WATER RESOURCES RESEARCH, VOL. 24, NO. 8, PAGES 1345-1359, AUGUST 1988

e

Gradient Dynamic Programming for Stochastic Optimal Contro]
of Multidimensional Water Resources Systems

Er1 FOUFOULA-GEORGIOU

Department of Civil Engineering, lowa State University, Ames

.o

PeTER K. KITANIDIS

Department of Civil Engineering, Stanford University, Stanford, California

A new computational algorithm is presented for the solution of discrete time linearly constrained
stochastic optimal control problems decomposable in stages. The algorithm, designated gradient dynam-
ic programming, is a backward moving stagewise optimization. The main innovations over conventional
discrete dynamic programming (DDP) are in the functional representation of the cost-to-go function and
the solution of the single-stage problem. The cost-to-go function (assumed to be of requisite smoothness)
is approximated within each element defined by the discretization scheme by the lowest-order poly-
nomial which preserve its values and the values of its gradient with respect to the state variables at all
nodes of the discretization grid. The improved accuracy of this Hermitian interpolation scheme reduces
the effect of discretization error and allows the use of coarser grids which reduces the dimensionality of
the problem. At each stage, the optimal control is determined on each node of the discretized state space
using a constrained Newton-type optimization procedure which has quadratic rate of convergence. The
set of constraints which act as equalities is determined from an active set strategy which converges under
lenient convexity requirements. This method of solving the single-stage optimization is much more
efficient than the conventional way based on enumeration or iterative methods with linear rate of
convergence. Once the optimal control is determined, the cost-to-go function and its gradient with
respect to the state variables is calculated to be used at the next stage. The proposed technique permits
the efficient optimization of stochastic systems whose high dimensionality does not permit solution under
the conventional DDP framework and for which successive approximation methods are not directly

1. INTRODUCTION

The purpose of this paper is to present a new computational

algorithm for the stochastic optimization of sequential de-
cision problems. One important and extensively studied class
of such problems in the area of water resources is the discrete
time optimal control of multireservoir systems under sto-
chastic inflows. Other applications include the optimal design
and operation of sewer systems [e.g., Mays and Wenzel, 1976;
Labadie et_al, 1980], the optimal conjunctive utilization of
surface and groundwater resources [e.g., Buras, 1972], and the
minimum cost water quality maintenance in rivers [e.g.,
Dracup and Fogarty, 1974; Chang and Yeh, 1973], to mention
only a few of the water resources applications and pertinent
references. An extensive review of dyramic programming ap-
plications in water resources can be found in the works by
Yakowitz [1982] and Yeh [1985]. Before we proceed with the
description of our algorithm and its innovations and advan-
tages over existing methodologies, a brief description of an
optimal control problem is given, and the available methods
of solution and their limitations are briefly discussed.

A discrete time finite operating horizon optimal control
problem can be simply stated as follows. Given an initial
state vector x(0), find a policy, i.e., a sequence of controls
{u*(k)},-," as functions of the current state vector which
minimize a given objective function (or its expected value)
over all other policies, and which satisfies a specified set of
constraints and the equations of system dynamics. Our con-

Copyright 1988 by the American Geophysical Union.

Paper number 7W4971.
0043-1397/88/007W-4971305.00

! applicable due to stochasticity. Results for a four-reservoir example are presented.

cern is limited to cases for which the objcctive function and
constraints are stagewise separable so that dynamic program-
ming is applicable.

One of the oldest and most standard algorithms to this
“optimal control problem™ or “explicit stochastic opti-
mization” is discrete dynamic programming (DDP) [cf. Bell-
man [1957]; Bellman and Dreyfus, 1962]. Such an approach
requires the discretization of the state space (and, in most
applications, of the control space) and solution of the opti-
mization problem on each of the grid points. The exponential
increase of the computer memory and computation time re-
quirements with the number of state and control variables
(Bellman called it the “curse of dimensionality”), limits the
applicability of DDP to oligo-dimensional systems.

Much of the recent research on dynamic programming ap-
pears to deal with methods devised to overcome the limi-
tations of discrete dynamic programming, and several useful
methods have been proposed over the years. These methods,
known as “successive approximation methods” include differ-
ential DP (see, for example, Jacobson and Mayne [1970] for
unconstrained optimal control problems and Murray and Ya-
kowitz [1979] for problems with linear constraints), discrete
differential DP [Heidari et al., 1971], state incremental DP
[Larson, 1968, chapter 12], nonlinear programming algo-
rithms [Lee and Waziruddin, 1970; Gagnon et al., 1974; Chu
and Yeh, 1978], and a discrete maximum principle algorithm
[Papageorgiou, 1985]. In some of these methods discretization
of the state space is completely avoided.

However, such successive approximation methods are not
directly applicable to stochastic optimal control problems.
The main reason is that due to the stochasticity of the input,
no single-state trajectory can be projected with certainty. In-

1345

1346

FouFoULA-GEORGIOU AND KITANIDIS: GRADIENT DYNAMIC PROGRAMMING

Stage: 0 1 k+1 N
Period: 1 k+1 N
Input; w(l) wik+1) w(N)
! l
States: x(0) x(K) x(k+1) peme v - l—- x(N)
1 |
Control: u(1) u(k+1) u(N)

Fig. 1. Schematic representation of a general system and the variables involved.

stead, the whole optimal control policy over all states is re-
quired, so that integration over the range of states at the next
stage can take place for the minimization of the expected cost.
Thus apart from some approximate methods such as the
small-perturbation approach of Kitanidis [1987], the “param-
eter iteration method” of Gal [1979], and some other methods
reviewed in the work by Yakowitz [1982, section 5], the con-
ventional discrete dynamic programming approach remains
the only universal approach to stochastic optimal control
problems (see, for example, Larson and Casti [1982, p. 120]).
This essentially limits the dimensionality of the systems that
can be solved under an explicit (and not implicit) stochastic
framework. According to Yakowitz [1982],

... two reservoir systems are the largest to be reported solved by
stochastic dynamic programming, whereas we have noted that
deterministic reservoir systems of up to 10 reservoirs have been
solved. This observation points to the motivation for making the
deterministic assumption and underscores the need for research
ideas for overcoming the computational burden of the stochastic
case.

In this paper, we present an alternative DP technique which
combines elements of conventional DDP (i.e., discrete state-
space and backward stagewise optimization) with elements of
constrained optimization (i.e., nonlinear programming with
linear equality constraints) for the derivation of the optimal
control over the continuous control space. The idea behind
our method is that the cost to go and optimal control func-
tions are approximated (within the hypercubes defined by the
state discretization scheme) with piecewise Hermite interpolat-
ing polynomials. This higher order of approximation permits
the use of fewer state discretization nodes (and therefore re-
duces the fast computer memory requirements) while still
achieving high-accuracy solutions. Also, the continuity of the
first derivative of the Hermitian approximation functions per-

mits the use of efficient Newton-type schemes for the stagewise

optimization. .

The idea of interpolation in dynamic programming is not
new. Bellman and Dreyfus [1962, chapter 12] used orthogonal
polynomials for the approximation of the cost-to-go function.
This global approximation, however, has several disadvan-
tages as compared to local approximation. The main disad-
vantage is that functions hard to approximate in a particular
domain of the state space will result in a poor approximation
over the whole domain. Also, for fast changing functions, os-
cillatory approximations may be obtained unless many terms
are used. Daniel [1976] and Birnbaum and Lapidus [1978]
recognized the importance of using local approximations and
explored the use of multidimensional B splines [e.g, Schultz,
1973]. Although splines provide approximations with continu-

ous first and second derivatives, the first derivatives at the
nodes are not explicitly preserved. This is important for opti-
mal control problems where eventually only the first deriva-
tives (and not the values of the function) are used in the com-
putation of the optimal control. Besides, in many cases, the
optimal knots of the splines must be determined (a time con-
suming process) or estimates of the derivatives so that a good
spline approximation can be obtained. Of course, spline ap-
proximation permits the use of Newton-type methods for the
stagewise optimization. This issue, although recognized by
Birnbaum and Lapidus [1978], was not further explored in
their work.

The algorithm proposed in this paper is similar in motiva-
tion but different in techniques from all previously proposed
methods. It is termed gradient dynamic programming (GDP)
because the gradient of the cost to go and optimal control
functions with respect to all state variables are preserved at all
nodes. This algorithm was briefly introduced by the authors
[Kitanidis and Foufoula-Georgiou, 1987] in an effort to obtain
methods with smaller discretization error than conventional
DDP. In that work, however, only single-control optimization
problems had been considered and the emphasis was on com-
paring GDP and DDP through an asymptotic error analysis.
The encouraging theoretical and numerical results, namely,
faster convergence to the “true” control policy and reduction
in dimensionality in the sense that fewer nodes are needed to
achieve a given degree of accuracy, motivated the extension of
our efforts to the optimization of multistate, multicontrol sys-
tems. In the present paper, we present the methodology of
GDP and the technical issues involved in its implementation.
The application of the proposed method to the deterministic
and stochastic optimal control of multireservoir systems is
demonstrated in a four-reservoir example which Yakowitz
[1982, p. 683] describes as being “probably beyond the scope
of discrete dynamic programming because of the curse of di-
mensionality.” :

2. TERMINOLOGY AND PRELIMINARIES

Before we embark on the description of the gradient dy-
namic programming (GDP) method, some terminology is in
order. Let N denote the number of decision times (stages), n
the dimension of the state vector x, m the dimension of the
control vector u, and r the dimension of a random forcing
function (input) w. As illustrated in Figure 1, x(k) is the state
vector at the beginning of period k, and u(k) and w(k) are the
control and random input vectors, respectively, during period

. k.

For a deterministic system, w(k) is a known input vector,
e.g., mean inflows during period k. For a stochastic system
w(k) is a random vector with known probability density func-

4

FOUFOULA-GEORGIOU AND KITANIDIS: GRADIENT DyYNAMIC PROGRAMMING

tion p(w(k)). Without loss of generality we may assume that
the random vectors w(k), k = 1,---, N are independent of each
other. Note that serially and cross-correlated inputs can be
accounted for through state augmentation.

2.1. System Dynamics

Consider a system whose dynamics are described by the
state transition function T, such that

x(k + 1) = Ty(x(k), u(k + 1), w(k + 1)) (1)
k=0,1,---,N—1

Note that T, is an n-dimensional vector function dependent
on the stage k. In the developments that follow we restrict our
attention to linear dynamics. This limitation is mainly im-
posed from a desire to have only linear constraints at the
optimization step. A commonly used formulation of (1) in
reservoir systems is

x(k + 1) = O(k)x(k) + V(kyu(k + 1) + q(k + 1) 2

(see, for example, Kitanidis [1987]); ®(k) and (k) are known
matrices and q(k + 1) is the vector of inflows. Note that for a
deterministic system, the state at stage (k + 1) is completely
determined by the state at stage k and the transition function
T,. For a stochastic system x(k + 1) belongs to a set of state
vectors determined by the probability density function of the
random vector w(k + 1).

It is assumed throughout this work that the functions in-
volved possess continuous first and second derivatives with
respect to the state and control vectors. Let OT /OX =
cT,/éx(k) and T, /éu = 0T,/du(k + 1) denote the Jacobians of
Ty == Ty(x(k), u(k + 1), wk + 1)) with respect to the state and
control vectors, respectively. For instance, the ijth element of
éT,/éx is 0T, ;/éx;, where T, denotes the ith row of T,. For a
system with linear dynamics, T,/0x and 0T, /0u simply reduce
to the matrices ®(k) and W(k), respectively.

2.2. System Constraints

We restrict our attention to linear constraints resulting from
linear transition equations. A typical set of constraints will
include lower and upper bounds on the control and state
variables and functional inequalities among control and state
variables. For instance, a reservoir control problem will have
constraints of the type

u™(k 4+ 1) < ulk + 1) < u™(k + 1) (3a)
X"k + 1) < x(k + 1) = To(x(k), u(k + 1), w(k + 1))
< x™Xk + 1) k=0,1,---,N—1 (3b)

where the control variables are reservoir releases and the state
variables are storages. Using simple operations any such
system of / linear constraints can be brought into the form

Auk+1)<b 4)

where A4 is an (I x m) matrix and b is an (! x 1) vector of
known coeflicients. Note that the coefficient matrices A and b
in (4) depend on the decision time k and the initial state vector
x(k). For a stochastic optimization problem the constraints on
the random vector x(k + 1) are introduced in a probabilistic
sense:

Pr{x(k + 1) < x™(k + 1)} < &
Pr{x(k + 1) > x™(k + 1)} < B

(5a)
(5b)

1347

where & and B are vectors of given
on the known probability distributi
deterministic equivalents of the ab
used in lieu of (3b).

Probabilities, Then, based
on function of x(k + 1), the
Oove chance constraints are

2.3. Objective Function

For a deterministic discrete time optimal contro]
the objective is to find the control policy {u*(k)}, k =
which minimizes the performance criterion

problem,
1, N

N-1
J =3 Cx(k), u(k + 1)) + Fyx(N)))
k=0
given an initial state vector x(0). The performance criterion
(objective function) consists of the sum of the single-stage cost
functions C,(x(k), u(k + 1)) over the whole operating horizon
and a terminal cost F,(x(N)). Note that the objective function,

"as well as the constraints, meets the dynamic programming

requirement of being decomposable in stages.
In the stochastic case, the objective function is replaced by
the expected value of the expression of (6), ie.,
i N-1
J= E 2. Culx(k), u(k + 1)] + Fy[x(N)])
w(1), -, w(N) k=0
where expectation is taken with respect to the random vectors
w(l), ---, w(N). In concise notation, let Cy:= Cy(x(k), u(k + 1))
denote the loss function at stage k and V..Cy+=0C,/ou(k + 1)
denote the gradient of C, with respect to the m-dimensional
control vector u(k + 1), that is,

V.Ci = (6C,/duy, -+, 6C,/ou,)

Similarly, we define V,C, = 8C,/dx(k), the gradient of C, with
respect to the state vector x(k). The Hessian matrix of C, with
respect to the state and control vectors is composed of the
blocks C, ,,, C, ., and C,,, where, for example, the ijth ele-
ment of C, ., is 6*C,/0x,du;.

24. Cost-To-Go Function (Optimal Cost Function)

Let F, := F,(x(k)) denote the cumulative cost associated with
the state vector x(k) and the optimal control policy from k to
the end of the operating horizon. We will refer to this function
as the cost to go at stage k (or with N-k periods to go). In a
deterministic backward moving dynamic programming
scheme, the iterative functional equation of the system can be
written as
Fy_y(x(k = 1)) = min {C, _ ,(x(k — 1), u(k))

u(k)
+F[x(k)=T,_(x(k—1), u(k), wk))]} k=1,---,N (8)
with terminal condition F ~(X(N)), a given function of the final

storage. For a stochastic system, the functional equation takes
the form

Fi_(x(k — 1)) = min {Cr— y(x(k — 1), u(k))

u(k)

+ E Fi[x(k) = T,_ ,[x(k — 1), u(k), w(k)]1} 9)

w(k)

k=1, N
In the above equation,

E F(x(k — 1), u(k), w(k))

w(k) .
=J. e f F(x(k — 1), u(k), w(k))
w(k) w(k)

S Owik), - w (k)] dw,(k) - dw, (k)

1348

where f,,®(w,(k), -+, w/(k)) is the joint pdf of the random
variables w,(k), i = 1, -+, r during period k. ‘
We complete the . terminology by letting V_ F,:=

dF(x(k))/dx(k) and V,,Fk := dF,(x(k))/du(k) denote the gradients
of F, with respect to the state and control vectors, respec-
tively. The Hessian of F, is composed of blocks Fy .., Fi
and F,,, defined the same way as for the single-stage loss
function. In the next section we discuss the general method-
ology of gradient dynamic programming.

3. GENERAL DESCRIPTION OF THE GRADIENT
DYNAMIC PROGRAMMING METHOD

Based on the principle of optimality [Bellman, 1957] any
multistage optimization problem with objective function and
constraints which are stagewise separable may be decomposed
through dynamic programming into a sequence of single-stage
optimization problems. This section describes the gradient dy-
namic programming methodology at a typical stage. For sim-
plicity, the development of the equations is carried out for the
deterministic case. The method is easily extended to stochastic
optimization, as will be illustrated in the next section.

The state space is discretized and represented by a finite
number of nodes (state vectors x). Assume that at stage k, the
values of the cost-to-go function F,(x(k)) and the values of its
first derivatives V_F, = dF(x(k))/dx(k) are known for all the
grid points, i.e., all discrete state vectors x(k). These values are
known at the last operation period, k = N, and can be ex-
" plicitly updated from stage to stage as the algorithm moves
backward in time as will be shown in the sequel. Let x(k — 1)
denote a particular grid point at stage k — L. It is desired to
(1) determine the optimal control u*(k) associated with
x(k — 1); (2) compute the Jacobian of u*(k) with respect to the

state vector x(k — 1); and (3) compute the values of F o 1(x(k-

— 1)) and V,F,_, = dF,_,/dx(k —1). Once this is done for all
possible state vectors x(k — 1), the solution to the single-stage
optimization problem has been completed.

3.1

F, is approximated within each n-dimensional hypercube
(defined by the nodal points of the state vector x(k)) through a
Hermitian interpolation of the known values of F, and its
gradient V_F_ at all the nodes defining the hypercube. The
construction of this approximation polynomial is given in Ap-
pendix A. In particular, F, is written in the form of (A1) where
the basis functions ¢; and y,; are defined in (A2)~A4) in terms
of the local coordinates of any point X = (x;, X3 ***, X,)
within the n-dimensional hypercube.

Approximation of F,

3.2. Determination of u*(k): No Constraint Binding

If no constraint is binding, u*(k) is the solution to the
system of equations obtained by differentiating the cost-to-go
function with respect to the control variables and setting the
derivatives to zero:

V.Cioy +V,F, =0 (10)
or, through application of the chain rule of differentiation,
oT,
V,Cioy + V. F [——]=0 11
u—k-1 x k(6“ > ()

Equation (11) represents the first-order necessary conditions
for the optimum. The second-order condition for u*(k) to be a
unique local minimum is that the Hessian is positive definite,
or symbolically,

FouroULA-GEORGIOU AND KITANIDIS:

GRADIENT DYNAMIC PROGRAMMING

o T, [hes
H = F
Chimtw T [ou] kx| T >0

Newton’s method for unconstrained optimization [cf. Luen-
berger, 1984] can be used for the determination of u*(k). In a
Newton-type approach the basic iteration is

(12)

ui+1 — ul‘ _ P.'R.'g,-

where u' is the vector of parameters in the ith iteration, g; is
the gradient (given in equation (11)) of the function to be
minimized, R, is the inverse of the Hessian matrix of (12) or an
approximation thereof, and p; is a scalar step size parameter
which may be used to optimize the one-dimensional search in
the direction R,g; in the case of nonquadratic terms. Note that
in solving (11), VF, is evaluated at the state vector x(k) =
T, _ (x(k — 1), u(k), w(k)) which may not coincide with one of
the grid state vectors at stage k for which the values of F, and
V_F, are available. In that case the approximation of F, at the
state vector x(k) is used as computed in section 3.1. Also, V.F,
and the matrix F, ., of second derivatives needed for the
evaluation of the Hessian in (12) are computed through differ-
entiation. These equations are given for completeness in Ap-
pendix B.

3.3. Determination of u*(k): Binding Constraints

If one or more of the constraints is binding, then con-
strained optimization methods may be used for the determi-
nation of u*(k). They include primal, penalty and barrier, dual
and cutting plane, and Lagrange methods [cf. Gill and
Murray, 1974; Fletcher, 1981; Luenberger, 1984]. We have
chosen to work with a primal method, i.e., a method which
stays inside the feasible region during the search for the opti-
mum. The many advantages of primal methods are described
in Luenberger [1984, p. 323]. A particularly attractive feature
for the problem at hand is that if the search is terminated
before the solution is reached, the terminating point is guaran-
teed to be feasible and near the optimum. Thus it may provide
a solution acceptable for all practical purposes or at least a
good starting point if the procedure is reinitialized. For prob-
lems with linear constraints their convergence rates are hard
to beat. A computational disadvantage associated with any
primal method is the requirement of a phase 1 procedure for
the determination of an initial feasible solution [see Luenber-
ger, 1984]. In most practical cases, however, an initial feasible
solution can be trivially determined, as for example, by setting
the releases to zero or to the values of the inputs. Careful
selection of the initial solutions can significantly improve the
computational efficiency of the algorithm (Jery Stedinger and
coworkers, Cornell University, personal communication,
1987). ‘

We will briefly describe here an active set strategy which
was found to work well with sample problems. Active set
methods [cf. Luenberger, 1984; Fletcher, 19817 have unique
computational advantages. The inequality constraints are par-
titioned into active (treated as equality constraints) and slack
(essentially ignored). The working set is adjusted at each step
of the iterative solution procedure. The basic components of
an active set method are (1) determination of the current
working set of active constraints by applying an efficient pro-
cedure for adding and dropping constraints from the previous
working set and (2) a procedure for moving toward the opti-
mum subject to the constraints prescribed by the current
working set. Active set methods are much more efficient than

FourouLA-GEORGIOU AND KITANIDIS: GRADIENT DYNAMIC PROGRAMMING

branch-and-bound procedures but may fail to converge (“zig-
zagging”). For their convergence to be guaranteed, some weak
convexity requirements must be met [Fletcher, 1981, p. 113].
These conditions are usually met in applications and the
popularity of these methods has increased significantly in the
last ten years. In the reservoir operation problem they are
often used in conjunction with successive approximation
methods [e.g., Murray and Yakowitz, 1979; Georgakakos and
Marks, 1985]. Sometimes, minor refinements based on an un-
derstanding of the problem at hand may be needed to guaran-
tee convergence and improve efficiency. Lenard [1975] pre-
sents a computational study of active set strategies and sug-
gests that highest efficiency is achieved by starting with as
small a set of active constraints as possible.

Let Gu(k) = d define the working set where G is a (p x m)
matrix of known coefficients of rank p (the rows of G are
linearly independent) and d is an (p x 1) vector of known
coefficients. The optimal control u*(k) will be the solution to
the constrained optimization problem:

minimize
Sdu(k))s= {C, y(x(k — 1), u(k))
+ F [T,y (x(k — 1), u(k), wk))1} (13)
subject to
Gu(k) = (14)

This problem is solved using an iterative Newton-type method
for moving optimally within a working set (see Appendix D
for details and also Luenberger, [1984, chapter 11]). If u®(k)
denotes an initial feasible solution vector, i.e., one which satis-
fies (11), the new improved solution at the next iteration will

be
u'(k) = u%k) + Au(k) (15)

where Au(k) is the solution to the linear system of equations

' G Au(k e\ s
iS55 uo
where
Vi =V.,Croy + V. F(0T,_,/0u) (17)
T, _ oT,_
./;(.uu = Ck—i.uu + (6ku l> Fk.xx(6ku 1) (18)

and where A is a (p x 1) vector of Lagrange multipliers. The
above solution is based on an approximation of the cost to go
with a quadratic function of the control. Details can be found
in Appendix D.

One may easily verify that since u® satisfies the working set
of constraints, so does u'. Note that if f,, is a symmetric and
positive definite matrix on the subspace M = {u: Gu = 0} and
G is a (p x m) matrix of rank p then the (m + p) x (m + p)

matrix
j:lll GT
G 0

is nonsingular [Luenberger, 1984, p. 424]. As is seen from
(13)15), at every iteration the evaluation of V_F, and F, ,, is

required and this is accomplished through differentiation of.

the Hermitian interpolation function for F, using the formulae
in Appendix B.

T,

1349

At this point, the currently inactive constraints are checked
under the new solution u'(k) and any violated constraints are
added to the working set. The new active set is checked to
verify that the rank of the G matrix is equal to the number of
its rows. If this is not the case, redundant constraints are
removed. The constrained optimization is now performed
under the new active set, and the procedure is repeated until a
solution (within the provided stopping criteria) is reached. At
this point, the Lagrange multipliers A are checked and any
active constraint whose corresponding A; is negative is
dropped from the active set and the constrained optimization
is repeated with the new working set. If none of the i, are
negative, the solution is accepted. The relaxation of a con-
straint based on the sign of the corresponding Lagrange multi-
pliers follows directly from the Kuhn-Tucker conditions or
from the sensitivity interpretation of Lagrange multipliers [see
Luenberger, 1984, p. 328].

According to the active set theorem [Luenberger, 1984, p.
3297, convergence will occur after only a finite number of
working sets. Within a working set a Newton-type method
guarantees quadratic convergence to the optimum. In theory,
the correct sign of the Lagrange multipliers, which determines
which constraints are dropped from an active set, is only
guaranteed at the exact global optimum, and therefore accept-
ance of a new optimum solution does not guarantee that the
current working set will not be encountered again. In practice,
however, zigzagging is rarely encountered and in most cases
the active set method works very effectively.

3.4. Computation of the Jacobian du,*/dx

The optimum w,*(x(k — 1)), abbreviated as u,*, must satisfy
the Kuhn-Tucker condition at any point x = x(k — 1). In this
case, assuming that Gu = d represents the active constraints at
the optimum, one has

V)T +GA=0
Gu*=d

(19a) -
(19b)

where A > 0 and d is a function of x(k — 1). These equations
are satisfied for any values of x, u*, and A. If x is replaced by
X + 0x, where dx represents an infinitesimal increment, then
the control, the Lagrange multipliers, and the vector of the
constraints d change into u* + (du*/dx)dx, A + (dA/dx)éx, and
d + (dd/dx)dx, respectively, so that (19) is still satisfied:

(VST + VAV f,()'r(>5x + VAV, f)Téx

A
+ G+ Gr(d——)éx =0
dx

du dd
Gu* + G ox =d —
e - (L)

Using (19) these equations are simplified into

Sows | T [du*/dx] [=V Y, /)7
[GO][dl/dx]_[dd/dx]

We remind that du*/dx is an (m x n) matrix whose ijth ele-
ment is du;*/dx;; d\/dx is a (p x n) matrix whose ijth element
is dA,/dx; fi o = VAV,)T is the Hessian of f, with respect to

u (equation (18)); and
AT, \"
F
au) k,xx

(20)

Vx(vuf;:)r = Ck— 1,ux + ((21)

1350

3.5. Evaluation of F,_, and V.F,_,

Once the optimal control and its Jacobian with respect to
the state vector x(k — 1) has been determined, the cost to go
and its gradient may be calculated. The optimal control u*(k)
is a function of x(k — 1). Then from (7)

Fyoy(x(k = 1) = Co_ [x(k — 1), w*(x(k — 1))]
+ F{x(k)= T, [x(k— 1), w*(x(k—1), wk— 1)1} (22)

Substituting for the calculated optimum at x(k — 1), F,_, may
be found. By differentiating (22) with respect to x(k — 1) and
using the compact notation introduced earlier, one arrives at

du* T, _
VoFooy =VCoy + Vuck—l(:;;) + Vka(#‘)

oT, _ du,*
+ V,F(——é‘:i)(—;;—) (23)

where du,*/dx is the Jacobian of u*/(x(k — 1)) with respect to
the state vector x(k — 1).

Rearranging (23) gives
oT,
Vo Fir = V. Ciy + V.Fy =t
ox
0T, _, | du*
Ve, + v F 22| D)
: Ju dx

Note that if no constraint is binding, the expression in the
brackets is zero and the Jacobian du,*/dx does not need to be
calculated. If at least one constraint is violated, V.F,_, is
obtained by substituting in (24) the value of (du,*/dx) obtained
from (20).

4. STOCHASTIC GRADIENT DYNAMIC PROGRAMMING

Gradient dynamic programming is extended to stochastic
optimization in a straightforward way. One has simply to re-
place the expressions involving the cost-to-go function and its
first and second derivatives by their expectations. Hence as-
suming that the technical conditions for interchanging the
order of differentiation and expectation are satisfied, for the
determination of the optimal control u*(k) the first-order nec-
essary condition becomes

VC1+ E

3T,
[r(5)] -
w(k) ou

while the Hessian becomes

(29)

H = Ck—l.uu + E

T -
() n5)] oo
k) ou |, ’ du

The Jacobian du*/dx is again computed from (20) where now
Sruuis given By (26) and

Vx(vuﬁt)T = Ck— 1,ux + E

T T
[(a—"——> F] @7
wlk) Ju

Once u*(k) and du*/dx corresponding to the state vector
nodal point x(k — 1) have-been determined, F,_, and V_F,_,
can be evaluated from

Fy_y(x(k = 1) = Cy—y(x(k — 1), u*(k)
+ E [Fyx(k — 1), u*(k), w(k))]

w(k)

(28)

FOUFOULA-GEORGIOU AND KITANIDIS: GRADIENT DyNAMIC PROGRAMMING

du*
VeFy-1 = V,Cioy + V.Ci-1 dx

¢T T du*
V F k—1 + k—1 k
wik) [x ’(ox éu dx 29)

+ E

Note that in the case of linear dynamics we are considering,
(¢éT,_,/¢u) and (éT,_,/¢x) are constant matrices and one
needs only to replace F), V.F,, and F,,, in the equations of
the deterministic case by their expectations with respect to
wik).

For the numerical evaluation of the expectation E,, the
distribution function of w(k) is discretized. Let r denote the
dimension of the random vector w(k) during period k; D,
i=1,---, r the discretization level (i, number of nodes) of
the ith random variable w;(k); and p, ,* = prob {w;(k) = [w;
(k)4), di=1,--+, Dy, where [w(k)],, denotes the value of w;(k)
on the node d, of the discretized probability density function
(pdf). Then, for any function h(w(k))

Dy

E [hw(k)] = 3

wik) di=1

D,
Z P:.dlm

=1

pr.d,(k)h([wl(k)]dl)s ey [w()1g) (30)

Note that in the above equation the assumption of indepen-
dence of w(k) has been invoked without loss of generality as
discussed in section 2. In many cases, the random variables
wi(k), i=1,-, rwil have the same probability distribution
over all the operation periods k=1,---, N and the terminol-
ogy and equations would simplify. However, the consideration
of the general case of different pdf’s and different dis-
cretization levels for each random variable and each operating
period does not pose any computational difficulties.

It should be emphasized that the high-speed memory re-
quirements of the stochastic case remain the same as for the
deterministic case. Only the computation time increases by a
factor of [];=,” Di- It is therefore advantageous to discretize
the pdf of the random inputs as coarsely as possible while
keeping the accuracy of integration within the desired limits.
In choosing an efficient pdf discretization scheme one can take
advantage of results on numerical quadrature (see, for exam-
ple, Engels [1980] and Abramowitz and Stegun [1972, chapter
257). In general, the most efficient scheme will depend on the
shape of the pdf and the curvature (smoothness) of the func-
tion to be integrated. For example, for normally or lognor-
mally distributed random inputs and for the local approxi-
mations of the cost-to-go function considered herein Hermi-
tian integration provides an effective choice (see Appendix E).

5. ALGORITHMIC DESCRIPTION OF THE GRADIENT
DYNAMIC PROGRAMMING METHOD

The state space is discretized and represented by a finite
number of nodes (state vectors x). At every stage and at each
node the optimal control u* is iteratively calculated. Opti-
mization proceeds backwards in time, so that the first opti-
mizations correspond to one period to go (k = N). Below we
give an algorithmic description of GDP for one state vector
x(k — 1) during stage (k — 1). The known quantities at stage k
are F,, V.F,, u*(k+1), and du,,,*/dx = du, . *(x(k))/dx(k)
which have been stored off-line for all the nodal state vectors
x(k) from a previous run. The procedure is repeated for all
discretized state vectors x(k — 1) and for all periods k =N,

-1

ch
ti-
ti-
we

e k
(k)
ors

all

FOUFOULA-GEORGIOU AND KITANIDIS: GRADIENT DYNAMIC PROGRAMMING

5.1. Step 0

Approximate F, using piecewise Hermite interpolation
polynomials. These polynomials preserve the values F, of the
cost-to-go function and the values of its first derivatives V_F,
at all the nodal points of the n-dimensional state vector x(k).
The construction of these polynomials within each n-
dimensional hypercube is discussed in section 3.1. and also in
Appendix A.

52. Step I

Select a state vector nodal point x(k — 1) at which the quan-
tities u*(k), du,*/dx, F, _,,and V_F,_, are to be computed.

5.3. Step2

Find an initial feasible control vector u(k), that is, a control
vector that satisfies the constrain set Au<b, where
A = A(x(k — 1)) and b = b(x(k — 1)). An initial feasible solu-
tion is usually obtained by applying the phase I procedure of
linear programming, Luenberger [1984] describes such a gen-
eral procedure, although in many specific cases an initial solu-
tion may be obtained through simpler means. If the initial
feasible solution makes none of the constraints binding or
active (i.e,, acts as equality affecting the solution), a Newton-
type unconstrained optimization method is used as described
in section 3.2. At each iteration the solution is checked for
feasibility. If none of the constraints becomes binding or active
the algorithm proceeds with the unconstrained optimization,
otherwise it goes to step 3.

54. Step 3

Form the current active constraint set (working set) corre-
sponding to the control vector u = u(k), i.e., '

Gu=d (31)

where G = G(x(k — 1)) is a (p x m) matrix of known coef-
ficients of rank p and d =(x(k — 1)) is a (p x 1) vector of
known coefficients.

5.5. Step 4

Perform one iteration of the constrained optimization prob-
lem:

minimize f(u) 32)

subject to

i.e., determine the improvement Au(k) and the vector of La-
grange multipliers A as described in section 3.3. Upon conver-
gence, ie, Au <& go to step 6. Otherwise, check if the new
solution u’ = u + Au violates any of the constraints not pres-
ently in the working set. If none of these constraints is viol-
ated, set u to u' and continue the constrained optimization
within the same working set. If at least one of the previously
inactive constraints is violated, go to step 5.

5.6. Step 5

Add constraints to the active set and determine a feasible
solution under the new active set. Let G'u’ = d’ denote the new
(updated) active set. It is desired to obtain a feasible solution
for the constrained problem which is close to the previously
obtained solution u'. For this purpose, project u’ on the feasi-
ble domain defined by the constraints of the new active set

“each operating period then a “suboptimal” trajectory

1351

(see Appendix C for details). The new solution is u’

=u 4+
where u

ou=GTGGN '[d — G'v] (33)
t way to
changing
having to
on. At this

This projection provides a computationally efficien
obtain feasible solutions every time the active set is
or as an alternative to the phase I procedure of
solve a linear programming problem at each iterati
point set u equal to u” and return to step 3.

5.7. Step6

Remove constraints from the active set. When the optimum
within a working set is reached (Au < ¢ at step 4), then the
signs of the Lagrange multipliers . obtained from (16) are
checked. If all 4, are nonnegative, then the optimum solution
has been found and we proceed to step 7. If, however, one or
more of the 4, are negative, then the corresponding constraints
are dropped from the active set and the algorithm returns to
step 3.

In updating the active set, it is computationally advanta-
geous to remove or add only one constraint at a time. For
example, only the constraint with the largest negative La-
grange multiplier may be removed from the active set when
more than one negative Lagrange multiplier is encountered.
By doing so, the matrix of constraints G changes only by one
row and the projection solution in step 4 may be computed
from the previous one by a simple updating procedure [cf.
Luenberger, 1984, p. 361].

58. Step7

At the optimum u*(k) compute F,_,, V.F,_,, and du,*/dx.
For these computations the equations in sections 3.4 and 3.5
or their obvious extensions to the stochastic case are used.
These values are stored off-line for use at the next opti-
mization period.

59. Step 8

.Repeat steps 1-7 for all the nodal points of the discretized
vector x(k — 1). The number of nodal points is [[;=," N,
where N; is the number of nodes of the ith component of the
state vector x(k — 1).

5.10. Step 9
Repeat steps 0-8 for all stages, i.e., fork =N, -, L.

5.11. Step 10

The final step involves a forward run to determine the opti-
mal trajectory given an initial state vector x(0). For the det‘er-
ministic case, the optimal trajectory over the whole operating
horizon can be obtained at once. Notice that due to the ap-
proximation of the cost-to-go functions, F(x(0)) will be ap-
proximately equal to the total cost computed using (6) or @
For the stochastic case only the total cost F(x(0)) :(md the
first-stage optimal control u*(1) can be determined since the
future optimal controls depend on the yet unknown future
inputs to the system. At the end of the first stage, however, the
system is usually observed and the new starting th.ctor x(1)
determined. At this point a new stochastic optimization Erot?-
lem has to be solved for (N — 1) operating periods and u*(2) is
thus determined. If the system is not observed at the ::: ;’:

obtained by making use of the mean values of the stochastic

