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[11 High-resolution topographic data derived from light detection and ranging (lidar)
technology enables detailed geomorphic observations to be made on spatially extensive
areas in a way that was previously not possible. Availability of this data provides new
opportunities to study the spatial organization of landscapes and channel network features,
increase the accuracy of environmental transport models, and inform decisions for targeting
conservation practices. However, with the opportunity of increased resolution topographic
data come formidable challenges in terms of automatic geomorphic feature extraction,
analysis, and interpretation. Low-relief landscapes are particularly challenging because
topographic gradients are low, and in many places both the landscape and the channel
network have been heavily modified by humans. This is especially true for agricultural
landscapes, which dominate the midwestern United States. The goal of this work is to
address several issues related to feature extraction in flat lands by using GeoNet, a recently
developed method based on nonlinear multiscale filtering and geodesic optimization for
automatic extraction of geomorphic features (channel heads and channel networks) from
high-resolution topographic data. Here we test the ability of GeoNet to extract channel
networks in flat and human-impacted landscapes using 3 m lidar data for the Le Sueur River
Basin, a 2880 km? subbasin of the Minnesota River Basin. We propose a curvature analysis
to differentiate between channels and manmade structures that are not part of the river
network, such as roads and bridges. We document that Laplacian curvature more effectively
distinguishes channels in flat, human-impacted landscapes compared with geometric
curvature. In addition, we develop a method for performing automated channel
morphometric analysis including extraction of cross sections, detection of bank locations,
and identification of geomorphic bankfull water surface elevation. Using the slope plotted
along each channel-floodplain cross section, we demonstrate the ability to identify and
measure the height of river banks and bluffs. Finally, we present an example that
demonstrates how extracting such features automatically is important for modeling channel
evolution, water and sediment transport, and channel-floodplain sediment exchange.
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1. Introduction

[2] High-resolution topographic data derived from light
detection and ranging (lidar) technology enables detailed
geomorphic observations to be made on spatially extensive
landforms in a way that was previously not possible. This
provides new opportunities to study the spatial organization
of landscapes and channel network features, increase the
accuracy of environmental transport models (e.g., water,
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sediment, and nutrients) and inform decisions for targeting
conservation practices by using data in conjunction with
modeling. However, with the opportunity of increased reso-
lution topographic data come formidable challenges in
terms of automatic geomorphic feature extraction, analysis,
and interpretation. Low-relief landscapes are particularly
challenging because the topographic gradients (and signal-
to-noise ratio) are low and in many places both the land-
scape and the channel network are heavily modified by
humans. This is especially true for agricultural landscapes,
which dominate the midwestern United States.

[3] Agricultural landscapes are very active geomorpho-
logically and contribute a significant amount of fine sedi-
ment to rivers [Hooke, 2000; Wilkinson and McElroy, 2007;
Montgomery, 2007]. Accelerated erosion is problematic
from the standpoint of losing productive and valuable soil as
well as degrading water quality and aquatic habitat. How-
ever, several attempts to mitigate fine-sediment loading in
rivers that drain agricultural areas have so far demonstrated
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only marginal success [Langland et al., 2005; Engstrom
et al., 2009], partly because of a general inability to specifi-
cally identify the locations of sediment sources, particularly
near-channel sources of sediment. Development of an accu-
rate sediment budget and routing model requires explicit
specification and measurement of near-channel terrain fea-
tures that function as sources and sinks. Typically, this is
done by hand digitization of maps and manual specification
of the coordinates of such features. On a large watershed
scale (e.g., Chesapeake watershed 166,000 km~) this can be
tedious and time consuming and introduces a level of subjec-
tivity and human error (S. S. Day et al., Rates and mecha-
nisms of bluff erosion in a rapidly incising river system,
submitted to Earth Surface Processes and Landforms, 2012).
Automated techniques, such as those discussed in this paper,
will inevitably play an important role in exploiting the wealth
of information contained in lidar data, which will likely
enhance our understanding of sediment sources and dynam-
ics and therefore enable more effective conservation efforts.
[4] The goal of this paper is to demonstrate a general
approach to extract geomorphic features in flat and heavily
engineered landscapes. Several authors have proposed
methods for classification, feature detection and analysis of
associated uncertainties in agricultural landscapes [e.g.,
Bailly et al., 2008; Lagacherie et al., 2010; Levavasseur
et al., 2010; Bailly et al., 2011]. The approach described
here is parallel and distinct. We have developed a suite of
new techniques, specific for flat landscapes, to be used
within GeoNet, a recently proposed channel network extrac-
tion method [Passalacqua et al., 2010a, 2010b] (available as
free software at https://sites.google.com/site/geonethome/).
These techniques allow the identification of both natural and
artificial channels (ditches) that comprise the drainage net-
work of a landscape as well as the differentiation between
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the drainage network and engineered structures, such as
roads and bridges. In addition, our method enables extraction
of channel cross sections, automatic detection of bank loca-
tions, identification of geomorphic bankfull water surface
elevation, and measurement of channel width and of bank
and bluff heights. We test our techniques in the Le Sueur
River watershed, a 2880 km? agricultural basin in southern
Minnesota (see Figure 1). While the specific thresholds used
here will most certainly vary from landscape to landscape,
the statistical approach proposed is readily portable to other
locations.

[5] The paper is organized as follows. In section 2 we dis-
cuss a number of challenges in geomorphic feature extrac-
tion from lidar data. Section 3 describes the study area. In
section 4 the use of different metrics of curvature for identi-
fication of channels and artificial landscape features is ana-
lyzed. Section 5 presents the channel network extraction
method with consideration of specific challenges presented
in flat landscapes. In section 6 we present the technique for
automatic extraction of channel cross sections, channel bank
locations, channel width, geomorphic bankfull water surface
elevation, and height of adjacent banks and bluffs. Section 7
presents an example to show how feature extraction can be
used to assess morphodynamic evolution. Finally, we con-
clude and present ideas for further research in section §.

2. The Need for Automated Techniques in
Analysis of Lidar Data

[6] High resolution topographic data contains an immense
amount of information, making it possible to capture in
detail channel networks and other geomorphic features of in-
terest. As these data sets continue to be collected over larger
and larger areas, automated and semiautomated extraction

Figure 1.

Location map of the Le Sueur River watershed within the Minnesota River Basin (MRB).
The U.S. Geological Survey gauge at the mouth of the watershed is located at 44°6’40” latitude,
94°2/28" longitude NAD27 (North American Datum of 1927). The letters A, B, and C indicate the areas
where we focused the analysis of channels, ditches, and bluffs, respectively.

20f 18



W03528

techniques are essential for the sake of objectivity, efficiency,
and reproducibility of the analyses. The development and
application of these techniques is not trivial though, as numer-
ous challenges are encountered in the analysis of lidar data
sets, some common to all topography, others specific to flat
landscapes. Some of these challenges are discussed below.

[7] An accurate channel centerline is critical for auto-
mated analysis because it provides a static reference point
from which channel cross section measurements can be
made. In addition, it establishes a robust river distance
coordinate system, which is essential for modeling and con-
servation planning. Centerlines derived from typical flow
accumulation algorithms on 30 m digital elevation models
(DEMs) greatly oversimplify the channel path, thereby
underestimating sinuosity and actual channel length (see
Figure 2a, red line). In contrast, channel centerlines derived
using typical flow accumulation algorithms (D8 or Dinf) on
high-resolution lidar DEMs tend to overexaggerate channel
sinuosity and length because the centerline meanders
around within the actual channel (see Figure 2a, blue line)
as a result of “bumpiness” in the interpolated false water
surface of the channel (Figure 2b).

Figure 2. A visual example of some of the challenges
encountered in geomorphic feature extraction from digital
elevation models (DEMs). (a) Channel centerlines derived
from typical flow accumulation algorithms on 30 m resolu-
tion data greatly oversimplify the channel path (red line).
In contrast, channel centerlines derived using typical flow
accumulation algorithms on high-resolution topographic data
tend to overexaggerate channel sinuosity and length (blue
line). (b) Banks can be identified by visual inspection, but
interpolation techniques used to generate lidar DEMs from
point cloud data often result in “bumpy” water surfaces. The
area in Figure 2a is part of study area C in Figure 1, while
Figure 2b is located southeast of study area A in Figure 1.
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[8] Complications introduced by bridges for traditional
extraction techniques applied to lidar are not trivial, espe-
cially in flat landscapes. Low bridges in steep, mountainous
landscapes may not be problematic because the bridges can
be “overtopped” by simple pit-filling techniques, without
much loss of fidelity to channel location. However, pit fill-
ing does not work in flat landscapes because the bridges are
often significantly higher than the surrounding landscape.
The typical solution to this problem is manual removal of
bridge crossings, which is time consuming and impractical
for large watersheds. For example, 14 bridge crossings
exist in the small area represented by box A in Figure 1. In
addition, positive curvature along the sides of the road can
erroneously be mistaken as an incoming tributary.

[¢] Another challenging feature of interest for channel
network extraction in agricultural landscapes is artificial
drainage ditches, either intermittent or perennial. Ditches
are very distinct from a sediment transport standpoint.
They serve as sediment sinks for much of the year, trapping
sediment contributed from fields, but they are readily
flushed during large events, so they can also serve as sub-
stantial sources of field sediment over relatively short peri-
ods of time. The distinction between artificial and natural
channels is thus an important step toward identifying the
major sediment sources of the basin as artificial ditches rep-
resent very distinct management challenges/opportunities.

[10] Banks delineate the geomorphic boundaries of the
channel and represent a critical, discrete interface for
exchange of sediment between channel and floodplain.
Accurate identification of the banks allows for measurement
of channel width and changes in channel width along the
river, as well as measurement of bank elevations, which can
be used to compute the net sediment contribution from
stream banks as a result of meander migration [Lauer and
Parker, 2008]. Although banks can readily be identified by
visual inspection of a given channel cross section (see
Figure 2b), we know of no automated technique for bank
identification at the river network scale. In addition, lidar
data typically contains “lumpy” false water surfaces as a
result of poor reflectivity of water and imperfect algorithms
for interpolating surfaces between lidar returns on the chan-
nel edge. A consistent bankfull water surface longitudinal
profile would provide more accurate measurements of chan-
nel gradient than do the noisy, interpolated false water
surfaces typical of lidar data sets. Here, we are applying the
geomorphic definition of bankfull in which the lower of the
two channel banks is used to determine the elevation at
which water begins to inundate the floodplain.

[11] Bluffs are tall (3-60 m) features adjacent to the river
that are commonly found in incised landscapes, such as our
study area. Accurate identification of bluffs and measure-
ment of their length and height are essential for modeling
potential sediment contributions from this source.

[12] While most of the tasks listed above can be com-
pleted manually, automated procedures are likely more effi-
cient and objective. The development of such techniques is
the goal of this work.

3. Description of the Study Area

[13] The Le Sueur watershed presents a rich setting for
illustration of our techniques as it contains a wide range of
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hydrogeomorphological environments as the result of the
Quaternary evolution of the southern Minnesota landscape,
described in detail by Fisher [2003], Gran et al. [2009],
and Belmont et al. [2011a]. In brief, a relatively flat land-
scape, underlain by about 60 m of interbedded fine-grained
till and glaciofluvial sediments, was uncovered when the
Wisconsinan ice sheet retreated from southern Minnesota
about 16,000 years before present. Meltwater from the
retreating ice sheet was stored in Glacial Lake Agassiz,
which covered more than 400,000 km? of North Dakota,
Minnesota, Manitoba, Ontario, and Saskatchewan. Around
13,400 years ago, Glacial Lake Agassiz catastrophically
drained through the proto-Minnesota River Valley (MRV),
incising the MRV by 70 m. This incision caused a drop in
base level for Minnesota River tributaries, spawning knick-
points at the confluence of each tributary with the main
stem MRV.

[14] The knickpoint that initiated at the mouth of the Le
Sueur River has propagated nearly 40 km up each of the
three branches of the river (the Le Sueur, Cobb, and Maple
rivers; locations of knickpoints are indicated by orange
arcs in Figure 1) over the past 13,400 years, causing verti-
cal incision at a rate of 4-5 m kyr~' [Gran et al., 2011].
We refer to these three rapidly incising channels below the
knickpoints as the knick zone. Within this knick zone, tall
bluffs (up to 60 m) have formed that currently represent the
largest source of fine and coarse sediment to the river.
Aside from the three incising river valleys, the landscape is
composed of vast, flat upland terrain, nearly all of which
has been heavily engineered with roads, ditches, and artifi-
cial subsurface drainage conduits to support agricultural
row crop production.

[15] The modern channel network can be divided into
four distinct regions: relatively steep (average gradient
0.002 m m™") trunk channels within the knick zone, low-
gradient (0.0004 m m™ ") natural channels above the knick
zone, steep first- and second-order tributaries (ravines) con-
necting the incised river valley to the uplands, and, for
the past 150 years, agricultural ditches. The morphology
of agricultural ditches varies depending on location, age,
and maintenance history, but typical ditches are shown in
Figure 3. Each of these components presents different chal-
lenges in extraction of the sediment-relevant terrain fea-
tures, including bluffs, ravines, floodplains, channel banks,
and natural and artificial levees.

[16] The Le Sueur River is a major source of sediment to
the Minnesota River, both of which are listed as impaired
for turbidity by the U.S. Environmental Protection Agency
under section 303(d) of the Clean Water Act. For the pur-
pose of identifying sediment sources and supporting deci-
sions for conservation actions, a sediment budget [Be/mont
et al, 2011b] and a morphodynamic sediment routing
model [Viparelli et al., 2011] have been developed for the
Le Sueur River Basin. Despite the fact that the landscape is
primarily agricultural, and therefore assumed to have high
soil erosion rates, the sediment budget concluded that near-
channel erosion (banks, bluffs, and ravines), rather than
soil erosion, comprises the dominant source of suspended
sediment. As much as 70% of suspended sediment is
derived from the small fraction of the landscape (<1 %)
surrounding channels, which emphasizes the need to model
this most dynamic portion of the landscape well.
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(@)

(b)

Figure 3. Typical artificial drainage ditches in the Le
Sueur River Basin. The side slope is set at 2:1 (horizontal:
vertical). The water surface width is (a) about 50 cm and
(b) about 150 cm. Figure 3b is courtesy of Carrie Jennings.

4. Curvature Analysis for Feature Detection in
Flat Landscapes

[17] Previous work [Passalacqua et al., 2010a, 2010b]
has shown that the isoheight contours curvature or geomet-
ric curvature, defined as

K=V - (Vh/|VA) (1)

is preferable to the commonly used Laplacian in steep and
natural landscapes. In (1) / is the elevation, V£ is the gradi-
ent, and | V| the magnitude of the gradient. Since the Lap-
lacian is defined as

v = V2h. )

[18] The two curvature definitions differ in the normaliza-
tion performed on the gradients before the application of the
divergence operator in (1). Normalized gradients become of
the same order of magnitude throughout the area in analysis,
thus enhancing all the features present. However, it is noted
that the presence of locally flat regions in a landscape, which
would typically be regions of local maxima or local minima,
would render Vi very close to zero, thus making the geo-
metric curvature in (1) undefined. In practice, these values
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Figure 4. Illustration of the differences between the Laplacian and the geometric curvature on a syn-
thetic example. (a) The sinc function, (b) Laplacian curvature, and (c) geometric curvature. The profiles
plotted on the right are obtained for the cross section x = 100. The geometric curvature, because of the
gradient normalization, enhances all the features present, while the Laplacian assigns a higher value of
positive curvature to more convergent features.
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would be “squeezed” to a narrow range that would make
detection of features difficult. This is demonstrated in an
example below and is intuitively expected to play an impor-
tant role in landscapes which contain naturally flat (e.g.,
low-slope floodplain) and artificially flat (e.g., road, levee
top) features.

[19] To illustrate the main differences between these two
curvature operators, a synthetic example is shown in Figure 4.
Figure 4a shows the function A(R) = sinc(R) = —sin(R)/R
(with R = sqrt(x? + ?)) (first column) and a cross-sectional
profile through the middle of the field (second column). This
function is used here as a synthetic example since it resembles
a convergent feature in the landscape. The Laplacian curva-
ture and its profile are shown in Figure 4b, while the geomet-
ric curvature and its profile are shown in Figure 4c. Note that
each of the ridges and valleys are very discrete and nearly of
the same value in the geometric curvature (in Figure 4c),
while the Laplacian (in Figure 4b) illustrates that the actual
curvature values of ridges and valleys differ significantly,
with the curvature of the center being threefold higher than
the curvature of the outer valley. If all the features present on
the landscape are of interest for the analysis performed, then
the geometric curvature represents a valuable definition of
curvature, as it is able to enhance all the features present on
the landscape. However, it cannot be assumed that geometric
curvature will be the most effective metric for extracting fea-
tures in all types of landscapes. As discussed above, the pres-
ence of both natural (e.g., channels) and artificial (e.g., roads)
features in flat landscapes could make the normalization oper-
ation of the gradients not optimal, as enhancing all the fea-
tures present in the landscape would result in enhancing

PASSALACQUA ET AL.: FEATURE EXTRACTION IN ENGINEERED LANDSCAPES

W03528

roads, which may then become indistinguishable from the
channel network.

[20] To further investigate this issue, we focused on part
of the 25 km? tributary of the Le Sueur River, shown in
Figure 1 (labeled A) and in Figure 5. This tributary was
chosen because it exhibits the same topographic variability
of the whole Le Sueur River basin (broad flat uplands, low-
gradient channels and ditches, as well as a steep, incised
river valley) and thus can be considered as a microcosm of
the whole system. The first column of Figure 6 shows 70 m
by 70 m hill-shaded DEMs cut in correspondence of a
channel (Figure 6a), a road (Figure 6b), and an artificial
ditch (Figure 6¢), while the second column shows the cor-
responding cross sections. The third and the fourth columns
contrast the behavior of the geometric curvature (third col-
umn) as defined in (1) versus the Laplacian (fourth column)
as defined in (2). The geometric curvature assumes approx-
imately the same range of values for the channel, the ditch,
and the road because of the normalization operated on the
gradient, which makes all three features equally detectable
(the road itself has negative curvature, but there are small
hillslopes on the sides of the road that exhibit positive cur-
vature). The Laplacian, instead, as shown in the most right
column of Figure 6, is of about the same order of magni-
tude for the channel and ditch, while largely decreases for
the road. This characteristic of the Laplacian makes it an
optimal measure of curvature for low-gradient landscapes
where both natural and artificial features are present.

[21] The quantile-quantile plot of a variable of interest,
in this case curvature, compares its statistical distribution
to a normal distribution. If the data plot along the straight

Figure 5. Location map of the 25 km? tributary of the Le Sueur River (box A in Figure 1).

60f 18



W03528

304

300

296

292

o

20 40 60
x [m]

305.8

305

304.2

o

20 40 60
x [m]

309
307
305
303
301

o

20 40 60
x [m]

x [m]

PASSALACQUA ET AL.: FEATURE EXTRACTION IN ENGINEERED LANDSCAPES

W03528

x[m/m2]
0.6

y[m/m?]
0.15

0.4
0.2

001
-0.01

-0.03

y[m/m?]

0.08

30 50
x [m]

Figure 6. Geometric versus Laplacian curvature computed on (a) channel, (b) road, and (c) artificial
ditch section in the Le Sueur tributary. The panels are about 60 m x 60 m, and from left to right they
represent elevation, cross-section profile, geometric curvature, and Laplacian. It can be noticed that the
gradient normalization operated in the geometric curvature makes the curvature values of the same order
of magnitude in the three cases. The capability of the geometric curvature of enhancing even the small
features, very valuable in natural basins, is not optimal in the case in which artificial features, such as
roads and ditches, are present as well. The Laplacian, instead, distinguishes very well between natural

and artificial features.

line, then the variable has a normal distribution, otherwise
the point at which the curve deviates from the straight line
indicates a transition in the statistical behavior of the sys-
tem. Following the work of Lashermes et al. [2007], this
deviation can be interpreted as the transition from hillslope
to valley and the corresponding curvature value can be
used as a threshold to extract the set of likely channelized
pixels (pixels with curvature greater than the threshold).
The quantile-quantile plot for study area A in Figure 7a
shows that the transition from normal behavior happens at
a value of the standard normal deviate z — 1. The curve
remains at around zero for a fairly long portion, showing
the presence of a large number of pixels with curvature
about zero (to see a comparison with other quantile-quan-
tile curves, see Figure 5 of Passalacqua et al. [2010a] and
Figure 6 of Passalacqua et al. [2010b]). To further investi-
gate this behavior, we focused on 1.5 by 1.5 km of study
area A, shown in Figure 7b. We indicate as zone 1 the
range of curvature values corresponding to z less than 1
and with zone 2 the range for z greater than 1. The pixels in
zone 1 and zone 2 are shown in white in Figures 7c and 7d,
respectively. The set in Figure 7d represents the set of

likely channelized pixels, as defined by Lashermes et al.
[2007], but we can see that in this case it erroneously
includes convergent features on either side of the road
(small ditches and/or breaks in slope) as part of the channel
network. This observation calls for a different interpreta-
tion of the quantile-quantile plot of curvature in a landscape
that contains natural and artificial features.

[22] We propose that such a new interpretation can be
based on the curvature analysis previously described and
shown in Figure 6. In fact, what we observed previously
was that while channels and ditches both have curvature
values exceeding a specific quantile, convergent features
on either side of roads have indeed much smaller curva-
ture. On the basis of the curvature analysis, we identified
0.05 m m 2 as the maximum value of curvature in corre-
spondence of the roadside (as can be seen from the example
in Figure 6b, Laplacian curvature map’s color bar), thus
suggesting further analysis of the quantile-quantile plot in
zones 3 and 4 (see Figure 7a). Figure 7e shows in white
the pixels with curvature above the value corresponding to
deviation from normal behavior but less than 0.05 m m >
(zone 3), while Figure 7f shows the pixels with curvature
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Figure 7. (a) Quantile-quantile plot of Laplacian curvature. The middle part of the plot corresponding

to standard normal deviate z between —1 and 1 is flat, highlighting the presence of a large number of pix-
els with curvature almost zero. (b) To analyze this behavior further, we have extracted the pixels that
belong to the two areas, 1 and 2, in a box 1.5 x 1.5 km. Pixels belonging to (c) zone 1 (—1 < z < 1) and
(d) zone 2 (z > 1) are plotted in white. Notice that the middle flat part of the quantile-quantile plot is due
to the very flat topography that characterizes this basin (Figure 7c). Zone 2 is composed of the conver-
gent pixels in channels and roads, thus using the deviation from normal behavior at z = 1 as the curva-
ture threshold would result in a skeleton that includes both channels and roads. To be able to distinguish
among the two, we have used the information obtained from the analysis shown in Figure 6. As can be
seen, the curvature corresponding to the road reaches a maximum of approximately 0.05 m m™ 2. (¢) Zone 3
shows the pixels above deviation from normal behavior z > 1 but with curvature v < 0.05 m m ™2, while
(f) zone 4 is composed of the pixels with v > 0.05 m m 2. We can notice that in zone 4 the pixels
belonging to the road are nearly all eliminated.
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greater than 0.05 m m 2 (zone 4). The curvature value
0.05 m m? is specific to our landscape in analysis, being
dependent on the scale and the type of features. However,
the approach we have taken to detect the appropriate
threshold from a curvature analysis, can be performed in
any landscape to identify features that exhibit distinct cur-
vature ranges. By defining 0.05 m m ™2 as the approximate
value of curvature threshold to be used for identifying the
likely channelized pixels in this landscape, we obtain the
set shown in Figure 7f, which includes only a small num-
ber of roadside pixels.

5. Automatic Channel Network Extraction in
Flat and Human-Impacted Landscapes

[23] The first step of GeoNet is a nonlinear filtering oper-
ation [Perona and Malik, 1990] to focus the analysis on the
scale of interest, by smoothing variability at smaller scales
(e.g., bumpiness of the ground) and enhancing features at
the scale of interest or larger. The definition of the scale of
interest depends on the application and on the landscape
analyzed. In this work, we are interested in the channel net-
work and channel morphology extraction, thus, the scale of
interest can be defined as the channel bank, while smaller
scales, for example, the bumpiness detected along the chan-
nel, should be smoothed out. For a complete discussion on
the nonlinear filtering, see Passalacqua et al. [2010a,
2010b]. After the operation of nonlinear filtering, the set of
likely channelized pixels is identified by applying the cur-
vature threshold of 0.05 m m 2, as suggested by the previ-
ous analysis. This set of pixels can be further narrowed by
applying a small contributing area threshold (smaller than
the value of area at channel initiation), able to exclude
small convergent areas which do not belong to channels,
without affecting channel head locations. In our case, we
applied an area threshold of 5000 m? (see Passalacqua
et al. [2010b] for discussion and selection of this area
threshold), obtaining the skeleton of likely channelized pix-
els shown in Figure 8. This skeleton is used within GeoNet
to detect channel heads as the upstream end points of the
skeleton branches [see Passalacqua et al., 2010a]. Chan-
nels are then traced between the outlet and the channel
heads as geodesic curves, or curves that minimize a certain
cost 1, which can be defined as a combination of flow accu-
mulation and geometric curvature [Passalacqua et al.,
2010b]:

1

w:aA-i-é/@

3)
where « and 6 are constants used to balance dimensionality
and normalize the difference in order of magnitude
between area and curvature. On the basis of the analysis
described in [Passalacqua et al., 2010b], o can be fixed to
1 and for § the order of magnitude of the mean accumula-
tion area per contour length can be used. In our application,
we used a cost function of the form

1

- 4)
14 + ak 4+ aS

G

where a is the mean area per unit contour length (taken as
the grid size) and S is the skeleton based on curvature and
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Figure 8. Skeleton of likely channelized pixels of study
area A in Figure 1. The pixels with curvature and contributing
area above threshold (y > 0.05 m m 2 and 4 > 5000 m?)
are plotted in black (skeleton is thicker to increase visibility).

area, linearly filtered to increase its continuity (the skeleton
is very disrupted as seen in Figure 8). The filtered skeleton
was added to help the geodesics in following the meander-
ing channels.

[24] Figure 9a shows the manually traced channel net-
work for study area A, used as a reference network to test
the GeoNet extracted results, as shown in Figure 9b. The
two networks compare well, both in channel density and
extent. In Figures 9c and 9d we show two conventional
channel network extractions based on area threshold of
5000 m? (Figure 9¢) and 10° m? (Figure 9d), compared to
the reference network. The network in Figure 9c is shown
to demonstrate how the same value of area threshold is used
differently by GeoNet and a conventional area threshold
method. The area threshold in Figure 9d is more appropriate
for study area A and results in a more realistic network den-
sity, while, however, substantially shortening and straight-
ening the extracted channels. The definition of an area
threshold in this region is particularly challenging as the
range of drainage areas over which first-order streams are
initiated varies significantly (<1 to 217 km?), in part
because of the geologically young evolutionary stage of
landscape development and human modifications to the
hydrologic system [Smith et al., 2011]. A conventional
method based on area threshold only would not be appropri-
ate to define channel initiation in this landscape.

[25] To analyze the behavior of the GeoNet channel net-
work extraction method in the presence of bridge crossings,
we focus on the bridge shown in Figure 10a indicated by
the letters 4 and B, which crosses the channel perpendicu-
larly. This bridge crossing is part of study area A (see
Figures 1 and 5). Figure 10b shows that the skeleton of
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Figure 9. Comparison between (a) the manually extracted reference channel network, (b) GeoNet
extracted network, (c) network extracted with a conventional method based on area threshold (5000 m?),
and (d) network extracted with a conventional method based on area threshold (10° m?). Note the same
value of area threshold is used differently by GeoNet and a conventional extraction method. An area
threshold of 10° m? is more appropriate for this region but results in a substantially shortened and
straightened channel network.

likely channelized pixels correctly appears disrupted at the
location of the bridge as at that location the threshold crite-
ria imposed on curvature and contributing area are not sat-
isfied. In Figure 10c we show the channel extraction
obtained by applying a conventional extraction method
based on an area threshold of 5000 m?. Here part of
the roadside is detected as tributary and the main channel

erroneously splits in two at the location of the bridge. The
GeoNet extraction, instead, as shown in Figure 10d, cor-
rectly depicts the channel path before and after the road
crossing.

[26] To analyze the behavior of GeoNet in tracing artifi-
cial drainage ditches, we focus on part of the Maple River
basin, tributary of the Le Sueur River and located southwest
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Figure 10. (a) Analysis of a road crossing in a 800 m x 800 m focus area. Hill-shaded DEM. The let-
ters A and B indicate the horizontal extent of the road in the focus area. (b)The skeleton of likely chan-
nelized pixels correctly detects a channel disruption due to road crossing, while the extraction based on

area threshold fails to do so. (c) The channel splits in two in correspondence of the road. (d) GeoNet cor-
rectly traces the channel path through the road crossing.
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Figure 11. Location map of part of the Maple River basin, tributary of the Le Sueur River (box B in
Figure 1).
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Figure 12. (a) Ditches versus channel detection. Hill-

shaded DEM with USGS blue lines. The tributary on the
left side is partly an artificial ditch (see straight part of the
channel). The extraction based on area threshold fails in
correctly extracting the ditch. (b) Note the extra sinuosity
added and that the extracted path does not follow the ditch.
(c) GeoNet correctly detects the natural channel and the
straight path of the artificial ditch.

of the tributary analyzed above (see box B in Figure 1 and
see Figure 11). Figure 12a shows the manual delineation of
ditch and natural channel from the USGS blue lines
(obtained from http://deli.dnr.state.mn.us/). In particular,
the left, more linear tributary is a ditch, while the more sinu-
ous line on the right is a natural channel (the Maple River
main stem). One challenge encountered in the application of

PASSALACQUA ET AL.: FEATURE EXTRACTION IN ENGINEERED LANDSCAPES

W03528

a conventional channel extraction method is the fact that
extra sinuosity is added, as the channel bounces around
within the channel banks, an artifact of the uneven water sur-
face and line of steepest descent technique utilized in the con-
ventional method. An example of this is shown in Figure 11b
(area threshold 30,000 m?), where the extracted path devi-
ates from the actual one. The GeoNet extraction, shown in
Figure 11c, although detects part of a road in the lower left
side of the box, correctly traces the linear path correspond-
ing to the artificial ditch. An automatic distinction of natural
channels and artificial ditches is challenging because they do
not always differ in sinuosity. In some cases, in fact, the arti-
ficial ditches have been designed on top of natural channels.
While development of an automatic technique to distinguish
these features is the subject of current research, the ability of
GeoNet to trace ditches correctly, as shown in Figure 12,
represents a promising starting point in that direction.

6. Automatic Extraction of Channel
Morphology: Cross Section, Banks, Water
Surface Elevation, and Bank and Bluff Height

[27] We develop below a method for the automatic
extraction of channel cross section, detection of bank loca-
tion, identification of geomorphic bankfull water surface
elevation, and measurement of channel width and of bank
and bluff height. Note that, as mentioned in section 2, we
are applying here the geomorphic definition of bankfull in
which the lower of the two channel banks is used to deter-
mine the elevation at which water begins to inundate the
floodplain.

[28] For demonstration purposes, we focus this part of
the analysis on the area shown in Figure 13 (see also box C
in Figure 1), near the confluences of the Maple and Cobb
Rivers with the Le Sueur main stem. This reach is charac-
terized by tall bluffs, whose locations have been detected in
the map by thresholding the local relief (minimum of 3 m
relief in an 81 m® area; see mapped features in Figure 13)
and offer a good test case for the analysis herein. Note that
Figure 13 includes only bluffs that are directly connected
to the channel.

[29] Let us assume we want to extract the channel cross
section at a generic location (x;,y;) along the main channel
(extracted using GeoNet and shown in Figure 13). First we
can compute the vector between location (x1,y;) and the im-
mediate upstream (or downstream) location along the main
channel, which we can indicate as (x;,y,). From vector alge-
bra, the vector connecting these two points is given by

—

F=(—x)i+h—n)J (5)

After obtaining the vector 7, we can compute the orthogo-
nal vector ¢ as

—

G=(-r)i+(r)]j (©6)

In our analysis, the above steps are performed using not
one, but five upstream and downstream locations (about
30 m along the main channel) to make the computation of
the orthogonal transect less sensitive to local changes in
channel sinuosity. To trace an orthogonal transect, in fact,
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Figure 13. Location map of the Le Sueur River at the Maple and Cobb confluences (box C in Figure 1).
The channel morphology extraction is applied along the Le Sueur main stem, which is characterized by
a large number of bluffs (yellow patches in the map indicate pixels with elevation greater than 3 m along
the channel in analysis).
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Figure 14. Example of geomorphic feature extraction along the main stem. (a) Location of the transect
along the main stem. (b) Original cross section. (c) Slope along the 300 m transect. The water surface is
traced at the elevation of the lower channel bank. (d) The letters A and B indicate the detected bank
locations.
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one needs to go upstream and downstream some distance.
While 5-10 m would be too short (because of variability in
the centerline at that scale), a distance greater than 30 m
could be problematic in meandering sections. This length
scale will probably change with the channel size and the
30 m here employed corresponds to the order of magnitude
of one channel width. Then, the unit vector is given by

R

é=

(N

|

where | ¢ | is the magnitude of the vector g. The coordi-
nates (x,y) of a transect of about 300 m (150 m on each
side of the centerline) can be obtained by multiplying a
vector [—50,50] by the components of the unit vector é.
This range of 300 m was defined on the basis of the fact
that it corresponds to the extent of the channel, floodplain
and contributing bluffs in this area. Figure 14a shows an
example of such a transect orthogonal to the main stem of
the Le Sueur tributary extracted with the procedure
described above. To extract the channel cross section, we
simply have to plot the topographic data corresponding to
the transect orthogonal to the channel. Figure 14b shows
the cross section correspondent to the transect shown in

ffé - 'j.l,.. s
4600 4800 5000

4400
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Figure 14a. Once the cross section has been extracted, there
are numerous automated, semiautomated, and manual anal-
yses that may be performed, depending on the questions of
interest. We discuss only a few, broadly applicable exam-
ples here.

[30] Our first objective is to develop a method for auto-
mated detection of channel banks. These features are typi-
cally associated with a dramatic change in slope in the
cross-section view. In particular, we expect the slope to be
large along the “walls” of the channel and smaller on the
adjacent floodplain. The magnitude of local slope, plotted
in Figure 14c for the pixels along the transect, shows peaks
on each side of the channel centerline, indicating where the
slope is large. This information can be used to identify the
channel bank locations. First, we identify the peaks of
the slope and we take into consideration only the ones within
approximately 50 m on each side of the centerline, since
100 m is the order of magnitude of the maximum channel
width in this region. Then, among the two maximum peaks
on each side, we pick the smaller one as the one corre-
sponding to the lower geomorphic bank, thus the one defin-
ing the geomorphic water surface elevation at bankfull
stage, just below the elevation at which floodplain inunda-
tion occurs. We expect that the assumption made here (i.e.,
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Figure 15. Example of geomorphic feature extraction along the main stem. (a) Location of the transect

along the main stem. (b) Original cross section. (c)

Slope along the 300 m transect. The water surface is

traced at the elevation of the lower channel bank. (d) The letters A and B indicate the detected bank loca-
tions, while C indicates the point that could be considered the channel bank location instead of A. Air
photos show the presence of mature trees between A and C, thus suggesting that the detected bank loca-

tions are correct.
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that the smaller of the two localized peaks on the slope-
distance plot in Figure 14c¢ corresponds to the depositional
geomorphic bank, while the higher of the two localized
peaks corresponds to the cutbank) will hold for most
meandering, single-threaded rivers following the geometric
argument laid out by Lauer and Parker [2008].

[31] Once the water surface elevation has been identified,
we determine the location of the other bank as the point at
which the identified water surface elevation projects on the
other side with respect to the channel centerline. Figure
14d shows the channel cross section after tracing the geo-
morphic bankfull water surface elevation. Note that this
operation constitutes a smoothing of the water surface,
thereby improving the quality of the water surface profile
compared to that originally interpolated from the lidar point
cloud. The letters A and B in Figure 14d indicate the
detected bank locations from which the channel width can
be measured as the distance between the two banks along
the transect.

[32] Figure 15 shows another example of cross-section
extraction, automatic detection of bank locations, and iden-
tification of geomorphic bankfull water surface elevation.
The letters A and B indicate the detected bank locations,
while C indicates the location that, by looking at the cross
section, could be considered the bank location instead of A.
From visual inspection of recent air photos, it is apparent
that mature trees are located between A and C, thus con-
cluding that the active channel is the one between A and B,
while the section between A and C receives flow only occa-
sionally. This example shows that, despite the availability
of lidar data, air photos, and field experience, the definition
of channel boundaries can be very challenging.

[33] The operations described above can be automati-
cally repeated at any user-specified frequency along the
channel network, obtaining values of geomorphic bankfull
water surface elevation and channel width along the chan-
nel. Figure 16 shows the comparison of the geomorphic
bankfull water surface elevation identified from raw data
(Figure 16a) with the one obtained using GeoNet on the
nonlinearly filtered data (Figure 16b). As can be seen, the
water surface in Figure 16b appears smoother and less
noisy. The reach average channel width based on field-
measured cross sections (six measured within the reach
here analyzed, but for a different purpose, which biased the
sampling toward narrower channels) is 37 m (range
between 29 and 50 m), and the reach average channel width
measured from five sets of air photos (2003, 2004, 2005,
2006, 2008) is 47 m. The latter is a more robust measure of
average because it was calculated by digitizing a polygon
along 10 km of river and dividing by the length. Data for
field surveyed and air photo measured widths are given by
Belmont et al. [2011b, supplementary information]. The av-
erage width as extracted by our method is 55.7 m. There
clearly will be cross sections that are misdelinated by our
automated technique because of the complex nature of
channel topography, which can be further complicated
depending on the water depth at the time of the lidar flight
and the algorithm used to convert the raw point cloud data
to a raster DEM. In our case, we are using a relatively
coarse resolution (3 m horizontal) of the lidar DEM and the
flat topography may be contributing additional complica-
tions in the detection. We visually checked the cross
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sections extracted with our technique and approved as cor-
rect 70% of the total cross section analyzed. While better
performance is expected at higher resolutions and in steeper
areas, errors in detection are infrequent and appear to be
smoothed out even with a very small filtering window.

[34] Channel and floodplain morphology are important
indicators of landscape history and the dynamic relation-
ship between flow, sediment supply, and base level change.
Therefore, identification and automated measurement of
bank and bluff heights on either side of the channel are use-
ful for understanding basic processes governing channel
evolution, sediment transport, and channel-floodplain
exchange as well as answering applied questions such as
identification and quantification of near-channel sediment
sources for construction of a sediment budget. The mea-
surement of the difference in elevation between opposing
channel banks (which we refer to as An) provides impor-
tant information about channel processes and sediment dy-
namics. For example, Lauer and Parker [2008] show that
an estimate of net sediment inputs from banks as a result of
meander migration can be computed as a function of An
and the meander migration rate. Correct and automated
measurement of bank and bluff height is essential for
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Figure 16. Water surface elevation computed at cross
sections 3 m apart. The gray line indicates the fitted least
squares line. (a) Original data. (b) Nonlinearly filtered data.
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Figure 17. Example of geomorphic feature extraction along the main stem. (a) Location of the transect

along the main stem. (b) Original cross section. (c) S

lope along the 300 m transect. The water surface is

traced at the elevation of the lower channel bank. (d) The letters A and B indicate the detected bank loca-
tions. The bluff height Ay is correctly computed as the difference in elevation between A and B.

achieving this goal at the network scale. Below we further
discuss the ability of the proposed technique to automati-
cally identify banks and bluffs, measure the difference in
elevation between opposing banks/bluffs, and we explore
how this information can be used for modeling sediment
supply to the channel.

[35] Figure 17 shows an example of extraction of chan-
nel cross section and channel morphology similar to the
two examples shown in Figures 14 and 15. The letters A
and B indicate the detected bank locations and the height of
the bluff is correctly given by the difference in elevation
between these two points. As previously discussed, com-
plex channel, bank, and bluff morphology can make this
automatic detection challenging. In the cross section shown
in Figure 14, for example, location B is identified as the
first slope peak on the left of the channel centerline. How-
ever, the bluff on the left side of this cross section extends
out to 150 m from the channel centerline; thus, in this case
our procedure has failed in identifying the bluff height. This
could be solved by modifying the algorithm to search along
the cross section until it passes a peak and comes down to
some low end-member threshold (indicative of a floodplain,
terrace, or upland area). In Figure 15 the floodplain, indi-
cated as B, is located between the channel and the bluff.
Even if the bluff extends over 150 m to the right of the
channel centerline, the difference in elevation between the
banks is correctly computed as the one corresponding to

A and B, as the sediment coming from the bluff is buffered
by the floodplain and does not interact directly with the
channel.

7. Example Application: Using Geomorphic
Features for Sediment Flux Computation

[36] Geomorphic features, automatically extracted from
lidar data, can be used to model channel evolution, water
and sediment transport, and channel-floodplain sediment
exchange. The bluff and bank heights, for example, can be
computed along the main stem at each cross section, result-
ing in a plot of bank and bluff height versus distance as
shown in Figure 18a. Combining this data with meander
migration rates (Figure 18b) from historic air photos
(1938-2005) measured every 10 m along the channel, the
net sediment flux to the channel can be computed as:

S =XV Anc;iAlp (8)
where S is the net cumulative sediment input for each 10 m
increment along the channel, measured in Mg yr—', An is
the difference in elevation between the channel banks in m,
c is the meander migration rate in m yr—', A/ is the length
increment along the channel over which the calculation is
performed (10 m in this case), and p is the bulk density
(1.3 Mg m ™) [Belmont et al., 2011b]. Figure 18c shows
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Figure 18. Bluff height An plotted as a function of (a)
distance along the main stem, (b) migration rate, and (c)
cumulative sediment inputs from bank and bluff erosion.
This analysis refers to the area in Figure 13 and box C in
Figure 1.

the cumulative sediment inputs with distance downstream
for one reach of the Le Sueur River within the knick zone.
It should be noted that this prediction is not a complete
mass balance sediment budget for the channel reach
because it does not account for overbank deposition. How-
ever, it does provide a useful, decadal-scale estimate of net
sediment inputs from bank and bluff erosion.

[37] Measurement of An is also useful for extracting in-
formation about river valley development over landscape
evolution timescales. Bluff height can be viewed as a surro-
gate for the amount of incision since the river last occupied
a particular position. Because the process of vertical inci-
sion is constantly generating taller and taller bluffs, and the
process of lateral migration is constantly widening the river
valley, eroding bluffs down to the current elevation of the
river and therefore continually decreasing the probability

that only 10% of the bluffs exceed 10 m in height suggests
a predominance of lateral migration versus vertical incision
for the area in analysis.

8. Concluding Remarks

[38] Automatic extraction of detailed and localized
geomorphic features of interest, such as channel networks,
channel banks, and bluffs, is very important for accurate esti-
mation of sediment sources and flux transport in watersheds.
Flat and human-impacted landscapes present additional chal-
lenges in such an automatic extraction process, as bridges
across channels, artificial ditches and other engineered struc-
tures interfere with the process of feature extraction based on
geomorphologic attributes such as slopes, curvatures, etc. The
increasing availability of high-resolution lidar topography
over large areas, e.g., whole states and large watersheds,
makes it imperative that we develop robust and reliable auto-
matic methods for extraction of features of interest to be used
in hydrologic, geomorphic, and water quality studies.

[39] On the basis of previous development of a novel
nonlinear diffusion filtering method combined with a local-
to-global (geodesic) optimization technique for channel
network extraction [Passalacqua et al., 2010b] packaged
under the name GeoNet, we presented in this paper
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important methodological extensions that address chal-
lenges presented in flat and human-impacted landscapes. In
particular, we presented a detailed analysis of a flat water-
shed in the upper Midwest (the 2880 km? Le Sueur River
basin). We proposed and tested techniques that allow the
extraction of channels interrupted by bridges and other
crossings, extraction of channel morphology properties
such as channel width, bank elevations, bankfull water sur-
face elevations, and extraction of discontinuous features in
the landscape such as steep bluffs, that are important local-
ized sources and sinks of sediment.

[40] The innovation of the extended method lies on
subtle use of geomorphologic attributes compared to a
more straightforward and less demanding use in steep ter-
rains [Passalacqua et al., 2010a, 2010b]. For example, we
demonstrated that while the use of geometric curvature pre-
sented distinct advantages in steep terrains because of its
normalization properties, in flat terrains with artificial fea-
tures this is a disadvantage, and one should use the unnor-
malized Laplacian curvature to depict regime transitions.
Second, while possible channelized pixels (skeleton of
river network) in steep terrains were extracted via a simple
threshold in the probability distribution of curvatures, in
flat terrains we demonstrated that a more refined curvature
interrogation is needed to differentiate between natural and
manmade features. Specifically, we identified two regions
of curvature threshold which depict natural versus human
engineered features. While the thresholds themselves will
differ for other locations, the approach here proposed is port-
able. Third, zooming down to specific cross sections of
channels, we demonstrated how nonlinear filtering offers
advantages in depicting channel banks and as a result allows
the estimation of smooth water surface elevation along chan-
nels, important for hydrologic and hydraulic modeling com-
putations, channel width, and river bank and bluff height.

[41] The methods presented in this contribution will be
incorporated in the previously developed channel network
extraction package GeoNet, which is publicly available for
testing and use by the community.
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