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Abstract 

Field studies have documented that the average bedload transport rate in gravel bed streams 
depends on the sampling time (or integration time) over which this average is computed. In this paper 
we use sediment transport data from a controlled laboratory experiment to document and quantify the 
dependence on sampling time not only of the mean but of the whole probability density function (pdf) 
of sediment transport rates in a gravel bed stream. We demonstrate that the higher moments (variance 
and skewness) scale differently than the mean and we provide a concise parameterization of this 
statistical scale-dependence. The results indicate that the mean sediment transport rate in moderate 
flows decreases with increasing sampling time, in agreement with results reported in field studies. The 
proposed methodology provides a framework within which to seek universal scaling relationships, 
compare results of different samplers, and also interpret extremes.   

1. Introduction 

In a recent study Bunte and Abt (2005) have provided an excellent account of the problem of 
sampling time dependence of gravel bedload transport rate and its importance for interpreting estimates 
from different samplers. They also provided a detailed quantification of this dependence for a range of 
flows in a gravel-bedded stream. Their results indicated that in moderate to high flows flows (50% 
bankfull to almost bankfull conditions) 2 min sampling led to an average transport rate 2 to 5 times 
lower than that found with 10 min sampling. However, at lower flows (close to the incipient gravel 
motion) 2 min sampling overestimated the transport rates at 10 min sampling by a factor of almost 3. 
The fact that bedload discharge measurements depend on both sampling time and mean flow rate was 
also shown by the field measurements at different time scales documented by Ergenzinger et al. (1994). 
In this study we restrict our analysis to the sampling time dependence in the low flow case, with results 
from a higher flow experiment to be presented by the authors in a follow-up work (Singh et al., 2008). 
The explanation of the sampling interval dependence at low flow has generally been that the 
instantaneous sediment transport rates exhibit rare but very high fluctuations (due to the irregular and 
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stochastic nature of particle movement on the bed) and thus integrating over variable time intervals 
changes the chance of sampling these high fluctuations. Translating this to a statistical interpretation, at 
very small sampling intervals the chance of sampling very high fluctuations is small and thus the pdf of 
sediment transport rates is highly skewed (only a small number of very high values is present); as the 
sampling interval increases however, more of these high fluctuations are likely to be sampled. Although 
most studies have been concerned only with how the mean changes with the sampling interval, it is also 
of interest to study the whole pdf and quantify how the shape (or the higher order statistical moments) 
of this pdf change as the scale (sampling interval) changes. This is important as often it is not only the 
mean but the variability of the sediment transport rates, including extreme quantiles, that is important in 
many ecological studies, e.g., studies that incorporate the effect of bedload sediment on stream habitat.   

The sampling-time dependence of bedload transport rates has important practical implications 
for bedload measurements in the field. Several researchers (e.g. Gomez et al. 1989, Kuhnle 1996, 
Wilcock 2001) have argued for sampling durations that are long enough to smooth out fluctuations and 
measure the “true mean” transport rate for a particular level of flow. But determining the time period 
that fits this criterion requires knowledge of the way in which the statistics of the transport rate vary 
with sampling interval. In addition, practical limitations can restrict sampling time to be less than this 
ideal: the sampling instrument used may have a limited capacity (such as a Helley-Smith type sampler), 
or variations in flow rate may mean that the system can not be considered stable over such a long 
period. In such situations, interpreting results and comparing measurements with different sampling 
times requires a quantitative understanding of the dependence of bedload transport on temporal scale. 

The first objective of this study is to use the results of a controlled and well-instrumented 
experimental set-up, described in Section 2, to reproduce some of the effects of sampling interval that 
have been observed in the field. By continuously measuring the mass of transported gravel bedload 
through an experimental flume at high temporal resolution, and then averaging over different time 
intervals, it is possible to simulate sampling the transport rate over different time periods. The second 
objective is to develop a theoretical framework for quantifying the variations in the statistical properties 
of bedload transport with changing sampling interval. This framework is outlined in section 3, and is 
focused on the ideas of scale-invariance, or the search for statistical quantities that remain the same with 
change of scale or can be transformed from one scale to another in a straightforward way. Of course, in 
this work the scale to which we refer is the temporal scale, i.e. the sampling time of the bedload 
transport. The results of applying this framework to the experimental data are presented in section 4, 
and the implications are discussed in section 5. 

2. Data Used In This Study 

2.1 Experimental set-up and data processing 

In order to investigate the dependence of bedload sediment transport on sampling time, we 
examine experimental data from the Main Channel facility at the St. Anthony Falls Laboratory, 
University of Minnesota. These experiments were conducted as part of a larger-scale experimental 
program (called StreamLab06) supported by the National Center for Earth-surface Dynamics (NCED) at 
the University of Minnesota.  The flume used in this study is 2.74 m wide and 55 m long, with a 
maximum depth of 1.8 m. Gravel with a median particle size (d50) of 11.3 mm was placed in a 20m long 
mobile-bed section of the 55 m long channel. The grain size distribution for the bed material is shown in 
Figure 1. A constant discharge of water at 4300 liters per second was released into the flume. This was 
estimated to generate a dimensionless bed stress of about twice the critical value required to move the 
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bedload sediment (Shields stress = 0.085 using median gravel diameter). At the downstream end of the 
test section was located a bedload trap, consisting of 5 weighing pans of equal size that spanned the 
width of the channel, as seen in Figure 2. Any bedload sediment transported to the end of the test-
section of the channel would fall into the weigh pans, which automatically recorded the mass they 
contained every 1.1 seconds. Upon filling with a maximum of 20 kg the weigh pans would tip to release 
the sediment into the collection hopper located below and reset the weigh pan.   

The flume is a partial-recirculating flume; it has the ability to recirculate gravel while water 
flows through the flume without recirculation. A large collection hopper located underneath the weigh 
pans serves to collect and store gravel dumped out of the weigh drums and also serves as the material 
source for the recirculation system. The rate of gravel removal out of this hopper and delivered to the 
upstream end of the flume via a large pump is set by adjusting the rotation speed of a large helix, which 
serves to push gravel laterally out of the hopper and into the recirculation line. In this way, the 
collection hopper and helix serve to buffer small fluctuations in sediment flux out of the flume and 
provide a more steady “feed-type” delivery of sediment to the upstream end. Because the physical size 
of the collection hopper is finite, the auger speed (upstream feed rate) was adjusted to match the actual 
transport in the flume such that we would always observe storage of gravel in the hopper. 
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Figure 1.  Grain Size Distribution of the bed surface. 
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Figure 2.  Weighing Pans located at the downstream end of the test channel. The experiment was 
conducted at the St. Anthony Falls Laboratory, National Center for Earth-surface Dynamics, University of 
Minnesota.  

Before any measurements were taken, the water supply in the flume was turned on to 4300 liters 
per second and was allowed to run 15 hr to develop a dynamic equilibrium in transport and slope 
adjustment of the water surface and bed. Determination of the dynamic equilibrium state was made by 
checking that the 60 min average flux was stabilized to an almost constant value during the flume run. 
The bedload transport data were then recorded continuously for approximately 16 hours through the rest 
of the experiment.  

The raw sediment accumulation data was pre-processed prior to the analysis presented here. The 
pre-processing involves removal of weigh pan dumping events from the data and translating the data set 
into a continuous accumulation of sediment ( ( )cS t ) time series for each weigh pan over the duration of 
the experiment. An example of this series can be seen in Figure 3. A single tipping event requires the 
removal of no more than eight data points (~8.8 seconds) of the record. On average, a single weigh pan 
tipped every 1.5 hr. Overall, the data affected by the weigh pan tipping constitutes less than 0.15% of 
the total data record and is, thus, negligible. 
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Figure 3.  Time series of the total accumulated sediment Sc(t) 

The sediment accumulation S(t, ∆t) measured over a sampling interval ∆t is then simply  

 )()(),( tSttSttS cc −∆+=∆ . (1) 
If the sampling interval ∆t is taken to be very small, such as the original 1.1 sec resolution of the 

data series, one observes a large number of negative values of S(t, ∆t), as shown in Figure 4a. These 
negative values are clearly not physically plausible since by the experimental design (Figure 2) the 
sediment can only pass in one direction, down onto the weigh pans, and hence S(t, ∆t) should only be 
positive. Thus, these negative sediment accumulations are attributed to the mechanical noise produced 
by: the natural oscillation of the weigh pans after being hit by the falling gravel; the fluctuating water 
surface over the pan; and the vibration caused by the large gravel pump which was placed near to the 
weigh pans (for further discussion of the errors associated with weigh pans and possible processing 
techniques, see Laronne et al., 2003). This noise can be smoothed out by considering longer sampling 
intervals ∆t. It was found that the occurrence of negative values of S(t, ∆t), and hence the significance of 
the noise relative to the signal, was greatly reduced once the temporal scale ∆t was increased to about  2 
min. Figure 4b shows the time series S(t, ∆t) for ∆t = 2 min. Hence to avoid noise distortion, we will 
mainly interpret results for temporal aggregation scales longer than 2 min. 
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Figure 4.  The time series of the sediment, S(∆t), accumulated over sampling intervals ∆t of: (a) 1.1 
seconds and (b) 2 min 

2.2 Statistical distribution of the data. 

To begin investigating the statistical properties of bedload transport and it’s dependence on 
sampling interval, consider the sediment transport rate, given by (S(t, ∆t) / ∆t) . The pdfs of the sediment 
transport rate, calculated at sampling intervals of 2, 5, 10, and 15 min, are shown in Figure 5. At the 
smallest scale, ∆t = 2 min, the probability distribution is wider, with a higher mean and standard 
deviation than at the longer sampling intervals. As the sampling interval increases, the mean decreases 
slightly and the standard deviation decreases more significantly, as the distributions become more 
tightly peaked at longer sampling time. Note that the pdf remains negatively skewed at the larger 
temporal scales. One measure of the shape of the probability distribution is the coefficient of variation, 

Cv, which is the ratio of the standard deviation to the mean, 
µ
σ

=vC . For the sediment transport rate, Cv 

decreases with increasing temporal scale, as shown in Figure 6. So the width of the pdf, relative to the 
mean, diminishes with increasing sampling time.  

a) ∆t = 1.1s b) ∆t = 2 min 
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Figure 5.  Probability density function of sediment transport rate for different sampling intervals (2, 5, 10, 
15 minutes), with mean and standard deviation listed (units of g/s). 
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Figure 6.  The coefficient of variation of sediment transport rate as a function of temporal scale ∆t 
(sampling interval). 

c) ∆t = 10 min d) ∆t = 15 min 

a) ∆t = 2 min b) ∆t = 5 min 
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3.  Framework of Analysis 

If the sediment transport rate (S(t, ∆t) / ∆t) was independent of the sampling interval, the mean 
of the accumulated sediment S(t, ∆t) would depend linearly on ∆t; that is, in twice as large a sampling 
interval, on the average twice as much sediment would be accumulated,. In practice, however, it has 
been found that the mean of S(t, ∆t) depends on ∆t in a way that has not yet been statistically 
characterized. The purpose of this paper is to explore whether this dependence falls under any scale 
invariance characterization, widely found in turbulence and other geophysical processes (e.g., see Parisi 
and Frisch 1985; Lovejoy et al., 1993; Gupta et al. 1994; Foufoula-Georgiou 1998; Sornette and Ouillon 
2005; Venugopal et al. 2006, Lashermes and Foufoula-Georgiou, 2007). 

Let us define the q-th statistical moment < S(∆t)q > as the expectation value of the q-th power of 
S(t, ∆t), which is estimated by 

 ( )∑
=

∆=∆
N

t

qq ttS
N

tS
1

),(1)( , (2) 

where N is the total number of data points available at the scale ∆t. The 1st statistical moment is the 
mean and the 2nd statistical moment is a measure of the variability about the origin. Combined, the 
statistical moments < S(∆t)q > for all q completely capture the shape of the pdf. Statistical scaling, or 
scale invariance, requires that < S(∆t)q > is a power law function of the scale, that is  
 ( ) )()( qq ttS τ∆∝∆ , (3) 

where τ(q) is the scaling exponent, which is independent of ∆t and depends only on the order of the 
moment q . For a scale-invariant variable, the function τ(q) therefore completely determines how the 
pdf of the variable changes with scale. For example, the mean will vary as sampling interval to the 
power of τ(1). 

The simplest form of scaling, known as simple scaling or monoscaling, is when the scaling 
exponents are a linear function of the moment order i.e. when τ(q) = Hq. In this case the single 
parameter H characterizes how the whole pdf changes over scales, so that if ( )),( ttSP ∆  is the pdf of 

sediment transport at scale ∆t, the pdf at a second scale ∆t’ is given by (e.g., Kumar and Foufoula-
Georgiou 1993) 
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That is, the pdf at sampling interval ∆t’ is simply the original pdf normalized by a factor 
H

t'
t −









∆
∆

.  

If τ(q) is nonlinear, known as multiscaling, more than one parameter is required to define the 
behavior of the probability distribution change over scales. In fact, equation (4) takes on a more 
complicated form and involves a convolution of the pdf at the previous scales with a kernel that depends 
on the ratio of scales (e.g., Castaing and Dubrulle 1995; see also Venugopal et al. 2006). Concentrating 
on the second order moments, one can quantify the relative change in shape of the pdf with the 
coefficient of variation, Cv. Note that Cv is expressed in terms of the first and second moments as 
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In the presence of scaling (equation 3) this results in 

 ( ) )1(2)2(2 1 ττ −∆∝+ tCv , (6) 
which, for the multiscaling case, indicates that the coefficient of variation changes across scales as a 
function of τ(2)-2τ(1). On the contrary, for simple scaling τ(q) is linear and hence τ(2) = 2τ(1), so that 
equation (6) means that Cv will be a constant across scales. The variation in the shape of the pdf with 
scale could also be quantified in more detail by higher order dimensionless moments, such as 

22S(
S(

> )∆<
 > )∆< 4

t
t

 (e.g., Mahrt 1988). 

 4. Results 

To quantify the scale-dependence of bedload transport, this multiscale analysis methodology 
was applied to the experimental sediment transport series described in section 2. The statistical moments  
< S(∆t)q > are displayed as a function of ∆t on a log-log plot in Figure 7. If the sediment transport series 
are scale invariant, we would expect to see a linear relationship in this figure, since the power law 
relationship between < S(∆t)q > and ∆t expressed in equation (3) is linear on a log-log plot. Figure 7 
indeed shows a linear relationship between the statistical moments and temporal scale over the range of 
approximately 1 min to 15 min (indicated by the dashed lines on the figure), and hence implies a scale 
invariant regime within this range. At sampling times shorter than 1 min, the statistical moments do not 
decrease as would be implied by the scale invariant system, and in fact increase at short enough scales. 
This behavior of the statistics at short time-scales is interpreted as being dominated by the mechanical 
noise, discussed in section 2.1, which can be identified by the high frequency of occurrence of negative 
values in the sediment accumulation rate, which by experimental design should only be positive. At 
sampling times  ∆t > 15 min, the statistical moments also deviate from the log-log linear relationship, 
eventually leveling out to be relatively constant with sampling time. This is seen as reaching a critical 
scale, around 15-30 min, at which the largest fluctuations of the series are sampled regularly and above 
which the statistics of the flow are stable.   
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Figure 7.  Statistical moments <S(∆t)q> of the sediment flux as a function of temporal scale (sampling 
interval), for the range of moment orders q = 0.5, 1, 1.5, 2.0, 2.5, 3.0. The vertical dashed lines mark the 
limits of the scaling range. 
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Figure 8.  The scaling exponents τ(q) as a function of the moment order q (computed values from the 
sediment transport series are shown as points for q=0 to 3 in increments of 0.5 and the solid line is the 
fitted quadratic approximation). Deviation from monofractality is depicted by the deviation from the 
straight line.   
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Within the scaling regime, it can be observed from Figure 7 that the statistical moments have 
different slopes. Estimating these slopes by least squares fitting gives the scaling exponents τ(q) for all 
moment orders q, which are plotted in Figure 8. Concentrating on first order (q = 1) statistical moment, 
which is in fact the mean of S(t, ∆t), we see that τ(1) ≈ 0.5. This implies that within the scaling range the 

mean amount of sediment accumulated increases as approximately t∆ , so for example, if one doubles 
the sampling interval the amount of mean sediment accumulated does not double but only increases by a 
factor of about 1.41. When considering the mean sediment transport rate, (S(t, ∆t) / ∆t), this implies that  

 5.0),( −∆=
∆
∆

∝
∆

∆ t
t
t

t
ttS

, (7) 

or that the bedload transport rate decreases with increasing sampling interval ∆t. In other words, 
doubling the sampling interval results in a transport rate which is approximately 0.7 (= 21 ) times 
smaller. 

If one then considers the statistical moments of order q higher than 1, Figure 8 indicates that 
their scaling exponents τ(q) do not increase as a linear power of q (the theoretical linear relationship is 
shown as a dashed line in the figure for comparison). So τ(2) is slightly less than twice τ(1), etc. 
Therefore, the simple scaling described by equation (4) does not hold, and a multiscaling framework is 
required. This is consistent with the fact that we saw in section 2.2 that Cv decreased with scale, 
corresponding to the pdf narrowing with increasing sampling time: using equation (6), a decreasing Cv 
implies that τ(2) is less that 2τ(1). 

Knowledge of the τ(q) curve allows the complete rescaling of the pdf with changing sampling 
interval. It is often convenient to parameterize τ(q) in order to describe the scaling properties of the data 
in a parsimonious way. Although several nonlinear parameterizations of τ(q) are possible, a typical 
parameterization results from assuming that τ(q) accepts a polynomial expansion of the form 

 ....
!32

)( 3322
10 ++−+= q

c
qcqccqτ , (8) 

with the constants ci, i = 0, 1, 2, 3,... as the model parameters. In this work, due to the uncertainty in 
estimation of higher order moments from limited data, the polynomial is truncated at the second order 
i.e. it is assumed to be quadratic and all ci are assumed to be zero for i > 2. This quadratic 
approximation, which is consistent with the so-called lognormal multiplicative cascade model (e.g., see 
Arneodo et al., 1998b), has been found adequate for modeling several geophysical processes including 
atmospheric boundary layer flows (e.g., Basu et al. 2006) and high resolution temporal rainfall 
(Venugopal et al. 2006), among others. The constant c0 = τ(0) is the scaling exponent of the zeroth-order 
moment, which will be equal to zero if the support fills the space, as is the case here. This leaves two 
parameters, c1 and c2, to describe the scaling, which can be obtained by fitting a second degree 
polynomial to the τ(q) curve. A least squares fitting was performed on the experimental data, and 
resulted in c1 = 0.56 and c2 = 0.05 (for comparison, for fully developed turbulence, c1 = 1/3 and  
c2 = 0.025). The τ(q) curve fitted with this parameterization is shown as the solid curve in Figure 8, and 
can be seen to approximate very well the empirical curve. Assuming this model, the mean of the 
sediment accumulation is seen to scale as ( ) 2/21)( ccttS −∆∝∆ , which is dominated by the c1 value, 

while the scaling of the coefficient of variation is given by ( ) 2)1( 2 c
v tC −∆∝+ . Hence, the parameter c2 

determines the widening of the pdf with decreasing scale. Scaling of higher order moments (and the 
whole pdf) can also be derived in terms of the two parameters c1 and c2 (e.g., see Venugopal et al., 2006 
for an application to rainfall series).  
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5. Discussion and Conclusions 

In this study the sampling-time dependence of the statistics of bedload transport has been 
examined, and the statistical moments have been found to change as power law functions of sampling 
time within a range of scales between 1 and 15 min. At temporal scales larger than around 30 min the 
statistics were observed to stabilize and become constant with sampling interval. This indicates that, at 
least for this system, the ideal way to measure bedload transport rates, to avoid any issues of scale-
dependence, would be to use a sampling interval of 30 min or greater. While this would certainly be 
possible in a controlled laboratory experiment such as the one presented here, in field studies this 
approach may not be practical, since we expect that the critical sampling time will scale up with the 
dimension of the system, and so may require very long sampling times in large rivers. Such long 
sampling times may not be feasible if the bedload sampler has a finite capacity or if the flow conditions 
in the river change within this time. For this reason further research into the scale dependence of 
bedload transport is required, not only to determine the upper limit of variations with scale, but also to 
quantify the scale-dependence at shorter sampling times, in order to allow the correction of statistics in 
the cases when long sampling times are not feasible.  

In this work we have outlined a framework to facilitate further investigation into sampling-time 
dependence, using the statistical moments of sediment transport to identify regimes of scale-invariance 
and scaling exponents τ(q) to quantify the changes in the probability distribution with scale. The 
quadratic parameterization of τ(q), equation (7), allows description of the continuum of scaling 
exponents with just two parameters. This should become increasingly useful in future studies as 
experiments are performed in a range of differing conditions and researchers attempt to identify how the 
scale-dependence of bedload transport varies with parameters such as flow rate and sediment size-
distribution. In this study, under low flow conditions and with a gravel bed of median particle size of 
11.3mm, c1 was 0.56 and c2 was estimated to be 0.05, indicating that the mean amount of sediment 
transported increased as approximately the square-root of sampling time. This means that the sediment 
transport rate decreased as the inverse of the square-root of sampling time (within the scaling range). 
However, there is no reason to expect this behavior to be universal for sediment transport. The flow rate 
and geometry in this experiment produced a moderate dimensionless shear stress of approximately twice 
the critical values for the median grain size. Preliminary analysis of data from an experiment with a 
higher flow rate, and hence higher bed-stress, indicate a reversal of this scaling behavior, with the mean 
sediment transport rate increasing with sampling interval through a similar scaling regime. These results 
will be presented in a further publication (Singh et al. 2008), along with analysis of the relationship 
between the modes of sediment transport and the features of the bed elevation, which may explain some 
of the characteristic scales of the sediment transport. 

Another long-term goal for further research is to understand the cause of the observed scaling, 
and its connection to the particle-scale dynamics. We believe that the scaling we see is not completely 
driven by the near bed turbulence, for the reason that the two-point statistics of the sediment transport 
rates (not presented here) do not show long range dependence, which would be characteristic of the 
multiplicative mechanism of eddy energy transfer in turbulence (Arneodo et al. 1998a). Instead, there is 
no long-range correlation, implying a different mechanism giving rise to the observed scaling, which we 
suggest might be particle interactions and emergent collective behavior.  Of course, the grain size pdf 
and the shear stress are both important factors that influence such particle-scale dynamics and thus 
would affect the statistics of the resulting sediment transport rates.   Exactly what type of particle-scale 
dynamics describes the observed statistics remains an open question which we plan to investigate in the 
future. 
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