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[1] Modeling turbulent flows at high Reynolds number
requires solving simplified variants of the Navier-Stokes
equations. The methods used to close the resulting
Reynolds-averaged, or eddy simulation equations usually
follow classical theory and, at small enough scales, postulate
universal scaling for turbulence that is independent of the
velocity itself. This may not be the best way to conceptual-
ize geophysical turbulence. Turbulent intermittency may be
defined in terms of the local “roughness” of the velocity sig-
nal as measured by pointwise Hölder exponents. This study
investigates the joint velocity-intermittency structure of flow
over a gravel-bed surface with migrating bed forms. We
report clear velocity-intermittency dependence and quantify
its nature above the moving bed form profile. Our results
imply differences in energy transfer close to bed forms
at shorter wavelengths than those forced directly. Hence,
progress in modeling flows of geophysical relevance may
require a reconsideration of the principles on which turbu-
lence closures are based. Citation: Keylock, C. J., A. Singh,
and E. Foufoula-Georgiou (2013), The influence of migrating
bed forms on the velocity-intermittency structure of turbulent
flow over a gravel bed, Geophys. Res. Lett., 40, 1351–1355,
doi:10.1002/grl.50337.

1. Introduction
[2] Environmental turbulent flows are highly complex

because of the interaction between a flow with complicated
physics, mobile and spatially variable boundary conditions,
as well as possibly entrainable sedimentary particles. All of
these phenomena exist in gravel-bed rivers and, as a con-
sequence, one expects that flow patterns are more complex
than classical flow patterns, such as a well-developed bound-
ary layer [Shvidchenko and Pender, 2001; Roy et al., 2004;
Hardy et al., 2007]. Hence, investigating the nature of tur-
bulence in environmental flows is imperative if we are to
improve our ability to model and predict pollutant dispersal
and sediment transport in natural rivers.

[3] Classical turbulence theory stems from the work of
Kolmogorov and his two-thirds and four-fifths laws [Frisch,
1995], both of which are based on a consideration of the
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moments of the spatial velocity differences or increments
�u(r) = (ux – ux+r) over a separation distance, r, for homo-
geneous isotropic turbulence. The former may be obtained
from dimensional analysis and states that h�u2(r)i =
C�2/3r2/3, where � is the average dissipation rate per unit
mass and C is a constant. This leads directly to the well-
known –5/3 law for the Fourier amplitude spectrum of a
turbulent flow in the inertial regime. This was modified by
Kolmogorov [1962] to incorporate the effect of intermit-
tency [Frisch et al., 1978]. In this extended theory, –5/3
holds on average with local fluctuations induced by the pas-
sage of energetic flow structures. These are described by
a log-normal distribution or, in subsequent work, by log-
Poisson statistics [She and Leveque, 1994]. However, all
such studies have retained Kolmogorov’s basic assumption
that u and �u(r) may be treated independently. Experiments
in the 1990s began to call this into question [Praskovsky
et al., 1993], and more recently, Hosokawa [2007] has
proven that a dependence exists. The implication of this is
that rather than assuming a universal distribution function
for the intermittency (the form for which has never been
proven), conditioning on the velocity should be undertaken
explicitly.

[4] The dependence between u and �u is likely to be
greater in the natural environment where turbulence is not
homogeneous or isotropic. However, this issue has not been
explored until very recently [Keylock et al., 2012b]. In
this paper, we study this problem for water flow above
a gravel bed with mobile bed forms and explain the
observed velocity-intermittency pattern in terms of a cou-
pling between turbulence and surface topography. We show
that bed forms alter not only turbulence intensities but also
the local scaling of turbulence. This scaling is not indepen-
dent of the values for the velocity.

2. Velocity-Intermittency Structure and
its Analysis

[5] Keylock et al. [2012b] introduced a method for
studying velocity-intermittency coupling that is effective
for much shorter time series than required by alternative
methods, e.g., Stresing and Peinke [2010], where very long
time series are needed to obtain converged results. This
new method opens up the possibility of studying this phe-
nomenon for flows with complex boundary conditions for
which limited data typically exist. The technique requires a
time series for the longitudinal velocity component, u, that
is of sufficient duration and frequency to capture the various
scales in the flow. Subtraction of the mean, U, gives the fluc-
tuating longitudinal velocity: u/ = u – U. If this was studied
jointly with the fluctuating vertical velocity component v/,
we would obtain the classic quadrant technique for studying
turbulence structure [Bogard and Tiederman, 1986], where
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ejections (u/ < 0, v/ > 0) and sweeps (u/ > 0, v/ < 0) con-
tribute positively to the Reynolds stress and maintain the
shape of the boundary-layer velocity profile.

[6] Instead, Keylock et al. [2012b] replaced v/ with the
fluctuating values for the pointwise Hölder exponents. The
Hölder exponent ˛u(t), of u, is defined as

|u(t) – u(t + � )| � C|� |˛u(t) (1)

where C is a constant (see Venugopal et al. [2006] for a
review). It measures the strength of the local singularity
at time t as well as the local roughness scaling of u. The
average of the time-varying ˛u(t), ˛u, can be viewed as
the Hurst exponent [Hurst, 1951] for the time series, which
is simply related to the fractal dimension, Df = 2 – ˛u.
The fractal dimension has been widely explored in geo-
physics, commencing with Mandelbrot’s pioneering work
on the length of the British coastline [Mandelbrot, 1967]
and includes work on the size distribution for fault displace-
ments [Marrett and Allmendinger, 1992], river networks
[Lashermes and Foufoula-Georgiou, 2007] and stratigraphic
sequences [Schlager, 2004], as well as its central place in
Kolmogorov’s theory for turbulence. Note that a period in
time when the signal is rougher (its local variance is greater),
will result in a smaller ˛u(t) and a higher fractal dimen-
sion, i.e., we move from a fractal theory for inertial regime
turbulence with a single fractal dimension, Df = 5/3, to a
multifractal theory where ˛u = 1/3 still holds on average, but
with significant variation in the individual exponents. The
method used to calculate ˛u(t) is a variance-scaling approach
[Keylock, 2008, 2009] that in comparative tests [Keylock,
2010] has been found to perform well.

[7] To give greater universality to our analysis, we form
˛/

u(t) = ˛u(t) – ˛u(t) and then u/ and ˛/
u are standardized by

their respective standard deviations, � :

u*/(t) = u/(t)/� (u) � (u(t) – U)/� (u)
˛*/(t) = ˛/

u(t)/� (˛u) � (˛u(t) – ˛u)/� (˛u)
(2)

As with normal quadrant analysis [Bogard and Tiederman,
1986], we then introduce a threshold hole size, H, defined in
terms of the standard deviations of the two variables. Thus,
a threshold exceedance is deemed to exist when

|u/(t)˛/
u(t)| � H[� (u)� (˛u)] (3)

and we record the proportion of the time that the flow occu-
pies each quadrant as a function of H. In this way, we
analyze the relative importance of the four turbulence states:
fast-smooth; fast-rough; slow-smooth; slow-rough. Keylock
et al. [2012b] showed that distinct velocity-intermittency
signatures exist for various classical flow types and these
are robust to changes in Reynolds number. Jets [Renner
et al., 2001] and wakes [Stresing et al. 2010], as well as sur-
face and boundary layer flows [Keylock et al., 2012a] were
studied and are used herein as references for interpreting
turbulence structure over a migrating bed form.

3. Results
[8] The data used in this study combined high frequency

(200 Hz), long duration (3.6 million values for u in 5 h)
velocity time series measured over a mobile gravel bed
surface, with simultaneous bed elevation data, h, recorded
at 0.2 Hz. The experiments were conducted in the 84 m
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Figure 1. Longitudinal velocities over a gravel bed at
200 Hz together with their accompanying Hölder expo-
nents plotted using the quadrant approach of Keylock et al.
[2012b]. The data shown exceed a hole size, H = 3 and the
H = 4 threshold is shown as a gray line. This graph is used
to derive Figure 2. The quadrants 1 (fast-smooth), 2 (slow-
smooth), 3 (slow-rough) and 4 (fast-rough) are marked for
convenience.

long, 2.7 m wide Main channel facility at St. Anthony
Falls Laboratory, University of Minnesota. The experimental
design and measurement details are described more fully in
Singh et al. [2009, 2010].

[9] Figure 1 shows the joint distribution of u*/(t) and ˛*/
u (t)

with the threshold applied at H = 3 and with H = 4 shown as
a gray line. It is clear that there is a lack of events in quadrant
1 (fast-smooth flow components) for H > 3 and a predomi-
nance of events in quadrant 3 (slow-rough flow components)
depicting the complexity and anisotropic nature of the tur-
bulent structures developing above the moving gravel bed.
Calculating the percentage of time spent in each quadrant as
a function of H gives the data shown as a thick black line in
Figure 2, where the percentages are normalized so that the
sum over all quadrants at any H is 100%. This line is super-
imposed on the results found in Keylock et al. [2012b] for
four distinct flow types (see caption of Figure 2). It is seen
that our analysis classifies flow over a moving gravel bed
(black line) as having a mixture of characteristics. Behavior
in quadrant 2 mimics that for the wake data, while quad-
rant 3 response is similar to, but even more extreme than
the boundary-layer data. Quadrant 1 response is closer to
that for surface layer/jet flow, while Quadrant 4 behavior
is homogeneous and seems to reflect an averaging of wake
and boundary layer responses. All cases are distinct to what
might be expected from classical theory (horizontal lines at
25% in each quadrant).

[10] To understand this complex turbulence structure fur-
ther, Figure 3 shows low-pass filtered time series of u*/(t) and
˛*/

u (t) superimposed on the corresponding scaled bed eleva-
tion series. The filtering is over a 5 s bandwidth to reflect
the different acquisition frequencies of the topographic and
flow data. It is seen that immediately before a bed form
(red line) passes beneath the probe (i.e., in the wake region
behind the crest), we have an increase in the velocity caused
by topographically induced acceleration and separation. In
the majority of instances (as shown by the A labels in
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Figure 2. An analysis of velocity-intermittency for various experiments. The data from this study are shown as a solid
black line, while other lines correspond to data from a turbulent jet experiment [Renner et al., 2001] (red), wake data at
8.5 m s–1 (gray dotted) and 24.3 m s–1 (gray) [Stresing et al., 2010], and data near the boundary (solid lines) and higher
into the flow (dotted lines) at 6 m s–1 (blue) and 8 m s–1 (green) for the upstream boundary layer from the study by
Keylock et al. [2012a]. Most of the data in this figure is taken from Keylock, C. J., K. Nishimura, and J. Peinke (2012), A
classification scheme for turbulence based on the velocity-intermittency structure with an application to near-wall flow and
with implications for bed load transport, J. Geophys. Res., 117, F01037, doi:10.1029/2011JF002127 (copyright American
Geophysical Union) and is reproduced with the permission of the AGU.

Figures 3a–3c), these high velocities correspond to high tur-
bulence fluctuations as revealed by the low value for ˛*/

filt
(black line), although the minimum for ˛*/

filt may be delayed
(label B in Figure 3a). Far less frequently, a rise may be
observed (C in Figure 3d). If these topographically induced
contributions are removed from the results in Figure 2, there

is a reduction in quadrant 4 for higher H, resulting in a
signal that is more similar to that for a boundary layer
(dotted blue and green lines in Figure 2). Hence, from the
perspective of the velocity-intermittency analysis, the bed
form flow appears to be an approximate boundary layer with
superimposed wake turbulence influences.
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Figure 3. Comparison of the time series for peaks of the scaled bed elevation data sampled at 0.2 Hz, h*/, in red, the filtered
and scaled Hölder exponents, ˛*/

filt, in black, and the filtered and scaled velocity, u*/
filt, in gray. The panels show the passage

of different bed forms. Labels A–E are linked to description in the text.
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[11] In Figures 3a–3d, positive spikes of ˛*/
filt are found

preferentially on the front faces of the bed form (D) just
before the crests. These are typically correlated with posi-
tive fluctuating velocities and would appear to represent flow
that is relatively unperturbed by the shear layer and hair-
pin vortex systems that dominate the flow behind the crest.
This is consistent with modeling work by Omidyeganeh and
Piomelli [2011], who showed that acceleration and mean
flow advection are high and turbulent transport is low in this
region. Between (A) and (D), we tend to find a second min-
imum for ˛*/

filt (E) that is typically associated with negative
values for u*/

filt (note that in Figure 3b, this label is located
towards the bottom of the panel). Turbulence generation at
the top of the bed form would explain this low velocity and
high intermittency. The very high values for quadrant 3 in
Figure 2, compared to other flows, highlight the importance
of such mechanisms for flows over mobile bed forms.

[12] It is important to note that these results are not an
artifact of the technique used to calculate the Hölder expo-
nents. The scaling regime used to compute the values for
˛u(t) was˙256 velocity samples, or˙1.28 s, while the topo-
graphic data were sampled every 5 s. Hence, the relation
seen between ˛*/(t) and h*/(t) is a consequence of the effects
of topography on the velocity field at frequencies greater
than those used to derive the bed elevation data and not
because the velocity at the bed form scale is directly incorpo-
rated into the velocity scaling. Hence, there is a connection
between the directly forced and the smaller turbulence scales
[Ohkitani and Kida, 1992].

[13] Singh et al. [2010] analyzed the same turbulence
data and provided evidence for a feedback between flow
and bed form dynamics as inferred by a spectral gap and
a gradient of –1.1 in the velocity power spectrum at low
frequencies, corresponding to the scales associated with the
movement of developed bed forms. However, the question
as to whether there is a topography-velocity feedback at
scales smaller than the bed form movement scale was not
investigated and is an important new result in the present
study. Singh et al. [2011] also established the presence of
multifractality in bed elevation series, and Singh et al. [2012]
argued for the dependence between bed elevation and bed
elevation increments (scale-coupling). Our results support
those of Singh et al. [2012] and provide an explanation
via the established turbulence-bed elevation dependence.
The velocity-intermittency relation above the gravel bed in
Figure 2 differs from that of classical boundary-layer tur-
bulence, with a particularly strong signature in quadrant
3 (slow-rough flow) and also with excess contributions in
quadrant 4 (fast-rough flow). The particular changes to the
Hölder exponent above a bed form mean that the turbulence
scaling (cascade of energy) is not spatially homogeneous
and Figure 3 shows how topography induces this hetero-
geneity. Hence, departures from classical theory are not just
due to the multifractal nature of turbulence: there are regions
where lower or higher Hölder exponents (hence, turbulent
scaling relations) are expected and these are not independent
of u. The observed dependence between velocity and veloc-
ity increments raises fundamental questions concerning the
way in which energy transfer in such flows is theorized. Our
results have clear implications for development of a new
generation of turbulence closures for modeling flows of geo-
physical importance that incorporate this dependence. This
forms the basis of ongoing research.

4. Conclusion
[14] Using a recently developed method for analyzing

the velocity-intermittency structure of turbulence [Keylock
et al., 2012b], we have, for the first time, provided a quanti-
tative account of the complex structure of turbulence above
a moving gravel bed form. We have shown that it exhibits
attributes of wake, surface layer, and boundary layer flow.
While it is well known that different regions within a bed
form flow field have distinct velocity and turbulence char-
acteristics [Best, 2005], our study shows that this extends
to the local scaling of the turbulence and the velocity-
intermittency coupling too. Our Figure 2 provides a means
for comparing different flows based on this local scaling
and its coupling to velocity. The bed form signature has an
impact not only on the local turbulence but the statistics for
the whole flow, supporting the conclusions of Singh et al.
[2010, 2012]. Our results have implications for numerical
techniques that resolve flow structure such as large and
detached eddy simulation [Koken and Constantinescu, 2008;
Escauriaza and Sotiropoulos, 2011; Keylock et al., 2012c].
Conditioning �u on u, and moving away from a univer-
sal scaling regime, would appear to be a more appropriate
approach, particularly given the difference between quad-
rants 2 and 3 in Figure 2 for the flow over mobile bed forms.
Work that uses the known velocity-intermittency structure
to formulate appropriate closures would appear to be an
important first step in this respect.
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