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Transport on river networks: A dynamic tree approach
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[1] This study is motivated by problems related to environmental transport on river
networks. We establish statistical properties of a flow along a directed branching network
and suggest its compact parameterization. The downstream network transport is treated as
a particular case of nearest neighbor hierarchical aggregation with respect to the metric
induced by the branching structure of the river network. We describe the static geometric
structure of a drainage network by a tree, referred to as the static tree, and introduce an
associated dynamic tree that describes the transport along the static tree. It is well known
that the static branching structure of river networks can be described by self‐similar trees;
we demonstrate that the corresponding dynamic trees are also self‐similar, albeit with
different self‐similarity parameters. We report an unexpected phase transition in the
dynamics of three river networks (one from California and two from Italy), demonstrate the
universal features of this transition, and seek to interpret it in hydrological terms.

Citation: Zaliapin, I., E. Foufoula‐Georgiou, and M. Ghil (2010), Transport on river networks: A dynamic tree approach,
J. Geophys. Res., 115, F00A15, doi:10.1029/2009JF001281.

1. Introduction and Motivation

[2] The topology of river networks has been extensively
studied over the past decades using the suite of quantitative
methods developed in the pioneering works of Horton
[1945], Strahler [1957], Shreve [1966], and Tokunaga
[1978]. These authors found that the geometry of real river
networks can be closely approximated by so‐called self‐
similar trees (SSTs). Such trees can be completely specified
by a small number of parameters; this specification facilitates
the development of similarity metrics and scaling theories
within and across river networks. As a result, stream‐
ordering schemes and statistical self‐similarity concepts
have been explored to a considerable extent [see Jarvis
and Woldenberg, 1984; Rodriguez‐Iturbe et al., 1992;
Peckham, 1995;Rodriguez‐Iturbe and Rinaldo, 1997; Sposito,
1998; Peckham and Gupta, 1999; Veitzer and Gupta, 2000;
Dodds and Rothman, 2000, and references therein].
[3] The connection between river network topology and

the hydrologic response of a basin has also been extensively
studied; see, for instance, the early work of Surkan [1969],
Kirkby [1976], and Rodriguez‐Iturbe and Valdes [1979],
while Gupta and Mesa [1988], and Rodriguez‐Iturbe and

Rinaldo [1997] review the later developments. Apart from
streamflow, the river network is also known to structure other
processes operating on it, such as sediment bed load, grain
size, nutrients, riparian vegetation, and the food web structure
of aquatic organisms [e.g., Sklar et al., 2006; Benda et al.,
2004a, 2004b; Kiffney et al., 2006; Lowe et al., 2006;
Muneepeerakul et al., 2006; Power and Dietrich, 2002; Rice
and Church, 1998; Rice et al., 2006; Stewart‐Koster et al.,
2007; Wohl et al., 2007]. The impact of such processes is
of great interest from environmental, economic, and societal
points of view.
[4] The development of a systematic framework within

which to study dynamical processes on river networks
remains of considerable theoretical and practical interest in
hydrology, geomorphology, and river ecology. In this paper,
we propose a new way of studying dynamical processes that
operate on directed trees, which are commonly used to model
river networks. Specifically, we introduce the concept of a
“dynamic tree,” which describes the directed transport
along the links of a “static tree” that has a given topology and
link length distribution, as well as other space‐ and time‐
dependent attributes.
[5] This dynamic tree is likely to have a different hierarchy

and topology than the static one. For instance, some of the
static‐tree branches might be completely cut off, either due to
a blockage that prevents transport along these branches or due
to the absence of conditions that favor sediment or nutrient
generation for downstream transport. In this and other cases,
the structure of the dynamic tree will differ from that of the
static one, and this difference might affect the scaling of
fluxes that participate in defining the envirodynamics on the
network of interest. In general, a static tree of a given Horton‐
Strahler order [Horton, 1945; Strahler, 1957] could become
a dynamic tree of a lesser or higher order, depending on the
dynamics acting on the tree.
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[6] The purpose of this paper is to study the dynamic
topology of directed trees, starting with several simple cases,
first synthetic and then realistic. We work here with down-
stream fluxes, oriented from the sources to the outlet, and
with time‐continuous transport. The possibility of reverse
(upstream) motion, as in tidal systems or in association with
the movements of biota, and discontinuous transport is left
for future work. We focus on a dynamic hierarchy built on
the concept of “connectivity”: once two streams are con-
nected, they both influence the downstream dynamics. In
other words, a dynamic node of order 2 is created only
when the fluxes from both order 1 streams do reach the
connecting node. Such considerations will result in a dif-
ferent ordering of the dynamic tree than of the static one.
Moreover, the newly created dynamic tree will be time ori-
ented, a property that is absent in conventional static trees.
Alternatively, one might keep track of traveled distance,
rather than time: the two are equivalent if the flow velocity is
constant along all the branches, which we will assume in the
present paper, for simplicity sake.
[7] The static branching structure of river networks can be

described by self‐similar trees, following Tokunaga [1978],
Peckham [1995], and Peckham and Gupta [1999], among
others. It is shown here, using three actual river networks,
that the corresponding dynamic trees are also self‐similar,
although their properties differ systematically from those
of the corresponding static trees. We also demonstrate an
unexpected phase transition in the dynamics on river net-
works, from a pattern of numerous disconnected fluxes ini-
tiated at the network sources to a single connected flux.
[8] Finally, we place our findings within the general

framework of hierarchical aggregation and cluster dynamics.
This framework helps describe and understand such diverse
phenomena as population genetics, interacting particle systems
in statistical mechanics, phylogeny, percolation, and extreme
natural hazards.
[9] The paper is structured as follows. We review in

section 2 the relevant concepts and main results in river
network topology, including the branching taxonomies of
Horton [1945] and Strahler [1957] and of Tokunaga [1978].
Section 3 introduces the concept of a dynamic tree that is
associatedwith a given static tree, by using two examples from
river transport. Hierarchical aggregation, including aggrega-
tion in an abstract metric space, is introduced in section 4.
Section 5 describes the three river basins from California

and Italy that we study here, as well as the static trees that
represent the stream networks of these basins. The results
of the study are presented in section 6. A summary and
discussion, as well as an outline of further work follow in
section 7. Examples of hierarchical aggregation from several
fields of inquiry appear in Appendix A.

2. Network Topology: Overview of Concepts
and Results

[10] This section summarizes the main concepts used in
the topological analysis of river networks, as well as the key
results of this analysis.

2.1. Branching‐Order Taxonomies

[11] In our study of river transport, a drainage network is
represented by a tree T (see Figure 1). In this representation,
the stream junctions correspond to tree nodes, the stream
segments between junctions correspond to links or edges, the
network’s sources correspond to tree leaves, and the basin
outlet corresponds to the root of the tree. A source link is a
link attached to a stream head; while an outlet link is the link
attached to the basin outflow node.
[12] In many applications, there is a need to order the net-

work links or tree edges according to their importance in
forming the entire network. Horton [1945] developed a con-
venient way to order hierarchically organized river tributaries;
this method was later refined by Strahler [1957] and further
expanded by Tokunaga [1978]. Currently, the so‐called
Horton‐Strahler (HS) and Tokunaga ordering schemes are
standard tools of branching analysis, well beyond purely
hydrological applications.
[13] Horton‐Strahler ordering is performed in a hierarchical

fashion, from the sources to the outlet. Each source link in a
binary rooted tree is assigned an HS order r(source) = 1 (see
Figure 2a). When two links with the same order r meet, the
link immediately downstream is assigned order r + 1; when
two links with different orders meet, the link immediately
downstream is assigned the larger one of the two orders [e.g.,
Horton, 1945; Strahler, 1957;Newman et al., 1997]. A branch
is defined as a union of connected links with the same order.
We will denote by Nr the total number of branches of
order r. Notice that each branch has linear structure: each
of its links can be connected to only one upstream and/or
one downstream link from the same branch. The order W

Figure 1. Tree representation of a river network: (a) hypothetical river network and (b) its representation
by a binary tree. The network sources and the respective tree leaves are marked by the same letters. Figure 1
also illustrates the terminology used in our river transport study.
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of a tree is the maximal order of its branches. An HS order
can also be assigned to the stream junctions (tree nodes); in
this case the order is the same as that of the immediate
downstream link.
[14] Tokunaga indexing [Tokunaga, 1978;Peckham, 1995;

Newman et al., 1997] expands upon the Horton‐Strahler
orders; it is illustrated in Figure 2b. This indexing catalogues
the merging points between branches of different order. A
first‐order branch that merges with a second‐order branch is
indexed by “12” and the total number of such branches is
denoted by N12. A first‐order branch that merges with a
third‐order branch is indexed by “13” and the total number
of such branches is N13, and so on. In general, Nij for j > i
denotes the total number of order i branches that join an
order j branch.
[15] The Tokunaga index Tij is the number of branches of

order i that merge with a branch of order j, normalized by
the total number of branches of order j; in other words, Tij is
the average number of branches of order i < j per branch of
order j:

Tij ¼ Nij

Nj
: ð1Þ

Merging of branches of different orders is referred to as side
branching. A complete tree is one where side branching is
absent. For incomplete trees, the side‐branching indices
become increasingly important as they help define a tree’s
structure and may help specify distinct classes of trees.
[16] For consistency, we denote the total number of order i

branches that merge with other order i branches by Nii and
notice that in a complete binary tree Nii = 2 Ni+1. The
“diagonal” Tokunaga indices Tii thus satisfy

Tii ¼ Nii

Niþ1
� 2:

The set {Tij: 1 � i � W − 1, 1 � j � W} of Tokunaga indices
provides therewith a complete statistical description of the
branching structure of an order W tree.

[17] We also use in this study the following two link
statistics: the number of links within a given branch and the
number mi of sources upstream from a link i. The latter
statistic is also called a link’s magnitude [Shreve, 1966]; a
branch’s magnitude is the magnitude of its furthest down-
stream link. The branch magnitude is coarsely proportional
to the branch drainage area, with the coefficient of propor-
tionality equal to the average drainage area for the stream
sources. The average number of nodes and average mag-
nitude of an order r branch are denoted by Cr and Mr,
respectively.

2.2. Self‐Similar Trees and Horton Laws

[18] The concept of self‐similarity provides a powerful
tool for describing and studying trees. A self‐similar tree
(SST) is defined by the constraint that the value of each
Tokunaga index Tij depends only on the difference ( j − i)
between the orders of respective branches. Accordingly, we
define, for all i,

Tk :¼ Ti iþkð Þ for k ¼ 1; 2; . . . : ð2Þ

Tokunaga [1978] was probably the first to study SSTs; he
assumed also that the ratio of two consecutive branching
indices is constant:

Tkþ1

Tk
¼ c; or Tk ¼ a ck�1 for a; c > 0: ð3Þ

The SSTs that satisfy (3) are called Tokunaga trees.
[19] Empirically, the average values of branching statistics

for observed river networks depend exponentially on the
order r, for large r and W. In particular, for the total number
Nr of branches of order r, the average magnitude Mr, and the
average number Cr of links within an order r branch we have

Nr ¼ N0 R
W�r
B ; Mr ¼ M0 R

r�1
M ; Cr ¼ C0 R

r
C ; ð4Þ

for some positive constants N0,M0 and C0. Such relationships
are called Horton laws; the bases RB, RM, and RC of the
exponential relationships are called stream ratios.
[20] McConnell and Gupta [2008] showed that the first

two of the Horton laws (4) hold asymptotically, i.e., for
r→1, in a self‐similar Tokunaga tree; they also proved that
RB = RM. I. Zaliapin (manuscript in preparation, 2010) dem-
onstrated asymptotic validity of all the laws in (4) and
established the stream ratio inequality

RC < RB ¼ RM ; ð5Þ

that had been conjectured by Peckham [1995]. In addition,
I. Zaliapin (manuscript in preparation, 2010) showed that the
Horton laws may or may not hold, under some additional
assumptions on the Tokunaga indices Tk, for self‐similar
trees that do not necessarily satisfy condition (3).

3. Dynamic Versus Static Trees

[21] The topological structure of a river network is well
described by a directed tree, which we denote by TS and call
the static tree. To describe the downstream transport on TS

we introduce the notion of a dynamic tree TD, which com-
bines the topological structure of TS with the corresponding

Figure 2. Example of (a) Horton‐Strahler ordering and of
(b) Tokunaga indexing of a static tree TS. Two order 2
branches are depicted by heavy lines. The Horton‐Strahler
orders refer, interchangeably, to the stream junctions or to
the immediate downstream links. The Tokunaga indices
refer to entire branches and not to individual links; these
indices are shown next to the last downstream junction on
each branch.
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link length values. The dynamic tree is introduced as follows.
Imagine that we inject a dye simultaneously into all the
sources of our river network TS, and the dye starts propa-
gating down the river, from the sources to the outlet, with the
same constant velocity along all the streams. The influx of
the dye is continuous and happens at a constant rate. The
tree TD describes the time‐dependent history of the mergings
of the colored streams.
[22] We consider below two detailed examples to further

clarify this concept, while restricting ourselves to the sim-
plest case of constant velocity along all the streams. Taking
this velocity to be unity allows one to interchange time and
length scales. We shall see that the dynamic tree TD is com-
pletely determined by the static tree TS and the set of time
delays ti necessary for the dye to propagate from a junction i
to the nearest downstream junction. These delays can be
proportional to the link lengths, as is the case in the present
study, or be determined by spatially or temporally variable
velocities. The latter extension is left for a future study.

3.1. Synthetic Example

[23] Figure 3 shows how to construct the dynamic tree for
a basin with four sources: a, b, c, and d. The static tree for
this basin is a complete binary tree shown in Figure 3f. The
same tree with the link lengths explicitly displayed is shown
in the Figures 3a–3e; Figure 3a indicates the values of these
lengths.
[24] The consecutive phases of construction of the dynamic

tree are shown in Figures 3g–3l. At step 0 (Figures 3a and 3g),
all the links in the tree are “empty” (dashed lines) and the dye
is injected into sources a, b, c, and d. Accordingly, we have
four disconnected clusters of colored flux; they correspond
to four disconnected nodes in Figure 3g. We assume that
the dye is being continuously injected at all later times at a
constant rate. Each step is a snapshot of this process after a
unit time interval; recall that we use only constant velocity

in this paper and, without loss of generality, this velocity
equals unity.
[25] At step 1 the dye has propagated a unit length along

each stream, which is depicted by solid lines in Figure 3b.
Since all four streams are disconnected so far, the dynamic
tree still consists of four disconnected branches, each of
which corresponds to a colored stream of unit length. At
step 2 the streams a and b merge, and so the nodes a and b
are now connected into a single cluster in the dynamic tree.
Notice that sources a and b are not directly connected in the
static tree; this connection reflects a property of the dye’s
downstream propagation.
[26] At step 3 stream c reaches stream a. Since stream a by

that time is already merged with stream b, we say that the
stream c merges with the cluster of streams a and b; this is
reflected in the dynamic tree in Figure 3j. Hence, at step 3
there exist two connected clusters of the colored flux: one
cluster is formed by streams a, b, and c, while stream d alone
forms the second cluster. Finally, at step 4, all the colored
fluxes have merged. The conventional representation of both
static and dynamic trees, which does not show the link
lengths, is given in Figures 3f and 3l.
[27] This example shows that the dynamic tree TD can be

very different from the corresponding static tree TS. We
notice in particular that in this example the static tree is a
tree with no side branching; it has the largest possible
Horton‐Strahler order, W = 3, for a tree with four sources. At
the same time, the dynamic tree exhibits exhaustive side
branching; accordingly, it has the smallest possible order,
W = 2, for a tree with four sources.

3.2. Data‐Based Hydrologic Example

[28] We illustrate here the dynamic tree for an order 3
subbasin of the Upper Noyo basin. This basin is located in
Mendocino County, California; it is described by Sklar et al.
[2006] and appears in Figure 7a of section 5, along with an

Figure 3. Constructing a dynamic tree TD. The initial static tree TS and the final dynamic tree TD are
shown in Figures 3f and 3l. The dynamic tree reflects the propagation of a flux from the sources to the
outlet of the static tree, at a constant velocity. (a–f) The static tree at different steps of this process; for
visual convenience we explicitly show the static tree’s link lengths. (g–l) The corresponding phases of
the dynamic tree. Figure 3a indicates the lengths of the links in the static tree; each step takes one time
unit, that is the flux propagates one unit of length downstream. See section 3.1 for details.
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outline of the subbasin discussed in the present example.
The stream network for this subbasin is shown in Figure 4; its
fifteen sources are marked by numbers 1 to 15 and fourteen
stream junctions by letters a to n. The static tree TS for this
stream network is shown in Figure 5a; it has the Horton‐
Strahler order W = 3.
[29] The time‐oriented dynamic tree TD is shown in

Figure 5b against the distance traveled by the dye from each
source (on the ordinate). Notice that distance in Figure 5b can
also be interpreted as time. The order of the dynamic tree
is W = 4. In this example (unlike the synthetic example of
Figure 3), the dynamic tree shows a smaller degree of side
branching compared to the static tree; this smaller degree
yields a larger HS order. We shall see in other realistic
examples, further below, that this seems to be the case for
most actual river networks. Three snapshots of the simulated
dye propagation, at distances d = 20, 200, and 600 are shown
in Figure 6 to further illustrate the dynamic tree concept.

4. Dynamics of Hierarchical Aggregation

[30] The consecutive merging of river streams discussed
in section 3 gives rise to a time‐oriented dynamic tree. Study

of such trees calls for the development of a new mathe-
matical framework: hierarchical aggregation is a promising
candidate for such a framework.

4.1. Hierarchical Aggregation

[31] Hierarchical aggregation studies how multiple indi-
vidual particles (molecules, species, individuals, etc.) merge
(aggregate, collide) with each other to form clusters in dif-
ferent physical, chemical, biological, or sociological settings
[Albert and Barabasi, 2002; Leyvraz, 2003;Wakeley, 2009].
In the river transport setting, particles represent individual
channel links, merging refers to the situation of two chan-
nels joining downstream, and a cluster represents all the
upstream channels that jointly contribute to the flow at a
given junction.
[32] Formally, consider a process that starts at time

t = 0 with N individual particles (say the sources of a river
network), which can be considered as clusters of unit mass.
As time evolves (and as a substance propagates down the
river network) the clusters start to merge with one another,
according to a set of rules imposed by the dynamics of
propagation, thus forming consecutively larger clusters. If we
assume that only two clusters can merge at the same time,
then the number of clusters decreases by one after each
merging. The process continues until all particles have
merged into a single cluster of massN; in our case, this would
be when all the nodes of the river network are parts of the
same cluster, i.e., when the whole system is connected.
[33] The evolution of the above process can be described

by a time‐oriented binary tree, whose leaves correspond to
the initial particles, the root to the final cluster of N particles,
and each internal node to an intermediate cluster. Among
the many instances of the above general aggregation scheme,
we mention population genetics [Wakeley, 2009], phyloge-
netic trees [Maher, 2002], percolation [Albert and Barabasi,
2002; Zaliapin et al., 2005], and billiards [Gabrielov et al.,
2008]; see Appendix A for details. Bertoin [2006] gives a
modern review ofmathematical results related to aggregation.
[34] An important role in aggregation studies is played by

the notion of cluster dynamics [Bogolyubov, 1960; Sinai,
1972]. This concept refers to a system that contains an infi-
nite number of interacting particles, which can be decom-

Figure 4. Stream network for an order 3 subbasin of the
Noyo river, Mendocino County, California. The location of
this subbasin is shown in Figure 7a; sources are marked by
numbers (1 to 15), and stream merging points are marked by
letters (a to n). The same marks are used in Figure 5, which
shows both the static and the dynamic tree for this subbasin.

Figure 5. The static and the dynamic tree for the Noyo subbasin of Figure 4. (a) Static tree TS

and (b) dynamic tree TD. Letter and number markings are the same as in Figure 4.
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posed into finite clusters that move independently of each
other for some random interval of time. After this time, the
particle interactions give rise to infinite range correlations
(meaning that the mean cluster size becomes infinite, or an
infinite number of particles affects each other’s dynamics),
although the system can be decomposed into yet another set
of finite independent clusters, and so on.
[35] Sinai [1972, 1974] developed a self‐consistent math-

ematical formalism and proved the existence of cluster
dynamics for some particle systems in statistical mechanics.
The ideas of cluster dynamics have been applied to plasma
physics, economics, and the study of precursory patterns for
extreme events in geophysics [Rotwain et al., 1997;Molchan
et al., 1990; Keilis‐Borok and Soloviev, 2003]. Recently,
Gabrielov et al. [2008] evaluated numerically the cluster
dynamics of elastic billiards, leading to the detection of what
appear to be the first genuine phase transitions and scaling
phenomena with time, rather than usual temperature T or
density, being the order parameter. Thus, a transition occurs
and scaling develops as time t approaches a critical value t*,
rather than as the parameter T crosses a critical value T*. As
will be shown in section 6.2, we report here a remarkably
similar and equally unexpected phase transition, with time
being the order parameter, in the cluster dynamics of a river
network.

4.2. Nearest Neighbor Clustering

[36] Hierarchical aggregation can be described in great
generality by using the framework of nearest neighbor clus-
tering in a metric space. Specifically, consider a finite set S
with distance d(a, b) for a, b 2 S; the elements of the set will
be called points. The distance d(A, B) between two subsets
of points A = {ai}i=1,…,NA

and B = {bi}i=1,…,NB
from S is

defined as the shortest distance between the elements of the
sets:

d A;Bð Þ ¼ min
1�i�NA ;1�j�NB

d ai; bj
� �

:

[37] Nearest neighbor clustering is a process that combines
points from S into consecutively larger subsets, called clus-
ters, by connecting at each step the two nearest clusters; this
process can be described by the nearest neighbor spanning
tree T. Specifically, consider N points ci

0 2 S, i = 1,…, N
with pairwise distances dij

0 ≡ d(ci
0, cj

0). These points, con-
sidered as clusters of unit mass (mi = 1), form N leaves of
the tree T. Each node in this tree is assigned a time mark,
thus producing a time‐oriented tree; the leaves are assigned
the time mark t = 0. Recall that in this work we focus on

the constant velocity transport and thus use the time and
distance interchangeably. Accordingly, one can talk about a
distance‐oriented tree T with distance marks being equal to
the time marks. The first internal tree node is formed at the
time t1 = minij dij

0 by merging two closest points ci*
0 and cj*

0

with (i*, j*) = argminij dij
0, where argminij f (i, j) is defined

as a pair (i*, j*) such that f (i*, j*) = minij f (i, j). This
merging creates a new cluster of two points, with a mass of
mi + mj = 2. Hence, at time t1, there exist N − 1 clusters:
N − 2 clusters with unit mass and one cluster of mass m = 2.
[38] We can now reindex so as to work with clusters ci

1,
i = 1,…, N − 1; their total mass is

PN�1
i¼1 mi = N and

pairwise distances are dij
1 ≡ d(ci

1, cj
1). The second internal

node of tree T is formed at time t2 = minij dij
1 > t1 by merging

the two closest clusters from the set {ci
1}i=1,…,N−1. Thus, at

time t2 we have N − 2 clusters ci
2 such that their total mass is

N and pairwise distances are dij
2 ≡ d(ci

2, cj
2). We continue in

the same fashion, so the kth internal cluster, for 1� k�N − 2,
is formed at time tk = minij dij

k > tk−1, and at that time we have
(N − k) clusters ci

k, i = 1, …, N − k with masses mi such thatPN�k
i¼1 mi = N. Finally, at time tN−1 we create a single cluster

of mass N that combines all points ci
0; this cluster forms

the root of the tree T.
[39] Consider two nodes a and b from the nearest neigh-

bor tree and let ta and tb be their time marks; recall that the
tree is time oriented by the definition of the successive times
tk = minij dij

k > tk−1 at which the cluster mergers occur. The
ancestors of a node are its parent, the parent of that parent,
and so on, all the way to the root. Clearly, the time mark for
an ancestor is larger than that of a descendant. The nearest
common ancestor p of nodes a and b is their common
ancestor with the minimal time mark tp.
[40] The distance u(a, b) along the nearest neighbor tree

is defined as the maximum of the values u(a, p) ≡ tp − ta
and u(b, p) ≡ tp − tb. This distance satisfies two of the usual
distance axioms, symmetry and strict positivity, but the tri-
angle inequality can be replaced by a more stringent one,
namely

u a; bð Þ � max u a; cð Þ; u c; bð Þ½ �;

which holds for any three nodes a, b and c. Such a distance
function is called an ultrametric [Rammal et al., 1986;
Schikhof, 2007]. Ultrametric spaces have many peculiar
properties; for instance, one can rename any triplet a, b, c of
nodes in such a way that

u a; cð Þ ¼ u b; cð Þ:

Figure 6. Three snapshots of the evolution of the dynamic tree (heavy solid lines) on the static tree (light
solid lines) for the stream network of Figure 4.
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These unusual properties give ultrametric spaces consider-
able flexibility in applications, and point sets connected via
nearest neighbor clustering are a representative example of
such spaces.
[41] In our river transport problem, the space S is the set of

all river sources. The distance d(a, b) between two sources is
defined as the time necessary for the corresponding fluxes
injected into these two sources to meet down the river path. If
the static river geometry is described by the tree TS (and we
assume, as previously stated, that fluxes move downstream
continuously with unit speed) the distance d(a, b) between
two sources equals the maximal length along the tree to their
nearest common parent in TS. The nearest neighbor spanning
tree of hierarchical aggregation theory thus becomes what we
called so far, in the context of river transport, the dynamic
tree TD.
[42] As previously stated, this dynamic tree differs, in

general, from the static tree TS and depends not only on the
topology of the latter, but also on the actual length of the
links. The ultrametric distance u(a, b) equals the time nec-
essary for the above‐mentioned fluxes to belong to the same
cluster or, equivalently, the time to establish a connected
colored path between sources a and b. If the velocities vary
in time or space, then the spanning tree TD will depend on
the specific dynamics of the processes operating on the
static tree. To better understand transport on river networks,
we elucidate in sections 5 and 6 the connection between the
statistical properties of TS and those of TD by using three
real river networks.

5. River Basin Data

[43] We have analyzed three river basins: Upper Noyo,
Mendocino County, California (called here Noyo); Tirso,
Sardinia, Italy; and a part of the Brenta basin at the con-
fluence with the Grigno river, Trento, Italy (called here
Grigno). Information about the physiographic and geologic
characteristics of these basins can be found in the work of
Sklar et al. [2006], Pinna et al. [2004], and Guzzetti et al.
[2005], respectively. In our analysis we used Digital Eleva-
tion Models (DEMs) with regularly gridded pixel resolutions
of 10 m for the Noyo basin, 30 m for the Grigno basin, and
100 m for the Tirso basin.
[44] In an actual landscape, channels are initiated when the

area upstream suffices to create a sustainable source of
streamflow and this source imprints a permanent channel on
the terrain. Although these channels are typically detectable
by field observations, the extraction of the channel initiation
points, or “channel heads,” from DEMs has been a subject
of sustained effort [e.g., Montgomery and Dietrich, 1989;
Tarboton et al., 1991;Montgomery and Foufoula‐Georgiou,
1993; Costa‐Cabral and Burges, 1994; Giannoni et al.,
2005; Hancock and Evans, 2006].
[45] In typical DEM analysis, channel heads are mapped

where the upstream area, or (area) × (typical slope), exceed
a given threshold; the parameters of such relationships are
field calibrated. More recently, the availability of high‐
resolution, 1 m elevation data from light detection and ranging
(lidar) has initiated a new generation of methodologies for
the automatic detection of channels as terrain “features” [e.g.,
Lashermes et al., 2007; Passalacqua et al., 2010]. Given the
available DEM resolution, and the fact that the focus of this

study is not the extraction of the most accurate river network
from the available DEMs, we adopted a simple criterion for
channel initiation as Ac = 100 pixels for all three basins. This
criterion is certain to miss the smallest first order basins in
the Tirso basin but the extracted network, although clipped
in its uppermost branches, still has the right topology.
[46] The extracted stream networks for the three river

basins (using the steepest gradient D8 algorithm) are shown
in Figure 7. The corresponding dynamic stream networks
were then constructed for each basin, assuming a constant
unit speed of downstream propagation for the fluxes. We
thus analyzed two different kinds of trees, static and dynamic,
for each basin.

6. Branching Characteristics of River Networks

[47] In this section we quantify similarities and differ-
ences between the branching topology of static and dynamic
trees and demonstrate a phase transition phenomenon in the
dynamics of river networks.

6.1. Self‐Similarity Indices

[48] Figure 8 shows the distributions of the number Nr,
average magnitude Mr, and the average number Cr of links
for branches of order r for the static trees (Figures 8a and 8b)
and dynamic trees (Figures 8c and 8d) of the three basins.
[49] Despite the usual small sample fluctuations,

Figure 8 demonstrates a large degree of consistency among
the branching indices. All branching statistics considered are
closely approximated by the Horton laws. Moreover, these
results suggest that the relationship (5) holds in all the cases
considered herein.
[50] We observe that the values of the stream ratios for

static trees are higher than the corresponding values for
dynamic trees. This means that the degree of side branching
(i.e., the proportion of network branches that merge with
branches of a higher Horton‐Strahler order) is larger for
static trees than for dynamic trees.
[51] The only indices that deviate considerably from the

Horton laws at higher orders are Cr (the average number of
nodes within an order r branch) for the Noyo basin’s static
and dynamic trees; this discrepancy warrants further inves-
tigation. Apart from this point, we conclude that both types
of trees, dynamic and static, can be closely approximated by
Tokunaga SSTs; the characteristic indices, however, differ
from one type to the other.

6.2. Phase Transition in Dynamic Trees

[52] Does river network connectivity, in terms of elements
of the network participating in transport, exhibit a phase
transition, with time being the order parameter, akin to those
found in other systems? Figure 9 shows the fractional
magnitudes mi/N of the branches in the dynamic trees as a
function of the distance d traveled by the dye. Recall that
this distance can also be interpreted as the time t when the
node was created by merging of upstream branches.
[53] In Figures 9a, 9c, and 9e we observe the following

scenario: We start at distance d = 0 (or time t = 0) with
N branches (clusters) of unit magnitude corresponding to
the network sources. As distance increases (time evolves),
the number of clusters decreases while their magnitudes
become larger and exhibit substantial variability. In particu-
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lar, at small distances the maximal magnitude increases
exponentially with distance; this growth is reflected by an
approximately linear form of an upper envelope of the
points (envelope not shown). Furthermore, we notice that
at short distances (small times) the magnitude distribution
is “continuous;” that is, it does not have significant gaps.
At some critical distance d* (time t*), however, the distri-
bution undergoes a marked qualitative change: a prominent
maximal cluster appears, such that its magnitude becomes
significantly larger than that of the second largest cluster.

Moreover, while the magnitude of the largest cluster keeps
growing, the rest of the distribution is fading off and so,
after some time, all clusters present at d = 0 merge with the
largest cluster. Still, at the critical distance d*, themagnitude of
the largest cluster is just about 10% of the total magnitude N
of the system, and this is the case for Figures 9a, 9c, and 9e.
[54] The magnitude distribution of the clusters was

analyzed for d varying from 0 to about 2d*, in both log‐log
and semilogarithmic scales (not shown). Our analysis
strongly suggests that the magnitude distribution at smaller

Figure 7. Stream networks of the three basins analyzed in this study shown as static trees; outlets are
marked by black dots. (a) Upper Noyo basin, Mendocino County, California; the outlet is located at
39°26′N, 123°45′W, and the order 3 subbasin of Figures 4–6 is outlined by a small, light rectangle
(i.e., southeastern). (b) A part of the Brenta basin, at the confluence with the Grigno river (called
Grigno basin), Trento, Italy; the outlet is located at 40°00′04.96″N, 8°49′59.26″E. (c) Tirso, Sardinia,
Italy; the outlet is located at 46°00′28.40″N, 11°38′ 21.55″E.
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distances has an exponential tail, while at the critical distance
d* it becomes a power law. This observation is illustrated in
Figures 9b, 9d, and 9f, which show the magnitude distribu-
tion, in log‐log coordinates, at the critical distance d* and at a
shorter distance d ≈ d*/2; those distances are indicated by
vertical lines in Figures 9a, 9c, and 9e. Recall that, in a log‐
log plot, power law behavior shows up as a straight line,
while exponential behavior becomes a convex curve. This
change indicates that a phase transition occurs at the distance
d*.
[55] This phase transition is further illustrated in Figure 10,

which shows three snapshots of the dye propagating down
the Noyo basin. The distances traveled by the dye at these
snapshots are marked by vertical lines in Figure 11; the
largest distance is chosen to be equal to the critical distance
d* for this basin. Figure 11 shows the number of clusters

(dotted line) and the magnitude of the largest cluster for the
Noyo dynamic tree (solid line), as a function of downstream
propagation distance. One can easily see how unconnected
clusters suddenly merge together at the critical distance d* ≈
1000 m. Importantly, the value of critical distance is inde-
pendent of the basin order; hence such a merging happens
simultaneously at all the scales (basin orders), constituting a
phase transition.

7. Concluding Remarks

7.1. Summary and Discussion

[56] In this study we have focused on the statistical
description of environmental transport on river networks.
We have approached the problem by considering down-
stream transport on such a network as a particular case of

Figure 8. Branching statistics for the stream trees of the Noyo, Grigno, and Tirso basins, shown in
Figure 7. (a and c) Number Nr and average magnitude Mr for the three static and the three dynamic
trees and (b and d) average number Cr of links within a branch for static and dynamic trees.
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Figure 9. Phase transition in river network dynamics. (a, c, and e) Fractional branch magnitudes mi/N as
a function of the distance di traveled by the dye at the instant of branch creation. (b, d, and f) Distribution
of branch magnitudes mi at the critical distance d* (circles) and at an earlier time, given by d (squares),
for the dynamic trees of the three basins. Each of these plots shows two distributions at distances d* and
d < d*, respectively; the corresponding distances are depicted by vertical lines in Figures 9a, 9c, and 9e.
The downward deviations from pure power laws are due to the finite size effect.
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nearest neighbor hierarchical aggregation. The so‐called
ultrametric induced by the branching structure of the river
network provides the distance function with respect to which
the downstream flow gives rise to clusters that decrease in
number and increase in size with time (see Figures 10 and 11).

[57] We have described the static topological structure of
a river network by the type of tree structure that goes back to
the pioneering studies of Horton [1945], Strahler [1957],
and Shreve [1966]; this structure has been referred to as a
static tree, to distinguish it from the associated dynamic tree

Figure 10. Transport down theNoyo stream network. Three snapshots of flux propagation from the stream
sources to the outlet at (a and d) d = 200 m, (b and e) d = 500 m, and (c and f) d = 1000 m. Figures 10a–10c
show the entire Noyo basin, while Figures 10d–10f zoom onto an order 4 subbasin located in the basin’s
southeastern part. This order 4 subbasin encompasses the order 3 subbasin shown in Figures 4–6; its
location is depicted by a light rectangle in Figure 10c. See also Figure 11.
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(section 3, Figures 3 and 5). The latter concept helps describe
downstream transport along the static tree.
[58] We have studied the statistical properties of both static

and dynamic trees using the Horton‐Strahler and Tokunaga
branching taxonomies. Using the DEM‐extracted river net-
works in three river basins (Noyo, Grigno and Tirso) we
have shown that both static and dynamic trees can be well
approximated by Tokunaga self‐similar trees (SSTs). The
Horton‐Strahler and Tokunaga parameters of these two types
of trees differ significantly, though, for each of the three
basins (section 6.1, Figure 8). This difference supports the
relevance of the dynamic tree concept; its parameter values
depict important properties of the envirodynamics on a given
river network that are not captured by the conventional, static
tree.
[59] An important new result of this study is the phase

transition we have found in river network dynamics in
section 6.2: as one fills an empty river network through its
sources, or injects a dye at the sources of a water‐filled one,
the number of clusters of connected nodes decreases and the
size of the largest cluster increases, until a dominant cluster
of connected streams forms. During this process, the time‐
dependent size distribution of the connected clusters changes
from an exponential to a power law function as the critical
time approaches (Figure 9).
[60] This phenomenon, which may seem rather unex-

pected in the present hydrological setting, can be better
understood within the framework of complex networks. This
framework has been explored in many natural and socio-
economic settings, ranging from the functioning of a cell to
the organization of the Internet [Albert and Barabasi, 2002;
Dorogovtsev and Mendes, 2002; Newman, 2003].
[61] The mathematical theory of complex networks con-

siders a group of nodes that can be connected with each
other according to some problem‐specific rules, thus form-
ing a graph. In the simplest case, the node connections are
independent of each other and can be specified by the
probability p that two randomly chosen nodes are connected.
There exists a critical value pc such that, for p < pc, the

network consists of isolated clusters, while a single giant
cluster appears as p crosses pc, and spans the entire network.
The same phenomenon is observed under more realistic rules
of node connectivity as well. The appearance of the giant
cluster is remarkably reminiscent of infinite cluster formation
in percolation theory [Stauffer and Aharony, 1994].
[62] Albert and Barabasi [2002] review parallels and

differences between complex network theory and percolation
theory. The book by Newman et al. [2006] collects the
major papers in complex network theory, while Barrat et al.
[2008] provide an introduction for a readership of physi-
cists, and Durrett [2007] gives a rigorous mathematical
treatment of the topic.
[63] It readily follows from the analysis of section 3 that

transport on river networks fits rather naturally the com-
plex network paradigm. Formally, each stream source is
represented by a node and two streams are considered to be
connected when their respective fluxes join downstream.
This is exactly the scheme we used to define a dynamic tree,
with the only difference that we have ignored the connec-
tions between nodes within already formed clusters. This
difference does not affect the process of cluster formation,
so the results of the complex network theory do apply to
envirodynamics on river networks. From this point of view,
the rather sudden formation of the giant cluster and the
corresponding transition of the cluster magnitude distribu-
tion from exponential to power law seems rather natural.
[64] There is an important difference, though, between

complex networks in general and the dynamic trees consid-
ered in this study. Our dynamic trees, unlike general net-
works, are time oriented, i.e., their nodes can be ordered in
“time” or with respect to a “downstream distance” parameter.
The ultrametric distance along such trees satisfies a stronger
triangle inequality than ordinary distance (see section 4.2),
and thus induces interesting properties [e.g., Schikhof,
2007]. In fact, a set of points in a metric space with a tradi-
tional distance d naturally forms an ultrametric tree according
to the nearest neighbor clustering procedure described in
section 4. As shown there, hierarchical aggregation via
nearest neighbor clustering provides a common framework
for many apparently different processes (such as billiards, river
transport, and percolation) in the setting of ultrametric trees,
and thus may provide novel insights into these processes.
[65] In percolation models, the cluster size distribution at

phase transition is given by a power law whose index is a
function of the system’s dimension alone. In our three river
networks, this index differs from one network to another
(see Figures 9b, 9d, and 9f). We notice that in the hierarchical
aggregation on dynamic trees, different clustering rules may
correspond to different effective “dimensions” of the system.
At the same time, it is known that the critical percolation
indices are universal for systems in high dimensions [Hara
and Slade, 1990] and trees are a simple model for infinite
dimensional systems [Albert and Barabasi, 2002]. Thus, one
expects to see the same values of the critical indices when
working with percolation on a tree. From this perspective,
the fact that our critical exponents vary from basin to basin
still needs to be understood.

7.2. Further Work

[66] In this study we have considered only the simplest
clustering rules for river streams: two streams belong to the

Figure 11. Cluster evolution for the Noyo basin down-
stream flux transport: number of clusters (dotted line) and
largest cluster size (heavy solid line). Light vertical lines
correspond to the three snapshots in Figure 10.
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same cluster if there is a connected path from one stream to
another along the river network. This approach is patterned
after percolation studies and allows for a straightforward
treatment. It may result, however, in a situation when two
streams belong to the same cluster despite the fact that the
respective fluxes are not mixed yet: think of two short
streams that merge with a spatially extended cluster at about
the same time. Formulating a physically more appropriate
set of clustering rules might yield more realistic results for a
wealth of transport problems related to river networks.
[67] So far, we have investigated only dynamic trees that

have the same set of sources as the corresponding static tree;
doing so is equivalent to injecting a flux through the sources
alone. We emphasize at this point that the present study for-
mulates merely a conceptual model, rather than attempting to
mimic the realistic dynamics of fluxes in river networks.
Indeed, actual precipitation or seepage from groundwater
corresponds to activating multiple internal nodes within the
network, not only its sources. Moreover, it might happen that
a flux of interest is injected exclusively into an internal node,
e.g., an industrial pollutant from a plant or nutrient production
from a local biotic activity. Such situations can bemodeled by
considering a dynamic tree whose sources sample the entire
river network. More elaborate models along these lines are
also left to further study.
[68] The flux propagationmodel used in this paper is highly

idealized (constant speed) and it only allows for continuous
downstream transport, while real fluxes can violate both of
these assumptions. For instance, sediments can be routed
intermittently, undergoing several periods of intervening
storage before arrival at points downstream. In addition, there
exist upstream extensions of surface flow into headwater
valleys of zero order. We notice also that the flux velocity
may depend on slope or other factors, thus violating our
assumption of constant transport velocity. These as well as
other extensions of the simplemodel considered herein can be
incorporated, in principle, into our general framework. Doing
so certainly constitutes an interesting avenue for future work.
It remains, of course, to be seen whether or not any of these
potential extensions affect the main conceptual and qualita-
tive conclusions of this study.
[69] To construct a richer theoretical framework for

envirodynamics on river networks one may also model the
transport along real and synthetic networks by using
Boolean delay equations (BDEs) [Dee and Ghil, 1984; Ghil
and Mullhaupt, 1985]. In BDEs, the discrete state variables
describe the flux through the river branches; naturally, the
rules for updating these variables inherit the child‐parent
relationship of the stream’s static tree. The parent variables
are updated based on the values of the children variables,
after delays that correspond to the time it takes the flux to
propagate from a child to its parent.Ghil et al. [2008] recently
reviewed BDEs and their applications to climate and earth-
quake modeling. We expect such models to shed further light
on the complex and important problems of transport on river
networks.

Appendix A: Hierarchical Aggregation and Cluster
Dynamics: Examples

[70] Among the many instances of the general aggregation
scheme of section 4, we mention here the following three.

[71] 1. In the site percolation process on an L × L lattice,
the initial N = L2 particles correspond to the sites of the
lattice, while clusters correspond to connected patches of
occupied sites that are formed during the percolation process
[Albert and Barabasi, 2002; Zaliapin et al., 2005]. The
same scheme can be applied to bond percolation, as well as
to percolation on grids in higher dimensions.
[72] 2. Elastic billiard on a rectangular table can be used to

model gas dynamics in two dimensions (2‐D). Here the
initial particles are the N billiard balls (gas molecules) at
time t = 0. Each of the balls is assigned an initial position
and velocity. The clusters at time D are formed by balls that
have collided during the time interval [0, D] [Gabrielov
et al., 2008]. Formally, two balls are called D neighbors
if they collided during the time interval [0, D]. Each con-
nected component of this neighbor relation is called a D
cluster. Notice that within an arbitrary D cluster each ball
has collided with at least one other ball during the time
interval [0, D]. In other words, a D cluster is a group of
balls that have affected each other’s dynamics during the
time interval of duration D. The mass of each cluster is
simply the total number of balls within that cluster. Upon
many collisions of the balls, the whole system will be com-
posed of clusters of different sizes. As time evolves, the
number of clusters will decrease and their mass increase.
[73] The same scheme can be applied to a system of

particles that interact according to some potential U(x).
Bogolyubov [1960] suggested that when the interaction of
particles is restricted to the near field, the system can be
decomposed into finite clusters so that during some random
interval of time, each cluster moves independently of other
clusters as a finite dimensional dynamical system. After this
time interval, the system can be decomposed again into
other dynamically independent clusters and so on. This type
of dynamics is called cluster dynamics and Sinai [1974]
showed analytically that it exists in a one‐dimensional
(1‐D) system of statistical mechanics. Numerical results of
Gabrielov et al. [2008] describe the presence and various
properties of cluster dynamics in a 2‐D system of hard balls.
[74] In the metric setup of section 4.2 for the billiard

dynamics, the space S is the set of N billiard balls and the
distance function d(a, b) equals the time before the first
collision of the balls a and b. Naturally, this distance depends
on the initial positions and velocities of the two balls a and b,
but it is also affected by the global billiard dynamics: our two
balls may be set to collide at a given time t* in the absence
of other balls, but may be hit by some other ball at time
t < t*, thus postponing the collision. The ultrametric distance
u(a, b) equals the time before both a and b belong to the
same dynamic cluster. It is readily seen that u(a, b) � d(a, b)
since two balls do not have to collide to be within the same
cluster; yet a collision necessarily puts them into the same
cluster.
[75] 3. Probably the best known application of hierar-

chical aggregation is in constructing phylogenetic trees that
describe the evolutionary relationships among biological
species [Maher, 2002]. Here, a node corresponds to a set of
species. Two species are connected if they have a direct
common ancestor; the link length from a species to its direct
ancestor equals the time it took to develop the descendant
species from that ancestor.
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