to the LR
observations (equation (2)), giving rise to a diagonal error
covariance matrix. In both of the regularization methods,
for downscaling from 4-to-1 and 8-to-1 km in grid spacing,
the regularization parameter \ was set to 5e-3 and le-2,
respectively. These values were selected through trial and
error; however, there are some formal methods for auto-
matic estimation of this parameter, which are left for future
work [e.g., Hansen, 2010, chap. 5]. In our experiments, it
turned out that small values of the Huber threshold 7, typi-
cally less than 10% of the field maximum range of variabil-
ity, led to a successful recovery of isolated singularities and
local extreme rainfall cells (Figures 6 and 7).

[30] In the studied snapshot, coarse graining of the rain-
fall reflectivity fields to the scales of 4 x 4 and 8 x 8 km
was equivalent to loosing almost 20% and 30% of the rain-
fall energy in the reflectivity domain in terms of the relative
root-mean-square error (RMSE), RMSE = ||x — X||,/|[x]],
(see Table 1). Note that to compute the RMSE of the LR
observations, the size of those fields was extended to the
size of the true field using the nearest neighborhood inter-
polation, that is, each LR pixel was replaced with s. X s,
pixels with the same intensity value. In addition to the
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Figure 5. Sample results of the rainfall regularized downscaling (DS). (a) True HR rainfall reflectivity:
NEXRAD snapshot at the TRMM GV-site in Houston, TX (HSTN) on 11/13/1998 (00:02:00 UTC) at
resolution 1 x 1 km. (b and c¢) The synthetically generated, 4 x 4 and 8 x 8 km, coarse-scale and noisy
observations of the true rainfall reflectivity field. Left column: (d) Tikhonov and (f) Huber regularization
results for downscaling from 4 to 1 km (7 =0.02). Right column: (e) Tikhonov and (g) Huber regular-
ized DS for downscaling from 8 to 1 km (7 = 0.04). Zooming views of the delineated box in Figure 5g
are shown in Figure 6.
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Figure 6. A zooming view for comparing qualitatively the Tikhonov (a and c) versus the Huber (b and
d) regularization for the downscaling (DS) example in Figure 5. The results indicate a marginally
improved performance by the Huber regularization, especially for smaller scaling ratio. The Huber regu-
larization yields sharper results and is more capable to recover high-intensity rainfall cells and the cor-
rect range of variability; see Table 1 for quantitative comparison using a suit of metrics and Figure 7.

relative RMSE measure, we also used three other metrics:
(1) relative mean absolute error (MAE), MAE = ||
x — X||,/IIx|];; (2) a logarithmic measure often called the
peak signal-to-noise ratio (PSNR), PSNR = 20log
(max (X)/std (x — X)), where std(-) denotes the standard
deviation; and (3) the structural similarity index (SSIM) by
Wang et al. [2004]. The PSNR (in dB) represents a measure
that not only contains RMSE information but also encodes
the recovered range. The latter metric varies between —1
and 1 and the upper bound refers to the case where the esti-
mated X and reference (true) field x are perfectly matched.
The SSIM metric is popular in the image processing com-
munity as it takes into account not only the marginal statis-
tics such as the RMSE but also the correlation structure
between the estimated and reference field. This metric
seems very promising for analyzing the forecast mismatch
with observations in hydrometeorological studies, espe-
cially when the large-scale systematic errors (e.g., displace-
ment error) might be more dominant than the random
errors; see Ebtehaj et al. [2012] for applications of SSIM
in rainfall downscaling.

[31] On average, it is seen that almost 25% of the lost
relative energy of the rainfall reflectivity fields can be
restored via the regularized DS (Table 1). The ¢,-norm reg-
ularization led to smoother results, and as the scaling ratio
grows, this regularization was almost incapable to recover
the peaks and the correct variability range of the rainfall
reflectivity field (Figure 6). Typically, as expected, the
Huber-norm regularization results are slightly better than
the Tikhonov ones, although not always significantly. For
large scaling ratios (i.e., 5. > 4), the results of those meth-
ods tended to coincide in terms of the selected lump quality
metrics such as the RMSE. However, using the Huber regu-
larization, the recovered range was markedly better than
that by the Tikhonov regularization, as reflected in the
PSNR metric and recovered range. For example, in down-
scaling from 8-to-1 km x km via the Tikhonov regulariza-
tion, the maximum recovered reflectivity values are
approximately 41 dBZ, while using the Huber-norm regula-
rization the maximum values are 45 dBZ (Figure 5).
Employing the classic Z-R relationship for the NEXRAD
products (i.e., Z=300R'*), one can easily check that the
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Figure 7. The quantiles of the standard normal density
versus the standardized distribution of the recovered rain
rates (mm/h), using Z=300R"* relationship, for the true
HR field (red cross), the observed LR field (black plus), the
downscaled HR fields via the Tikhonov regularization
(green circle), and the Huber-norm regularization (blue
square), respectively. (a and b) The quantile-quantile plots
for the HR fields obtained by downscaling from 4 x 4 to 1
x 1 km and 8 x 8 to 1 x 1 km, respectively. The rainfall
quantile values are only for the positive rainy part of the
fields and are standardized by subtracting the mean and
dividing by the standard deviation. The qg-plots signify
that the Huber regularization performs better than the
Tikhonov, especially over the tails, which represent the re-
covery of high-intensity and extreme rainfall values from
the LR observations.

rain rates associated with the above reflectivity values are
approximately 15 and 28 (mm/h), respectively. Therefore,
although the lump quality metrics are comparable for the
two methods in the reflectivity domain, the main advantage
of the Huber norm over the #,-norm is the recovery of local
extreme rain rates (Figure 7). It is clear from the quantile-
quantile plots in Figures 7a and 7b that for a small scaling
ratio, for example, s.=4, the Huber regularization can
very well reproduce both the tail and the body of the true
rainfall distribution. However, the tail of the recovered
rainfall distribution falls below the true rainfall distribution

for larger scaling ratio, e.g., s. = 8, indicating that in some
high-intensity areas the method still underestimates the true
field.

4. Regularized Data Fusion

4.1. Problem Formulation

[32] Analogous to the DS problem in the previous sec-
tion, here we focus on the formulation of the DF problem.
In the DF class of problems, typically an improved estimate
of the true state is sought from a series of LR and noisy
observations. Let x € R™ be the true state of interest while
a set of N downgraded measurements, y € R"™,
i=1,...,N, are available through the following linear
observation model:

¥ = Hx+v, (9)

where n; < m,H' € R"™ and v ~ N (0 RT) denote an
uncorrelated Gaussian error in R" Eizy[v(¥)'] = 0. Com-
pared to the DS family of problems a DF problem is more
constrained in the sense that usually there are more equa-
tions than the number of unknowns, Zﬁv n; > m, giving rise
to an overdetermined linear system. As previously
explained, naturally the linear WLS estimate of the true
state, given the series of NV observations, amounts to solving
the following optimization problem:

2

<R‘>‘> }

IS i
X = argmin < — — H'x
wnin {33 ([

[33] Note that the solution of the above problem not only
contains information about all of the available observations
(fusion) but also, with proper design of the observation opera-
tors, allows us to obtain an HR estimate of the state of interest
(downscaling). Clearly, the inverse of each covariance matrix
in equation (10) encodes the relative contribution or weight of
each observation y' in the cost function. In other words, if the
elements of the covariance matrix of a particular observation
vector are large compared to those of the other observation
vectors, naturally the contribution of that observation to the
obtained solution would be less significant.

[34] For notational convenience, the above system of
equations can be augmented as follows:

(10)

y! H! V!
=8 x4,
¥V Y W (11)
=y =Hx+vy

where the concatenated error vector v has the following
block diagonal covariance matrix,

R! 0
0 RY

[35] Therefore, the DF problem can be recast as the clas-
sic problem of estimating the true state from the augmented
observation model of y = Hx + v. Thus, setting the gradi-
ent of the cost function in equation (10) to zero yields the
following linear system:
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Table 1. Results Showing the Effectiveness of the Proposed Regularized DS in Reducing the Estimation Error and Increasing the Accu-

racy of the Estimated Rainfall Fields®

Observations Versus True

Tikhonov-DS Versus True

Huber-DS Versus True

Metric® 4 x 4 km 8 x 8 km 4 x 4km 8 x 8 km 4 x 4 km 8 x 8 km
RMSE 0.19 0.29 0.15 0.20 0.14 0.19
MAE 0.15 0.25 0.13 0.18 0.11 0.17
SSIM 0.71 0.56 0.78 0.66 0.80 0.66
PSNR 23.8 19.6 26.5 23.1 27.0 24.0

The first two columns refer to the values of the quality metrics obtained by comparing the constructed LR observations with true 1 x 1 km reflectivity
field. The other columns show the obtained metrics by comparing the downscaled fields with the true rainfall field. The performance of the Huber prior is
slightly better than the Tikhonov regularization, especially for the small scaling ratios (i.e., 4 x 4 km).

RMSE, relative root-mean-square error; MAE, relative maximum absolute error; SSIM, structural similarity; and PSNR, peak signal to noise ratio

(see section 3.2.2 for definitions).

(H'R"'H)x =H'Ry. (13)

[36] This problem is overdetermined with a unique solu-
tion; however, the Hessian (HTR’IH) is likely to be very
ill-conditioned. This ill-conditioning typically gives rise to
an unstable solution with large estimation error [e.g., Elad
and Feuer, 1997; Hansen, 2010]. Similar to the DS prob-
lem, one possible remedy for stabilizing the solution is the
regularization. Recalling the formulation discussed in the
previous section, a general regularized form of the rainfall
DF problem can be written as

R . 1
& —argmin, {3 ly - Hxlf ++ do (o .

s.t.x=0

(14)

where the convex regularization function ¢ (x) can take
different penalty norms, such as the Tikhonov ||Lx||§, the
¢y-norm ||Lx||,, or the Huber norm ||Lx||y,, - As is evident,
similar to the DS problem, solution of equation (10) is
equivalent to the frequentist ML estimator of the HR field
while equation (14) is the Bayesian MAP estimator. For
further explanations and statistical interpretations please
see Appendix A.

4.2. Application in Rainfall Data Fusion and Results

[37] To quantitatively evaluate the effectiveness of the
proposed regularized DF methodology for rainfall data, we
constructed two synthetic LR and noisy observations from
the original HR NEXRAD reflectivity snapshot. To resemble
different sensing protocols and specifications, we chose dif-
ferent smoothing and down-sampling operations to construct
each of the synthetic observation fields. The first observation
field y' was produced at resolution 6 x 6 km using a simple
averaging filter of size 6 x 6, followed by a down-sampling
ratio of s.= 6. Analogously, the second field y* was gener-
ated at scale 12 x 12 km using a Gaussian smoothing kernel
of size 12 x 12 with a standard deviation of 4 km, followed
by a down-sampling ratio of s. = 12. To resemble the mea-
surement random error, white Gaussian errors with standard
deviations of le-2 and 2e-2 were also added respectively,
which are equivalent to 5% and 10% of the standard devia-
tion of the reference rainfall field only over the wetted areas.
Roughly speaking, this selection of the error magnitudes
implies that the degree of confidence (relative weight) on the
observations at 6 x 6 km is twice that of the observations at

12 x 12 km. Here we only restrict our consideration to the
Huber norm regularization because of its consistency with
the underlying rainfall statistics and its better performance in
recovering of the rainfall heavy-tailed structure (Figure 7).
To solve the DF problem, we have used the same settings
for the gradient projection (GP) method as explained in Ap-
pendix B.

[38] The solution of the ill-conditioned WLS formulation
or the ML estimator in equation (10) is blocky, out of
range, and severely affected by the amplified inverted noise
(Figure 8c). On the other hand, the regularized DF can
properly restore a fine-scale and coherent estimate of the
rainfall field. The results show that more than 30% of the
uncaptured subgrid energy of the examined rainfall reflec-
tivity field can be restored through solving the proposed
methodology (Table 2). As is evident, improvements of the
selected fidelity measures in the DF problem are more pro-
nounced compared to the results of the DS experiment (see
Table 1). This naturally arises because more observations
are available in the DF problem than the DS one, and thus
the solution is better constrained. In terms of the selected
lump metrics, analogous to the DS problem, we observed
that the Huber-norm regularization is marginally better
than the Tikhonov regularization, which is not reported
here. However, as expected, in terms of recovery of the
heavy-tailed structure of the rainfall, it is verified that the
Huber-norm regularization can capture the lost extreme
values much better than the Tikhonov regularization (see
Figure 9). It is clear from Figure 9 that the Huber-norm reg-
ularization very well captures the local extreme rainfall in-
tensity values while the Tikhonov regularization falls short
and can only partially recover those extreme intensities.

5. Regularized Variational Data Assimilation

5.1.

[39] Compared to the previously explained problems of
downscaling and data fusion, the data assimilation problem
is more involved in the sense that we also need to incorpo-
rate the evolution of a dynamical system in the estimation
process. Despite the increased complexity, DA shares the
same principles with the explained formulations of the DS
and DF problems, from the estimation point of view. Here
we briefly explain the classic linear three-dimensional var-
iational (3D-VAR) data assimilation scheme and extend its
formulation to a regularized format. Sample results of the

Problem Formulation
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Figure 8. Data fusion and downscaling of multisensor remotely sensed rainfall reflectivity fields using
the Huber regularization. (a and b) Reconstructed LR and noisy rainfall observations at scale 6 and 12
km in grid spacing. (¢) The results of the WLS solution in equation (10) and (d) the solution of the regu-
larized DF using the Huber norm with A =le-3 and 7 =le-2.

regularized variational data assimilation problem are illus-
trated on the estimation of the initial conditions of the heat
equation in a 3D-VAR setting.

[40] The 3D-VAR is a memoryless assimilation method.
In other words, at each time step, the best estimate of the
true initial state or analysis state is obtained based only on
the present-time noisy observations and the background
state. The analysis is then used for forecasting the state at
the next time step and so on.

[41] Suppose that the true initial state of interest at dis-
crete time f is denoted by x, € R™, the observation is
Yo € R, and x} € R™ represents the background state. In
the linear 3D-VAR data assimilation problem, obtaining
the analysis state xj € R™ amounts to finding the minimum
point of the following cost function:

Table 2. Values of the Selected Fidelity Metrics in the Rainfall
DF Experiment Using the Huber Regularization, see Section 3.2.2
for the Definitions®

Observations Versus True Huber-DF Versus True

Metric 6 X 6 km 12 x 12 km 1 x 1km
RMSE 0.25 0.35 0.17
MAE 0.21 0.32 0.15
SSIM 0.60 0.50 0.72
PSNR 21.3 18.1 25.0

“Here the first two columns refer to comparison of the LR (6 x 6 and 12
X 12 km) observations with the true rainfall field, and the last column
presents the metrics obtained by comparing the DF results with the true
field.

L I Trué (higH.res),
14 DF (Huber)
o 120 DF (Tikhonov) g
% 00
€ 10f ]
&
z Y '
[
o 6f Obs.1 (.Iow—res‘
=
E 4 Obs.2 (low-res) 1
c ‘
® 2f 1
o
or 1
0 . L -.' . . . . . . .
-5 -4-3-2-1 0 1 2 3 4 5 6

Standard Normal Quantiles

Figure 9. Quantiles of the standardized distribution of
the recovered rain rates (mm/h), using Z = 300R"* relation-
ship, versus standard normal quantiles. It is clear that the
Huber-norm regularization results in a better recovery of
the rainfall extremes than the Tikhonov regularization. Evi-
dently, because of extra information coming from multiple
sensory data, the recovery of extreme rain rates is improved
in the DF experiment compared to the DS results; see
Figure 7.
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Tnlxe) = 5185 ol Bt + 3 g~ Hxolfyr. (15)

[42] In the cost function (15), B € R™*” and R € R™"
are the background and observation error covariance matri-
ces and H is the observation operator. The analysis is then
defined as the minimizer of equation (15), denoted as
x§ = argmin {J3p(Xo)}. Clearly, this 3D-VAR problem
is a WLS problem, which has the following analytical
solution:

xi=(B'+HR'H)'(B'x,+HRy,). (16)

[43] Because the error covariance matrices are positive
definite, the matrix B~! + H'R'H is always positive defi-
nite and hence invertible. Thus, solution of the 3D-VAR
requires no rank or dimension assumption on H. However,
this problem might be very ill-conditioned depending on
the architecture of the covariance matrices and the mea-
surement operator.

[44] Analogous to the previous discussions, the generic
regularized form of the linear 3D-VAR under the predeter-
mined transformation L might be considered as follows:

xg = argmin {J3p(Xo) + A¢y(X0)},

Xk

(17)

where 1y (Xo) can take any of the explained regularization
penalty functions, including the smooth Tikhonov ||Lxo|[3,
the nonsmooth ¢;-norm ||Lxo||,, and the smooth Huber
norm [|Lxo)

[45] In the above-regularized formulations, the analysis
not only becomes close to the background and observa-
tions, in the weighted Euclidean sense, but it is also
enforced to follow a regularity imposed by the (o).
Here we emphasize that the regularized formulation in
equation (17) typically yields a more stable and improved
analysis than the classic formulation in equation (15). How-
ever, this gain comes at the price of introducing a bias in
the solution whose magnitude can be kept small by proper
selection of the regularization parameter A [Hansen, 2010].

5.2. Application in the Study of Land Surface Heat
and Mass Fluxes

[46] The promise of the proposed regularized 3D-VAR
data assimilation methodology is shown via assimilating
noisy and down-sampled observations into the dynamics of
the heat equation. Diffusive transport of heat and moisture
plays an important role in modeling of land surface water
and energy balance processes [e.g., Peter-Lidard et al.,
1997; Liang et al., 1999]. For example, in land surface
energy balance, the ground heat flux is typically modeled
by a 1-D heat diffusion equation for multiple layers of soil
columns for which data assimilation has been the subject of
special interest for improving hydrologic predictions [e.g.,
Entekhabi et al., 1994 ; Margulis et al., 2002 ; Drusch and
Viterbo, 2007 ; Bateni and Entekhabi, 2012].

[47] Here we do not dwell into a detailed parameteriza-
tion of the heat equation for a real case study of land sur-
face heat and water budget. Rather, we only focus on a
simple well-controlled assimilation experiment to demon-
strate the promise of the regularized DA framework. More

specifically, we use a top-hat initial condition which is
sparse in the derivative space and examine the results of
the regularized DA while it evolves in time under the heat
diffusion law. To this end, we construct an erroneous back-
ground state and LR noisy observations of the top-hat ini-
tial condition and then demonstrate the effectiveness of a
proper regularization on the quality of the obtained analysis
and forecast state. In the assimilation cycle, we obtain the
analysis using the classic and regularized 3D-VAR assimi-
lation methods and then examine those analysis states to
obtain the forecast state at the next time step. The estimated
analysis and forecast states are then compared with their
available ground-truth counterparts.

[48] For a space-time representation of a 1-D scalar
quantity x(s, #), the well-known heat equation is

Ox(s,t)
o eVx(s,1)

x(s,0) = xo(s),

(18)

where 0o < s < 00,0 <t < 0o, and £(L?/T) denotes the
diffusivity constant. In the rest of the paper for brevity and
without loss of generality, we assume & = 1(L?/T).

[49] It is well understood that the general solution of the
heat equation at time ¢ is given by the convolution of the
initial condition with the fundamental solution (kernel) as
follows:

x(s,t) = /K(s —r,0)xo(r)dr, (19)
where
s’
K(s,f) = (4met) " ?exp ( iel ) (20)

[s0] We can see that x(s, ) is obtained via convolution
of the initial condition with a Gaussian kernel of standard
deviation o = v/2¢t. Clearly, estimation of the initial con-
dition x(s) only from the diffused observations x(s, #) is an
ill-posed deconvolution problem (see equation (1)).

[51] To reconstruct a 3D-VAR assimilation experiment,
we assume that the true top-hat initial condition in discrete
space is a vector of 256 elements (x € R™, where m =256)
as follows:

Xp = { 2
1

[s2] We added a white Gaussian noise with o,,=0.05
(15% of the standard deviation of the initial state) to the
true initial condition for defining the background state x)
for the assimilation experiment.

[53] We assume that the observation vector is a down-
graded and noisy version of the true state, with the sensor
only capturing the mean of every four neighbor elements of
the true state. In other words, the observation is a noisy and
LR version of the true state with one quarter of its size
(Figure 10). To this end, using the linear model in equation
(2), we employ the following architecture for the observa-
tion operator :

112 <x; < 144
otherwise .

21
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a) The true initial condition x, and the results of the heat equation at =35 and =100 (T)

with € = 1 (L°/T). (b) The reconstructed background state by adding a white noise with o,, = 0.05 to the
true initial state and (c) the LR and noisy observations with o, = 0.03, respectively. (d) The results of the
classic 3D-VAR and the regularized version using the explained Tikhonov (T3D-VAR) and the Huber
(H3D-VAR) regularization methods (see equation (17)). (e and f) Magnified parts of the graphs in Figure
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1111 0000 0000
1
H— 7 00:00 11:11 00:00 € R, (22)
0000 0000 1111

and impose a white Gaussian error with ¢, =0.03, equiva-
lent to 10% of the standard deviation of the true signal.

[54] The top-hat initial condition is selected to empha-
size the role of regularization, especially regularization
resulting from linear penalization (i.e., the Huber or /;-
norm). Clearly, the first-order derivative of the above initial
condition is very sparse. In other words, the first-order de-
rivative is zero everywhere on its domain except at the
location of the two jumps, resembling a heavy tailed and
sparse statistical distribution. This underlying structure
prompts us to use a regularization norm with linear penal-
ization and a first-order differencing operator for L in equa-
tion (17), as follows:

-1 1 0 0 0
L= 0 -1 1 0 0 c R(m—l)xm (23)
0 0 0 -1 1

[ss] Figure 10 shows the inputs of the assimilation
experiment and the results of the analysis cycle, using the
classic versus the regularized 3D-VAR estimators. In this
example, it is clear that the classic solution is subject to

overfitting, while it slightly damps the noise. Indeed, the
3D-VAR is unable to effectively damp the high-frequency
error components and recover the underlying true state.
This overfitting may arise because the 3D-VAR cost func-
tion is a redundant WLS estimator and contains extra infor-
mation (both observations and background) than needed for
a proper estimation of the true state. On the other hand, in
the regularized assimilation methods, not only the error
term but also a cost associated with the regularity of the
underlying state is also minimized. The Tikhonov regulari-
zation (T3D-VAR), i.e., 1y (x) = ||Lx||3, led to a smoother
result compared to the classic one with slightly improved
error statistics (Table 3). However, the result of the Huber
regularization (H3D-VAR), i.e., ¥ (X) = ||Lx||j» 18 the
best. The rapidly varying noisy components are effectively
damped in this regularization, while the sharp jump discon-
tinuities have been preserved better than the T3D-VAR.
The quantitative metrics in Table 3 indicate that in the anal-
ysis cycle, the RMSE and MAE metrics are improved dra-
matically, up to 85% in the H3D-VAR, compared to other
assimilation schemes.

[s6] As previously explained, there is no unique and uni-
versally accepted methodology for automated selection of
the regularization parameters, namely, A\ and 7. Here, to
select the best parameters in the above assimilation exam-
ples, we performed a few trial and error experiments. In
other words, over a feasible range of parameter values, we
computed the analysis states and obtained the RMSE
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Table 3. The Root-Mean-Square Error (RMSE) and the Mean
Absolute Error (MAE) for the Studied Classic and Regularized
3D-VAR in the Analysis Cycle (A) and Forecast Step (F)

RMSE MAE

Cycle 3D-VAR T3D-VAR H3D-VAR 3D-VAR T3D-VAR H3D-VAR

A 0.0475
F 0.0090

0.0397
0.0088

0.0067
0.0043

0.0376
0.0071

0.0317
0.0070

0.0043
0.0033

metric by comparing them with the (known) true initial
condition x, (Figure 11). Note that the true initial condition
is definitely not available in practice; however, here we
used it to obtain the optimal values of the regularization pa-
rameters in the RMSE sense for comparison purposes and
for demonstrating the importance of a proper regulariza-
tion. In the T3D-VAR, as expected, larger values of the
regularization parameter (A7) typically damp rapidly vary-
ing error components of the noisy background and observa-
tions; however, they may give rise to an overly smooth
solution with larger bias and RMSE (Figures 10e and 10f).
Here, for the T3D-VAR experiment, we used the value
A7r=0.05 associated with the minimum RMSE (Figure
11a). In the H3D-VAR, in addition to the regularizer A,
we also need to choose the optimal threshold value 7 of the
Huber norm. A contour plot of the RMSE values for differ-
ent choices of \;; and 7 is shown in Figure 11b. By inspec-
tion, we roughly chose A\y=35 and 7=1.5e-3 for the
H3D-VAR assimilation experiment presented in Figure 10.

[57] The main purpose of the DA process is, indeed, to
increase the quality of the forecast. Given the analysis state
at initial time, we can forecast the profile of the scalar
quantity, x(s,?), at any future time step through the heat
equation. One important property of the heat equation is its
diffusivity. In other words, naturally noisy components and
rapidly varying perturbations in the initial analysis are
damped but become more correlated as the profile evolves
in time. Thus, rapidly varying uncorrelated error compo-
nents become low-varying and correlated features whose
detection and removal is naturally more difficult than in the
case of uncorrelated ones. Figure 12a shows the forecast
profile at t=10(T). The results indicate the importance of
proper regularization on the quality of the forecast in the
simple heat equation. The forecasts based on the classic
3D-VAR and the T3D-VAR almost coincide, while the
T3D-VAR is marginally better. This behavior arises
because neither of those methods could properly eliminate
the noisy features in the analysis cycle; hence, low-varying
error components appear in the forecast profile. However,
the quality metrics in Table 3 indicate that using H3D-
VAR, the RMSE and MAE of the forecast are improved by
more than 50% compared to the other methods.

6. Conclusions

[s8] In this paper, we presented a new direction in
approaching hydrometeorological estimation problems by
taking into account important intrinsic properties of the
underlying state of interest, such as the presence of sharp
jumps, isolated singularities (i.e., local extremes), and sta-
tistical sparsity in the derivative space. We started by
explaining the concept of regularization and discussed the

common elements of the hydrometeorological problems of
DS, DF, and DA as discrete linear inverse problems. We
argued about the importance of proper regularization,
which not only makes hydrometeorological inverse prob-
lems sufficiently well posed but also imposes the desired
regularity and statistical property on the solution. Regulari-
zation methods were theoretically linked to the underlying
statistical structure of the states and it was shown how in-
formation about the probability density of the state, or its
derivative, can be used for proper selection of the regulari-
zation method. Specifically, we emphasized three types of
regularization, namely, the Tikhonov, ¢;-norm, and Huber
regularization methods. We argued that these methods are
statistically equivalent to the maximum a posteriori (MAP)
estimator while, respectively, assuming the Gaussian, Lap-
lace, and Gibbs prior density for the state of interest in a de-
rivative domain. It was argued that piecewise continuity of
the state and the presence of frequent jumps are often trans-
lated into heavy-tailed distributions in the derivative space

0.046

a)

0.044
0.042

0.04

RMSE

0.038

0.036

0.034

Figure 11. (a) Root-mean-square error (RMSE) of the
implemented T3D-VAR as a function of the regularizer A\r.
(b) RMSE contour surface for the H3D-VAR experiment
with different choices of the regularizer A;; and the thresh-
old value 7 of the Huber norm. Clearly, depending on the
choice of the regularization method, the magnitude of the
regularizer might be markedly different.
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Figure 12. (a) True forecast state obtained by temporal evolution of the top-hat initial condition under

the heat equation at =10 (T) (Figure 10a). (b and c¢) Magnified windows showing the forecast quality
using classic and regularized 3D-VAR assimilation methods. It can be seen that, due to ineffective error
removal by the classic 3D and T3D-VAR at the analysis cycle, large-scale correlated errors are propa-
gated in the forecast profiles, while this problem is less substantial in the result of the H3D-VAR (see

Table 3).

that favor the use of ¢;-norm or Huber-norm regularization
methods.

[s59] The effectiveness of the regularized DS and DF
problems was tested via analysis of remotely sensed precip-
itation fields, and the superiority of the regularization with
linear penalization was clearly demonstrated. The perform-
ance of the regularized DA was also studied via assimilat-
ing noisy observations into the evolution of the heat
equation, which has fundamental applications in the study
and data assimilation of land-surface heat and mass fluxes.
We showed that adding a Huber regularization term in the
variational assimilation methods outperforms the classic
3D-VAR method, especially for the case where the initial
condition exhibits a sparse distribution in the derivative
space (e.g., first-order derivative of the top-hat initial
condition).

[60] The presented frameworks can be potentially
applied to other hydrometeorological problems, such as
soil moisture downscaling, fusion, and data assimilation.
Clearly, proper selection of the regularization method
requires careful statistical analysis of the underlying state
of interest. Moreover, the problem of rainfall or soil mois-
ture retrieval from satellite microwave radiance can be con-
sidered as a nonlinear inverse problem. This nonlinear
inversion may be cast in the presented context, provided
that the nonlinear kernel can be (locally) linearized with
sufficient accuracy. Application of regularization in data
assimilation is in its infancy (e.g., see Freitag et al. [2012]
for a recent study) and is expected to play a significant role
over the next decades, especially in the context of ensemble

methodologies for non-Gaussian and highly nonlinear
dynamic systems.

Appendix A: Statistical Interpretation

[61] In this appendix, we discuss the statistical interpre-
tation of the presented downscaling, data fusion, and data
assimilation problems. We argue that the classic weighted
least squares formulations can be interpreted as the fre-
quentist maximum likelihood (ML) estimators, while the
regularized formulations can be interpreted as the Bayesian
maximum a posteriori (MAP) estimators. We also spell out
the connection between the chosen regularization and the
prior distribution of the state (or its derivative), which can
guide proper selection of the regularization term in practi-
cal applications.

Al. Regularized Variational Downscaling and Data
Fusion

[62] From the frequentist statistical point of view, it is
easy to show that the WLS solution of equation (3) is
equivalent to the maximum likelihood estimator (ML)

Xy = argmax p(y|x), (A1)
given that the conditional density, p(y|x) x exp
(—l/z(y —Hx)'R™'(y — Hx)), is Gaussian. Specifically,

taking —log (-), one can find the minimizer of the negative
log-likelihood function —log {p(y|x)} as follows:
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1
X = argmin {5 (y—Hx)'R ' (y - Hx)}

1
= argmin {5 Ily — Hx|[g }, (A2)
X

which is identical to the WLS solution of problem (3).

[63] It is important to note that in the ML estimator, X is
considered to be a deterministic variable (fixed), while y
has a random nature. On the other hand, in the Bayesian
perspective, a regularized solution of equations (4) or (6) is
equivalent to the maximum a posteriori (MAP) estimator

Xpap = argmax p(xly), (A3)
X

where both x and y are considered of random nature. Spe-
cifically, using the Bayes theorem, ignoring the constant
terms in x and applying —log (-) on the posterior density

p(x|y), we get

= argmin {~logp(y|x) — logp(x)}. (A4)

[64] The first term, —log p(y|x), is just the negative log
likelihood as appeared in the ML estimator and the second
term is called the prior, which accounts for the a priori
knowledge about the density of the state vector x. Accord-
ingly, the proposed Tikhonov regularization in equation (4)
is equivalent to the MAP estimator assuming that the state,
or the linearly transformed state Lx, can be explained by a
multivariate Gaussian of the following form:

logp(x) o x"Qx, (A5)

where the covariance is Q = L'L [e.g., Tikhonov et al.,
1977; Elad and Feuer, 1997; Levy, 2008]. Clearly, the
choice of the /¢;-norm in equation (6) implies that
logp(x) o< ||Lx||, or say the transformed state can be well
explained by a multivariate Laplace density with heavier
tail than the Gaussian case [e.g., Tibshirani, 1996; Lewicki
and Sejnowski, 2000], while the Huber-norm regularization
implies a Gibbs prior probability model logp(x) o
Zi pr(x;) for the state of interest [Geman and Geman,

1984 ; Schultz and Stevenson, 1994].

[6s] Obviously, based on the selected type of regulariza-
tion, statistical interpretation of the DF regularized class of
problems is also similar to what was explained for the DS
problem. In other words, given the augmented observation
model in equation (11), it is easy to see that the solution of
equation (10) is the ML estimator, while equation (14) can
be interpreted as the MAP estimator with a prior density
depending on the form of the regularization term.

A2. Regularized Variational Data Assimilation

[66] Statistical interpretation of the classic variational
DA problems is a bit tricky compared to the DS and DF
class of problems, mainly because of the involvement of
the background information in the cost function. Lorenc
[1986] derived the 3D-VAR cost function using Bayes the-
orem and called it the ML estimator [see, e.g., Lorenc,
1988; Bouttier and Courtier, 2002]. More recently, it has

been argued that the 4D-VAR, and thus as a special case
the 3D-VAR cost function, can be interpreted via the
Bayesian MAP estimator [Johnson et al., 2005 ; Freitag et
al., 2010; Nichols, 2010]. For notational convenience, here
we only explain the statistical interpretation of the
3D-VAR and its regularized version, which can be easily
generalized for the case of the 4D-VAR problem.

[67] As discussed earlier, the ML estimator is basically a
frequentist view to estimate the most likely value of an
unknown deterministic variable x from (indirect) observa-
tions y of random nature. The ML estimator intuitively
requires finding the state that maximizes the likelihood
function as

%, = argmax p(ylx). (A6)

[68] Let us assume that, at the initial time step 7, the
background xg is just a (random) realization of the true
deterministic initial state x,. In other words, we consider
X} = X + W, where the error w can be well explained by a
zero mean Gaussian density N (0, B), uncorrelated with the
observation error, E[wv'] = 0. Here the background state
is treated similarly to an observation that is of random na-
ture. Thus, let us recast the problem of obtaining the analy-
sis as a classic linear inverse problem by augmenting the
available information in the form of

y=Hxo+v, (A7)
T 1]" T
where y = L(XO) ¥o| »H=[LH'] ", and v ~ N'(0,R),
with the following block diagonal covariance matrix

R-|7 o)

[69] Note that R is block diagonal because the back-
ground and observation errors are uncorrelated. Following
the augmented representation and applying —log (-), we

T
—logp (zle) oc 12 (X - EXo) R (z - EXO) ;
thus, it is easy to see that the ML estimator in terms of the
augmented observationsy,

(A8)

have

X(, = argmax p(z\x()), (A9)

Xo

is equivalent to minimizing the 3D-VAR cost function in
equation (15). Therefore, from the frequentist perspective,
which considers the state deterministic and the observations
random, the classic 3D-VAR solution is the ML estimator,
assuming Gaussian observation error.

[70] On the other hand, from the Bayesian perspective,
the state of interest and the available observations are con-
sidered to be random and the MAP estimator is the optimal
point, which maximizes the posterior density as:

Xyup = argmax p(x|y). (A10)

[71] Let us assume a priori that the (random) state of in-
terest has a Gaussian density with mean x;, and covariance
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B, that is, p(xo) ~ A (x}, B). More formally, this assump-
tion implies that the deterministic background is the central
(mean) forecast and is related to the random true state via
X) = xg + w, where w ~ A/(0, B). Therefore, using Bayes
theorem it immediately follows that the 3D-VAR is the
MAP estimator, x§j = argmax , p(Xo|y), assuming a Gaus-
sian prior for the true state of interest.

[72] In conclusion, if we follow the frequentist approach
to interpret the classic 3D-VAR in equation (15), the regu-
larized 3D-VAR in equation (17) can be interpreted as the
MAP estimator, where the prior density is characterized by
the regularization term. On the other hand, taking the MAP
interpretation for the classic 3D-VAR, the regularized ver-
sion might be understood as the MAP estimator, which also
accounts for an extra and independent prior on the distribu-
tion of the state under the L transformation.

Appendix B: Gradient Projection Method for the
Huber Regularization

[73] Here we present the gradient projection (GP)
method, using the Huber regularization, only for the down-
scaling (DS) problem, which can be easily generalized to
the data fusion (DF) and data assimilation (DA) cases. In
the case of the DS problem, the cost function and gradient
of the Huber regularization with respect to the elements of
the downscaled field are

1
T(x) =3y - Hx|[g 1+ AlLx] (BI)
VJ(x) = H'R™!(y — Hx) + AL"p (Lx), (B2)
where
by 2x x| <7
Prix) = {ZTsign (x), |x| > (B3)

[74] As is evident, the cost function in (B1) is a smooth
and convex function. Thus, its minimum can be easily
obtained using efficient first-order gradient descent methods
in large dimensional problems. However, rainfall is a posi-
tive process and in order to obtain a feasible downscaled
field X, the regularized DS problem needs to be solved on
the nonnegative orthant {x|x; > 0,Vi = 1, ... ,m},

X = argmin {7 (x)}
s.t. x>0. (B4)

[7s] We have used one of the primitive gradient projec-
tion (GP) methods to solve the above constrained DS prob-
lem [see Bertsekas, 1999, p. 228]. Accordingly, to obtain
the solution of equation (B4) amounts to obtaining the fixed
point of the following equation:

x. = [x. —aVI(x.)]", (BS)
where « is a stepsize and
+ 0 if x S 0
bl = {x otherwise , (B6)

denotes the Euclidean projection operator onto the nonneg-
ative orthant. As is evident, the fixed point can be obtained

iteratively as

Xp4+1 = [Xk - OszJ(Xk)rr. (B7)

[76] Thus, if the descent at step k is feasible (i.e.,
x; — ax VJ (x4)>0), the GP iteration becomes an ordinary
unconstrained steepest descent method; otherwise, the
result is mapped back onto the feasible set by the projection
operator in equation (B6).

[77] In our study, the stepsize (c;) was selected using the
Armijo rule, or the so-called backtracking line search, that
is, a convergent and very effective stepsize rule and
depends on two constants: 0 < £ < 0.5,0 < ¢ < 1. In this
method, the stepsize is assumed o = ¢"*, where my is the
smallest nonnegative integer for which

T (% — VI (%)) < T (%) = 6ax VI (%) VI (x¢). (BS)

[78] In our DS examples, the above backtracking param-
eters are set to £=0.2 and ¢=0.5 (see Boyd and Vanden-
berghe [2004, p. 464] for more explanation). In our coding,
the iterations terminate either if W <1073 or the
number of iterations exceeds 200. o

[79] For the above-explained gradient projection algo-
rithm and the employed parameters, the computational cost
of the proposed framework is modest for a normal desktop
machine at the present time. In particular, on a Windows
operating system with an Intel(R)-i7 central processing unit
(2.80 GHz clock rate), the process time of the presented
downscaling and data fusion experiments was approxi-
mately 120 s.
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