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[1] Downscaling of remotely sensed precipitation images and outputs of general
circulation models has been a subject of intense interest in hydrometeorology. The problem
of downscaling is basically one of resolution enhancement, that is, appropriately adding
details or high frequency features onto a low-resolution observation or simulated rainfall
field. Invoking the property of rainfall self similarity, this mathematically ill-posed problem
has been approached in the past within a stochastic framework resulting in ensemble of
possible high-resolution realizations. In this work, we recast the rainfall downscaling into
an ill-posed inverse problem and introduce a class of nonlinear estimators to properly
regularize it and obtain the best high-resolution estimate in an optimal sense. This
regularization capitalizes on two main observations: (1) precipitation fields are sparse when
transformed into an appropriately chosen domain (e.g., wavelet), and (2) small-scale
organized precipitation features tend to recur within and across different storm
environments. We demonstrate the promise of the proposed methodology through
downscaling and error analysis of level III precipitation reflectivity snapshots provided by
the ground-based next generation Doppler weather radars in a ground validation sites of the
Tropical Rainfall Measuring Mission.
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1. Introduction

[2] The coarseness of the native spatiotemporal scales of
some remotely sensed atmospheric state variables and also
General Circulation Models (GCM) of the climate system is
often restrictive for many terrestrial applications [e.g., Wilby
and Wigley, 1997]. Hostetler [1994] reported that the largest
prediction and parameter estimation error of both GCMs and
hydrologic models occurs at the interfacial scales at which
terrestrial and climate models need to be linked.
[3] Detailed hydrologic modeling and parameter estima-

tion often involve sub-watershed hillslope scale transport
processes. Several studies have highlighted the effect of
small-scale rainfall variability on watershed hydrologic
response [e.g.,Woods andSivapalan, 1999;Smith et al., 2004;
Rebora et al., 2006a;Schuurmans andBierkens, 2007;Vivoni
et al., 2007; Younger et al., 2009]. These studies typically
report marked changes on the shape and peak of the hydro-
graph in small-scale hydrologic units (basins <1000 km2),
particularly during fast evolving extreme events. For instance,
using a distributed hydrologicmodel in a 135 km2basin, itwas
shown by Younger et al. [2009] that under different pertur-
bation scenarios of the rainfall patterns, not only the hydro-
graph but also the estimated parameters of the hydrologic

model may drastically change. As a primary treatment,
computationally efficient mathematical downscaling models
have received considerable attention in hydrologic applica-
tions. For instance, Rebora et al. [2006b] coupled a down-
scaling model with a semi-distributed hydrologic model and
quantitatively verified the significance of rainfall downscal-
ing for flood ensemble forecasting of small watersheds and
urban areas in the order of hundreds of square kilometers. A
similar analysis was performed by Nykanen et al. [2001] in
which a precipitation downscaling model was dynamically
coupled with a coarse-scale numerical weather prediction
model to show improvement on the computation of land-
atmosphere fluxes at a watershed scale.
[4] During the past decades, special attention has been

devoted to developing different classes of stochastic models,
M Y;q;zð Þ, to reproduce consistently the missing high-fre-
quency part of the rainfall fields, from a low-resolution input
(Y) using a set of parameters (q) and a random generator (z)
[e.g., Lovejoy, 1981; Lovejoy and Mandelbrot, 1985; Gupta
and Waymire, 1993; Perica and Foufoula-Georgiou, 1996;
Menabde et al., 1997; Badas et al., 2006; Deidda, 2000;
Rebora et al., 2006a]. To parameterize the random generator,
a large number of these models often relies on the observed
statistical regularities of the precipitation fields such as power
law Fourier spectrum and scaling of the higher-order statis-
tical moments of rainfall fluctuations, often referred to as
multifractality. Although, these stochastic generators can be
designed to be statistically consistent with the observed
small-scale rainfall variability, the spatial coherency of the
generated high-resolution fields is often not satisfying.
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Blockiness and non-uniqueness of the downscaled fields are
typical drawbacks of this sort of stochastic generators,
enforcing their interpretation in an ensemble mode; see
Ferraris et al. [2003] for a review of available statistical/
mathematical downscaling models.
[5] Apart from hydrometeorological applications, enhanc-

ing the resolution and quality of low-resolution images, often
referred to as super-resolution in the image processing com-
munity, has been a subject of interest for many years. The
state-of-the-art approaches in this area are currently relying
on sparse approximation [e.g., Mallat and Zhang, 1993;
Chen et al., 1999] and statistical learning [e.g., Donoho and
Stark, 1989; Tibshirani, 1996], which interestingly have
some roots in subsurface geophysics [Claerbout and Muir,
1973]. The central results suggest that a high-resolution
signal can be well recovered from a low-resolution one via
solving a constrained optimization, provided that the signal
of interest exhibits a sufficiently sparse representation (a
large fraction of close to zero coefficients) in an appropriately
chosen domain (e.g., wavelet) [e.g., Yang et al., 2010;Mallat
and Yu, 2010; Elad, 2010; Zeyde et al., 2010].
[6] In this paper we suggest a new framework for down-

scaling of rainfall images motivated by the sparsity of pre-
cipitation images in the wavelet domain as well as the
recurrence of small-scale organized precipitation features
within and across different storm environments. The pro-
posed framework follows recent progress in sparse approxi-
mation by recasting the rainfall downscaling problem into
solving an inverse ill-posed problem to obtain the best high-
resolution estimate via an appropriately selected optimality
criterion. The main advantages of the proposed method
compared to the traditional stochastic downscaling models
can be summarized as follows: (1) given the low-resolution
rainfall image, the downscaled field is unique with reduced
estimation error; (2) the method is robust to measurement
noise; and (3) the solution is smooth enough and free of the
blockiness commonly observed in stochastic models.
[7] Section 2 is devoted to explain notation and terminol-

ogy. In section 3, a sparse inverse estimator and its connec-
tion with other estimation paradigms is explained. Sparsity of
the spatial rainfall images is elaborated in the wavelet domain
in section 4. We provide quantitative evidence in section 5,
that the organized small-scale features of a storm snapshot
may recur within the larger storm domain or also across dif-
ferent storm environments. This indicates that the small-scale
rainfall features which might have been lost in the low-
resolution sensing and/or modeling, might be able to be
reconstructed using a database of appropriately collected
coincidental high and low-resolution precipitation images. In
section 6, the implementation details of the sparse inverse
estimator for rainfall downscaling are explained. Section 7,
points out concluding remarks and future research directions.

2. Notation

[8] We adopt the following notation and nomenclature
throughout. For any vector x∈Rm;xi refers to the i th ele-

ment and the standard lp-norm of x is denoted by jjxjjp ¼
∑m

i xij jp� �1=p
, where p ≥ 1. The zero norm of a vector jjxjj0,

denotes the number of non-zero elements of x , while the

infinity norm is jjxjj∞ ¼ maxi xij j . A redundant dictionary
F = [f1, f2,…, fM] inRm�M refers to a typically “fat matrix”
with more columns than rows (M ≥ m), where a linear com-
bination of the column vectors (called “atoms”), fi∈Rm, can
well approximate a class of signals of interest x≅∑M

i fici ¼
Fc, where c contains the “representation” coefficients. When
the atoms are obtained through samples of a particular pro-
cess, we refer to F as an empirical dictionary. We say that
x∈Rm has a “sparse representation” onF, if jjcjj0 << m. By
convention, we also may refer to an image X as a vector x by
staking all the pixel values in a predefined fixed order.

3. Sparse Inverse Estimator

[9] Estimation of a high-resolution signal or image x ¼
x1;…; xm½ �T∈Rm, from its low-resolution counterpart y∈Rn,
where n ≤ m, can be recast as an inverse problem. It
amounts to estimating x from y, while y may relate to x
through a linear structured degradation operator H∈Rn�m

(e.g., blurring and downsampling) and an intrinsic additive
noise e:

y ¼ Hxþ e: ð1Þ

The degradation operatorH is obviously a rectangular matrix
with more columns than rows giving rise to a linear under-
determined system of equations with many solutions, making
this an ill-posed inverse problem. To narrow down the solu-
tions to a well-defined one, this problem needs to be regu-
larized by taking into account additional constraints and a
priori assumptions about the desired signal of interest x.
[10] As explained earlier, sparsity of x implies that it can

be well approximated by its orthogonal projection xS onto a
subspace generated by a few atoms fif gMi¼1 of a suitable
redundant dictionary F∈Rm�M

xS ¼ Fc;

where m ≤ M and the vector of representation coefficients c
is fairly sparse with the number of non-zero elements much
smaller than the signal length; i.e., jjcjj0 << m.
[11] Substitution of xS into equation (1) results in

y ¼ HFcþ e′; ð2Þ

where e′ ¼ H x� xSð Þ þ e . This implies that the low-
resolution observation y has similar representation in a
transformed dictionary Y ¼ HF∈Rn�M which is naturally
more redundant than F (n ≤ m). Thus, by finding an ap-
propriate sparse representation ĉ of y in the so-called low-
resolution dictionary Y, the same coefficients ĉ can be used
to reconstruct the desired high-resolution signal x using the
corresponding atoms of the high-resolution dictionary F
that is, x̂¼ Fĉ. Given only equation (2), due to the redun-
dancy of Y and possible observation noise, the representa-
tion is not obviously unique. The a priori assumption on
sparsity of the signal, naturally implies that among many
solutions, those with the minimum number of non-zero
elements are the optimal ones. Following that the estimated
representation coefficients shall obey the fidelity constraint
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imposed by equation (2), the optimal coefficients can be
obtained by solving

c ¼ argmin
c

jjcjj0 subject to jjy�Ycjj2 ≤ �′; ð3Þ

where �′ ¼ ke′k2 . However, this gives rise to a Non-
deterministic Polynomial-time hard (NP-hard) problem for
which a direct solution is still hopeless.
[12] Greedy methods such as Orthogonal Matching Pursuit

(OMP) by Mallat and Zhang [1993] have been extensively
used to heuristically tackle problems of this sort. In this
numerical method, the solution is obtained via iterative
selection of the relevant dictionary atoms. Initializing the
estimation residual by the observed signal, at each iteration,
first the support of the representation coefficients c is updated
by selecting an atom which has the maximum inner product
with the estimation residual and then, given the support set,
the values of the representation coefficients are being upda-
ted through an ordinary least squares. The iterations continue
until a certain number of atoms is selected or the magnitude
of the estimation residual falls below �′, when the observation
error is accurately known.
[13] Chen et al. [1999] proposed a new strategy known as

the Basis Pursuit (BP) which suggests that under some
sparsity constraints on the solution, in lieu of jjcjj0 the closest
convex penalization function jjcjj1 leads to the same sparsest
solution [see also Chen et al., 1999; Elad, 2010]. Using
a Lagrangian penalization, the l1-regularized version of
equation (3) follows

ĉ ¼ argmin
c

ljjcjj1 þ
1

2
jjy�Ycjj22; ð4Þ

which can be recast into a linear programming problem and
solved at large dimensions with modest computational cost.
Note that in this Lagrangian form, we need to choose the non-
negative regularization parameter l > 0. The magnitude of l
reflects somehow the power of the noise in the observation
and according to a rule of thumb, we can choose l as
approximately the ratio of the noise standard deviation to the
standard deviation of the expected non-zero elements of the
solution [see Elad, 2010]. A small l reduces the role of the l1
penalty term and hence leads to a more dense solution, while
a larger one further sparsifies the solution up to a theoretical
upper bound jjYTyjj∞ , beyond which all elements of the
solution tend to zero.
[14] It is worth noting that, in the statistical machine learn-

ing community, the problem of solving equation (4) is the
Lagrangian form of the Least Absolute Shrinkage and Selec-
tion Operator (LASSO) by Tibshirani [1996]. From the
Bayesian statistical standpoint, the minimization in equation
(4) is also equivalent to the Maximum A Posteriori (MAP)
estimation of the coefficients, ĉMAP ¼ argmaxc p yð jcf Þp cð Þg,
given that the additive noise e is Gaussian and the a priori
distribution of the coefficients can be well explained by
the family of Laplace densities, i.e. p(ci) ∝ exp(�|ci|) [see
Lewicki and Sejnowski, 2000]. In the context of the MAP
estimator, the terms jjcjj1 and jjy�Ycjj22 in equation (4)
represent the contribution of the logarithm of the prior
density p cð Þ and the log-likelihood function log p yð jcÞ ,
respectively. Note that, the logarithm of the Laplace and
Gaussian density is a monotonic and concave function,

and by a sign change, the minimization in equation (4)
and the MAP estimator are equivalent.
[15] Effective implementation of the described sparse

recovery method requires that the dictionary pairs for the
high (F) and low-resolution (Y) atoms have been appropri-
ately determined which will be briefly explained in the con-
text of our study in the following sections.

4. On Sparsity of Rainfall Images

[16] Study of precipitation signals and images in transform
domains (e.g., Fourier or wavelet) has received considerable
attention and revealed interesting multiscale features of pre-
cipitation structures. Numerous studies on the Fourier spec-
trum of rainfall images have provided evidence of power law
scaling and spreading of the energy over a relatively wide
range of frequencies. Conversely, it is found that the proba-
bility distribution of the wavelet coefficients of precipitation
reflectivity images exhibits a large mass at zero and extended
tails significantly thicker than those of the Gaussian distri-
bution, implying that a large number of these coefficients are
very close to zero and only a small portion of them contains
significant amount of the rainfall energy [e.g., Perica and
Foufoula-Georgiou, 1996; Ebtehaj and Foufoula-Georgiou,
2011a, 2011b].
[17] In this study we use the undecimated Haar wavelet

transform by Nason and Silverman [1995], with a single
layer of decomposition, to demonstrate sparsity of the
wavelet coefficients of precipitation images. The transform
coefficients at different subbands (directions) are obtained by
filtering the image with the one dimensional low-pass
[+1, +1]/2 and high-pass [+1, �1]/2 Haar kernels and their
transpose successively. It is demonstrated in Figure 1a that
the majority of the wavelet coefficients in the Horizontal,
Vertical and Diagonal subbands are close to zero. As is evi-
dent, the histogram of the wavelet coefficients (see Figure 1b
for the horizontal subband) also shows concentration of the
coefficients around the origin. Keeping only the top largest
20% of the wavelet coefficients in absolute value and setting
the rest to zero via a hard thresholding [see Donoho, 1995],
Figure 1c shows the reconstructed rainfall image. Using only
about 20% of the entire wavelet coefficients, the recon-
structed rainfall image contains 99.8% of the total energy of
the original image (sum of pixel-wise squares) and is visually
indistinguishable from the original one. This evidence con-
firms that the rainfall reflectivity images exhibit considerable
sparseness in the wavelet domain which is a direct conse-
quence of the piecewise smoothness and spatial coherency of
the precipitation images.

5. Recurrence of Rainfall Patches
and Group Sparsity

[18] The observed precipitation patterns are the result of a
wide spectrum of highly non-linear and complex atmospheric
processes operating over different range of scales, from
microphysical to regional and global. As a result, it is hard to
imagine that we might be able to find very similar (in math-
ematical norms) precipitation patterns over relatively large
storm-scales. However, finding similar features over suffi-
ciently small sub-storm scales seems more feasible. The goal
of this section is to provide evidence for the recurrence of
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small-scale “patches” of precipitation features (patches being
small neighborhoods of the sampled rainfall fields) within
different regions of the same storm or across different storm
environments. The motivation is that, if for each patch of an
arbitrary storm snapshot, we can find at least a few similar
patches in a representative precipitation database, this will
promise that the small-scale precipitation variability in that
storm may be well approximated by an optimal and possibly
linear combination of those similar patches.
[19] To this end, a sample storm reflectivity image is se-

lected (see Figure 2a) and N “sample patches” of size 5�
5; yi ∈R25

� �N

i¼1
, are extracted over regions of significant

magnitudes of rainfall gradients (see Figure 2b). The pre-
cipitation gradient was selected here only as a metric to guide
the sampling of important patches as, naturally, localized
regions of high rainfall gradients contain significant high-
frequency information and define the within-storm spatial
geometry and variability. Then, the high-pass fluctuations of
all rainfall patches, the so-called “rainfall features” y′if gNi¼1,
are obtained by subtracting the local mean of each patch, that
is y′i ¼ yi � yi. The same sampling procedure is performed to

extract same size test patches z′j
� �M

j¼1 of rainfall features,

where naturally M ≫ N, from a database containing an
independent set of about 100 storm NEXRAD (level III)
reflectivity snapshots over the TRMM satellite Ground Val-
idation (GV) site in Huston, TX (see Ebtehaj and Foufoula-
Georgiou [2011a] for a detailed description of the data set).
For each i th sample patch, we computed the Euclidean dis-
tance dij ¼ ky′i � z′jk2 with all of the test patches and
appropriately normalized it to the range of [0, 1]. Here, the
similarity measure among the patches is defined as the nor-
malized Euclidean distance below a certain threshold value h.
Choosing the threshold values h, linearly spaced from 0.01 to
0.05 in five intervals, we determined the number of sample
patches nL in the sample rainfall image, for which we could
find at least an mL number of similar test patches in our test
database. We then reported mL versus the ratio nL/N, for
different choices of h in Figure 2c. As the ratio nL/N is always

positive and ranges between [0, 1], it can be interpreted as a
lower bound for the probability of finding at least an mL
number of similar patches within any larger database that
contains our test database as a subset. Figure 2c suggests
that the probability of finding a small number (small mL) of
very similar (small h) patches is high and drops rapidly as
the number of similar patches is increased. This finding
indicates that the rainfall fluctuations are not only pixel-
wise sparse, but also may exhibit structured sparsity in a
small neighborhood of rainfall intensities, which we refer to
as group sparsity. As is evident, specializing the database
for particular environmental conditions (e.g., orographic
precipitation), may increase the chance of finding similar
features and improve the group sparsity.

6. Precipitation Sparse Downscaling

6.1. Conceptual Framework

[20] The proposed sparse restoration of a high-resolution
rainfall image X from a coarse-scale observation Y ,
requires the availability of a representative set of NT coin-
cidental pairs of low and high-resolution rainfall images
Zl;Zhð Þf gNT

l;h¼1 , as a training set. Note that throughout this
study, we have adopted a simplified notation by which the
resolution indices (l) and (h), also serve as counting indices
for the number of the studied images. Ideally, the low-reso-
lution part of the training set can be extracted from a space-
borne sensor or a GCM-output; while the high-resolution
counterparts can be the result of a coincidental ground based
high-resolution sensing device or a fine-scale predictive
model (e.g., NEXRAD or a fine grid cloud resolving
numerical model). Elaborating on the merits of the method-
ology, in this study we synthetically generated the low-res-
olution rainfall reflectivity images by smoothing and
downsampling the available NEXRAD data set. For instance,
a low-resolution data set Zlf gNT

l¼1 at scale 8 � 8 km is
obtained by first smoothing each high-resolution NEXRAD
image (1� 1 km) using an average spatial filter of size 8� 8
and then downsampling by an integer factor of

ffiffi
s

p ¼ 8 ,

Figure 1. Evidence on sparsity of precipitation images in the wavelet domain: (a) A storm reflectivity
snapshot at the TRMM GV-site in Houston, TX (HSTN) on 1998/11/13 (00:02:00 UTC) and the absolute
values of the wavelet coefficients in the horizontal (top right), vertical (bottom left) and diagonal (bottom
right) subbands, (b) probability histogram of the horizontal wavelet coefficients (dH) and (c) the recon-
structed field using the top largest 20% of the wavelet coefficients in absolute values. The bounded area
by the dashed lines in Figure 1b contains 80% of the wavelet coefficients that was set to zero for recon-
struction of the reflectivity image, shown in Figure 1c.
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called the scaling ratio. Note that, given the pair of high and
low-resolution training images, a set of “residual images”
can be produced as

R ¼ Zh �QZl; ð5Þ

with each image containing the high-frequency features lost
by the low-resolution sensing. Here, Q denotes an interpo-
lation operator (e.g., nearest neighborhood, bilinear, bicubic,
Kriging) which is used to compute a low-pass estimate of the
high-resolution precipitation image of interest.
[21] The core part of the proposed downscaling method-

ology is the inverse estimator explained in section 3 and
relies on the group sparsity of precipitation patches. As
explained earlier, the group sparsity is revealed for the high-
pass components (features) of rainfall patches. To this end,
the high-pass components of the low-resolution observation
and of the training database need to be extracted, i.e.,
Y′; Z′lf gNT

l¼1

� �
. Typically redundant transformations are

preferred due to their robustness to noise, more sparsifying
effect and greater flexibility to match the data structure. Here,
similar to the previously explained undecimated Haar
wavelet transform, vertical and horizontal features of pre-
cipitation images have been extracted using the following
kernels,

f1 ¼ f T2 ¼ þ1;�1½ �
f3 ¼ f T4 ¼ þ1;�2;þ1½ �: ð6Þ

Concerning the precipitation images, the first two kernels
(first order derivative) mainly characterize directional edges
of the storm from zero intensity background and boundaries
of high-intensity rain-cells while the others (second order
derivative) encode high curvature regions within the body of
the rain-cells, which are prone to be lost in a low-resolution
sensing or large-scale modeling. These filters naturally give
rise to four output high-pass images of the same size as the
input image, leading to a 4:1 redundancy factor; i.e.,

Y′i ; Z ′
l;i

n oNT

l¼1

� �4

i¼1

, where hereafter the counting index i is

dropped in our notation for brevity.
[22] In the proposed precipitation downscaling methodol-

ogy, due to the evidence of group sparsity, the sparse inverse
estimator is applied locally on rainfall patches rather than
globally on the whole image. This approach not only makes
the problem computationally more efficient but also permits
an overlapping estimation scheme to avoid undesirable
blocking artifacts in the final downscaled product.
[23] Deciding to choose the low-resolution rainfall patches

of size
ffiffiffi
n

p � ffiffiffi
n

p
making thus y∈Rn, the sample and train-

ing feature patches can be extracted from the feature images
Y′; Z′lf gNT

l¼1

� �
and stacked in y′ and z′l ∈Rm, where owing

to the suggested filters in equation (6), here m = 4n. The
column-wise concatenation of z′l in Y∈Rm�M forms the
desired empirical low-resolution rainfall dictionary. Now,
in the feature space, the idea is to find a few columns of
the low-resolution dictionary Y that their linear combina-
tions can well approximate the low-resolution feature patch
y′of interest. This idea can be recast into the following sparse

Figure 2. Recurrence of small-scale precipitation patches
and group sparsity: (a) a sample precipitation reflectivity
image over the TRMM (HSTN) GV-site on 1998/06/28
(18:13:00 UTC), (b) regions of high gradient (top 25%) used
for sampling of important patches, and (c) a probability mea-
sure (nL/N) of finding at least mL number of similar patches
(i.e., close in Euclidean distance determined by h) in the
selected test database.
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encoding problem, similar to equation (3), which indeed
assumes y′ ¼ Ycþ e with � ¼ jjejj2,

ĉ ¼ argminc jjcjj0 subject to jjy′�Ycjj2 ≤ �: ð7Þ

As explained in section 2, the estimated coefficients for each
patch can now be used to combine the corresponding col-
umns of a high-resolution dictionary to recover the relevant
high-frequency features of interest for that patch. To this
end, due to the size enlargement of the high-resolution field
by a factor of s, the patches of size

ffiffiffiffiffi
sn

p � ffiffiffiffiffi
sn

p
need to be

extracted from the residual images Rlf gNT
l¼1 , obtained from

the training data set, and be concatenated column-wise, in
a vector form r∈Rsn, to shape the desired empirical high-
resolution dictionary, i.e., F∈Rsn�M . Recall that the
columns of these empirical dictionaries (Y, F) contain
the patches of low-resolution rainfall features z′l ∈Rm and
the corresponding high-resolution rainfall residuals r∈Rsn,
respectively. As a result, the obtained sparse representation
in equation (7) is then being used to combine the columns
of F and restore the high-resolution rainfall patches as
x̂¼ Qyþ r̂, where r̂¼ Fĉ. Applying this inverse estimator
for all overlapping patches of the given low-resolution rain-
fall image, the entire high-resolution rainfall image can then
be recovered. To reduce blocking artifacts and impose more
coherency on the downscaled field, the estimated patches
are averaged over their overlapping areas. The entire meth-
odology, referred to as SPaD (Sparse Precipitation Down-
scaling), is also sketched algorithmically as follows:

Algorithm 1: Sparse Precipitation Downloading (SPaD)

Inputs: Low-resolution rainfall Y; patch size n; the scaling
ratio s; a training set Zl;Zhð Þf gNT

l;h¼1.
Steps:

1. Apply the filters in equation (6) to Y and Zlf gNT
l¼1 to

obtain the feature images Y′; Z′lf gNT
l¼1

� �
(i.e., 4 output

images per 1 input image).

2. Extract all
ffiffiffi
n

p � ffiffiffi
n

p
overlapping patches from Z′lf gNT

l¼1
(per the 4 filters) to shape the low-resolution dictionary
Y∈Rm�M .

3. Compute Rlf gNT
l¼1 in equation (5) and extract allffiffiffiffiffi

sn
p � ffiffiffiffiffi

sn
p

patches to form the high-resolution
rainfall dictionary F∈Rsn�M .

4. For each feature patch y′∈Rm

• Solve ĉ¼ argminckck0 s:t: ky′�Yck2 ≤ �
• Compute the residuals r̂¼ Fĉ
• Compute the high-resolution rainfall patch x̂¼
Qyþ r̂.

End

Output: Recover the high-resolution rainfall image X̂ by
putting together all patches x̂ , while averaging on the
overlapping areas.

6.2. SPaD via Dictionary Learning

[24] Collecting a large set of training patches of low-reso-
lution precipitation features z′lf gMl¼1 as the atoms of Y, often
leads to a very large-scale sparse coding problem, which
cannot be easily handled by the Basis Pursuit type of methods
in a reasonable time and with sufficient accuracy. Often,
when the number of dictionary atoms is much larger than the
patch size, the maximum absolute value of the cross corre-
lation between the atoms of Y, called the Mutual coherence,
tends to unity and a stable sparse solution is hardly achiev-
able via l1-norm convex relaxation of equation (7) in the form
of equation (4), [see e.g., Kim et al., 2007; Elad, 2010]. As an
alternative to a crude selection of the sample precipitation
features as atoms of the empirical high and low-resolution
dictionary, one can use a tunable and compact selection, in
which the atoms are well adapted to the patches of rainfall
images based on a learning procedure. The core idea is to
optimally estimate a pair of reduced dimension low and high-
resolution dictionary Yr;Frð Þ ∈ Rm�K, where K≪M, given
a large number of low and high-resolution training patches.
Typically, the learned reduced size low-resolution dictionary
Yr is obtained such that it can reproduce each training patch
z′l by a sparse combination of its atoms in a linear setting
z′l ¼ Yrcl þ ewith added noise e, where cl ∈ RK ;kclk0 ≪ m.
Note that in this setting the goal is to have an optimal
estimate of the Fr and the representation coefficients cl ,
simultaneously. It naturally follows to solve

min
Yr ;cl

XM
l¼1

jjz′l �Yrcljj22 subject to jjcljj0 ≤ const: ∀l; ð8Þ

which is not well-posed and convex on bothYr and cl [Engan
et al., 1999; Aharon et al., 2006; Engan et al., 2007]. Using
the Method of Optimal Direction (MOD), this problem can
be tackled by following a nested iterative optimization
strategy [Engan et al., 1999, 2007]. This method, starts with
a first guess of the dictionary Yr

(0) and proceeds to estimate

the representation c 0ð Þ
l for ∀l, using a sparse encoding strategy

(e.g., OMP). Then, at the i th iteration, given the obtained
representation coefficients, the dictionary is being updated
through an ordinary least squares

Y iþ1ð Þ
r ¼ Y C ið Þ

	 
þ
;

where C ið Þ ∈RK�M contains a column-wise concatenation of

all estimated coefficients c ið Þ
l

n oM

l¼1
at step i th; C ið Þ� �þ ¼

C ið Þ� �T
C ið Þ C ið Þ� �Th i�1

is the right Moore-Penrose pseu-

doinverse of C ið Þ and Y is the original empirical low-
resolution dictionary. This iterative procedure continues until
a stopping criterion is met (e.g., number of iterations or an
error criterion).
[25] Here, the dictionary Yr is a reduced version of Y

which can sparsely approximate the low-resolution features
of all M training patches. By construction, using the same
representation for high-resolution recovery, estimation of
the reduced high-resolution dictionary Fr only requires the
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second step of a typical dictionary learning process [see
Zeyde et al., 2010] and follows:

Fr ¼ FCþ:

In fact, given the final matrix of representation coefficientsC,
obtained through the learning of the reduced low-reso-
lution Yr dictionary in the previous step, it only requires to
use an ordinary least squares to obtain a learned high-reso-
lution dictionary Fr.

6.3. Results

6.3.1. Inputs and Parameters
[26] For construction of the training database, two hundred

independent rainfall reflectivity images at resolution 1� 1 km
were selected over the two GV-sites of the TRMM satellite in

Houston, Texas (HSTN) and Melbourne, Florida (MELB)
from 1997 to 2010 [see Ebtehaj and Foufoula-Georgiou,
2011a]. These high-resolution images are first smoothed
and downsampled by scaling ratios

ffiffi
s

p
∈ 4; 8; 16f g to form

the low-resolution components of the training set. Then,
these low-resolution images are transformed into the feature
space by applying the explained set of filters in equation (6).
Note that, as the NEXRAD data are in a resolution of �1 �
1 km, these scaling ratios also refer to the spatial grid
spacing of the low-resolution rainfall data in kilometers.
[27] Selection of the patch size is obviously an input

parameter in the presented SPaD framework. Although the
optimal patch size cannot be theoretically determined, for
larger patch size the downscaling result is generally
smoother. We empirically found that SPaD performs well for
patch sizes in the range of 3� 3 to 7� 7. Here we report the
results using overlapping patches of size 3 � 3. At least
M = 150, 100 and 50 thousands of training high and low-
resolution precipitation patch pairs were extracted to form the
initial low and high-resolution empirical dictionaries (Y, F)
for the selected scaling ratios (i.e., resolutions of 4,8 and
16 km), respectively. To obtain the residual images in
equation (5), we adopted a bicubic interpolation operator.
While extracting patches from each rainfall image, to screen
the possible degenerate patches due to the zero rainfall back-
ground effect and piecewise constant regions of rainfall
images, those patch pairs z′l; rð Þ were selected for which the
variance of the residual patch r exceeded a certain threshold
(i.e., 50th percentile of the variance of all residual patches).
[28] To implement the sparse estimator and solve equation

(7), we examined the performance of both a greedy and also
an l1-regularization strategy, by employing the Orthogonal
Matching Pursuit (OMP) and the l1-regularized Least
Squares (known as the l1 � ls) by Kim et al. [2007]. The later
method, is an interior point method which solves a quadratic
programming reformulation of equation (7) [see Chen et al.,
1999], using a preconditioned conjugate gradient method.
[29] Employing the OMP in a greedy implementation, we

set a fixed number of non-zero representation coefficients
(i.e., kck0 ¼ 3) as the stopping criterion in equation (7) to
find relevant atoms of the empirical dictionaries (Y, F).
However, for the convex l1-regularized strategy, we used a
pair of learned low and high-resolution dictionaries (Yr, Fr)
of different sizes K ∈ {256, 512, 1024} for the studied
scaling ratios, respectively. These dictionaries were learned
by solving equation (8) with a fixed number of non-zero
elements in cl (i.e., kclk0 ¼ 3 ) and employing the OMP as a
sparse coding method. The chosen size of the dictionary is a
design issue which requires to consider a trade-off between
the accuracy of the recovery and the computational cost. It is
empirically found that the selected size of the dictionaries
leads to decent results with modest computational cost. Note
that, at any scale of interest, the first guess of the reduced
low-resolution dictionary for the explained iterative learning,
is randomly selected from rainfall patches in the feature space
(i.e., columns of Y). Figure 3 shows the initial and trained
atoms of the learned high-resolution precipitation dictionary,
designed for downscaling from scale 4-to-1 km in grid
spacing. For selection of the regularization parameter l, we
simply chose l ¼ 0:1kYT

r yk∞, as recommended byKim et al.
[2007], which we also found empirically to perform well.

Figure 3. (a) Initial rainfall residual patches r∈Rsn (i.e.,
patch size 3 � 3 with downscaling ratio

ffiffi
s

p ¼ 4) at scale
1 � 1 km, randomly sampled from 150000 training rainfall
patches to learn a high-resolution dictionary Fr of rainfall
features with K = 256 atoms for downscaling from resolution
4-to-1 km in grid spacing, and (b) the learned precipitation
dictionary after 50 iterations.
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6.3.2. Downscaling Performance and Error Analysis
[30] The base-reflectivity snapshots over the HSTN site for

the storm of 1998/11/13 (00:02:00 UTC) and 1998/06/28
(18:13:00 UTC), shown in Figures 1 and 2, were selected to
study the quantitative performance of the proposed down-
scaling scheme. In contrast to the stochastic type of down-
scaling models in which the high-frequency details are
generated randomly to reproduce high-resolution realizations
with consistent marginal statistics, the proposed method
recovers the optimal high-resolution estimate via a super-
vised learning from our a priori knowledge, obtained by a set
of historical training observations. As a result, the final
product is not blocky, compared to the stochastic models, and
exhibits reduced estimation error. Here, by no means we
intend to exhaustively compare the SPaD with stochastic
downscaling models; this can be the topic of future studies.
We note however that, due to the intrinsic randomness in the
stochastic downscaling models, a comparative error analysis
is not straightforward. Indeed in these type of models at each
realization, the error of estimation (e.g., in a mean square
error sense) increases with high probability as the added
details are quite random and the downscaled field only pre-
serves marginal statistics and not exact geometric and
coherent structures of the storm image. At the same time,
error estimation in an ensemble sense does not add much
insight as the ensemble average tends to the original input
image when the number of ensembles goes to infinity (e.g.,
consider the case of multiplicative random cascades in
canonical form). Therefore, when using these type of sto-
chastic models, the estimation error can not be readily
improved even in an ensemble sense, while the comparison
also remains ambiguous in the single realization sense.
[31] First to show the effectiveness of the SPaD, we tried to

downscale a 16� 16 km coarse-scale version of the snapshot
on 1998/11/13 while including the corresponding high and
low-resolution patches of the rainfall image in the training
data set. The results in Figure 4 show how well this method
can perform by finding the relevant patches, recover the high-
frequency features and estimate the small-scale geometrical
structures of the rainfall image of interest for a relatively
coarse scale observation. This result is promising that it
demonstrates the algorithmic success of our methodology,
provided that a suitable prior knowledge is included in the
training database.
[32] Figure 5 shows the performance of the SPaD in a case

where the image of interest is not itself part of the data set,
but rather an independent training database is used. As is
evident, the effectiveness of the algorithm degrades as the
coarseness of the original image increases (e.g., 16� 16 km)
and the recovered geometrical structure of the small-scale
features is prone to be distorted significantly. Although, the
reference high-resolution rainfall field is of course not
available in practical cases, it is instructive here to have a
quantitative assessment of the downscaling success by com-
paring the SPaD results X̂ with the original high-resolution
rainfall image X . Defining the error matrix E ¼ X � X̂ ,
we have chosen some conventional fidelity metrics including:
(1) Normalized Bias Ratio: NBR ¼ E=X� �� 100 , where ⋅ð Þ
denotes the entry-wise expected value (mean); (2) Mean

Square Error: MSE ¼ E2; (3) Mean Absolute Error: MAE ¼

Figure 4. The SpaD performance in a case when the exact
high and low-resolution patches are included in the train-
ing database. (a) The original high-resolution NEXRAD
reflectivity image at resolution 1� 1 km, (b) the coarse scale
version of the image at scale 16 � 16 km generated by
smoothing and downsampling, and (c) the SPaD results.
The pixel-wise Mean Squares Error (MSE), by comparing
the original high-resolution with the SPaD output, is 2.10 in
[dBZ]2 which is around 1% of the mean of the squares of
rainfall reflectivity values.
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Ej j , where | ⋅ | denotes the entry-wise absolute value, and

(4) Peak Signal-to-Noise Ratio: PSNR ¼ 20 log Lffiffiffiffiffiffiffi
MSE

p
	 


in

decibel (dB), where L refers here to the dynamic range of
the reference high-resolution image.
[33] To evaluate the SPaD performance in recovering the

isolated singularities of the rainfall (i.e., local intense rain-
cells), we defined a new quality metric which computes the
Mean of the Maximum of the Absolute Error (MMAE) for all
N overlapping neighborhoods of rainfall intensities (e.g., area
of 10� 10 km), where enij are the entries of the error matrix E
within the nth neighborhood

MMAE ¼ 1

N

XN
n¼1

max
i;j

enij

��� ���
� 

:

Comparing to a reference image, many different realiza-
tions of precipitation fields may exhibit similar marginal
statistics (e.g., MSE); however, their geometrical and
coherent structures may be quite different. To address the
SpaD performance for recovering the distinct structure and
geometrical patterns of rain-cells in the studied precipita-
tion images, a complementary metric, called the Structural
SIMilarity (SSIM) by Wang et al. [2004], is also
employed. Contrary to the previously explained fidelity
measures which only take into account the first and sec-
ond order marginal statistics of the error, this metric con-
siders the covariance structure as well, to overcome some
common deficiencies of the MSE type of quality mea-
sures. Comparing images U and V , the SSIM is a local

Figure 5. The qualitative performance of SPaD, given 200 regionally selected independent storm snap-
shots as the training database. (a, b, and c) The low-resolution observations synthetically generated by
smoothing and downsampling of the original 1 � 1 km fields to scales of 4,8 and 16 km in grid spacing.
(d, e, and f) Results of the downscaled rainfall images at resolution 1 � 1 km using the OMP method for
selection of training rainfall patches as the “atoms” of the low and high-resolution dictionaries. (g, h, and i)
Results of the downscaled rainfall images at resolution 1 � 1 km employing the l1-regularization strategy
together with the learned dictionaries. As is evident, the SPaD results are smoother, when using the pair of
the learned dictionaries of rainfall patches.
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metric which is calculated for neighborhoods u and v
(typically 8 � 8 pixels) of those images

SSIM x; yð Þ ¼
2�u�vþ c1ð Þ 2 u� �uð Þ v� �vð Þ þ c2

	 


�u2 þ �v2 þ c1ð Þ u� �uð Þ2 þ v� �vð Þ2 þ c2
	 
 ;

where c1 and c2 are two constants to stabilize the com-
putation. This index is typically computed for all or a
subgroup of patch pairs and the mean value of the index is
taken as the overall quality measure, [see Wang et al.,
2004]. As is evident, this measure is symmetric and ran-
ges between [�1, +1], while the upper bound is only
reachable in the case of two identical images. Here, we do
not intend to get into the detailed implications of using the
SSIM index; however, this measure seems very promising
for studying the forecast mismatch and verification in
hydrometeorological studies (see also the forecast verifi-
cation discussions by Venugopal et al. [2005]).
[34] Our numerical experiments show that the bias of the

SPaD is within an acceptable range; i.e., the absolute value
of the normalized bias ratio is less than 2% in the worst
case and less than 0.4% in an average sense; see Table 1.
By comparing the results of the SPaD with the observed
low-resolution observations, the MSE metric shows signif-
icant improvement ranging from 40 to 50%. Computing the
MMAE with a neighborhood of size 10 � 10 km, the
recovery of the local maxima (intense rain cells) has been
enhanced up to 15%. In terms of the PSNR the sparse
downscaling shows an order of 2 to 3 dB of improvement
and the SSIM index is also increased up to 10–15%.
[35] These preliminary results suggest that the accuracy of

the downscaling may depend on the resolution of the origi-
nal observation, complexity of the storm image and albeit
the scaling ratio. However, on the basis of the chosen fidelity
measures, the overall quality of the recovery is not signifi-
cantly deteriorated for larger scaling ratios in our experi-
ments. As expected, in general, smoother results were
obtained using the learned dictionaries as the atoms are

indeed weighted average of original rainfall patches. The
SPaD results via dictionary learning led to better quality
measures, typically for spatial scales less than <4 km in grid
spacing. For larger scales, the results of the SPaD with
crude selection of rainfall patches as dictionary atoms and
employing the OMP sparse coding, show better error sta-
tistics. For instance, it is clear from Figures 5f and 5i that
although the overall quality measures are not significantly
different, due to the smoothness of the trained atoms, the
dynamic range of the rainfall image cannot be well recov-
ered in larger scaling ratios by the learned dictionaries.
[36] In this study no attempt has been made for computa-

tional parallelization and/or coding optimization. All of the
computations have been run on a Windows operating system
using an Intel(R)-i7 Central Processing Unit with 2.80 GHz
clock rate. On the basis of the explained parameters, the
code generally ran for less than 5 min to produce down-
scaled precipitation images of size �500 � 500 pixels, with
scaling ratio

ffiffi
s

p ¼ 16 (i.e. to downscale from 16 to 1 km).
Typically, the lowest computational speed was for the sce-
narios of using the l1-regularization scheme together with
the learned dictionaries.

7. Concluding Remarks

[37] A new data-driven downscaling framework has been
proposed, which exploits the recent developments in sparse
signal estimation. It is shown that, in the range of the studied
scales, the proposed model can recover the high frequency
details of a remotely sensed low-resolution precipitation
image from a representative set of training pairs of high and
low-resolution rainfall images, via solving a constrained opti-
mization problem. The proposed method results in unique and
free of blockiness high-resolution rainfall image with reduced
estimation error. The presented results seem encouraging
toward larger-scale studies to explore the generality, perfor-
mance and hydrometeorological practical implications.

Table 1. Error Statistics Obtained by Comparing the Low-Resolution ImagesWith the High-Resolution (True) Ones (a), Downscaling
via SPaDWith Greedy Selection of Atoms by OMP Algorithm (b), and Downscaling via SPaDWith l1-Regularization Together With Dic-
tionary Learning (c)a

Metricsb

Metric Values

4 km � 4 km Scale 8 km � 8 km Scale 16 km � 16 km Scale

(a) (b) (c) (a) (b) (c) (a) (b) (c)

NBR (%) �0.00 0.43 0.41 �0.00 0.21 0.17 +0.00 �0.11 0.05
�0.22 0.06 0.21 �0.67 �0.7 �0.59 �1.37 �1.99 �1.58

MSE 1.00 0.6 0.56 1.00 0.52 0.55 1.00 0.54 0.58
1.00 0.58 0.55 1.00 0.58 0.62 1.00 0.59 0.66

MAE 1.00 0.82 0.80 1.00 0.72 0.74 1.00 0.70 0.75
1.00 0.80 0.76 1.00 0.76 0.78 1.00 0.73 0.79

MMAE 1.00 0.81 0.77 1.00 0.83 0.81 1.00 0.84 0.84
1.00 0.83 0.79 1.00 0.84 0.79 1.00 0.83 0.83

PSNR 24.00 26.25 26.50 20.50 23.35 23.15 18.30 21.10 20.70
21.50 23.90 24.15 18.20 20.50 20.25 15.90 18.15 17.80

SSIM 0.73 0.80 0.82 0.58 0.68 0.69 0.52 0.60 0.60
0.70 0.80 0.80 0.55 0.65 0.65 0.45 0.54 0.52

aFor each metric, the first and second rows show the obtained quantities for two reflectivity snapshots on 1998/11/13 (00:02:00 UTC) and 1998/06/28
(18:13:00 UTC), respectively. Note that, for each storm snapshot at a particular scale, the values of MSE, MAE and MMAE are row-wise normalized by
their maximum values. The results are shown for downscaling from scales (4, 8, 16 km) down to 1 km in grid spacing.

bNBR, Normalized Bias Ratio; MSE, Mean Squared Error; MAE, Maximum Absolute Error; MMAE, Mean Maximum Absolute Error; PSNR, Peak
Signal-to-noise ratio; SSIM, Structural Similarity Index.
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[38] The choice of the embedded interpolation operator Q
(see equation (5)) is a key factor in the performance of the
proposed framework and employing the recently developed
adaptive directional interpolation methods [e.g., Mallat and
Yu, 2010] maybe worth exploring in further developments
of the SPaD. Another issue worth exploring in the future is
the customization of the high and low-resolution dictionaries
to the storm environment (e.g., orographic rainfall), which
might lead to more accurate downscaling products. The
presented methodology is also flexible enough for potential
development of a new class of combined radar-radiometer
retrieval algorithms for spaceborne estimation of precipita-
tion. Typically, spaceborne estimation of rainfall relies on the
Precipitation Radar (PR), e.g., aboard the TRMM satellite,
and the passive radiometer with different resolutions and
spatial coverage. By design, the PR swath covers a more
constrained (narrower) width than the radiometer but with
more meteorological details including information on the 3D
atmospheric structure. By collecting the coincidental PR and
the radiometer brightness temperature frequency channels as
the “atoms” of the explained joint dictionaries, a modified
version of the presented framework seems feasible for
retrieving more detailed precipitation information over the
areas of the radiometer swath where PR information is absent.
[39] Note that the scales of applicability and effectiveness

of the proposedmethodology can not be precisely determined
theoretically and need to be tested for different rainfall pro-
ducts and forecasting systems empirically. In addition, mul-
tiscale propagation of the estimation error in a closed form
expression or numerically has not been covered in this study.
However, a numerical estimation of the error seems feasible
via bootstrap resampling of the dictionary atoms over a range
of the regularization parameter l [see, e.g., Tibshirani, 1996],
which can be another potential subject for future research.
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