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[1] A geometric framework for the automatic extraction of channels and channel
networks from high-resolution digital elevation data is introduced in this paper. The
proposed approach incorporates nonlinear diffusion for the preprocessing of the data, both
to remove noise and to enhance features that are critical to the network extraction.
Following this preprocessing, channels are defined as curves of minimal effort, or
geodesics, where the effort is measured on the basis of fundamental geomorphological
characteristics such as flow accumulation area and isoheight contours curvature. The
merits of the proposed methodology, and especially the computational efficiency and
accurate localization of the extracted channels, are demonstrated using light detection and
ranging (lidar) data of the Skunk Creek, a tributary of the South Fork Eel River basin in
northern California.
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1. Introduction

[2] The detection of channel networks and the localiza-
tion of channel heads from digital elevation (DEM) data are
fundamental to the accurate modeling of water, sediment,
and other environmental fluxes in a watershed. Several
methodologies to delineate channel heads and channel net-
works from DEMs have been proposed [e.g., Montgomery
andDietrich, 1988; Tarboton et al., 1988, 1991;Montgomery
and Foufoula-Georgiou, 1993; Costa-Cabral and Burges,
1994; Giannoni et al., 2005; Hancock and Evans, 2006].
Channel heads typically are found in unchanneled valleys
and appear to occur where some erosion threshold has been
crossed (e.g., landsliding, overland flow incision through a
vegetated surface, seepage erosion, etc.) [e.g., Montgomery
and Dietrich, 1988; Dietrich et al., 1993]. Field data also
show that channel head location varies with a topographic
threshold that depends on drainage area and local valley
slope [e.g., Montgomery and Dietrich, 1988, 1989, 1992,
1994]. More recently, for example, McNamara et al. [2006]

located channel heads in a small watershed in Thailand and
suggested that different channel initiation processes pro-
duced different slope-area relationships. Several studies
employ, instead, an assumption of constant critical support
area for determining the location of channel heads [e.g.,
O’Callaghan and Mark, 1984; Band, 1986; Mark, 1988;
Tarboton et al., 1989, 1991; McMaster, 2002], although
empirical support from field observations was not reported.
Other work has explored the localization of channel heads
by identifying valley heads as concave areas in DEMs
[Tribe, 1991, 1992].
[3] With the availability of high-resolution topographic

data obtained by airborne laser mapping, new methodolo-
gies have been proposed for the determination of the
locations and distribution of landslide activity [e.g.,
McKean and Roering, 2004; Glenn et al., 2006; Ardizzone
et al., 2007; C. Gangodagamage et al., Statistical signature of
deep-seated landslides, submitted to Journal of Geophysical
Research, 2009], the geomorphological mapping of glacial
landforms [Smith et al., 2006], numerical modeling of
shallow landslides [e.g., Dietrich et al., 2001; Tarolli and
Tarboton, 2006], computation of channel slope [Vianello et
al., 2009], identification of depositional features of alluvial
fans [Staley et al., 2006; Frankel and Dolan, 2007; Cavalli
and Marchi, 2008] and of channel bed morphology [Cavalli
et al., 2008], and the detection of hillslope-to-valley transi-
tion [Tarolli and Dalla Fontana, 2009].
[4] Light detection and ranging (lidar) data now permits

direct detection of channels, rather than estimation of likely
channel location based on topographic features (slope,
drainage area, or topographic curvature). Recently,
Lashermes et al. [2007] proposed a wavelet-based filtering
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methodology to extract channels and channel networks from
high-resolution topography that can be obtained from air-
borne lidar data. In the methodology of Lashermes et al.
[2007], multiscale analysis, i.e., going from fine to coarser
scales, was achieved via a convolution of the original
image with a Gaussian kernel at different scales. This is
equivalent to applying the heat equation on the image
going forward in time (e.g., see Braunmandl et al. [2003]
and later in this paper). Gaussian linear filtering, however,
smoothes small-scale structures at the same rate as it
smoothes larger-scale structures (actually some of the most
critical scales are smoothed even faster, which can be
shown following the theory of robust estimation). This
might not be desirable in DEM feature extraction as small-
scale structures, such as the crest of a ridge or channel
bank, should remain sharp during coarsening until the
whole ridge disappears. This problem of edge preservation
has prompted in image processing the introduction of
adaptive geometric filters which reduce smoothing at the
edges of features while applying Gaussian filtering to the
rest of the image.
[5] In this paper, a geometric framework which signif-

icantly advances the accurate and automatic extraction of
channel networks from lidar data is developed using such
scale-adaptive filtering. The first component of the frame-
work is the use of nonlinear geometric filtering (via
partial differential equations), instead of linear filtering
via wavelets, which naturally adapts to a given landscape
and facilitates the enhancement of features for further
processing. Early uses of nonlinear partial differential
equations for digital elevation maps appear in the work
of Braunmandl et al. [2003], Almansa et al. [2002], and
Solé et al. [2004]. The form of this filtering is such that
it behaves as linear diffusion at low-elevation gradients,
while it arrests diffusion as the gradients become large
(other features could be used to control the nonstationary
diffusion as well). It is noted that the nonlinear diffusion
term here employed refers to the filtering methodology in
image processing and not to the nonlinear erosion laws
[e.g., Kirkby, 1984, 1985; Andrews and Buckman, 1987;
Anderson and Humphrey, 1989; Anderson, 1994; Howard,
1994a, 1994b, 1997; Roering et al., 1999]. The second
key component of the proposed framework is the novel
formulation of the channel network extraction problem as
a geodesic energy minimization problem with a cost
function which is geomorphologically informed; that is,
it is defined in terms of local attributes of the landscape
such as upstream drainage area and isoheight contours
curvature. In other words, channels are defined as curves
of minimal effort. Such curves are derived from global
integration of local quantities and computed in optimal
linear complexity. This global integration methodology
makes the channel network extraction robust to noise and
data interruptions, contrary to what obtained with more
common forward marching approaches (e.g., following
steepest descent directions).
[6] This paper is organized as follows. Section 2 gives a

brief mathematical background on nonlinear diffusion,
geometric filtering, geodesics, and energy minimization
principles. In section 3 these techniques are applied to the
problem of channel network extraction and demonstrated in

a real basin. Finally, section 4 presents concluding remarks
and challenges for future research.

2. Mathematical Background on the Proposed
Methodology

[7] This section presents the basic mathematical back-
ground that provides the foundation for the channel network
extraction geometric framework introduced in this paper.
First, the notion of nonlinear anisotropic filtering is intro-
duced. Next, the framework of geodesic computations is
presented. The channel extraction methodology presented
here has been released to the community as a toolbox called
GeoNet. The code is available for download at http://
software.nced.umn.edu/geonet/.

2.1. Nonlinear Diffusion and Geometric Filtering

[8] Let us denote by h0(x, y): R
2! R the provided DEM

image, i.e., high-resolution digital elevation data. Typical of
any feature extraction methodology is the application of a
smoothing filter on the original data h0(x, y) to remove
‘‘noise’’ (observational noise or irregularities at scales
smaller than the scales of interest) and identify features as
entities that persist over a range of scales. This operation of
smoothing is also very important to make computations
such as derivatives mathematically well posed. A popular
smoothing filter is the Gaussian kernel, which, when applied
to h0(x, y), results in landscapes at coarser resolutions:

h x; y; tð Þ ¼ h0 x; yð Þ ? G x; y; tð Þ ð1Þ

where ? denotes the convolution operation and G(x, y; t) is
a Gaussian kernel of standard deviation t (larger values of
t result in coarser resolution landscapes), centered at
location (x, y):

Gx;y;t u; vð Þ ¼ 1

2pt
exp � u� xð Þ2 þ v� yð Þ2

2t

" #
ð2Þ

As it was shown and exploited in the work of Lashermes et
al. [2007], the use of the classical Gaussian smoothing
kernel naturally leads to a multiscale (scale-space in the
computer vision terminology) efficient computation of local
slopes and Laplacian curvatures via wavelets, where
wavelets were selected as the first and second derivatives
of a Gaussian kernel (see Burt and Adelson [1983],
Koenderink [1984], and Witkin [1983] for early develop-
ments and the introduction of Gaussian filtering for
multiscale image analysis).
[9] The family of coarsened landscapes resulting from

(1) may be seen as solutions of the linear heat or diffusion
equation, e.g., see Koenderink [1984], with the initial
condition h(x, y; 0) = h0(x, y):

@th x; y; tð Þ ¼ r � crhð Þ ¼ cr2h ð3Þ

where c is the diffusion coefficient and r is the gradient
operator. Thus, processing the landscape with Gaussian
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filters of increasing spatial scale, as done by Lashermes et
al. [2007], is equivalent to applying an isotropic diffusion
equation over time on the landscape with the spatial scale of
the filter (variance) and the time of diffusion being related to
each other (since derivatives are linear operations, filtering
and then differentiating is equivalent to filtering with the
corresponding derivatives of the original filter; see also
Lashermes et al. [2007] for a formal exposition). Once the
time of diffusion is fixed, the spatial scale over which the
Gaussian smoothing is applied on the original landscape is
spatially uniform; that is, the landscape is uniformly
diffused at all points and in all directions.
[10] The choice of the Gaussian kernel as smoothing filter

is motivated in part by two criteria defined by Koenderink
[1984] as (1) causality and (2) homogeneity/isotropy. The
causality guarantees that no spurious feature should be
generated at coarser resolutions, since any feature at a
coarse level of resolution must have a cause at a finer level
of resolution. This guarantees noise reduction in the original
data as the resolution is coarsened. The homogeneity/isotropy
criterion requires the blurring to be space invariant. The
Gaussian kernel thus satisfies the standard ‘‘scale-space
paradigm’’ as stated by Koenderink [1984]. It is noted,
however, that the Gaussian filtering is isotropic and does not
respect the natural boundaries of the features and diffuses
across boundaries throughout the landscape. This obviously
degrades the spatial localization of these boundaries, espe-
cially at larger scales of smoothing. These boundaries
represent, in the case of landscapes, important discontinu-
ities such as crests and valleys. Perona and Malik [1990]
reformulated the space-scale paradigm to address this issue.
The new paradigm was reformulated to satisfy three
criteria: (1) causality, as previously stated by Koenderink
[1984], (2) immediate localization, which searches, at each
resolution, sharp and meaningful region boundaries, and
(3) piecewise smoothing, which indicates preferential
smoothing (intraregion rather than interregion).
[11] In the standard linear diffusion equation (3), the

diffusion coefficient c is constant, that is, independent of
the space location. An extension to the Gaussian filtering is
obtained by choosing the diffusion coefficient c to be a
suitable function of spatial location, such that the new
space-scale paradigm criteria are satisfied. The modified
diffusion equation can be written as

@th x; y; tð Þ ¼ r � c x; y; tð Þrh½ � ð4Þ

where r indicates as before the gradient operator. Note that
(4) reduces to the linear diffusion equation (3) if c(x, y, t) is
constant.
[12] If the location of a channel were known, then, in

order to achieve noise reduction and edge enhancement,
smoothing should preferentially happen in the region out-
side and within the channel, rather than across its boundary.
This could be achieved by setting c = 0 at the channel
boundaries and c = 1 everywhere else. However the channel
location is not known in advance, and what can be com-
puted instead is an estimate of it, or some geometric
characteristic that defines it, thereby stopping, or at least
reducing, diffusion across the channel boundary.
[13] Let ~E(x, y, t) denote the vector-valued function

representing an estimate of the channel’s location. The

diffusion coefficient can be chosen as a function of the
magnitude of ~E(x, y, t):

c ¼ p ~E
�� ��� �

ð5Þ

where p(�) has to be designed such that it ideally does not
allow diffusion across boundaries. Perona and Malik [1990]
have proposed a simple first estimate of the channel’s
location (or image edges in their original application), given
by the gradient of the elevation h(x, y; t) at the location (x, y)
and time t:

~E x; y; tð Þ ¼ rh x; y; tð Þ ð6Þ

This provides a local estimator of the edges/discontinuities
within the nonlinear space-scale paradigm. Note that we
could also use curvature, area in combination with slope, or
other higher-order features to localize channels and thus
define the diffusion coefficient c, while the use of gradients
is the most standard formulation in image processing and
found to be sufficient for our application (see also
discussion of Perona and Malik [1990] for advantages of
such a simple formulation). The diffusion equation thus
takes the following form:

@th x; y; tð Þ ¼ r � p rhj jð Þrh½ � ð7Þ

Perona and Malik suggested the following as possible edge-
stopping functions:

p rhj jð Þ ¼ 1

1þ rhj j=lð Þ2
ð8Þ

or

p rhj jð Þ ¼ e� rhj j=lð Þ2 ð9Þ

where l is a constant. Such expressions (when properly
regularized, e.g., via Gaussian smoothing) of the edge-
stopping function guarantee basic properties of the scale-
space paradigm, while at the same time enhancing the
discontinuities, thereby allowing their easier extraction (see
Alvarez et al. [1992], Perona and Malik [1990], and the
Appendix for details). From a numerical point of view, we
employ the version of the Perona-Malik filter proposed by
Catté et al. [1992]. The diffusion coefficient c is computed
in the four directions (north, south, east, and west) with the
gradients in (8) or (9) computed through standard finite
differences on Gaussian filtered data (with a very small
standard deviation of the kernel s = 0.05 m), to avoid the
stability issues related to the Perona-Malik original
formulation [Catté et al., 1992]. Then, the gradients in
(7) are computed on the nonsmoothed data through standard
finite differences, multiplied by the diffusion coefficient in
each direction and then summed to advance in time.
[14] The just introduced nonlinear diffusion equation (7)

will be used as a preprocessing step on the elevation data, to
remove unwanted details and enhance the features that are
relevant for channel network extraction. While many alter-
natives exist in the literature for nonlinear diffusion, we
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found this basic and most classical one to be sufficient to
introduce the ideas and to obtain state-of-the-art results for
the tested lidar elevation data.
[15] We have constructed an example to show the effect

of Gaussian (linear) versus Perona-Malik (nonlinear) filter-
ing on an idealized landscape (Figure 1a) with noise added
on the surface. The white band represents an idealized ridge
at a higher elevation compared to the surrounding land-
scape. As shown in Figure 1b Gaussian filtering (standard
deviation of the kernel s = 7 m which corresponds to t =
s2 = 49) achieves noise reduction at the expense of the
localization of the ridge, as it appears diffused in the
neighboring landscape. The Perona-Malik filter (Figure 1c
after t = 50 iterations) achieves noise reduction without
affecting the boundaries localization. Note how after further
processing the idealized landscape through Gaussian filter-
ing (Figure 1d with s = 14 m which corresponds to t = 196)
the ridge and its location are not identifiable anymore, while
the Perona-Malik filtering (Figure 1e with t = 200) only
improves noise reduction, without affecting the feature. In
addition Figure 2 shows the profiles extracted from the
idealized landscape shown in Figure 1. Figure 2a shows
the case of an idealized landscape with no noise added on
the surface. Note how the profile extracted from the Perona-
Malik filtered data after t = 50 iterations resembles the
original one, while the idealized ridge has almost disap-
peared from the Gaussian filtered landscape. The profiles
shown in Figures 2b and 2c refer to the same idealized
landscape with noise added on the surface shown in

Figure 1. Note how well defined and enhanced appear the
ridge after further Perona-Malik filtering of the data. This is
due to the fact that at the boundary between the ridge and
the surrounding landscape the gradients are large, thus
diffusion is stopped.

2.2. Geodesics and Energy Minimization Principles
for Network Extraction

[16] Having applied the Perona-Malik filter to the initial
DEM image, unwanted details have been eliminated, or
reduced, and the features enhanced. The question then arises
as to how to best (optimally) extract the whole channel
network.
[17] If we have two fixed points a and b on the surface,

we know there are infinite possible curves passing through
them. If a and b now represent the outlet and a channel head
of a tributary river network, then we know that among all
the possible curves, only one will be a channel. (The
detection of the outlet and of the channel sources will be
explained later in section 3.2. For now, let us assume their
locations are known). Topographic attributes that distin-
guish channels from the rest of the landscape are the surface
curvature and the flow accumulation. Channelized areas are,
in fact, commonly characterized by positive curvature (or
curvature above a threshold value which indicates conver-
gent topography, while negative curvature indicates diver-
gent topography correspondent to hillslopes) and by large
values of flow accumulation (as channelized paths collect
water in the downstream direction). If we were able to

Figure 1. Comparison of the effect of Gaussian (linear) versus Perona-Malik (nonlinear) filtering on an
idealized landscape. The white area represents an idealized ridge, with an elevation higher than the
surrounding landscape. (a) Noise has been added on the original data. (b) Gaussian filtering achieves
noise reduction at the expense of the boundaries localization (standard deviation of the kernel s = 7 m),
while (c) Perona-Malik filtering achieves noise reduction while preserving the right localization, avoiding
diffusion across its boundaries (number of iterations t = 50). (d) Note how further processing with
Gaussian filtering results in a completely blurred ridge (s = 14 m), while (e) the Perona-Malik filtering
operation only reduces the noise further, without affecting the feature and its localization (t = 200).
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choose among all the possible curves connecting point a and
point b (the outlet and a channel head of our river network)
the one with the largest overall positive curvature and flow
accumulation, then we would have identified the channel.
This concept can be mathematically expressed through a
function, called the ‘‘cost function’’ and indicated by y,
which represents the cost of traveling between point a and
point b, in this case in terms of surface curvature and flow
accumulation. This means that while the channel itself will
be the curve with minimum cost (as will meet the require-
ments of positive curvature and large flow accumulation),
the other curves will be penalized with a higher cost. The
curve with the minimal cost corresponds to a mathemati-

cally defined quantity called the geodesic curve and for-
mally defined as follows:

g a; bð Þ :¼ arg min
C2W

Z b

a

y sð Þds
� �

ð10Þ

where s is the standard Euclidean arc length [Do Carmo,
1976]. The minimum is taken over all the possible curves C
that start at point a and end at point b.
[18] Before we give more details on how the computation

of the geodesic curve is performed, let us make two important
observations related to the just introduced concepts. First,

Figure 2. The 1-D representation of the example shown in Figure 1. (a) Idealized landscape with no
noise added on the surface. Profiles extracted from the original idealized landscape (left), the Gaussian
filtered landscape (s = 7 m) (middle), and the Perona-Malik filtered landscape (t = 50) (right).
(b) Idealized landscape with noise added on the surface as shown in Figure 1. Profiles extracted from the
original idealized landscape (left), the Gaussian filtered landscape (s = 7 m) (middle), and the Perona-
Malik filtered landscape (t = 50) (right). (c) Effect of further smoothing on the data shown in Figure 2b.
Profiles extracted from the Gaussian filtered landscape (s = 14 m) (middle) and Perona-Malik filtered
landscape (t = 200) (right).
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having said that for the detection of channels we define the
cost function in terms of positive surface curvature and large
flow accumulation, implies that different feature selections
of the cost function will lead to different curves on the
surface. This means that this approach could be used for the
detection of other features of interest, such as roads or
landslides for example, with the only challenge of being
able to identify the most appropriate topographic attributes
needed. Also, as it can be seen from equation (10) the
integral sign indicates that the minimum is achieved in a
global sense, not locally. If, for example, channels were to
be traced following steepest descent directions, then the
presence of noise in a pixel would deviate the channel in
an erroneous way, while the global approach guarantees
robustness. The same happens in the case of missing data:
while forward marching techniques would stop, global
approaches such as the geodesic framework would naturally
‘‘jump’’ over them, as they always connect the selected
extreme points.
[19] The computation of the geodesic curve involves

another well defined mathematical quantity called geodesic
distance:

d a; xð Þ :¼ min
C2W

Z x

a

y sð Þds ð11Þ

This is the quantity which gives us the minimum distance
from any point x to location a, computed by minimizing the
cost function. Intuitively we can now see how, if we want to
travel from point a to point b along the geodesic curve
(which in our case it means that we want to identify the
channel that connects the outlet and a channel head), we
need to use the information given by the geodesic distances.
Formally, the actual geodesic curve is computed by gradient
descent on the distance function d(a, �), backtracking from
the ‘‘downstream’’ point b. The geodesic is thus the integral
curve of rd starting at point b, and the gradient is
intrinsically computed on the surface. Clearly, the efficiency
of the computation of the geodesic curves depends on the
computation of the geodesic distances. Several algorithms
are available in the literature for the efficient computation of
the geodesic distances [e.g., Yatziv et al., 2006; Dial, 1969;
Dijkstra, 1959]. These algorithms are applicable to all
diverse types of surface representations, from triangulated
surfaces [Kimmel, 2003] to point cloud data as in lidar
[Memoli and Sapiro, 2005]. These extensions are based on
the fact that the geodesic distance function satisfies a
Hamilton-Jacobi geometric partial differential equation,
jrdj = y, where the gradient is intrinsic to the surface in
the most general case. Additional information on these
efficient computations can be found in the work of Helmsen
et al. [1996], Sethian [1999], Tsitsiklis [1995], Tsai et al.
[2003], and Zhao [2004]. Note that these algorithms are of
complexity linear on the number of grid points, and thereby
computationally optimal.

3. Channel Network Extraction

[20] The objective of this section is to illustrate the
concepts described above through their application on lidar
data of the South Fork Eel River basin in northern California.
We use the ALSM (Airborne Laser Swath Mapping) data

(2.6 m average bare earth data spacing, gridded to 1 m)
acquired by NCALM (National Center for Airborne Laser
Mapping) (the data are available online at the data distri-
bution archive http://www.ncalm.org/). We focus in partic-
ular on the Skunk Creek, a 0.54 km2 landslide complex
tributary located just upstream of the Elder Creek. The
subbasin and the location map are shown in Figure 3. For
the Skunk Creek we had available a hand-drawn channel
network map (field survey done by Joel Scheingross and
Eric Winchell, University of California, Berkeley). The
digitized version of the hand-drawn map is shown in
Figure 3 as well. As can be seen, the part of the network
close to the outlet is composed by active channels (channels
with well defined banks and presence of bed material),
while the part close to the divide consists of inactive (poorly
formed channels with limited bed material but with defin-
able channel banks) and transient channels (which present
characteristics in between the inactive and active channels).
Because the channel network of Skunk Creek is dis-
rupted by deep-seated landsliding (see also analysis of
C. Gangodagamage et al. (submitted manuscript, 2009))
and is discontinuous in its upper reaches, several channel
heads occur along individual valley paths (see Figure 3). We
preserve this discontinuity to explore how well we can
detect not only channel initiation points but also channel
disruptions through our proposed techniques. The channel
network of the Skunk Creek is a very challenging basin for
testing a channel extraction methodology. Nevertheless, the
capability of our methodology in capturing channel disrup-
tions, as shown in this section, makes it a very interesting
application.

3.1. Preprocessing: Regularization of High-Resolution
Digital Elevation Data Through Nonlinear Filtering

[21] We focus our analysis on a 200 m � 200 m portion
of the Skunk Creek, referred to as portion A (see Figure 4).
The landscape A has been processed with a Gaussian filter
(isotropic linear diffusion) and the Perona-Malik filter
(anisotropic nonlinear diffusion). To allow comparison of
the two filtered landscapes, the time of forward diffusion
(iteration steps) has been set to 50 iterations in both (in
general, there is no exact mathematical correspondence
between the corresponding diffusion times). This corre-
sponds to a Gaussian spatial filter of approximate s = 7 m
(scale of smoothing of the landscape of approximately
4s = 28 m) [see Lashermes et al., 2007, Table 1]. As is
apparent from the theory, no such unique and uniform
equivalent spatial scale of smoothing can be assigned to
the nonlinearly filtered landscape as the effective smoothing
scale varies locally at every point depending on the local
gradient. Specifically, the effective spatial scale of smooth-
ing is smaller in the vicinity of feature boundaries (e.g., the
channel boundaries, where the gradient is large and the edge
stopping function of equation (8) assigns a small diffusivity
coefficient), and larger in areas of spatially homogeneous
and small gradients (recall also the example shown in
Figures 1 and 2). The Perona-Malik filter used in this
analysis is that of equation (8) with parameter l estimated
from the 90% quantile of the probability distribution func-
tion (pdf) of the gradients, as also suggested by Perona and
Malik [1990] (the selection of such a parameter can be made
fully automatic also following the robust statistics approach
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by Black et al. [1998]). Note that the standard deviation of
the Gaussian kernel and the number of iterations of the
Perona-Malik filter have to be defined based on the scale of
the objects we want to remove from the data. In particular
the notion of 50 iterations has to be interpreted as a
parameter of the algorithm. It represents the number of
steps needed to achieve noise reduction and discontinuities
enhancement before proceeding with the channel extraction.
[22] Figure 5a shows the original landscape at the reso-

lution of 1 m with 3 m contours superimposed on it, as well
as the computed gradients and curvatures (using simple first-
and second-order numerical differentiation). Figures 5b and
5c show the filtered landscapes with the Gaussian filter and
Perona-Malik filter, respectively, using for both 50 iterations
as the stopping time of the forward diffusion as explained

above. The curvature reported here in all cases is the
(geometric) curvature of the isoheight contours:

k ¼ r � rh= rhj jð Þ ð12Þ

computed by standard finite differences. The advantages in
using the geometric curvature instead of the Laplacian will
be addressed later in this section.
[23] Several observations can be made from Figure 5.

First, it is easily seen from Figure 5b that the Gaussian filter
smoothes the contours along the channels much more than
the Perona-Malik filter. This is expected from the theoretical
properties of the Perona-Malik filter which deforms the
landscape much less along the discontinuities. In fact, the
Perona-Malik filter achieves a limited deformation of con-

Figure 3. Skunk Creek, a 0.54 km2 tributary located just upstream of Elder Creek, part of the South
Fork Eel River in northern California. The upper half of the basin consists of active channels (well
defined banks and presence of bed material), while the bottom half consists of inactive (poorly formed
channels with limited bed material) and transient channels (with characteristics in between active and
inactive).
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tours along the discontinuities such that it encourages the
localization of these features. It is also observed that the
areas of the landscape over which the curvature is positive
(along the channelized areas) are much broader, and thereby
deformed, in the Gaussian filtered landscape than in the
Perona-Malik landscape. This is also expected from the basic
properties of the two filters. One can argue that the Gaussian
filtering (isotropic diffusion) could be stopped earlier, i.e,
smaller spatial scale of filtering, to result in better localiza-
tion of the channelized valleys. However, as it will be seen
later, such a smaller-scale filtering would not adequately
eliminate the isolated high curvature areas that are not
pertinent to channel extraction. Furthermore, nonlinear
diffusion is enhancing the discontinuities (acting in those
regions as backward diffusion as shown by Perona and
Malik [1990]; see also Appendix), which is critical for
facilitating the automatic channel network extraction.
[24] Figure 6 shows the pdfs of the geometric curvatures

of the original data and the filtered landscapes as well as the

Figure 4. Location of the 200 m � 200 m square, named
portion A, in Skunk Creek.

Figure 5. Comparison of the (left) elevation, (middle) gradient, and (right) curvature between the
(a) original data, (b) Gaussian filtered data (scale s = 7m), and (c) Perona-Malik filtered data (50 iterations)
computed in portion A of Skunk Creek shown in Figure 4. In all plots, elevation contours at 3 m spacing
are superimposed. Notice the sharper localization of the channels in the Perona-Malik filtered lidar data.
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quantile-quantile plots of those curvatures. As discussed in
the work of Lashermes et al. [2007] for the Laplacian, the
sudden change in the statistical signature of the landscape,
depicted by the (positive) curvature at which the pdf
deviates from a Gaussian pdf, marks the transition from
hillslopes to valleys. It is interesting to observe that
although the actual value of the threshold curvature is
different for the original image and the two filtered images,
as expected, the quantile at which this transition occurs is
scale- and filter-independent and as reported in the work of
Lashermes et al. [2007] for the Laplacian, corresponds to
the standard normal deviate of z = 1 (approximately the 84th
quantile of the pdf of curvatures). Figure 6 (right) depicts
the pixels at which the curvature was greater than the
threshold curvature identified from the corresponding pdfs;
white pixels correspond to pixels with curvature greater
than the threshold value while black pixels correspond to
pixels with curvature smaller than the threshold value.
Several observations can be made. First, the above-thresh-
old curvature pixels in the original high-resolution data
depict the channelized part of the landscape but at the same

time one sees several isolated small areas which are strongly
convergent due to the high frequency variability present on
the landscape (e.g., bumpy ground, vegetation, etc.). The
operation of smoothing is thus performed in order to focus
the channel identification on the scale of interest. Second,
the above-threshold curvature pixels on the Gaussian fil-
tered landscape eliminate the noise and nicely depict the
valleys or channelized areas only; however, the corridors of
the convergent areas are too wide due to the smoothing of
the landscape which has been done at the scale of approx-
imately 28 m throughout the landscape.
[25] The above-threshold curvature pixels in the Perona-

Malik filtered landscape (shown in Figure 6c), depict in a
much sharper way the channelized valleys. Of course, a
smaller-scale Gaussian filter would also result in a sharper
delineation of the channelized valleys. While this is true,
however, the smaller scale of smoothing would not elimi-
nate the isolated small convergent areas which are not part
of the channel network. This is demonstrated in Figure 7,
which displays the above-threshold curvature pixels for
three standard deviations of the Gaussian filter: s = 2 m

Figure 6. Comparison of the pdfs of (left) curvature, (middle) q-q plots of curvature from which the
threshold value is determined, and (right) skeleton of pixels with above-threshold curvature for the
(a) original data, (b) Gaussian filtered data (scale s = 7 m), and (c) Perona-Malik filtered data
(50 iterations) computed in portion A of Skunk Creek shown in Figure 4. The Perona-Malik filter does
the best in terms of accurately localizing the channelized valleys while reducing background noise (see
text for more discussion).
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(landscape smoothing scale a = 8.9 m); s = 4 m (landscape
smoothing scale a = 17.8 m); s = 6 m (landscape smoothing
scale a = 26.7 m). It is noted by comparing Figures 6c and 7
that the Perona-Malik localization of the channelized
valleys (measured by the width of the white corridors) is

comparable to the localization provided by the Gaussian
filter at scale of approximately 9 m (s = 2 m). However, at
this small scale of smoothing, the Gaussian filtering results
in many more isolated high curvature areas as can be seen in
Figure 7a compared to Figure 6c. Thus we conclude overall,
that the Perona-Malik filter is a more efficient filter to use
for preprocessing of the raw data (to produce what is called
‘‘regularized data’’) on which further operations for auto-
matic channel extraction can be performed.
[26] It is also worth pointing out the advantage of using

the (geometric) curvature k instead of the Laplacian. This
can be seen by comparing Figure 6b to Figure 8. The figures
show the skeletons of pixels above-threshold curvature
obtained on the Gaussian filtered data (scale s = 7 m) using
geometric curvature (Figure 6b) and Laplacian (Figure 8).
Note how sharper and well defined is the skeleton obtained
using the geometric curvature.
[27] Before demonstrating in the next section the geode-

sic energy minimization approach for the automatic extrac-
tion of the whole channel network of the Skunk Creek, we
note that one can further process the regularized data to
eliminate even more the occasional isolated convergent
pixels seen in Figure 6c. This is a further operation which
can be easily done via a contributing area threshold, where
the threshold used has to be small enough not to interfere
with channel initiation. For example, Figure 9 shows the
skeleton of Figure 6c after applying the additional contrib-
uting area threshold of A = 3000 m2, meaning that only the
pixels with contributing area equal to or above this thresh-
old were selected. The contributing area was computed
using the Dinf algorithm [Tarboton, 1997]. We have then
compared this value to the minimum contributing area at the
channel heads, obtained using the same algorithm at the
11 farthest surveyed channel heads in Skunk Creek. As it
can be seen from the histogram of the contributing area
shown in Figure 10, the minimum value is equal to 3329 m2,
thus the chosen contributing area threshold of 3000 m2 does
not interfere with channel initiation. It is noted that, while
the curvature threshold is easily identifiable from the

Figure 7. Comparison of the images obtained threshold-
ing the curvature computed on the Gaussian filtered data
with s = 2 m, 4 m, 6 m (landscape smoothing scales of
8.9 m, 17.8 m, and 26.7 m, respectively). White pixels
indicate pixels with above-threshold curvature. The plots
refer to portion A of Skunk Creek shown in Figure 4.

Figure 8. Skeleton of pixels above threshold curvature for
the Gaussian filtered data using the Laplacian with s = 7 m
(landscape smoothing scale of 31.1 m). The plot refers to
portion A of Skunk Creek shown in Figure 4.
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quantile-quantile plot, as explained earlier, the contributing
area threshold is an arbitrarily chosen value, the smallest
able to reduce the noise further in the skeleton of likely
channelized pixels. It is observed that this further operation
not only removes isolated convergent areas, but also further
narrows the width of the likely channelized valleys provid-
ing a better preprocessed data on which channel heads are
identified for the geodesic optimization to be performed (see
discussion later in the application to the Skunk Creek basin).

3.2. Automatic Extraction of Channel Paths From
the Regularized Data

[28] In this section we focus on the regularized data set of
Skunk Creek obtained through nonlinear filtering and
illustrate how the concepts of geodesics and energy mini-
mization described earlier allow a fast and efficient extrac-
tion of the channel network. The first step of the extraction
procedure is the creation of the skeleton obtained by
nonlinear filtering and thresholding the curvature and the
contributing area, as discussed in the previous section. The
threshold curvature was easily identified by a clear change
in the statistical behavior of the curvature, while the
threshold area was set to a value of 3000 m2. The
extracted skeleton for the Skunk Creek river basin is
shown in Figure 11.
[29] Several observations can be made by comparing

Figure 11 with the surveyed network shown in Figure 3.
First, in Figure 3 one observes that most of the channels in
the part of the network close to the divide are labeled as
‘‘transient’’ or ‘‘inactive’’ and indeed the extracted skeleton
depicts this topography by a series of interrupted areas of
high curvature (and large contributing area). Second, at the
points where the surveyed channel heads are located, our
algorithm depicts a substantial interruption in the channel-

ized valley. It is observed therefore, that the preprocessing
already allows one to investigate more closely the richness
of the landscape form, something not possible with other
current algorithms.
[30] From the skeleton of Figure 11, we can detect the

river network outlet, as the point with the maximum flow
accumulation area, computed, for example, using the Dinf
algorithm [Tarboton, 1997]. After the outlet of the network
has been identified, we can proceed with the detection of
the end points. First the algorithm uses the skeleton of
Figure 11 to compute how many continuous elements
compose the skeleton and how many pixels belong to each
of them. With this we mean that we label with a sequential
number all the parts of the skeleton which are completely
connected and do not present disruptions (i.e., the skeleton
is continuously equal to 1, while the disruption is repre-
sented by one or more pixels equal to zero). We call the
variable representing the number of pixels in each
connected element N and plot in Figure 12a its histogram.
As it can be seen, the Skunk Creek skeleton is composed by
56 connected elements, one of which is composed by
4508 pixels and 55 much smaller elements. This is some-
thing we could have expected having already observed that
Skunk Creek is an extremely disrupted basin, and we can
deduce that the element composed by 4508 pixels is the one
which includes the part of the basin close to the outlet (the
most continuous one), while the 55 smallest elements
compose the skeleton of the part of the basin close to the
divide (which, as we already pointed out, appears extremely
disrupted in agreement with the fact that the channels here
are either inactive or transient). Note that some of these
elements may also represent small isolated noisy areas still
present in the data.
[31] Now that the connected elements of the skeleton are

identified, the algorithm looks for the end points. These are
identified as the points at which the branches end. Since the
branches are wider than one pixel, the actual point taken as
end point is the one which belongs to the minimum
geodesic distance path. Thus we need to define the cost

Figure 9. Skeleton obtained by thresholding curvature and
contributing area for the portion A of Skunk Creek shown in
Figure 4. Introducing the contributing area criterion
eliminates all the isolated pixels which have a positive
curvature above threshold but are not part of the channel
network.

Figure 10. Histogram of the contributing area computed
with the Dinf algorithm at the 11 farthest channel heads
surveyed in Skunk Creek.
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function which will be used to identify the end points and
connect them to the outlet through geodesic curves. This
cost function was chosen to give penalty for selecting paths
along which the drainage area does not have large flow
accumulation and along which the curvature is not large
compared to the surrounding points. The chosen form of the
cost function y used in (10) is the following:

y ¼ 1

a � Aþ d � kð Þ ð13Þ

where A is the contributing area, k is the curvature (of
isoheight contours for our examples), and a and d are
constants which have to be chosen appropriately for the
application at hand. The purpose of these constants is to
take care of the dimensionality of y (as A is measured in
m2, while k in 1/m) and of the difference in the order of
magnitude between the quantities employed (A varies
between 1 and 5 � 105 m2, while k has been normalized
and thus varies between 0 and 1).
[32] We will discuss later in this section how the choice of

the constants a and d can be made. For now, to illustrate
how the end points are detected, let us assume we have
identified the optimal parameters of the cost function (13)
for our application, namely a = 1 m�2 and d = 103 m (see
discussion later in this section on how these parameters can
be determined). We focus on the 200 m � 200 m portion A
of the Skunk Creek used in section 3.1. Figure 13a shows
the skeleton of Skunk Creek (the same previously shown in
Figure 9) and Figure 13b shows the end points as detected
by the algorithm and indicated by a white circle. We can
notice that the locations marked as A, B, and C do not
appear to belong to a channel, but rather to be small
convergent areas still present in the skeleton after prepro-
cessing. It is clear that we need to identify these elements
and ignore them, such that they will not be erroneously
considered as channels. If we plot again the histogram of N,
the number of pixels belonging to each connected element
of the skeleton, ignoring the largest element, as shown in
Figure 12b, we notice that there is a large number of

small connected elements located below and around a
value of N = 10 pixels. We can interpret these elements as
small isolated convergent areas and detect the end points
only on the elements of the skeleton with N > 10 pixels. Note
that we expect the identification of this threshold of N to be
much simpler in the case of a basin more homogeneous than
Skunk Creek. Due to the nature of the basin here in analysis,
the choice of this value of N is extremely challenging, while
a more homogeneous basin would probably present the
skeleton as a unique connected element, with a few smaller
ones, which could be easily interpreted as isolated areas.
The result of adding a threshold N > 10 pixels in the end
points detection can be seen in Figure 13c. Locations A, B,
and C are now ignored and the end points (indicated by
white circles) are identified only on the branches that appear
to be channels. Following this procedure we have identified

Figure 11. Skeleton obtained by thresholding curvature
and contributing area for Skunk Creek.

Figure 12. (a) Histogram of the number of pixels
belonging to each connected element of the skeleton of
Skunk Creek. The skeleton is composed by 56 elements of
which one includes the majority of the pixels. (b) Excluding
the most connected element, the histogram highlights a
large number of small connected elements below and
around N = 10 pixels. This value can be interpreted as the
size of small isolated convergent areas which do not belong
to channels.
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all the end points in the Skunk Creek skeleton, as shown in
Figure 14.
[33] After all the end points have been detected, we

connect them with geodesic curves through the above
defined cost function (13). Let us now discuss the selection
of the constants a and d. A helpful quantity in the definition
of the constants a and d is the geodesic distance d (11).
Since the geodesic curves (10) are computed by gradient
descent on d, then d can be used to understand how optimal is
the choice of the constants. This is illustrated in Figure 15.
Figures 15a–15j show the geodesic distances d and the
extracted network correspondent to different choices of a
and d in the cost function y (13). Figures 15a and 15c show
the geodesic distances d corresponding to a = 1 m�2 and d =
0 m and a = 0 m�2 and d = 1 m respectively, and Figures 15b
and 15d the corresponding extracted networks. It is clear
that using only one of the two quantities does not give good
results. Figures 15e through 15j show the geodesic distances
and the extracted networks for a = 1 m�2 and d = 1, 103,
105 m. It can be seen how the choice of a = 1 m�2 and d =
1000 m gives the smallest values of the geodesic distance
along the skeleton of the network. This can be used as
guidance to ensure an optimal computation of the geodesic
curves. Note that the value of d = 1000 m corresponds to the
order of magnitude of the mean contributing area computed
on the whole surface A ’ 550 m2.
[34] Figure 16 shows the extracted channel network

obtained for the Skunk Creek with a = 1 m�2 and d =
1000 m and compared to the surveyed data. As discussed
before, this is a challenging basin for the automatic channel
network extraction due to many interruptions due to land-

Figure 13. Detection of the end points. (a) Skeleton-
obtained thresholding curvature and contributing area in
portion A of Skunk Creek. (b) Without a threshold in N, the
number of pixels composing each connected element,
locations A and B are identified as channels. (c) The
threshold N > 10 pixels allows to exclude locations A and B
from the end points detection. End points are here indicated
by a white circle.

Figure 14. End points automatically detected in Skunk
Creek.
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Figure 15. The geodesic distances d and the extracted networks for different choices of the parameters
of the cost function y. The geodesic distances are useful in understanding if the choice of the cost
function guarantees the optimal tracing of geodesic curves. (a and b) y = 1

A
; (c and d) y = 1

k; (e and f) y =
1

Aþk; (g and h) y = 1
Aþ103�k; (i and j) y = 1

Aþ105�k.
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slides and debris flows. Nevertheless, the automatically
extracted channel network compares well with the field-
surveyed river network. Recall that the only information
that was externally provided was the threshold area of
3000 m2 and the values of the parameters a and d, though
guidelines for the possible automatic selection of these
parameters were provided as well.
[35] As discussed earlier, our algorithm allows the detec-

tion of channel disruptions (see Figure 11) which are
depicted in the skeleton and can be kept before the geodesic
optimization is performed. The channels are traced contin-
uously to the farthest end points detected, but the user
knows the location and the extent of the disruptions from
the skeleton. Figures 17a and 17b show the histogram of the
length of the channel disruptions measured on the surveyed
data of Figure 3 and on the extracted skeleton of Figure 11.
As it can be seen the extracted network of Skunk Creek
shows, statistically, the same level of disruptiveness char-
acteristic of the area.

4. Concluding Remarks

[36] High-resolution DEMs offer new opportunities for
extracting detailed features from landscapes (e.g., channels,
disruptions, channel heads), but also challenges in develop-
ing extraction methodologies that are objective and compu-
tationally efficient. The problem really becomes one of
image processing relying on scale-space representation,
i.e., coarsening the landscape without smoothing out fea-
tures of interest and detecting features efficiently. In this
paper we introduced a geometric framework for the extrac-
tion of channel networks from lidar data. The proposed
approach includes two main components: the preprocessing
of the data via nonlinear diffusion, to reduce noise and
enhance features that are relevant to the network extraction,

and the computation of channel networks in the filtered data
via geodesic curves that incorporate geomorphological
knowledge such as contributing area and (geometric) cur-
vature. The methodology presented in this paper has been
applied to Skunk Creek, a tributary of the South Fork Eel
River basin in northern California. Despite the challenges
presented by the basin analyzed, which is a complex
landslide-disrupted basin, the proposed methodology has
demonstrated to be computationally efficient and able to
detect, not only channels, but also the presence of channel
disruptions.
[37] This work, which introduces the idea of approaching

geomorphological analysis as a geometric task, opens the
door to many problems in the automatic extraction of
information from lidar data. For the particular case of
channel networks, it is important to study the possible
benefits of using other nonlinear equations for preprocess-
ing and the introduction of additional features in the
geodesic penalty function. Similarly, the exploitation for
geomorphological analysis of other models which are pop-
ular in the partial differential equations and variational
formulations in image processing community, such as the
Mumford-Shah functional [Mumford and Shah, 1989], is of
great interest. For example, the channel networks can be
considered as discontinuity fields and outliers, and as such
be automatically computed by such an approach [Sapiro,
2001]. Beyond this, the methodology is being presented
here for the case of a tributary system, but with an
appropriate modification of the cost function, could be
applied to a distributary or mixed systems. Moreover
channel networks are just one of the many important
features in landscapes, and the exploration of the geometric
approach here initiated for the extraction of other geomor-
phic features, such as landslides, debris flow regions,

Figure 16. Automatically extracted river network for Skunk Creek using the geodesic optimization on
the Perona-Malik filtered landscape compared to the digitized surveyed data.
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ravines, channel morphology, etc., is a subject of future
research.

Appendix A

[38] In this Appendix we illustrate the property of the
Perona-Malik filtering. In particular we include part of the
formulation in the original Perona and Malik [1990] paper
to show that this filter acts as a backward diffusion in
regions of high gradients such that it results in enhancing
these edges for easy extraction. We illustrate this via a
simple 1-D example of an edge modeled as a step function
convolved with a Gaussian, assumed to be aligned with the
y axis (see Figure A1). The divergence operator in this case
simplifies as follows:

r � c x; y; tð Þrh½ � ¼ @x c x; y; tð Þ@xh½ � ðA1Þ

Choose c to be a function of the gradient of h: c(x, y, t) =
p[@xh(x, y, t)] and define the flux: f(@xh) � c�@xh � p(hx)�hx.

Then, the 1-D version of the nonlinear diffusion equation (7)
becomes:

@th ¼ @xf hxð Þ ¼ f0 hxð Þ � hxx ðA2Þ

We are interested in the variation in time of the slope of the
edge, which is given by @t(hx). If c(�) > 0 and the function h is
smooth, the order of differentiation may be inverted:

@t hxð Þ ¼ @x htð Þ ¼ @x @xf hxð Þ½ � ¼ f00 � h2xx þ f0 � hxxx ðA3Þ

Assuming the edge to be oriented such that hx > 0, then, at
the point of inflection, being the point with maximum
slope, hxx = 0, and hxxx � 0. Then as can be seen from
(A3) if f0(hx) > 0 the slope of the edge decreases with
time, while if f0(hx) < 0 the slope increases with time (the
edge becomes sharper with time). Several possible choices

Figure 17. (a) Histogram of the length of the channel
disruptions Ld measured on the surveyed data. (b) Histogram
of the length of the channel disruptions Ld measured on the
extracted data.

Figure A1. The 1-D edge modeled as a step function
convolved with a Gaussian kernel and its first, second, and
third derivatives. Figure adapted from Perona and Malik
[1990] (copyright 1990 with permission from IEEE).
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of the function f(�) exist, one being the following (see
Figure A2):

f hxð Þ ¼ C= 1þ hx=lð Þ1þa
� �

ðA4Þ

with a > 0. This means that there is a certain threshold value
related to l and a, below which f(�) is monotonically
increasing, and beyond which f(�) is monotonically
decreasing, achieving noise reduction and edge enhance-
ment. In a neighborhood of the steepest region of an edge,
f0(hx) is negative, which means that the nonlinear diffusion
acts as backward in time, thus achieving edge enhancement,
while preserving the advantages of the stability given by the
maximum principle satisfied by this type of elliptic
equation. For more details the reader is referred to the
original publication of Perona and Malik [1990].
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