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[1] The past decades have witnessed a remarkable emergence of new sources of
multiscale multisensor precipitation data, including global spaceborne active and passive
sensors, regional ground‐based weather surveillance radars, and local rain gauges. Optimal
integration of these multisensor data promises a posteriori estimates of precipitation fluxes
with increased accuracy and resolution to be used in hydrologic applications. In this
context, a new framework is proposed for multiscale multisensor precipitation data fusion
which capitalizes on two main observations: (1) non‐Gaussian statistics of precipitation
images, which are concisely parameterized in the wavelet domain via a class of
Gaussian‐scale mixtures, and (2) the conditionally Gaussian and weakly correlated
local representation of remotely sensed precipitation data in the wavelet domain, which
allows for exploiting the efficient linear estimation methodologies while capturing the
non‐Gaussian data structure of rainfall. The proposed methodology is demonstrated using
a data set of coincidental observations of precipitation reflectivity images by the
spaceborne precipitation radar aboard the Tropical Rainfall Measurement Mission satellite
and by ground‐based weather surveillance Doppler radars.
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1. Introduction

[2] Availability of multisensor observations and the desire
for accurate high‐resolution forecasts have always been a
strong motivation to explore algorithms for optimal inte-
gration of multisensor, multiscale geophysical data into a
more complete set of information with reduced uncertainty.
In the last decade, a large set of multiscale precipitation data
has been collected using locally distributed traditional net-
works of rain gauges and regional ground‐based weather
surveillance radars, e.g., Next Generation Radar (NEXRAD)
and global spaceborne active and passive satellite sensors,
e.g., Tropical Rainfall Measuring Mission (TRMM). The
acquired remotely sensed precipitation data might be
mathematically understood as the convolution of the highly
irregular reflectivity field of the atmospheric hydrometeors
with a low‐pass operator, naturally corrupted with noise due
to intrinsic measurement fluctuations or to sensor noise.
Several studies have been conducted to characterize the
measurement error of the remotely sensed precipitation data
[e.g., Ciach and Krajewski, 1999; Wang and Wolff, 2009],
whereas much less attention has been devoted to developing
consistent and robust algorithms that can be used to filter out

these errors and optimally merge (fuse) the multisensor data
for obtaining a posteriori estimates of the precipitation
fields.
[3] The standard linear Gaussian filtering methods on

Markov treelike structures, the so‐called scale‐recursive
estimation (SRE) technique, has been commonly proposed
to assimilate remotely sensed rainfall observations at dif-
ferent scales into a stochastic (e.g., multiplicative random
cascade) model of rainfall fields [Gorenburg et al., 2001;
Tustison et al., 2002; Gupta et al., 2006; Bocchiola and
Rosso, 2006; Bocchiola, 2007; Van de Vyver and Roulin,
2009]. The main advantage of this method is its efficiency
to provide a recursive least squares solution for high‐
dimensional multiscale Gauss‐Markov estimation problems.
Consequently, by construction, fusion of multisensor rainfall
data using SRE is based on the assumption that the multi-
scale statistical structure of the precipitation fields (or log
transformed fields) is linear and can be explained in the
Gaussian domain.
[4] Early observations signified that spatial rainfall exhi-

bits a clustered behavior [e.g., LeCam, 1961], meaning that
areas of high‐intensity precipitation, referred to as “rainfall
cells,” tend to occur in clusters within regions of lower rain
rate. This had been the earliest motivation for modeling
approaches that sought to represent the observed geometry
and statistical structure of precipitation by means of clus-
tered point processes [e.g., see Gupta and Waymire, 1993].
These isolated high‐intensity clusters of rainfall cells man-
ifest themselves in the tail statistics of the rainfall histogram
which are remarkably thicker than the domain of Gaussian
distributions, including the lognormal density [Ebtehaj and
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Foufoula‐Georgiou, 2010, 2011]. These observations indi-
cate that by using the SRE method for rainfall multiscale
estimation problems, important high‐order statistical char-
acteristics of rainfall cannot be thoroughly captured and the
result of the rainfall data fusion may be an overly smooth
representation without adequate detailed features of the
storm rainfall cells and extreme intensity values. This obvi-
ously calls for developing consistent and well‐structured
filtering and fusion methodologies that can efficiently
address the distinct non‐Gaussian estimation issues of high‐
dimensional precipitation fields and also permit incorpora-
tion of different sources of the multiscale measurement
errors in the fusion process.
[5] Recent studies [Ebtehaj and Foufoula‐Georgiou, 2011]

demonstrated that a particular mixture of Gaussian random
variables can well capture the observed heavy tail properties
of the precipitation data in the wavelet domain. In this paper,
we will explain how this probability model in the wavelet
domain can be exploited for optimal multiscale fusion of
multisensor precipitation data. Using the developed meth-
odology, we present a case study in which, first, rain gauge
corrected products are derived via filtering the measurement
error from the coincidental observations of the TRMM‐PR
satellite and ground‐based NEXRAD reflectivity data and,
second, the rain gauge corrected products are merged in a
multiscale framework. The advantages of the introduced
method over the conventional linear Gaussian estimation
technique are also discussed. Accordingly, this paper is
structured as follows:
[6] Section 2 is devoted to briefly discussing the statistics

and non‐Gaussian structure of rainfall reflectivity images
in the wavelet and Fourier domains. In the context of pre-
cipitation multisensor fusion, the standard linear Gaussian
estimation method is explained and implemented in section 3.
Practical aspects of implementation and shortcomings of this

method are also discussed in section 3. Section 4 explains
the new proposed probability model, namely the Gaussian‐
scale mixture (GSM), for precipitation reflectivity images
in the wavelet domain which can be used for consistent
and robust multiscale multisensor data fusion. In section 5,
basic theoretical and practical concepts of optimal estimation
in the wavelet domain using the GSM probability model
are explained. A synthetic one‐dimensional example is also
presented to elaborate the main advantages of the proposed
methodology compared with the SRE method. Section 6
describes the implementation of the new model for pre-
cipitation estimation and data fusion by applying it to a
real storm event coincidentally measured by ground‐based
NEXRAD and TRMM‐PR sensors. Section 7 presents a
summary of the study and points out some directions for
future research.

2. Non‐Gaussian Statistics of Precipitation
Images

[7] Ebtehaj and Foufoula‐Georgiou [2011] studied the
statistical structure of a data set populated by near‐surface
precipitation images in decibels of reflectivity (dBZ), from
two hundred independent storms coincidentally observed by
NEXRAD and TRMM precipitation radars over two TRMM
ground validation (GV) sites in Houston, Texas (HSTN) and
Melbourne, Florida (MELB). It was demonstrated that the
Fourier and wavelet decompositions of these fields permit
concise parameterization across a range of spatial scales.
Specifically, it was revealed that besides the power law
decay of the Fourier spectra (see Figure 1a), the distribution
of the wavelet coefficients (smoothed increments) shows a
symmetric cusp singularity around the center with extended
heavy tails significantly thicker than the Gaussian case (see
Figure 1b). Although the conversion of rainfall reflectivity

Figure 1. (a) Radially averaged ensemble spectrum of 105 NEXRAD precipitation single‐level near‐
surface reflectivity images at resolution 1 × 1 km over the ground validation site of the TRMM satellite
in Melbourne, Florida. Frequencies are in cycle per pixel (c/p), which are equivalent to the inverse of
pseudo spatial scale km−1. (b) Associated average histogram of the horizontal subband coefficients d.
The solid circles show the mean empirical histogram, and the solid line is the fitted generalized Gaussian
distribution p(x) / exp (−∣x=s∣a). The dashed lines are the 95% estimation quantiles.
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in dBZ to precipitation intensity is not a trivial task [see, e.g.,
Krajewski and Smith, 2002], a commonly used Z‐R rela-
tionship would imply that the wavelet coefficients of the log
transformed rainfall intensity would maintain the singular
structure shown in Figure 1b, up to a scaling factor. Using
an orthogonal overcomplete stationary wavelet transform
[Nason and Silverman, 1995; Coifman and Donoho, 1995],
it has been found [Ebtehaj and Foufoula‐Georgiou, 2011]
that this sort of non‐Gaussian heavy tail property of the
rainfall fields in the wavelet domain can be well explained
by a family of elliptically symmetric distribution functions,
namely the generalized Gaussian (GG) density p(x) / exp
(−∣x=s∣a), where a and s are positive real numbers which
control the tail and width of the distribution, respectively
(see Figure 1b). Another important observation made by
Ebtehaj and Foufoula‐Georgiou [2011] was that the
wavelet transformation cannot completely whiten the
strongly correlated spatial rainfall reflectivity images. It was
revealed that despite the Karhunen‐Loève‐like decorrelation
property (see Figures 2a and 2b) of the wavelet transform,
Wornell [1990], the wavelet coefficients of precipitation
reflectivity images at nearby subbands (same scale or across
scales) exhibit considerable short‐range dependence. Study-
ing the relationship of the wavelet coefficients at two con-
secutive scales under the name of parent and child, Figure 2c
demonstrates that the conditional variance of the children
highly depends on the parent magnitude. Indeed, larger
parents give rise to children with larger magnitude and
spread. However, this scale‐to‐scale dependence is not the
entire story as the empirical observations also signify that
the rainfall fluctuations are also highly structured at each
subband with noticeable intrascale short‐range correlation.
Specifically, decomposing a precipitation reflectivity image,
Figure 3 shows the image representation of the covariance
matrices of a local neighborhood of size 5 × 5 for the three
different subbands at the same scale. This clearly shows that
the off‐diagonal elements of the covariance matrices are
significant and should not be neglected for accurate synthetic
reconstruction and/or estimation purposes in the wavelet
domain. Note that, to make the statistical characterization and
the results of the proposed fusion methodologies independent
of the storm specific Z‐R relationship, all of the analyses in
this work are performed on precipitation reflectivity images in
dBZ. Therefore, up to a scaling factor, the results can be
generalized to the log rainfall intensity accepting a linear
relationship between rainfall R[mm=hr] and decibels of reflec-
tivity Z; i.e., Z = 10 log(Z=Z0 ), via the common Z = aRb

relationship, where Z refers to the reflectivity and Z0 = 1 mm3

is the reference level.

3. Linear Fusion of Multisensor Precipitation
Data in the Spatial Domain

[8] Since minimization of quadratic error functionals is a
convex problem with a unique solution, least squares esti-
mation has played a central role in a large family of statis-
tical inference and estimation problems. As in this study
optimal estimation or fusion of multisensor precipitation
observations builds upon the basic theory of least squares
estimation, a brief explanation of the relevant theoretical
aspects is presented in this section.

Figure 2. (a) A NEXRAD precipitation long‐range reflec-
tivity image at resolution 1 × 1 km over the MELB site on
26 September 2004 at 04:50:00 UTC. (b) The central hori-
zontal transect of the two‐dimensional correlation function
in real (solid line) and wavelet (broken line) domain. This
shows that the correlation quickly decays in a short range
of spatial lags in the wavelet domain as opposed to the spa-
tial domain. (c) Standard deviation of the wavelet coeffi-
cients of the reflectivity fields (children) conditioned on
the magnitude of the coefficients at the next coarser scale
(parents), obtained from 100 independent storm snapshots
over the HSTN‐GV site, demonstrating the scale‐to‐scale
dependence of the reflectivity fluctuations. Note that here
wavelet coefficients refer to the horizontal subbands at
one level of decomposition.
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3.1. Principles of Least Squares Estimation

[9] Consider a set of noisy measurements y 2 RN of a
parameter vector x 2 RK with joint covariance matrix of the
form S = [Sx, Sxy; Syx, Sy]. Without having any a priori
assumption about the density of observations and parameter
vectors, the Bayesian least squares estimator of x and the
associated covariance (S) of estimation can be derived as,

x̂ ¼ mx þ SxyS�1
y y� my

� �
Sx̂ ¼ Sx � SxyS�1

y Syx;

where mx = E[x] and my = E[y] [see, e.g., Levy, 2008].
[10] Casting this problem in the context of a linear mea-

surement equation of the form y = Cx + v in the Gaussian
noise environment v ∼ N (0, Sv), where C 2 RN×K is the
measurement matrix, and knowing SAx, By = ASxyB

T for any

matrices A and B of relevant size, the above expression can
be further expanded as follows.

x̂ ¼ mx þ SxC
T CSxC

T þ Sv

� ��1
y� Cmxð Þ ð1Þ

Sx̂ ¼ Sx � SxC
T CSxC

T þ Sv

� ��1
CSx: ð2Þ

[11] The least squares estimation x̂ of x given y, is indeed
the projection of x onto the linear subspace spanned by y or
say span{y}, which is optimal in the sense that E [∣x − x̂∣2] ≤
E [∣x − span{y}∣2]. In the case that x and y are in the Gaussian
domain (linear filtering), the least squares estimator is fully
optimal in the sense that it coincides with the conditional
expectation x̂ = E [x∣y]. However, in the case of non‐
Gaussian distributions (nonlinear filtering), the conditional
expectation is a nonlinear function of the measurements and

Figure 3. (a) A NEXRAD long‐range reflectivity image (1 × 1 km) of a sample storm over MELB and
(b) its wavelet horizontal subband image. The off‐diagonal elements of the image representation of the
covariance matrices of neighborhoods of size 5 × 5 for (c) horizontal, (d) vertical, and (e) diagonal sub-
bands of the reflectivity image in Figure 3a show that the wavelet coefficients are weakly correlated in
space at different subbands and the correlation almost vanishes on the boundaries. This shows that the
covariance structure of the rainfall data in the wavelet domain can be reasonably well captured “locally”
in a finite spatial range (in this resolution <5 km).
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the least squares estimator is just a suboptimal linear esti-
mation of the conditional expectation. Note that in general,
the conditional expectation is optimal in the sense that
E [∣x − E [x∣y]∣2] ≤ E [∣x − f (y)∣2], where f (y) denotes any
nonlinear function of the observations [see Fristedt et al.,
2007; Levy, 2008]. In practice, for high‐dimensional pro-
blems obtaining this estimator may require inversion of the
measurement covariance matrix, which might be compu-
tationally cumbersome especially in temporal systems while
online measurements become available sequentially and
cumulative in time.
[12] A least squares estimation paradigm was introduced

by Kalman [1960] for the estimation of discrete time linear
Gauss‐Markov stochastic processes, i.e., xt = At−1xt−1 + wt−1,
where At is the temporal transition matrix and wt ∼N (0, Swt

)
is a white Gaussian noise vector, known as the model error.
Minimizing the trace of the covariance matrix of the esti-
mates, this formalism allows us to sequentially obtain the
conditional expectation of the system state variables x̂t =
E [xt∣y0,y1,…,yt] in time, given the noisy observations in the
framework of an affine measurement equation yt = Ctxt + vt,
where Ct relates the system state to the measurements and
vt ∼ N (0, Svt). Obviously, for such a Gaussian dynamic
system, Kalman filter (KF) is an optimal estimator as the
conditional expectation, and the associated covariance can
fully explain the entire probabilistic structure of the sys-
tem. Replacing the notion of time with scale, the original
idea of the linear estimation of temporal Gauss‐Markov
systems was further expanded by Chou et al. [1994] to the
optimal estimation of multiresolution auto‐regressive (MAR)
Gaussian processes [e.g., Luettgen et al., 1993; Daniel and
Willsky, 1999; Willsky, 2002]. In MAR representation, a
multiresolution process is naturally defined on a treelike
graph structure T (see Figure 4), where each node s 2 T on

the tree is a 3‐tuple which indicates the signal quantity x(s)
in a specific translational offset and scale level:

x sð Þ ¼ A sð Þx s�ð Þ þ w sð Þ: ð3Þ

In this coarse‐to‐fine multiresolution dynamics, s� denotes
the parent node of s, A(s) is the transition matrix and w(s) ∼
N (0, Sw(s)) is a Gaussian white noise. The system states x(s)
at each node s are distributed as N (0, Sx(s)), where the
covariance Sx(s) = E [x(s)x(s)T] evolves according to the
discrete Lyapunov equation across scales:

Sx sð Þ ¼ A sð ÞSx s�ð ÞA
T sð Þ þ Sw sð Þ:

In this setting, the measurement equation at different scales
is given by

y sð Þ ¼ C sð Þx sð Þ þ v sð Þ; ð4Þ

where C(s) specifies the linear relationship between x(s)
and what is measured at each node and v(s) is a
Gaussian white noise independent of w(s) with covariance
Sv(s) = E [v(s)v(s)T]. Analogous to the two‐pass smoother
algorithm for temporal system dynamics by Rauch et al.
[1965], known as the RTS‐Smoother due to the author
names, the presented two‐pass scale‐recursive estimation
(SRE) algorithm by Chou et al. [1994] permits fusing
(assimilating) such measurements into the estimation pro-
cess of the MAR dynamics of equation (3).

3.2. Scale‐Recursive Estimation of Multisensor
Precipitation Data

[13] In the past decade, several research groups exploited
the SRE framework for fusing coincidental multiscale
soil moisture and precipitation data [e.g., Kumar, 1999;
Gorenburg et al., 2001; Tustison et al., 2002; Gupta et al.,
2006; Bocchiola and Rosso, 2006; Bocchiola, 2007; Van de
Vyver and Roulin, 2009]. Typically, a regular quadtree T q

structure is being used to model coarse‐to‐fine scale
dynamics of precipitation fields in the SRE framework,
where each node s on the tree at scale‐level j(s) gives rise to
four children nodes, namely {sai}i=1

4 , at scale‐level j(s) + 1
(see Figure 4). Scale‐recursive estimation of multisensor
precipitation data has some subtle technical issues. For
example, it needs to be assumed that precipitation data can
be modeled from coarse‐to‐fine scales by a Gaussian MAR
dynamics. Furthermore, rainfall is a positive process and
the background of precipitation fields is often filled with
too many zero intensity values. How should these zeros
be handled in the context of a stochastic MAR model while
preserving the positivity condition and proper correlation
structure of the precipitation data?
3.2.1. Implementation on Rainfall Fusion
[14] Typically, in this setting the coarse resolution precip-

itation data (i.e., satellite observations or general circulation
model predictions) are considered as model information x(s)
at the root node of the quadtree, where a MAR model is
being used to produce the rainfall information at higher
resolutions of interest. Consequently, the available observa-
tions at finer resolution, such as the data from the NEXRAD

Figure 4. Regular quadtree structure typically used to
model two‐dimensional multiresolution Markov fields in
which each parent node gives birth to four children nodes.
In this representation, each node on the tree represents the
process magnitude in a spatial region and specific location,
while each level of the tree corresponds to a particular res-
olution (scale) of the process.
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weather surveillance radars, are generally considered as
measurements y(s).
[15] In the context of rainfall data, it has long been argued

[e.g., Lovejoy and Schertzer, 1990; Gupta and Waymire,
1993] that these fields can be explained using a nonlinear
multiplicative scale‐to‐scale stochastic structure; e.g., r(s) =
r(s�)z(s), where z(s) represents a driving random compo-
nent known as the cascade generator with E [z(s)] = 1, in
a canonical form. Working on high‐resolution rainfall data,
Menabde et al. [1997] proposed a lognormal density for the
z(s). To treat this nonlinear recursion and make it consistent
with the settings in equations (3) and (4), typically the SRE
method is performed in the log transformed rainfall; i.e., log
[r(s)]: = x(s), or say a shifted version of the reflectivity
fields [e.g., Gorenburg et al., 2001; Tustison et al., 2002],

log r sð Þ½ � ¼ log r s�ð Þ½ � þ log � sð Þ½ �; ð5Þ

where log[z(s)] is a Gaussian white noise, equivalent to the
term w(s) in equation (3). In terms of the first‐order and
marginal statistics, this transformation seems fine; however,
the log transformation cannot completely transform a rain-
fall field into a Gaussian process and change the multipli-
cative scale‐to‐scale correlation into an additive structure.
For instance, it is easy to check that the conditional variance
in a multiplicative recursion depends on the magnitude of
the process at the next coarser scale; i.e., var [r(s)∣r(s�)] =
(r(s�))2 var [z(s)], which is not the case in equation (5), as
long as the term log[z(s)] remains a “white” type of Gaussian
noise at different scales. In effect, some important higher‐
order scale‐to‐scale statistical structures are ignored in linear
estimation of rainfall data in the log transformed domain.
Moreover, we have also shown that the marginal histogram
of the rainfall reflectivity data (logarithm of rainfall through
Z‐R relationship) is far from being in the Gaussian domain of
attraction (see Figure 1b) [Ebtehaj and Foufoula‐Georgiou,
2010, 2011].
[16] Considering all of these major MAR model incom-

patibilities with the observed statistical structure of rainfall,
the standard Gaussian multiscale filtering technique still
provides a very efficient global least square estimator of
the multiscale multisensor precipitation data. Here an exam-
ple is provided which uses the SRE framework to merge
precipitation given from TRMM‐PR and ground‐based
NEXRAD coincidental precipitation reflectivity imageries.
We assumed that the reflectivity images can be partially
explained by the linear MAR model in equation (3). The tree
is assumed stationary in the sense that A(s) = I and as
explained the “model” information x(s) is obtained from the
coarse resolution TRMM near‐surface reflectivity images at
≈4 × 4 km and the “observations” y(s) are set to the
NEXRAD high‐resolution reflectivity imageries at 1 × 1 km.
We assumed that both sensors provide unbiased precipita-
tion estimates in a global sense and hence we set C(s) = I. To
address the self‐similarity and commonly observed 1/f spec-
trum in the rainfall reflectivity images (see, e.g., Figure 1a),
it is assumed that the variance of the driving noise term w(s)
decays geometrically from coarse‐to‐fine scales by assigning
Sw(s) / 2−Hj(s)I, where the scalar parameter H > 0 refers
to the self‐similarity index, and j(s) represents coarse‐to‐fine
scale levels at node s. This parameter controls the dropoff

rate of the power spectrum of the synthesized fields [Daniel
and Willsky, 1999] and can be estimated from the available
high‐resolution NEXRAD data. To this end, we simply
employed the concept of image pyramid encoding [Burt and
Adelson, 1983]. The original NEXRAD image can be
coarsened by smoothing and downsampling by a factor
of 2, using an average filter of size 2 × 2, to produce an
“approximate” representation of the field at the next coarser
scale. The approximate coarse scale image is then upsampled
by a factor of 2 and convolved with a nearest neighborhood
interpolator to produce the so‐called “prediction field,”which
will have the same dimensions as the original NEXRAD
image. The difference between the prediction field and the
original one indeed gives us the “detail information” which
is needed to reconstruct perfectly the high‐resolution origi-
nal image given the low‐resolution (approximate) version
at the next coarser scale [see Gonzalez and Woods, 2008].
Recursive implementation of this encoding procedure yields
characterization of the scale‐to‐scale detail information and
characterization of the noise term w(s) in equation (3).
Indeed, we used the high‐resolution NEXRAD precipitation
data to estimate the required self‐similarity exponent of the
MAR model to provide TRMM rainfall information x(s) at
higher resolution of interest on the tree.
[17] The background effect in rainfall fields is significant,

meaning that a major portion of the image is typically filled
with zero intensity values. Therefore, crudely putting a
coarse resolution rainfall image (e.g., TRMM observations)
in the framework of the MAR dynamics will result in adding
noise to the background of the image which is in contra-
diction with the positivity assumption of the rainfall fields
and will lead to an invalid representation. To resolve this
problem, we just prune the tree from coarse‐to‐fine scales,
meaning that the zero intensity parent nodes in the TRMM
data are assumed impotent in giving rise to nonzero chil-
dren. By this assumption, background pixels (zeros) of the
coarse resolution TRMM image remain zero in the finer
scale images produced by the MAR model of equation (3).
3.2.2. Results of SRE Fusion
[18] Using SRE, Figure 5 shows the fusion of high‐

resolution (i.e., 1 × 1 km) NEXRAD observations of a storm
event over the HSTN site on 28 June 1998 at 18:13:00 UTC
with a coincidental TRMM‐PR observation at resolution
≈4 × 4 km. The covariance of the measurement noise has a
significant implication on the outcome of the fusion process.
Choosing a large Sv(s) compared to the process covariance
at each node will yield a fusion product which is more
inclined toward the model information (i.e., TRMM data)
and vice versa. Obviously, estimation of the properties of
this covariance requires some statistical inference from a
large set of coincidental observations. Ebtehaj and Foufoula‐
Georgiou [2011] characterized the diagonal elements of this
covariance for the data set used in this study in terms of
a signal‐to‐noise ratio (SNR) measure in decibel (dB) scale;
i.e., SNR = 10 log10 (�

2 sð Þ
�2
v sð Þ
), where s(s) is the standard

deviation of the NEXRAD image and sv(s) represents the
standard deviation of the error between the mean of the
coincidental images of the TRMM‐PR and NEXRAD obser-
vations. This error covariance can be characterized as a
function of scale; however, in this study this measure is just
estimated in an average sense at the TRMM resolution and
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generalized to all scales. Our studies suggest that the SNR in
the defined context ranges from 10.0 to 20.0 dB, meaning
that the noise power is less then 10% of the rainfall energy.
[19] As a true representation of the precipitation fields is

not generally available and all of the rainfall products are
just estimates of the process, a quantitative evaluation of
the performance of the fusion process in terms of error
norms is not very straightforward. Nevertheless, it is gener-
ally expected that the information content of a field is aug-
mented as a result of a fusion process. To address this fact, the

entropy or the expected value of the information content of
the rainfall images can be estimated and compared,

Entropy ¼ �
X

k
p Zkð Þ log2 p Zkð Þ½ �

where p(·) is the probability measure of the rainfall reflec-
tivity image intensity values Zk falling within the kth bin of
the image histogram. Using the log2(·) function, the entropy
measures the average information content in terms of bits

Figure 5. (a) TRMM‐PR near‐surface single‐level reflectivity image over the HSTN site on 28 June
1998 at 18:13:00 UTC. (b) Coincidental NEXRAD base reflectivity image of the storm. (c) Downscaled
TRMM observations according to the linear MAR model (H = 0.6) at resolution 1 × 1 km. (d) Fused
product according to the SRE framework, assuming SNR = 11.0 dB (see text for discussion).

EBTEHAJ AND FOUFOULA‐GEORGIOU: PRECIPITATION MULTISENSOR FUSION D22110D22110

7 of 19



per pixel [see Gonzalez and Woods, 2008]. In the studied
storm images of Figure 5, using SNR = 11.0 dB, as the
consequence of fusion, the average information content of the
final high‐resolution fused product was increased approxi-
mately by 33% compared to the original NEXRAD image.
Apart from different probable sources of false detection (e.g.,
ground clutter) which need to be treated separately, due to
the inherent differences in the way that the two sensors
interrogate the vertical profile of the atmosphere, in fusion
of precipitation snapshots there might be some spots that a
sensor detects as rainy areas where the other sensor is blind.
Therefore, naturally the wetted area (positive part) of the
fused products is greater or equal compared to the individual
original measurements. Consequently, a major part of this
entropy increase can be due to the growth of the wetted area
as a natural result of the fusion process.
[20] We can also compare matrix norms of the processed

(fused) and unprocessed images (original) to quantify how
this fusion process may affect the overall second‐order
marginal statistics of the fields. As a result of the fusion
process, we do expect that the final processed image pos-
sesses a 2‐norm measure which falls within the range of the
2‐norm of the original input images; i.e., TRMM‐PR and
NEXRAD data. To this end, the Frobenius norm (F‐norm) of
the processed and unprocessed reflectivity images Z 2 RM×N

at two scales of interest are computed and compared:

Zk kF¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

XN
j¼1

zi; j
�� ��2

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr ZTZ
� �

:
q

Table 1 shows the normalized calculated F‐norms for the
originally observed TRMM‐PR, NEXRAD images and their
posterior estimates as a result of the fusion process. It turns
out that the TRMM observation in this case has larger
F‐norm (energy) than the NEXRAD image at the same scale
and the energy of the posteriori estimate lies within the
range of the computed F‐norms of the original observations.
[21] As we explained before, isolated singularities and

jump discontinuities are typical features in the rainfall
images which manifest themselves as a tail in the probability
distributions of the wavelet coefficients, considerably thicker
than the Gaussian case. These local extreme values often
contain a large portion of the signal energy and may play a
very important role in the hydrogeomorphic consequences

and risk assessment of extreme storm events. In standard
linear Gaussian filtering schemes such as SRE, this important
property is not explicitly addressed and often the results of
these methods will lead to an overly smooth representation
of the process [e.g., Wainwright et al., 2001]. In section 5,
a new nonlinear adaptive estimation method is presented
which exploits the regular statistical signature of the rainfall
images in the wavelet domain to properly capture the
non‐Gaussian and singular structure of precipitation data.
We further explain quantitatively the major advantages of
the newly proposed method as compared to the standard
linear Gaussian estimation in an illustrative synthetic one‐
dimensional example.

4. Precipitation Probability Model in the Wavelet
Domain

[22] As described before, rainfall reflectivity images
exhibit a highly non‐Gaussian structure. This structure has a
remarkably distinct and regular signature in the wavelet
domain.We explain in this section how this regularity permits
an adaptive exploitation of the common linear filtering
methods for proper multiscale rainfall estimation. Note that in
this study we have used a redundant orthogonal wavelet
representation, the so‐called “stationary wavelet transform”
[Nason and Silverman, 1995; Coifman and Donoho, 1995],
for multiscale subband encoding of the reflectivity images.
This class of wavelet representation is shift invariant and
produces an overcomplete set of nearly alias‐free subband
information which leads to a superior filtering performance
and more accurate subband parameterization.
[23] It has been theoretically shown that a variety of well‐

known classes of elliptically symmetric thick tail probability
distributions such as the t‐distribution, symmetric gamma,
double exponential and a‐stable can be reproduced using
a scale mixture of Gaussian random variables [Andrews and
Mallows, 1974;West, 1987;Wainwright and Simoncelli, 2000;
Wainwright et al., 2001]. Formally, a Gaussian‐scale mixture
(GSM) random vector d is defined as the product of a zero
mean Gaussian random vector u ∼ N (0, Su), and a positive
scalar multiplier random variable z,

d ¼d
ffiffi
z

p
u; ð6Þ

where ¼d stands for equality in distributions. For instance,
choosing z as an exponential random variable, the GSM will
produce a randomvector from the family of Laplace densities.
However, in the case of the generalized Gaussian density with
0 < a < 1, the range typically observed for rainfall reflectivity
images [Ebtehaj and Foufoula‐Georgiou, 2011], there is no
closed form expression for the distribution of the multiplier
[Wainwright et al., 2001]. By construction, Sd = E [z] Su,
hence without loss of generality assumingE [z] = 1, the entire
covariance structure of the GSM can be controlled by the
covariance of the u. Obviously, higher‐order moments of the
multiplier z will determine the shape or heavy tail properties
of the GSM random vector.
[24] A key feature of the GSM is that the conditional

density p(d∣z) is a zero mean Gaussian process with covari-
ance zSu. Integrating the joint density with respect to z and

Table 1. Frobenius Norm of the TRMM‐PR and NEXRAD
Observations and SRE‐Fused Product, Rowwise Normalized by
the Maximum of Each Rowa

Scale

Normalized Frobenius Norm

TRMM‐PR NEXRAD SRE Fusion

4 × 4 km 1 0.76 0.80
1 × 1 km 1 0.78 0.84

aTRMM‐PR shows a larger F‐norm in this case, and the fused product
falls within the lower and upper bounds. In the SRE fusion method, the
fine‐resolution image of the TRMM radar is obtained using a synthetic
realization of the MAR model, and the low‐resolution NEXRAD field is
obtained by successive dyadic coarsening as explained in the text.
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using Bayes’ theorem, the GSM multivariate density can be
characterized as [Wainwright et al., 2001]:

pD dð Þ ¼
Z ∞

0
p djzð ÞpZ zð Þdz ¼

Z ∞

0

exp � dT zSuð Þ�1d
2

� �
2�ð ÞN=2 det zSuj jð Þ1=2

p zð Þdz:

[25] A finite dimensional version of this representation is
reminiscent of the Gaussian kernel density estimation par-
adigm in the statistical literature. Indeed in discrete space,
the probability mass function of the GSM is a convex
weighted sum of different rescaled versions of some zero
mean Gaussian kernels, where given a set of observations,
the weights and bandwidths (i.e., pZ(z) and z) of the kernels
need to be estimated in an optimal sense.

5. GSM Optimal Estimation in the Wavelet
Domain

5.1. Basics of the Framework

[26] Given a set of independent observations y 2 RN of a
GSM random vector d 2 RN (d =

ffiffi
z

p
u) in a Gaussian noise:

y ¼ dþ v; ð7Þ

where v ∼ N (0, Sv) and assuming E [z] = 1, without loss of
generality, equations (6) and (7) result in:

Syjz ¼ zSu þ Sv

Sy ¼ Su þ Sv:
ð8Þ

In this case, the likelihood function of the multivariate GSM
density can be expressed as follows:

p yjzð Þ ¼ 1

2�ð ÞN=2 det zSu þ Svj jð Þ1=2
exp

�yT zSu þ Svð Þ�1y
2

 !
:

[27] With no a priori assumption on pZ(z) and perfect
whitening effect of the wavelet transform, Strela [2000] and
Strela et al. [2000] derived the maximum likelihood (ML)
estimator for the multiplier z. However, as explained previ-
ously, it has been found that the wavelet decomposition
cannot completely decorrelate the rainfall reflectivity images
and the wavelet coefficients are highly structured with a short
range of spatial dependence (see Figures 2a, 2b, and 3). This
implies that the assumption about the diagonality of the
covariance matrix of the wavelet coefficients might not be a
good assumption for modeling of spatial rainfall.
[28] Studying the heavy tail properties of these images

in the wavelet domain, the lognormal density was found
empirically as a suitable prior assumption about the distribu-
tion of the multiplier pZ(z) [Ebtehaj and Foufoula‐Georgiou,
2011] (see Figure 6). Accordingly, given a set of indepen-
dent observations y 2 RN and the a priori information about
the density of z, the maximum a posteriori estimate (MAP)
of the multiplier can be computed in a Bayesian setting:

ẑMAP ¼ argmax
z

log p zjyð Þf g ¼ argmax
z

log p yjzð Þ þ log p zð Þ:f g

[29] Assuming the multiplier has a lognormal density
z ∼ LN (mz, sz) with E [z] = 1, where mz and sz are the mean
and variance of the log(z), in a more general case where Su

and Sv are not diagonal, solving the above optimization
problem leads to the following nonlinear expression which
needs to be solved numerically for ẑMAP [Portilla et al., 2001,
2003],

f ẑMAPð Þ ¼ log ẑMAP þ 3�2
z=2

ẑMAP�2
z

þ 1

2
SN

n¼1

ẑMAP � ��1
n v2n � 1
� �

ẑMAP þ ��1
n

� �2 ¼ 0;

ð9Þ

where vn are the components of the vector V = QTS−1y; S is
the square root of the error covariance matrix (i.e., SST = Sv)
and (L, Q) contains the eigenvalues ln 2 L and eigenvectors
of the positive semidefinite matrix S−1SuS

−T. Different
numerical methods such as bisection, secant, false position or
Brent’s method can be used to find the root of equation (9)
(see Appendix A). We used a multidimensional bisection
method [see also Portilla et al., 2001], one of the simplest
and most primitive ones which always guarantees the con-
vergence to a root as long as the search begins in an interval
where the function f (·) takes opposite sign on the boundaries.
[30] Note that solving equation (9) requires full charac-

terization of the a priori lognormal density pZ(z) and its
parameters (mz, sz). The assumption corresponding to the
unity of the expected value of the multiplier reduces the
number of unknown parameters to one, as mz +

�2z
2 = 0, and

therefore it suffices only to estimate the variance sz
2 as it is

the only parameter appearing in equation (9). Given the
variance of the noise sv

2 and knowing that su
2 = sy

2 − sv
2, it

Figure 6. The broken line is the standardized marginal his-
togram (unit standard deviation) of a generated Gaussian‐
scale mixture (GSM) random variable using a lognormal
multiplier with sz ≊ 1.2 (see equation (12)), and the solid
line shows the fitted generalized Gaussian (GG) density
with a ≊ 0.7. The inverted parabola shows the Gaussian
distribution in log probability for comparison purposes.
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can be shown after some algebra that this parameter can be
estimated as (see Appendix A):

�2
z ¼ log E z2

� 	� �
¼ log

E y4½ �=3� 2�2
y�

2
v þ �4

v

�2
y � �2

v

� �2
0
B@

1
CA: ð10Þ

[31] Assuming that the wavelet coefficients of rainfall
images d 2 RN can be explained using a GSM model with a
log prior density for the multiplier, filtering and optimal
fusion of different sources of noisy measurements can be
performed efficiently in the wavelet domain while charac-
teristic heavy tail distributions and local singularities can be
well captured.
[32] In the form of a general linear measurement equation

y = Cd + v, referring to the conditional Gaussian density of
the GSM model and expressions in equations (1) and (2), the
conditional expectation of the zero mean noisy wavelet
coefficients and its covariance can be written as:

d̂ ¼ E djy; z½ � ¼ zSuCT C zSuð ÞCT þ Sv½ ��1
y

Sd̂ ¼ zSu � z2SuCT C zSuð ÞCT þ Sv½ ��1
CSu:

[33] Assuming an unbiased system of measurement equa-
tions with identity measurement matrix C = I, given the
MAP estimator of the multiplier, this conditional expecta-
tion can be simplified into:

E djy; ẑMAP½ � ¼ ẑMAPSu ẑMAPSu þ Svð Þ�1y: ð11Þ

[34] When applied to a local neighborhood of coefficients,
this expression is indeed an adaptive local Wiener filter
which in an individual subband (i.e., a particular scale of

interest) can be exploited to recover the “contaminated”
wavelet coefficients in a Gaussian noise environment. Note
that in this setting as the entire structure of the covariance
matrix is incorporated, a correlated noise also can be used
and there is no restriction on choosing only a white type
of Gaussian noise (diagonal Sv). Obviously, obtaining the
filtered wavelet coefficients for each subband, a denoised
version of the process of interest (e.g., rainfall reflectivity)
can be recovered using the inverse wavelet transform, which
is optimal both in the least squares and maximum likelihood
sense in the wavelet domain.

5.2. Global Versus Local Filtering

[35] Implementation of the filter discussed above in the
wavelet domain requires estimation of Su for each subband,
which can be obtained from equation (8) given the mea-
surement error covariance Sv. As the wavelet decomposition
approximately whitens the precipitation fields, assuming
a finite correlation length for the wavelet coefficients, this
covariance can be estimated via characterization of the
dependence of a local “neighborhood” of the wavelet coef-
ficients. In high‐dimensional problems, this local character-
ization not only makes the estimation process computationally
more tractable but also leads to a superior estimation, in the
sense that the local singular structures of interest (precipita-
tion local extremes) can be better recovered from noisy
observations [Strela, 2000; Portilla et al., 2001]. In effect,
modulating the measurement covariance by the estimated
multiplier, the significance of filtering is adaptively adjusted
according to the local singular features of the field. For large
multiplier values over the singular points of the process, the
filtering is less significant and the filter accepts the obser-
vations close to the true values; however, when the multi-
plier modulates the Su in the same order of magnitude as
that of the noise covariance, the filter smooths out the
observations by suppressing the noise.
[36] In general, a local neighborhood may include clusters

of nearby wavelet coefficients from different subbands at
multiple scales around a reference point. In this study, we
use a pyramidal neighborhood of the wavelet coefficients
which includes two clusters of the coefficients, each in an
individual subband at two successive scales (see Figure 7).
In this construction, the elements of a neighborhood of sizeffiffiffiffi
N

p
×

ffiffiffiffi
N

p
of the wavelet coefficients have to be stacked

according to a fixed order into a vector form y 2 RN. Sliding
the neighborhood over the entire subband of size RM×L in an
overlapping manner, the sample covariance matrixSu 2RN×N

can be estimated for each individual subband of large
dimension as:

Su �

XM�L

i¼1

yyT
� �

i

M � L
� Sv:

[37] To resolve the block filtering boundary issues, each
subband has been padded symmetrically with “mirror
reflection” of itself around the boundaries. For implementa-
tion of the GSM‐Wiener filter in equation (11), this covari-
ance (Su) only needs to be estimated once for each subband.
On the other hand, the multiplier has to be estimated locally
according to equation (9) for every neighborhood loca-
tion, while it slides over the entire subband domain. The

Figure 7. A general pyramidal neighborhood of size N = 10
for each individual wavelet subband where a cluster of
3 × 3 pixels (children) is connected to one pixel at the next
coarser scale (parent). In this multiscale representation of a
generalized neighborhood, scale‐to‐scale and short‐range
intrascale dependence of the wavelet coefficients can be
explicitly captured in the local covariance matrix. The parent
node information is only taken into account where coarser‐
scale subband data are available in the wavelet domain. In
other words, for coarsest‐scale subband information, struc-
ture of the generalized neighborhood reduces to a simple
neighborhood of 3 × 3 pixels.
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conditional expectation in equation (11) gives an estimate
of the entire neighborhood elements, where only the central
value needs to be kept as the posterior estimate for each
point. This posteriori estimate of the central value is indeed
a weighted average of all surrounding elements in the neigh-
borhood while the weights are adaptively modulated by the
estimated multiplier ẑMAP.
[38] Note that by construction the estimated Su is always

symmetric; however, it may not be positive semidefinite for
high levels of noise. To ensure the positive semidefiniteness
of Su, we first factorized the matrix using eigenvalue
decomposition Su = VDVT and then only nonnegative
eigenvalues {di}i=1

n were picked to reconstruct a positive
semidefinite version of the estimated covariance matrix. Of
course, if the leading eigenvalue becomes negative the
subband information cannot be recovered at the assumed
power of noise.

5.3. Synthetic One‐Dimensional Implementation

[39] As previously demonstrated, one of the main
advantages of the local GSM‐Wiener filter is its adaptability
to the local structure of the signal compared to its global
standard Gaussian counterpart (i.e., SRE), leading thus to a
superior estimation of non‐Gaussian heavy tail precipitation
fields with frequent isolated intense rainfall clusters. This
potential achievement and verification may not be very clear
while filtering out the measurement noise and fusing pre-
cipitation images especially when the true intensity values
of the processes are not available. In this section, a synthetic
study is conducted to show how this filter provides a
superior framework to recover the true process from noisy
observations of a one‐dimensional multiscale process with
non‐Gaussian heavy tail marginals. For this purpose, anal-
ogous to the observed heavy tail multiscale structure of the
rainfall fluctuations [Ebtehaj and Foufoula‐Georgiou,
2011], a one‐dimensional GSM process using a lognormal
multiplier is simulated over a dyadic Markov tree. First, a
multiscale nonstationary Gaussian process u(s) is produced
on a dyadic tree according to the coarse‐to‐fine scale
dynamics of equation (3). The variance of the driving noise
is tuned with a relevant geometrical decay rate from coarse‐
to‐fine scales to reproduce an asymptotically dyadic self‐
similar process with 1/f spectrum. This process is multiplied
elementwise by a sequence of random variables drawn from
a lognormal density at different levels of the tree to produce
a multiscale GSM process on a treelike structure,

u sð Þ ¼ A sð Þu s�ð Þ þ B sð Þw sð Þ

d sð Þ ¼
ffiffiffiffiffiffiffiffi
z sð Þ

p
u sð Þ;

where w(s) ∼ N (0, 1) and B(s) = 2−Hj(s)/2. Setting sv
2 = 0 in

equation (10), observe that the kurtosis �(·) of a simulated
lognormal GSM can be solely determined by the variance of
the multiplier z,

� d sð Þ½ � ¼ 3 exp �2
z sð Þ

� 	
: ð12Þ

[40] As the marginal distribution of the lognormal GSM
resembles the family of generalized Gaussian densities
[Wainwright et al., 2001], this also implies that the shape
of the equivalent GG density is only characterized by the

variance of the multiplier, knowing that the tail parameter
(a) of a GG density can be uniquely estimated from the
sample kurtosis �(·) = G 1=�ð ÞG 5=�ð Þ=G2 3=�ð Þ [see, e.g., Nadarajah,
2005].
[41] In this study, the sample path of the generated GSM

signal is considered as the true values which have to be
recovered, given a set of noisy observations y(s) = d(s) + v(s),
where v(s) ∼ N (0, Sv(s)). For this particular case of one‐
dimensional simulation, the signal‐to‐noise ratio, was set on
the order of 8 dB to generate the noisy measurements. To
exploit the multiscale structure of the process, the general-
ized neighborhood includes a single reference point of the
process and only a single parent node in the next coarser
scale; i.e.,Su is a 2 × 2 matrix. This allows us to incorporate a
local scale‐to‐scale correlation (see, e.g., Figure 2) and cap-
ture the parent and child dynamics, for improving the signal
recovery. A realization of this synthetic simulation and the
recovered signal, using the standard linear multiscale esti-
mation (SRE) and the local GSM‐Wiener filter is presented
in Figure 8 for the seventh scale level on a dyadic tree
with 27 leaf nodes. Qualitatively, the GSM‐Wiener is out-
performing the SRE method especially over the recovery of
the peaks and singularities. Note that for both cases, the
estimation process suppresses the noise over the regions
where the signal is of low amplitude; however, the GSM‐
Wiener filter shows a better performance over the singular
points. This can also be quantitatively evaluated in terms of
some vector norms of error; i.e., kekp. A normalized mea-
sure ðkeskp�keGkpÞ=keSkp is defined, where keSkp and keGkp are
the p‐norms of the error for the recovered signal using SRE
and GSM‐Wiener filters, respectively. For instance, in this
particular case, assuming p = 2, the 2‐norm (energy) of error
is improved about 20 percent while this gain rose to about
45 percent for the infinity norm or the maximum absolute
value of the error vector. This significant improvement
implies that GSM‐Wiener filtering can outperform standard
Gaussian methods on the recovery of the commonly observed
types of singularities in the precipitation fields, while also
keeping the other common norms of the error even lower than
the standard linear estimation algorithms.
[42] Analogous to the explained one‐dimensional case, it

is expected that estimating multisensor precipitation data
using standard linear Gaussian filtering methods such as the
SRE, may result in not properly capturing important sin-
gular features of the fields which can potentially be of great
hydrometeorological importance.

6. GSM Multisensor Fusion of Precipitation Data

6.1. Conceptual Development

[43] In this section we describe how the explained GSM‐
Wiener filter can be employed for optimal estimation and
fusion of the precipitation reflectivity images, given differ-
ent sources of noisy observations. It has long been recog-
nized that all of the active and passive precipitation sensors
have their own specific measurement error structure [see, e.g.,
Wang and Wolff, 2009]. As explained previously, in recent
decades significant effort has been devoted to error charac-
terization of the remotely sensed precipitation products.
Typically, using an appropriate Z‐R relationship, this involves
statistical comparison of the remotely sensed data with a
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reliable set of rain gauge observations either in the reflectivity
or rainfall intensity domain. This comparison is not very
straightforward as these sources of information often give
precipitation estimates at different spatiotemporal scales. For
instance, it has been concluded that direct comparison of the
real time rain gauge data as a pointwise representation of the
highly irregular rainfall process with a remotely sensed
areally averaged rainfall products may not lead to a conclu-

sive statistical characterization of themeasurement error [e.g.,
Ciach and Krajewski, 1999;Wang and Wolff, 2009]. Indeed,
for a proper characterization of the measurement error norms,
the spatiotemporal scaling gaps between these sources of
information need to be properly addressed. Although this
characterization is not explicitly addressed in this study, it is
emphasized that the proposed fusion methodology requires
this information as an input and the overall quality of the

Figure 8. (a) A synthetic signal of a one‐dimensional multiscale GSM (using a lognormal multiplier)
and its noisy measurement. The sample path is generated with A(s) = 0.9 and H = 0.7. The variance
of the log multiplier is set to reproduce a sample path with a marginal histogram similar to a generalized
Gaussian distribution with a = 0.7 (sz ≊ 1.20) found in the rainfall NEXRAD reflectivity images. The
signal recovery using the (b) SRE and (c) GSM‐Wiener shows the superior performance of the GSM fil-
ter, especially over the singular points and extreme fluctuations.

EBTEHAJ AND FOUFOULA‐GEORGIOU: PRECIPITATION MULTISENSOR FUSION D22110D22110

12 of 19



fusion process highly depends on this error characterization.
Note that the proposed fusion methodology is just a filtering
method to estimate the conditional expectation of the unbi-
ased noisy precipitation data. Therefore, it is also assumed
that there is no systematic bias in the observation instruments
and any sort of bias adjustment has to be performed prior to
applying the presented fusion algorithm.
[44] To address the scaling issues involved in precipita-

tion multisensor estimation, the new proposed fusion meth-
odology possesses a multiscale filtering structure. Practical
implementation of this methodology does not necessarily
require a stochastic or physically based precipitation model
to fill the scaling gaps between the available high‐resolution
(NEXRAD) and low‐resolution (TRMM‐PR) precipitation
products. Indeed, as the estimation process is performed in a
pyramidal data structure in the wavelet domain, in the pre-
sented case study, the high‐resolution (i.e., <4 km) infor-
mation of the final fused product would be solely based on
the rain gauge corrected NEXRAD wavelet coefficients.
However, in the scales where the TRMM data are also
available; i.e., ≥4 km, the fusion process exploits all sources
of information (see Figure 9).
[45] Basically, by comparing different sources of rainfall

measurements, three different error covariance matrices
need to be characterized for proper implementation of the
proposed fusion technique: (1) Sv1, NEXRAD versus rain
gauges; (2)Sv2, TRMM‐PR versus rain gauges; and (3)Sv3,
NEXRAD versus TRMM‐PR. Hereafter, the error covar-
iances Sv1 and Sv2 are called “rain gauge adjustment error.”
Note that although the results of the fusion process will be
more complete using all of the error covariance information,
lack of knowledge about any of these error matrices is not
prohibitive for practical implementation of the introduced
methodology. This becomes more clear as we proceed to
elaborate the method in detail.
[46] The proposed GSM multisensor multiscale method-

ology consists of twomajor steps namely “Vertical Filtering”
and “Lateral Projection” (see Figure 9). In the vertical fil-
tering phase, incorporation of the measurement errors is
considered as a filtering problem of the sort y = x + v,
where y denotes the remotely sensed precipitation obser-
vation and x is the true precipitation process which is cor-
rupted by a Gaussian noise v. Substituting Sv1 and Sv2 as
error covariance matrices in equation (11), the rain gauge
adjustment errors are first filtered out from the wavelet high‐
pass subbands of the TRMM and NEXRAD data, indepen-
dently. Afterwards, in the scales where both the TRMM and
NEXRAD data become available (i.e., ≥4 km), given the
characterized error covariance Sv3, the rain gauge corrected
subband information of the TRMM images can be laterally
projected at the same scales onto the subspace spanned by the
rain gauge corrected subbands of the NEXRAD measure-
ments. For the scales, where the TRMM‐PR data are not
available (i.e., <4 km) the high‐pass subband information of
the fused product will be solely obtained from the rain gauge
corrected NEXRADwavelet coefficients. At the last step, the
error corrected wavelet coefficients at all scales are used to
reconstruct the final fused product using the inverse wavelet
transform (see Figure 9).
[47] Theoretically speaking, using equation (11) in lateral

projection phase, we can keep decomposing the observations
(i.e., TRMM and NEXRAD) into multiple levels until we end

up with a single valued low‐pass subband and performing
the GSM fusion on the high‐pass coefficients over all the
scales where the data from both sensors are available. This
procedure might be computationally expensive and it seems
reasonable to perform finite levels of the wavelet decom-
position for fusion and denoising purposes, knowing that
high‐frequency noisy features of a signal are typically
captured at the first levels of wavelet high‐pass coefficients.
Consequently, at a certain scale level, we eventually need to
project the nonzero mean low‐pass coefficients of the low‐
resolution products (TRMM) onto the similar subspace (same
scale) spanned by the high‐resolution data (NEXRAD).
As the non‐Gaussian features of the signals are typically
captured in high‐pass subbands in the wavelet domain [see
Ebtehaj and Foufoula‐Georgiou, 2011], the low‐pass coef-
ficients can be fused using a conventional least squares for-
malism as expressed in equations (1) and (2),

E xljyl½ � � mxl þSxl Sxl þSv3ð Þ�1 yl � myl

� �
; ð13Þ

where yl,myl denote the NEXRAD low‐pass coefficients and
their mean in a local spatial neighborhood; andmxl,Sxl are the
average and covariance of the TRMM low‐pass coefficients
in that neighborhood, respectively. Obviously, as there is
no lower‐scale subband information available while fusing
low‐pass coefficients, the neighborhoods in this case just
include a cluster of coefficients in a single subband and there
is no information of parent nodes encoded in the covariance
matrices of equation (13).
[48] Besides the input error covariances, a set of two

parameters need to be determined in the presented fusion
methodology, including: (1) the structure and size of the
generalized neighborhood and (2) the levels of the wavelet
decomposition. In this work, we did not perform a quantita-
tive assessment of different choices of the parameters on the
fusion results and simply chose values we found empirically
to perform well.
[49] As explained previously, the correlation of the rain-

fall wavelet coefficients almost vanishes over a neighbor-
hood of size 3 to 5 pixels (km) for the first level of subband
coefficients. In general, it is found that increasing the size
of the neighborhood (i.e., enlarging the estimated correlation
domain) gives rise to a smoother and more blurred fusion
product. On the other hand, smaller spatial neighborhoods
generally generate a product which contains sharper and
more detailed structure of the high‐intensity rain cells.
[50] It is also observed that over the decomposition levels

2–4 (i.e., 4–16 km) the noise (observational error) can be
well captured in the wavelet domain and the results of
the fusion are satisfactory. Of course, for higher levels of
decomposition the low‐pass fusion takes place at larger
scales which means that more detailed features of the fused
product will be obtained from the higher‐resolution data
(e.g., NEXRAD) and incorporation of small‐scale informa-
tion of the low‐resolution sensor (e.g., TRMM‐PR) would
be less significant.

6.2. A Case Study on Precipitation Data

[51] The TRMM‐PR and NEXRAD coincidental reflec-
tivity image of a storm on 28 June 1998 over the HSTN site,
used for the SRE implementation (see section 3.2), is also
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selected in this part for comparison purposes. In this study
we have not explicitly characterized the error structure and
only implicitly used a fraction of the rainfall power to produce
observational error covariance. Assuming SNR = 13.0 dB
for construction of the diagonal rain gauge adjustment error
covariance Sv1, Figure 10 shows how incorporation of this
error may be reflected in a rainfall reflectivity image. A

cluster of wavelet coefficients including a neighborhood of
size 3 × 3 pixels and a single parent node right above
the central point at the next coarser scale is considered for
this filtering. Obviously, as we defined the rain gauge data
fusion in the context of a denoising problem, the result
would be a field smoother than the original NEXRAD
image. However, using the presented adaptive method this

Figure 9. Schematic of the proposed GSM fusion technique in the wavelet domain. In the “vertical fil-
tering” stage, filtering for rain gauge adjustment error is performed on each available unbiased source of
remotely sensed precipitation reflectivity image, i.e., TRMM‐PR and NEXRAD, independently. Then,
the rain gauge corrected data can be fused in the wavelet domain in the “lateral projection” phase as
explained in the text. Small‐scale (<4 km) subband information of the final fused product is extracted
from the rain gauge corrected NEXRAD data, while the larger‐scale subbands contain information from
all sources of the available rainfall data.
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filtering would be done at minimum expense corresponding
to the removal of the frequent local extremes of interest.
[52] Figure 11 compares qualitatively the performance

of the GSM‐Wiener fusion (using a neighborhood of size
3 × 3 plus a single parent) and the standard SRE method
with the same order of total error covariance. First, assuming
SNR = 24.0 dB, filtering of the rain gauge adjustment error
is performed independently on the TRMM and NEXRAD
reflectivity images. Then, at scale 4 × 4 km with SNR =
16.0 dB, the rain gauge corrected TRMM data are pro-
jected onto the subspace of the low‐pass coefficients of the
rain gauge corrected NEXRAD data, using equation (13).
Qualitative comparison of Figures 11a and 11b shows that
the GSM fusion algorithm recovers more small‐scale fea-
tures and produces a fused rainfall reflectivity image with
a more detailed structure. A one‐dimensional transect in
Figure 11c better demonstrates the performance of the pro-
posed GSM fusion compared to the standard SRE method. It

seems that due to the local structure of the GSM fusion, this
method also takes into account more information from the
TRMM observations while preserving the storm structure
and the local high‐intensity values of the rain cells. For
instance, in the left‐hand side of the fused images it is clear
that the SRE method significantly filtered out the TRMM
observations when the NEXRAD data were absent; how-
ever, the GSM fusion method did incorporate the TRMM
information in that part of the image.
[53] In the SRE fusion example we did not consider the

rain gauge adjustment error. Therefore, to quantitatively
compare the GSM and SRE fusion methodologies, it is more
realistic to neglect the incorporation of rain gauge adjust-
ment error in the GSM fusion and compare the fused pro-
ducts by considering only the same measurement error
between NEXRAD and TRMM‐PR; i.e., SNR = 11.0 dB.
Table 2 shows the entropy, F‐norm and statistical measures
of the associated rain rates of the two fused images. To

Figure 10. (a) Original NEXRAD reflectivity image over the HSTN site on 28 June 1998 at 18:13:00UTC
and (b) the rain gauge corrected image assuming SNR = 13.0 dB. (c) A vertical transect of the image,
bounded by two horizontal dashed lines in Figure 10b, shows a one‐dimensional representation of the rain
gauge filtering effects on the reflectivity image.
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compute the rain rate, the commonly used Z‐R relationship
of Z = 300R1.4 has been used for all reflectivity images. In
this case, the maximum entropy is obtained for the SRE
product while it shows a smaller F‐norm value compared to
the GSM‐fused product. This is good news in the sense that
while the GSM product has larger energy and spatial vari-
ability, it exhibits a smaller uncertainty and more regularity
in terms of the entropy measure. Recall that the entropy may
be interpreted as the spontaneous behavior of the system
state and hence a larger entropy indicates a less predictable
behavior of the system. The rain intensities also denote
that, apparently due to the local and adaptive structure of
the GSM fusion, the TRMM‐PR observations have been
incorporated more significantly in the final fused product, as

Figure 11. (a) SRE fusion of the NEXRAD and TRMM‐PR reflectivity snapshots over the HSTN site
on 28 June 1998 at 18:13:00 UTC, assuming SNR = 11.0 dB. (b) GSM fusion of the same reflectivity
snapshots, assuming SNR = 24 dB for rain gauge errors (Svi, i = 1, 2) and SNR = 16 dB for Sv3. Using
the same order of error variance, the GSM fusion extracts a more detailed structure of the storm and incor-
porates more information from the TRMM data. (c) One‐dimensional representation of the observed
and estimated rainfall reflectivity averaged over the displayed band, delineated by the dashed lines
in Figure 11b, compares qualitatively the performance of the employed fusion methods. For quantita-
tive comparison, please refer to Table 2.

Table 2. Statistical Measures of the Fusion Products (1 × 1 km)
by the GSM‐Wiener and SRE Methodologies Compared at the
Same Order of Measurement Errora

TRMM‐PR NEXRAD GSM Fusion SRE Fusion

Normalized entropy 0.74 0.75 0.88 1
Normalized F norm 1 0.78 0.89 0.84
Mean rain

rate (mm/h)
1.85 0.78 1.16 1.02

Maximum rain
rate (mm/h)

60.06 27.86 55.59 48.45

aEntropy and Frobenius norms are normalized by their respective
maximum values.
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the GSM product shows a larger mean and larger maximum
values compared to the SRE method (see Figure 11c).
Knowing that the wetted area in the studied storm snapshot
is about 120 × 103 km2, the difference between the esti-
mated rain budget from the original and fused products
seems significant which denotes the importance of the pre-
cipitation fusion. The precipitation products that we have
used in this study might not be the best from an operational
standpoint and to substantiate more the practical benefits of
the proposed precipitation fusion methodology, these find-
ings need to be further investigated and solidified by more
detailed analysis of other storm cases for which “ground
truth” highly accurate rain gauge data are available.

7. Conclusion

[54] A new method is presented which allows us to inte-
grate multiscale multiplatform precipitation measurements to
provide a posteriori estimates of spatial rainfall. This method
exploits the multiscale representation of precipitation images
in the wavelet domain and specifically a particular class of
Gaussian‐scale mixture (GSM) distributions as the proba-
bility model of the wavelet high‐pass coefficients of rainfall
data. This algorithm is structured in a way that it can address
the non‐Gaussian statistics and capture the extreme inten-
sity values of the precipitation fields in a Gaussian noise
environment with a superior performance and many other
advantages compared to the commonly used standard lin-
ear Gaussian fusion techniques. Exploiting the decorrelating
effects of the wavelet decomposition, the posteriori estimates
rely on the local multiscale spatial covariance structure of
the rainfall fields in the wavelet domain. Therefore, as the
wavelet decomposition converts a strongly correlated field
into a set of weakly correlated subbands, in lieu of estimat-
ing the entire covariance of the original field in the spatial
domain, a local representation of the covariance is estimated
in each subband and used for optimal estimation and fusion.
This makes the problem computationally more efficient while
allowing to capture the non‐Gaussian marginal statistics of
these fields. Depending on the typical rainfall domain size
for a single NEXRAD station and without any special opti-
mization in coding style, running the MATLAB code of the
algorithm on an Intel(R)‐i7CPU with 2.80 GHz clock rate,
takes in the order of less than 5 min.
[55] Using the developed fusion methodology, we can

obtain a posteriori estimates of rainfall images as long as
ground‐based and spaceborne precipitation data are coinci-
dentally available. Therefore, according to the revisiting
time of the TRMM satellite or other sources of spaceborne
precipitation data, we could update the satellite reflectivity
images all over the contiguous United States using the
national NEXRADmosaic images. The fused rainfall product
in this sense can be used in data assimilation systems to
improve forecasts at the local and regional scales. Applica-
bility of the developed methodology for obtaining posteriori
estimates of spatial rainfall fields, given TRMM Microwave
Imager (TMI) rainfall information, seems feasible and might
be of great interest for future development of this work. It
is worth nothing that, this fusion methodology can also be
applied to rainfall data at different time scales (e.g., daily or
monthly data), as long as the error covariance is properly

determined for that specific time scale. However, for larger‐
scale cumulative precipitation data the non‐Gaussian sig-
nature is naturally less significant.
[56] Due to the local structure of the proposed estimation

or fusion methodology, the range dependence effects of the
sensors can also be easily incorporated in the error covari-
ance matrices. This might be of great interest for estimation
and fusion of the orbital satellite products produced by cross
track instruments, where the measurement error shows a
systematic dependence on the distance of the detected pre-
cipitation with respect to the centerline of the swath (e.g.,
Advanced Microwave Sounding Unit). Furthermore, in a
broader context, applicability of the GSM probability model
for data assimilation of non‐Gaussian large‐scale geophys-
ical processes (e.g., soil moisture, atmospheric state vari-
ables) could also be of great interest for future research.
Obviously, developing efficient algorithms in this context
can significantly improve the shortcomings of the conven-
tional Gaussian‐based assimilation methods with respect to
the typically observed extremes and singularities of interest
in natural processes.

Appendix A: Details of Some Derivations
A1. Maximum a Posteriori Estimate of the Lognormal
Multiplier

[57] Recall that the Bayesian maximum a posteriori
(MAP) estimator of z is defined as:

ẑMAP ¼ argmax
z

log pZjY zjyð Þ
� 	
 �

¼ argmax
z

log pYjZ yjzð Þ
� 	


þ log
�
pZ zð Þ

	�
ðA1Þ

where this estimator is equivalent to the maximum likeli-
hood (ML) estimator when there is no informative assump-
tion (i.e., uniform density) with respect to the a priori term log
[pZ(z)]. Knowing that pY∣Z(y∣z) is Gaussian with covariance
Sy∣z = zSu + Sv , first let us focus on the term log[pY∣Z(y∣z)]
which leads to the derivation of the ML estimator; and then
by incorporating the a priori term, the MAP estimator in
equation (9) will be derived.
[58] For a noisy GSM observation vector y 2 RN, we

have:

pYjZ yjzð Þ ¼ 1

2�ð ÞN=2 det Syjz
�� ��� �1=2 exp �yT Syjz

� ��1
y

2

 !
: ðA2Þ

[59] Therefore, the log likelihood function can be written
as:

log pYjZ yjzð Þ
� 	

¼ � 1

2
yT Syjz
� ��1

y� 1

2
log det Syjz

�� ��� 	
þ C; ðA3Þ

where C is a constant independent of z. The covariance is a
positive semidefinite matrix, hence Sy∣z can be diagonalized
as follows:

Syjz ¼ zSu þ Sv

¼ zSu þ SST

¼ S S�1 zSuð ÞS�T þ I
� 	

ST ; ðA4Þ
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where S is the square root of Sv = SST which can be com-
puted using Cholesky or eigenvalue decomposition. Note
that S−1SuS

−T is also a symmetric positive semidefinite
matrix, which can be diagonalized by an eigenvalue decom-
position (i.e., spectral factorization) as S−1SuS

−T = QLQT,
where {Q, L} are matrices containing orthogonal eigenvec-
tors QQT = I and positive eigenvalues ln 2 L, respectively.
Therefore, diagonalization in equation (A4) can be written
as:

Syjz ¼ SQ zLþ Ið ÞQTST : ðA5Þ

[60] Using this diagonalized version of the covariance
matrix, equation (A3) can be further expanded as follows:

log pYjZ yjzð Þ
� 	

¼ � 1

2
yT SQ zLþ Ið ÞQTST
� ��1

y

� 1

2
log det SQ zLþ Ið ÞQTST

�� ��� 	
þ C

¼ � 1

2
QTS�1y
� �T

zLþ Ið Þ�1 QTS�1y
� �

� 1

2
log det SQ zLþ Ið ÞQTST

�� ��� 	
þ C

¼ � 1

2
VT zLþ Ið Þ�1V � 1

2
log det zLþ Ij j½ � þ C′;

ðA6Þ

where the vector V = QTS−1y. Note that zL + I is a diagonal
matrix whose determinant is equal to the multiplication
of its diagonal elements {zln + 1}n=1

N . Therefore, taking
derivative of equation (A6) with respect to z, we have:

@ log pYjZ yjzð Þ
� 	
@z

¼ 1

2
VT L zLþ Ið Þ�2
� �

V � 1

2

XN
n¼1

�n

z�n þ 1

¼ 1

2

XN
n¼1

�nv2n
z�n þ 1ð Þ2

� 1

2

XN
n¼1

�n

z�n þ 1

¼ 1

2

XN
n¼1

��1
n v2n � 1
� �

� z

zþ ��1
n

� �2 : ðA7Þ

[61] Note that assuming a noninformative density for the
multiplier, setting equation (A7) equal to zero, the root gives
the maximum likelihood estimator of z.
[62] Assuming a lognormal density pZ(z; mz, sz) = 1

z
ffiffiffiffi
2�

p
�z

exp (� logz�	zð Þ2
2�2z

), the derivative of the log likelihood is then
given by:

log pZ zð Þ½ � ¼ � log z� 	zð Þ2

2�2
z

� log zð Þ þ C ðA8Þ

@ log pZ zð Þ½ �
@z

¼ � log zþ 	z � �2
z

z�2
z

: ðA9Þ

[63] Then combining equations (A7) and (A9), leads to
the derivation of equation (9):

log ẑMAP þ 3
2�

2
z

ẑMAP�2
z

þ 1

2

XN
n¼1

ẑMAP � ��1
n v2n � 1
� �

ẑMAP þ ��1
n

� �2 ¼ 0: ðA10Þ

[64] From a practical point of view, the log ẑMAP term in
equation (A10) can dominate the magnitude of the other
terms and ensures the convergence of the bisection method
as there exists a range of initial values for ẑMAP, that the left‐
hand side of equation (A10) can take opposite signs on the
boundaries.

A2. Parameters of the MAP Estimator

[65] Knowing that y =
ffiffi
z

p
u + v and assuming E [z] = 1,

we have:

E y4
� 	

¼ E z2
� 	

E u4
� 	

þ 6E u2
� 	

E v2
� 	

þ E v4
� 	

: ðA11Þ

[66] Given that for the zero mean Gaussian distribution
E [u4] = 3su

4 and E [v4] = 3sv
4 leads to:

E z2
� 	

¼ E y4½ �=3� 2�2
u�

2
v � �4

v

�4
u

: ðA12Þ

[67] As su
2 = sy

2 − sv
2, equation (A12) can be updated to:

E z2
� 	

¼
E y4½ �=3� 2�2

y�
2
v þ �4

v

�2
y � �2

v

� �2 : ðA13Þ

[68] As we assumed z is LN (mz, sz) with E [z] = 1, we
have mz + 1

2sz
2 = 1, hence:

E z2
� 	

¼ exp �2
z

� �
; ðA14Þ

which, assuming sv
2 = 0 in equation (A13), leads to

equation (12).
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