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Patterns and Organisation in Precipitation

Efi Foufoula-Georgiou and Venugopal Vuruputur

4,1 INTRODUCTION

Rainfall possesses a complex spatio-temporal structure which has been the sub-
ject of many studies. Traditionally, applied hydrologists have recognised the
importance of this structure on runoff production, and have tried to analyse
and model it using simple descriptions, such as the depth-—area—duration
(DAD) curves, the area-reduction curves, and the hyetographs or normalised
hyetographs (see Chow et al., 1988; Linsley et al., 1982; Viessman and Lewis,
1996). The DAD curves depict, for a given duration, the area of the storm over
which a given depth is equalled or exceeded. The area-reduction curves depict,

for a given duration again, the decrease of the maximum storm depth (measured |

at a point) when it is averaged over increasing areal extent around that point. The
normalised hyetograph (or mass curve) depicts, at a particular location or as
average over an areal extent, the percentage of total storm depth (normalised

- depth) versus the percentage of storm duration (normalised time).

The above are of course simple measures of the complex spatio-temporal
variability of the observed storm patterns, but still provide a means of comparing

~observed patterns to each other or to extremes. They also provide the means of

parameterising design storms and reconstructing their spatio-temporal patterns
to be used in predicting design hydrographs through rainfall-runoff modelling.

For example, a 12-hour design storm depth at a point (computed from a fre-

quency analysis or from the Probable Maximum Precipitation methodology) can
be converted to “a design storm.pattern” by assigning it a DAD curve and a
design mass curve. That is, the spatial internal structure of the design storm could
be reconstructed using the selected design DAD curves and an assumed shape for
isohyets, and the temporal distribution of the total rainfall depth over its dura-
tion could be obtained using the selected design mass curve. All these attempts to
reconstruct the space-time variability of a storm were based on the recognition
that this variability plays an important role in runoff production (e.g., see Kiefer
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and Chu, 1957; Huff, 1967; Pilgrim and Cordery, 1975; and Milly and Eagleson,

1988; among others). It should be noted that in the early hydrology days, due to
data limitations (typically one or a few rainganges over the basin) more detailed
descriptions of the storm spatiotemporal patterns were not possible.

The recognition of the importance of the small-scale space-time rainfall varia-
bility on runoff modelling led to considerable research efforts in developing
stochastic point process models or phenomenological spatiotemporal models of
rainfall which c¢ould be used to simulate precipitation patterns, conditional on
preserving a desired total depth (e.g., see Gupta and Waymire, 1979; Kavvas and
Delleur, 1981; Waymire et al., 1984; Valdes et al., 1985; Seed et al., 1999; see also
the review of Foufoula-Georgiou and Georgakakos, 1991). In more recent years,
the wide availability (at least in the United States) of NEXRAD~ ot other radars
that continually monitor rainfall at high spatial and temporal resolution (typi-
cally pixels of 2 or 4 km and at intervals of 6-10 min) have provided unique
opportunities to better understand and quantify the small-scale rainfall variabil-
ity. These efforts have provided considerable insight on the effect of rainfall
resolution on the accuracy of runoff production estimates (e.g., see Kouwen

and Garland, 1989; Krajewski et al., 1991; Ogden and Julien, 1993, 199%4;

Michaud and Sorooshian, 1994a; Obled et al., 1994; Faures et al., 1995; and

Winchell et al., 1998) despite the still unresolved problems related to the accuracy .

of the NEXRAD estimates of precipitation (e.g., see Collier and Knowles, 1986;
Pessoa et al., 1993; among others). Also, the need to unify descriptions over
scales (i.e., rainfall variability over a small area with rainfall variability over a
larger scale) and to parameterise subgrid-scale rainfall variability parsimo-

niously, has prompted the introduction of new ideas and tools for analysing
and modelling space-time rainfall patterns, namely, the ideas of scale-invariance

(see Schertzer and. Lovejoy, 1987; Gupta and Waymire, 1990; Kumar and

Foufoula-Georgiou, 1993a,b; among others).

Scale invariance implies that variability of rainfall, or another quantity such
as rainfall fluctuations, exhibits a statistically similar structure under proper
renormalisation of space and/or time coordinates. The scale-invariance concept
for rainfall has been conceptually justified based on the idea that, after all, rain-
drops are tracers in the turbulent atmosphere and thus the documented presence
of scale-invariance in fully—developed turbulence might also be manifested in the
rainfall fields produced. Irrespective of the theoretical rationale and foundation
of the scale-invariance ideas of rainfall, compelling evidence has been accumu-
lated over the past decade that indeed some features of rainfall exhibit scale

.

invariance (for example, see Foufoula-Georgiou and Krajewski, 1995; and

Foufoula-Georgiou and Tsonis, 1996). This evidence has paved the way for
the development of new classes of space-time rainfall models which are applicable
over a large range of scales. Models based on scale invariance are considerably
more attractive compared to the previous generation of stochastic point process
phenomenological models in that they: (a) are much more parsimonious, i.e., 2 OF

3 parameters versus 10 to 12 parameters in the previous models; and (b) are
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scale-independent, i.e., applicable to a wide range of scales without changes in
the model parameterisation or parameter values.

Another approach to the generation of high-resolution space-time patterns of
precipitation is via numerical weather prediction models. These models have been
considerably advanced in recent years in terms of physical parameterisations,
data assimilation and numerical schemes, but still require extensive computa-

‘tional resources to run at high resolutions (e.g., see Droegemeier, 1997).

Typically, they run in a nested mode where higher resolution domains are nested
within a larger lower resolution domain which provides boundary fluxes and
larger-scale environmental forcings to the smaller domain. The very high resolu-
tion domain involves sophisticated microphysics suitable to explicitly resolve
cumulus-scale convection. The outer domain typically uses convective parame-

terisation schemes which depend on the model resolution. The accuracy of quan-

titative precipitation forecasts (QPFs) produced by these models has not been
fully evaluated yet and is an issue of ongoing research (e.g., see Fritsch et al.,
1998). Moreover, several studies have demonstrated the sensitivity of the result-
ing precipitation patterns to the chosen convective parameterisation schemes
(even if these schemes are only used at the lower-resolution outside domain),
to the chosen model resolution, to the degree of prescribed heterogeneities, and
to the land-atmosphere exchange mechanisms embedded in the model (e.g., see
Kain and Fritsch, 1992; Sivapalan and Woods, 1995; Avissar and Liu, 1996;
Brubaker and Entekhabi, 1996; Wang and Seaman, 1997, Warner and Hsu,
2000; among others). '

This chapter concentrates on stochastic descriptions of space-time rainfall
variability based on scale-invariant parameterisations. It reviews some of the
recent research describing and modelling spatiotemporal rainfall patterns and
demonstrates that indeed the seemingly complex patterns of rainfall exhibit
simple underlying statistical structures which can be unravelled with proper
methodologies. We focus only on spatiotemporal descriptions based on scaling
of rainfall fluctuations. Other descriptions based on multiscaling of rainfall
intensities or multiplicative cascades (e.g., Schertzer and Lovejoy, 1987; Tessier
et al., 1993; Over and Gupta, 1994; Seed et al., 1999) are not reviewed herein
and the reader is referred to the original publications for such developments

or to Foufoula-Georgiou and Krajewski (1995) for a brief review and further

references. _
Our presentation in this chapter evolves around three major questions:

1. If spatio-temporal patterns of rainfall exhibit an organised structure, how,
can this be used in building parsimonious models which are applicable over
a range of scales and can also be used for the purpose of downscaling (i.e.,
reconstructing small-scale variability from large-scale averages)? This last
issue is especially important given the increasing availability of remotely-
sensed data whose reliability is often considered adequate only if observa-
tions are averaged over large scales, and also given the need to interpret the
results of global or continental scale studies to the hydrologic basin scale.
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2. If rainfall spatiotemporal patterns exhibit organisation, how can this help
us to understand the still open question of relating the physics of the
atmosphere with the statistics of the produced precipitation patterns?

3. If documentable space-time organisation exists in observed precipitation
patterns, is the same structure reproduced by state-of-the-art numerical
weather prediction models which eventually will be used to predict future
storms and the resulting floods? And, moreover, what does the success or
lack of success of the model in reproducing this structure tell us about the
physics and parameterisations we currently use in atmospheric models?

4.2 SPATIAL RAINFALL ORGANISATION

To explain the idea of multiscale rainfall variability, consider the left-most field
of Figure 4.1. It represents the radar-depicted rainfall intensity field of an
extreme squall line storm of June 27, 1985 over Kansas and Oklahoma at
0300 UTC at a resolution of 4 km. If this field is degraded to different scales
e.g., 8, 16, 32, 64 km by averaging, then the question arises as to whether the
spatial rainfall variability of this field changes with scale in a systematic way.
Moreover, notice that when we average or filter the process at a small scale to
go to a larger scale, some “information” about its spatial variability is lost.
This lost “information” when going from one scale to a coarser one by aver-
aging can be preserved by keeping the so-called rainfall “fluctuations” (i.e. the
difference in intensities in adjacent pixels in terms of space and/or time). If the
- variability of the rainfall intensities themselves does not exhibit a simple sta-
tistical structure over scales, could it be that such a structure exists in the
rainfall fluctuations? v '

Kumar and Foufoula-Georgiou (1993a,b) and later Perica and Foufoula-
Georgiou (1996a) performed a multiscale analysis of spatial rainfall fields using
a discrete orthogonal wavelet transform. This transform within the multiresolu-
‘tion framework of Mallat (1989) provides a filter which simultaneously keeps the
“averages” (smoothed fields) and ‘“fluctuations” (details lost) as the scale
changes. The two-dimensional orthogonal wavelet transform is a directional
filter, so it can handle anisotropy, and is a reconstructive filter so that from
the average field at 64 km and the fluctuations at scales 8, 16, 32 and 64 km,
the field at the smaller scale (higher resolution) of 4 km can be reconstructed. Of
course, statistical parameterisation of the details will result in a statistical recon-
struction of the high-resolution field. These ideas give rise to three important
questions: (a) does the spatial variability of the rainfall intensity fields at a range
of scales, exhibit a simple structure which can be parameterised with a few
coefficients?; (b) what about the structure of rainfall fluctuations or details as a
function of scale?; and (c) what physical parameters might control the way this
variability changes over scales?

These three questions were considered by Perica and Foufoula-Georgiou
(1996a,b) who analysed a large number of mid-latitude mesoscale convective
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systems monitored by the Oklahoma—Kansas radar during the May—June, 1985
period of the Preliminary Regional Experiment for Storm-Central
(PRESTORM) field program (see Cunning, 1986 for details of this experiment).
It was found that although rainfall intensities themselves did not have a simple
well-structured way of changing their variance as a function of scale, the “stan-
dardised rainfall fluctuations” i.e., rainfall fluctuations normalised by their cor-
responding-scale local rainfall averages, exhibited Normality and simple scaling,
i.e., their variance changed with scale in a log-log linear way. This is not surpris-
ing since the multiscale rainfall averages carry in them the signature of determi-
nistic background features which are particular to the rainfall-producing
mechanism, making it unlikely for them to exhibit simple scaling relationships
over a significant range of scales, However, once these underlying deterministic
features are removed by filtering, the remaining features (e.g., deviations from
local means or’ spatial rainfall gradients) do not seem to have a characteristic
length scale and are more amenable to stochastic parameterisations which might
present similarities over scales.

Specifically, let X, denote the value of the rainfall average at scale A at a

particular pixel, and X; ;1 ;» the value of the rainfall fluctuation (difference of values
at adjacent pixels) at the same scale A and direction i (e.g., latitude, longitude and
diagonal). Standardised rainfall fluctuations at scale A and direction i are defined
as &, =X ;’L,\/Y 5. Perica and Foufoula-Georgiou (1996a) computed these stan-
dardised fluctuations using an orthogonal Haar wavelet transform and found
that ‘between scales of 4 km and 64 km, for which data were available, £;,
exhibited Gaussianity and simple scaling implying that

Ir _ (&)H @“.1)
O';;-’ L, ,L2 )
where oy 1, is the standard deviation of £ at scale L km and H is a scale-indepen-
dent parameter. The values of H varied between 0.2 and 0.5 for several mid-
latitude mesoscale convective systems from the PRESTORM data set. The
dependence of H on direction was not very pronounced but H was found to

be strongly dependent on the convective instability of the prestorm environment,
- as measured by the convective available potential energy, CAPE (in 11123“2)

H = 0.0516 + 0.9646 - (CAPE x 107 O 42)

(see Figure 4.2). CAPE is the buoyant energy available to a parcel rising verti-
cally through an undisturbed environment and is a measure of the potential
instability at middle to upper atmosphere. It is defined as

EL _
CAPE = J g. (90_93&)(12 4.3)

LFC ®env

where ©, is the potential temperature of an air parcel lifted from the surface to
level z, ®,,, is the potential temperature of the unsaturated environment at the
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Figure 4.2, Scattergram indicating the relation-
0.25¢ ship between the scaling parameter / of the stan-
dardised rainfall fluctuations and the Convective -
0.2} Available Potential Energy (CAPE) in m*/s” of
their prestorm environment. Data were used
0.15¢ from  several midlatitude mesoscale convective
systems of- the PRESTORM field program
0.1¢ (after Perica and Foufoula-Georgiou, 1996a).
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same level, LFC is the level of free convection and EL is the equilibrium level
(e.g., see Air Weather Service, 1979; General Meteorological Package
(GEMPAK), 1992).

The empirical relationship between H and CAPE is useful since CAPE can be
computed from observed sounding data or by a numerical weather prediction
model and then H can be estimated from (4.2) and used to infer the variability of
rainfall fluctuations at any scale, given the variability at a reference scale (see also
Perica and Foufoula-Georgiou, 1996b). For more information on the linkage of
CAPE, and some other meteorological parameters, to statistical parameterisa-
tions of rainfall fluctuations, the reader is referred to Perica and Foufoula-
Georgiou (1996a). Application examples are- given in Section 4.4.1.

4.3 SPATIOTEMPORAL DYNAMICS

Spatial and temporal features of rainfall are not independent of each other but
relate in ways specific to the physics of the storm-generating mechanisms. Thus, a
lot of insight may be gained by studying simultaneously the spatial and temporal
patterns of rainfall. Recently, Venugopal et al. (1999a) developed a methodology
under which space and time structures of rainfall can be studied simultaneously
at a multitude of scales. Using this methodology, they demonstrated that there
exists a simple scale-invariant spatiotemporal organisation in rainfall patterns
which can be unravelled by proper renormalisation of the space and time coor-
dinates.

Let J; ,{“,-('c) and [, ,{“j(r + 1) represent rainfall intensity values averaged over a box
of size L centered around spatial location (i, ) of the precipitation field at two
instants of time T and © + 7, respectively (Figure 4.3). The evolution of the field at
scale L and a time period 7 was characterised in Venugopal et al. (1999a) by the
differences in the logs of the rainfall intensities Aln 1, i.e.,
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Aln I, (L, 1) = n(I5(c + 8) — In(15(2) | .4)

computed at all spatial locations (i, /). This selection (as opposed to the simpler
selection of intensity differences, i.e., [I,-ij(t + 1) — I,-ﬁ-(r)]) was made since there is.
evidence that the rainfall process is not additive but rather multiplicative, that is,
normalised rainfall fluctuations, AI/I = (I —I')/(I +I')/2 in the terminology of
Figure 4.3, and not fluctuations A themselves, are independent random vari-
ables and spatially uncorrelated (see Venugopal et al., 1999a). This implies that
fluctuations of In(rainfall), ie., Aln/ =Inl —1In I" are independent and also
spatially uncorrelated random variables and can be easily characterised statisti-
cally. ' _

The measure described above was evaluated for all locations (7,/) and all time
instants 7, and for various spatial and temporal scales, L and ¢, respectively. Then
assuming stationarity in space (i.e., independence of the specific (7, /) position)
and selecting stationary regions in time (i.e., regions where the statistics of AlnTl
do not fluctuate significantly around their mean value for the region), the prob-
ability density functions (PDFs) of AlnI(L,7) were used to. characterise the
evolution of rainfall at several spatial scales L and temporal scales t. Notice
that homogeneity in space is a reasonable assumption given that the radar
frame can be seen as a fixed window within which the moving storm is observed.
Thus, unless there is a specific reason to believe that a portion of the radar frame
receives statistically different rainfall than the rest of the frame, intensities (or
AlnI’s) at all positions (i, ) are considered to come from the same probability
distribution. '

Venugopal et al. (1999a) and Venugopal (1999) found, by analysis of several
storms in different geographical regions of the world (the tropical region in
Darwin, Australia; the forested region of Northern Saskatchewan, Canada;
and the Oklahoma region in the midwestern United States), that the PDFs of

'AlnI(L, ) remain statistically invariant if space and time are renormalised with

the transformation ¢/L” = constant. That is, the evolution of the rainfall field at
scale L; and during a time lag ¢ is statistically identical to the evolution of the
rainfall field at spatial scale L, and time lag f,, as long as

ti/ty = (Li/LyY v (4.5)

where z is the socalled dynamic scaling exponent.

Iy@ =1 e =1
Figure 4.3. Schematic illustrating the
change in intensity of a field (rainfall in L| G L| G
this case) over a box of size L x L centred :

around the location (i,j) during a time L L
interval ¢.

time T time T +t
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Table 4.1, Standard deviations of A ln/ (S(A In /) with time lag (left to right) and aggregation
leve! (top to bottom), for a stationary region of the storm of Dec. 28, 1993, in Darwin, Australia

R A Time Lag t (min)

10 20 30 40 50 60 70 80

L(m) 2 058 077 089 097 105 L1 117 12
i 4 047 067 079 087 095 101 107 112
8
6

0.35 0.55 0.67 0.76 0.84 0.90 0.96 1.01
0.23 0.40 0.53 0.63 0.71 0.77 0.83 0.88

4 1

Table 4.1 shows the matrix of standard deviations of these PDFs of
AlnI(L, 1) for different spatial scales, L, and temporal scales, 1, for a stationary
portion of duration five hours of the December 28, 1993 storm in Darwin, -
Australia (see Venugopal et al., 1999a for a description of this storm). Notice
that these PDFs are well approximated by normal distributions centred around
zero at all space and time scales (see Figure 4.4) and thus their standard deviation
completely parameterises them.

From Table 4.1, one can find, by interpolation, pairs of (L, 7) such that a
chosen value of the standard deviation S(A In I) remains constant. For example,
Table 4.2 displays pairs (L, 7) for which £(A In /) remains constant and equal to
0.6, 0.7 and 0.8, respectively. If these pairs satisfy 7 ~ I7 i.e., if the iso-standard
deviation lines plot linear on a log-log plot of L versus 7, then the process is said
to exhibit dynamic scaling. Figure 4.5 (left panel) shows the log—log plot of the
values of Table 4.2. The fitted lines are for (A lnI) = 0.8, 0.7 and 0.6 (top to
bottom) and give estimates of z equal to 0.51, 0.54 and 0.58, respectively.
Obviously, these iso-standard deviation lines are well approximated by straight
lines implying that rainfall evolution (as characterised by the PDF of Alnl[)
exhibits dynamic scaling. Note that since the PDF of A In I(L, £) is well approxi-
mated by a Normal distribution, scale-invariance of (A In ) implies scale invar-
iance in the whole PDF. This was verified by computing (via interpolation) the
PDFs of AlnT at several (L, 7) pairs which satisfy 7 ~ L* (for example, the pairs
in Table 4.2) and checking that indeed these PDFs remained statistically invar- '

Table 4.2. Time (in min) to “reach” different values of the standard deviation of Aln/ (left to
right: 0.6, 0.7, 0.8) for various aggregation levels (top to bottom), for a stationary region of the
storm of Dec. 28, 1993, in Darwin, Australia. This table is formed by linear interpolation of the
values in Table 4.1

i S(Alnl)

| .

luu!,i . 0.6 0.7 0.8

e L (km) 2 1.1 16.3 22.4 |

P 4 16.6 22.8 31.6

\_ 8 24.4 33.3 45.1 3

bt 16 374 49.4 64.7 |
)

| |

Tl
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_ Figure 4.4, Selected PDFs of Aln T (top: spatial scale of 2 km and time lags of 10, 30 and 50 min;

bottom: spatial scale of 8 km, and time lags of 10, 30 and 50 min) for a stationary region of the storm
of Dec, 28, 1993, in Darwin, Australia. ‘

iant (see ‘Figure 4.6). Similar results were found for several other storms in
Darwin, Australia (see Figure 4.5 for the storm of January 4, 1994), the
BOREAS region in northern Saskatchewan, and the midwestern United States
region (see Venugopal, 1999).

Dec. 28,1993 : Iso-Z(A Inl) Lines Jan. 04,1994 : Iso-Z(A Inl) Lines
z p Z X
10% 10% ,
3 m 0.63 0.9
5 0.51 0.8 8 63 0.
= =1 0.62 0.8
= 054 0.7 E 0.63 0.7
c 058 06 Rt
(o)} o
3 S
o] Q
E
E =
10'} « 10’
’ 10' 10° 10
Scale (km) Scale (km)

Figure 4.5, Plot illustrating the presence of dynamic scaling in the standard deviations of A In[ for
(a) a stationary region of the storm of Dec. 28, 1993 (left) and (b) a stationary region of the storm of
Jan. 4, 1994 (right) in Darwin, Australia.
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2 (Aln) = 0.8, z = 0.58

L=2km ; T=11.1 mins ' L=4km ; T=18.6 mins L=8km ; T=24.4 mins L=16km ; T =37.4 mins

0.07,
0.06]

0.06]
0.05
= =
C (=3 L
Zoo4 50,04
bl *~0.03]
0.02) 0.02]

0,01

% 4 o 1 s %2 -1 b T 3 % 4 0 1 3
Aflnl) Aflnl) Allnl) .
T (Alnl) = 0.8, z = 0.51
L=2km ; T=16.3 mins L=4km ; T=81.6mins L =8km ; T=45.1 mins . L=16km ; T =64.7 mins

S

-2 -1 -2 - 2 3 93 -2 -

-1 3

4] 1 0 1
Allnal AlLnl)

0 1
AlLnh

0 1
Alln)

Figure 4.6. For a stationary region of the storm of Dec. 28, 1993: Confirmation that the PDFs
remain statistically invariant under the transformation 7/L° = constant. The top row shows PDFs
for S(AInT) = 0.6, z = 0.58 and pairs of (7, L) which satisfy 1/L* = constant (see Table 4.2). The
bottom row shows the same for S(AInl) = 0.8, z = 0.51. Similar result holds for Z(AInI)=0.7,

The above results imply that, given the statistical structure of rainfall evolu-
tion at large scales, the structure at small scales can be statistically predicted.

- Application examples are given in Section 4.4.2.

4.4 RAINFALL DOWNSCALING FOR HYDROLOGIC APPLICATIONS

4.4.1 Spatial Downscaling

Recall from Section 4.2, that knowing the spatial variability of rainfall fluc-
tuations at several intermediate scales permits the statistical reconstruction of the
rainfall intensities themselves from a larger scale to a smaller scale, e.g., from 64
km down to 4 km. Based on the scale invariance of standardised rainfall fluctua-
tions (equation (4.1)) and the relation of the scaling parameter H to CAPE
(equation (4.2)), a spatial rainfall downscaling scheme was developed and imple-
mented to several mid-latitude mesoscale convective systems with considerable

success (Pericé. and Foufoula-Georgiou, 1996b). This scheme is able to statisti-

cally reconstruct the small-scale spatial rainfall variability and the fraction of
area covered by the storm, given the large-scale rainfall field and value of CAPE
in the prestorm environment i.e., ahead of the storm (see Zhang and Foufoula-
Georgiou, 1997 for a numerical study of the spatial variability of CAPE and
definition of a representative value of CAPE for use in (4.2)).

This spatial downscaling scheme has the advantage that its parameterisation
is scale-independent and thus offers the capability of resolving the subgrid-scale
spatial rainfall variability at any desired scale (at least between 4 km and 64 km,

|
!
|
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that the relationships were developed) without the need to consider a separate

parameterisation scheme at each scale. Figure 4.7 shows an example where the

downscaling scheme was used to disaggregate rainfall from the scale of 64 km to

the scale of 4 km. It is seen that the disaggregated field compares well to the

actual field. More details and a formal statistical comparison of these fields can

be found in Perica and Foufoula-Georgiou (1996b) and application to other

mesoscale complexes in Perica (1995). It is noted that recent evidence by -
Zhang and Foufoula-Georgiou (unpublished manuscript) using multi-radar

data of the COMET project, suggests that the predictive relationships between

H and CAPE may hold up to scales of 256 km.

64 km

Upscaling

4 km

Original Simulated

Figure 4.7. Spatial downscaling of the June 27, 1995 storm over Kansas—Oklahoma at 0300 UTC
from 64 km to 4 km scale. A good agreement is found between the downscaled field (bottom right y
panel) and the observed field at the same resolution (bottom left panel). The intensities have been b
mapped onto the same 32 colours for display purposes.
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4,4.2 Spatiotemporal Downscaling

Note that in the above spatial downscaling scheme, the spatial correlation of
the small-scale rainfall is well preserved (see Perica and Foufoula-Georgiou,
1996b). However, if the scheme is applied independently at different instants of
time, there is no guarantee that the temporal correlation (persistence) at the
subgrid scales will also be preserved. In fact, a wet pixel at one instant might
become dry at the next, still preserving the statistical spatial structure of the field.
This might be a problem if the downscaled values were to be used in a continuous
rainfall/runoff model where the “memory” of the system (e.g., soil moisture
accumulation) must be well captured for accurate runoff prediction.

Recently, Venugopal et al. (1999D) proposed a new downscaling scheme which
explicitly attempts the statistical preservation of both the spatial and temporal
correlation of rainfall at the subgrid scales. This scheme takes advantage of the
presence of dynamic scaling in rainfall evolution discussed in Section 4.3. There
are several technicalities in the implementation of the spatio-temporal downscal-
ing scheme, but the essence remains the following: small-scale space-time struc-
tures relate to larger-scale ones (in fact the PDFs of AlnJ remain statistically
invariant) if an appropriate transformation of space and time, namely, 7 ~ L% is
applied. Thus, given the statistical structure of rainfall at large scale, the small-
scale space-time features can be statistically reconstructed based on dynamic
scaling. This model is schematically depicted in Figure 4.8 and extensively dis-
cussed in Venugopal et al. (1999Db).

Figure 4.9 shows the results of applying this space-time downscaling scheme
to the storm of January 4, 1994 in Darwin, Australia. We started with the large-

MODEL OUTPUT AT LARGE SCALES (L, t)

£ f(ALnI) jdentical distributions
E i because of the presence
E % fz(ALnI) of dynamic scaling
< .
B[ 2 Y (ﬂ \
2] c, T 1

PREDICTION
AT SCALES (L, t, )

}

Figure 4.8. Schematic of the space-time downscaling scheme of Venugopal et al. (1999D) illustrating
how the framework of dynamic scaling is coupled with an existing spatial disaggregation scheme to
predict rainfall evolution at smaller space-time scales.
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Figure 4.9. Storm of Jan. 4, 1994, in Darwin, Australia: Validation of the proposed space-time
downscaling scheme by comparing the predicted 50-min cumulative rainfall patterns (bottom right
panel) to the observed ones (top right panel).

- scale field at 32 km (top left panel) at an instant of time (1831 UTC). This field

was spatially downscaled to 2 km (see bottom left panel) using H = 0.4 in the
scheme of Perica and Foufoula-Georgiou (1996b) discussed in the previous sec-

‘tion. Then, the space-time scheme of Venugopal et al. (1999b) was used to evolve

the 2 km field over time. It was assumed that large-scale (32 km) fields were
available to us every 10 minutes. These data were used to update the distribution
of changes at the large scale (32 km) which is identical to the distribution of
changes at the small scale (2 km) according to the dynamic scaling hypothesis we
put forth in Section 4.3.
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spatial downscaling only (asterisks).

Figure 4.9 (bottom right panel) shows the 50-minute cumulative rainfall fields
at a scale of 2 km predicted from the space-time downscaling scheme. In the same
figure, the observed 50 minute cumulative field is also shown for comparison (top
right panel). Visually, the space-time downscaled field compares well with- the
observed field (see Venugopal et al., 1999b for an extensive quantitative compar-
ison). It is noted that, although for this storm the space-time downscaling scheme
seems to overestimate the extreme 50-minute. accumulations slightly more than
the spatial downscaling scheme applied independently in time (see Figure 4.10),
the space-time scheme is able to reproduce the temporal correlation at the sub-
grid scales much better than the spatial scheme alone (see Figure 4.11).
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Figure 4.11. Storm of Jan. 4, 1994, in Darwin, Australia: Comparison of the temporal correlation at
the 2-km scale computed from the observed fields (asterisks), from the predicted fields by the space-
time downscaling scheme (circles) and by the spatial downscaling scheme only (dashed line).

;f/*?"*""'



Patterns and Organisation in Precipitation

Overall it is concluded that the space-time downscaling scheme discussed above
is able to successfully reproduce the spatial and temporal correlation of rainfall at
the subgrid scales given large-scale averages of precipitation and the downscaling
parameters, I and z (see also Venugopal et al., 1999b for other applications and

extensive quantitative evaluation of model performance). Providing downscaled -

2 km precipitation fields in a rainfall-runoff model is expected to yield more accu-
rate estimates of runoff and other fluxes as compared to those that would be
obtained if the 32 km precipitation fields were used. Also, preserving temporal
persistence in the downscaled rainfall is important in many hydrologic studies
since the time-history of rainfall intensities is known to affect soil-moisture storage
and runoff production from a basin. The exact degree to which the predicted
runoff is affected by including or ignoring temporal persistence of rainfall at the
subgrid scale remains yet to be quantified. Such a study is currently in progress in
our group and the results will be reported in the near future.

| 4.5 CAN ATMOSPHERIC MODELS REPRODUCE THE OBSERVED

PRECIPITATION PATTERNS?

Accurate forecasting of the onset, duration, location and intensity of precipita-

tion via numerical weather prediction models, remains still a difficult challenge. .

Generally efforts in model development (in terms of physical and numerical
advances) have outpaced efforts in detailed model validation. Specifically, meth-
ods that compare the forecasted high-resolution precipitation patterns to the
observed ones, such that deficiencies in microphysical parameterisations and
other small-scale structure representations can be depicted, lag behind.
Traditional measures of forecast performance are o0 coarse for this purpose
and provide only limited information about the ability of the numerical weather
prediction model to mimic the dynamical environment of the storm which cre-
ated the observed complex spatiotemporal rainfall pattern. Consequently, they

~also provide limited feedback as to how to go about improving the model (in

terms of microphysical parameterisation, data assimilation, increased resolution,
etc.) since they cannot quantitatively assess the detailed effect of these improve-
ments on the forecasted precipitation pattern.

In a recent paper (Zepeda-Arce et al., 2000) several new multiscale statistical
measures which can depict how well the small scale-to-scale variability and orga-
nisation of the forecasted fields matches that of the observed fields were pro-
posed. It was demonstrated that indeed these measures are very informative
compared to traditional measures of forecast verification and may lead to useful
feedback for atmospheric model improvement. Some of these results are briefly
discussed below.

In Zepeda-Arce et al. (2000), the multi-squall line of May 7-8, 1995 over
Oklahoma was modelled by a state-of-the-art three-dimensional nonhydrostatic
storm-scale prediction model (the Advanced Regional Prediction System —
ARPS; see Droegemeier et al., 1996a,b; Xue et al., 1995; and Xue et al.,
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2000a,b). The simulated rainfall patterns (available at the model resolution of 6
km) were compared to the observed ones (available at the radar resolution of 4
km) over a range of scales. Specifically, the predicted and observed fields were
analysed for the presence of spatial and spatiotemporal scale invariances and the
results compared. :

The 18 minute rainfall accumulations from the observed radar patterns and 15
minute accumulations from the predicted patterns were analysed for scaling in
spatial rainfall fluctuations. Good scaling was judged by a correlation coefficient
of R > 0.95 in the log—log plots of the standard deviations of normalised spatial
fluctuations with scale in the latitudinal and longitudinal directions and R > 0.91n
the diagonal direction (since there is greater uncertainty in estimating these values
_ gee Perica and Foufoula-Georgiou, 1996b for their interpretation). Figure 4.12
shows the results of the analysis. When scaling was not present the estimated
values of H are given, but the lack of scaling is marked on the plot by a dark
square. As can be seen from Figure 4.12, the model was not able to reproduce the
pronounced temporal variation of Hj, Hy, and H; during the storm evolution.
Moreover, no directionality seemed to be present in the observed patterns
(H, ~ H, ~ H,) while the diagonal component (H;) was significantly higher
than H; and H, (by approximately 0.2) in the model. Generally, it was found
that when scaling was present, Hyode < Hops. However, the standard deviations
of the normalised fluctuations in all directions were higher in the model than in the
observations, 1.€., Ogmodel > O,obs- ThESE findings indicate that the model-pre-
dicted normalised rainfall fluctuations are in general more variable than the
observed ones. However, the growth of this variability with scale is slower in
the model than in the observations, at least for the longitudinal and latitudinal
components. The drastic change in the values of H during the period of # = 11 to
13 hours (see Figure 4.12, top) was caused by-the fact that at around 7 = 11 hours,
a new squall-line started entering the domain of observation. This squall-line
stayed in the domain until the end of the simulation period while the original
squall-line moved out of the domain at around 7 = 13 hours. During the transition

period (¢ = 11 to 13 hours) the statistical structure of the precipitation field within -

the domain of observation was different than before or after the transition. This,
however, was not reproduced by the model-predicted patterns which had constant
to only slightly increasing values of H during that period.

The radar-observed and model-predicted rainfall accumulations were also
analysed for the presence of dynamic scaling within a stationary region of a
few hours over which the mean and standard deviation of Aln/ did not vary
significantly (see Zepeda-Arce et al., 2000 for details). For this region, the PDFs
of AlnT for spatial scales L = 4, 8, 16, and 32 km and temporal scales ¢ = 6, 12,
18, 24, 30, 36, 42, 48, 54 and 60 min for the observed patterns were computed.
For the predicted patterns the spatial scales were L = 6, 12, 24 and 48 km and

temporal scales were ¢ = 15, 30, 45, 60, 75 and 90 min. Then, the standard -

deviations of these PDFs were computed and (by interpolation in a tabular
format) pairs of (L, 7) were found which resulted in the same values of the
standard deviation of AlnI (see discussion in Section 4.3). This was done for
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Figure. 4.12. Scaling parameters H,, H, and Hj vs time from the 18-min observed (top) and 15-min
simulated (bottom) rainfall accumulation patterns for the May 7-8, 1995 storm. Dark squares
indicate the lack of scaling in normalised fluctuations.

both the observed and predicted patterns. These pairs (L, ¢) were plotted on a
log-log plot as shown in Figure 4.13. It was observed that, to a good approx-
imation, the (¢, L) transformation under which the standard deviation of Aln/
remained constant was of the form ¢/L° = constant (i.e., straight-line relation-
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Figure 4.13, Dynamic scaling in the observed and predicted patierns of the May 7-8, 1995 storm
over Oklahoma. For the observations, the iso-standard deviation line is for %(A InJ) = 0.33 and the
estimate of z = 1.4; for the modelled field, £(AInJ) = 1.5 and z = 1.

ships on the log-log plots) for both the observed and predicted patterns.
However, the values of z (estimated from the slopes of the log-log plots) were
significantly different: z = 1.4 for the observed patterns and z = 1.0 for the pre-
dicted patterns. Also, the values of the standard deviations of AlnJ were much
higher in the model than in observations. For example, in Figure 4.13, 2(AlInlI)
for the observations and the model-predicted fields was 0.33 and 1.5, respectively.
This implies that for the same spatial scale and same time lag, the model-pre-
dicted fields change much more drastically over time than in the observations.
This is consistent with the visual comparison of the fields and also with the

- differences in the estimates of z which as discussed below imply a faster temporal

decorrelation in the predicted than the observed fields.

To understand the significance of the z value consider L, =2 x L; in the
relationship 1;/f, = (L;/L,)*. Then, for z =1 (predictions) we get 7, = 2¢; and
for z=1.4 (observations) we get 7, = 214 % 1, ~ 3.4 x t;. This implies that
features twice as large will evolve two times slower in the predicted fields
while they will evolve approximately 3.4 times slower in the observed fields.
In other words, the predicted fields seem to have a faster decorrelation than the
observed fields. It is interesting to compare the results of Figure 4.13 (and 4.5)
with the schematic space-time diagram of hydrological processes in Figure 1.4
which shows a qualitatively very similar behaviour.

Another interesting comparison between the observed and predicted patterns
resulted from comparison of their Depth—Area-Duration (DAD) curves for 1-
hour duration. These curves plot depths of rainfall (here I-hour accumulations)

" versus area of the storm over which these depths are equalled or exceeded. DAD

curves compare the predicted and observed patterns in terms of their internal
spatial structure irrespective of their locations. It was found that while the DAD
curves tended to increase in the observed patterns from 7= 13 to 15 hrs, they
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Figure 4.14. The solid lines show the DAD curves for ¢ = 13, 14 and 15 hrs computed from the
model-predicted 1-hour accumulation patterns; the broken lines show the same computed from the
observed patterns.

tended to decrease in the predicted patterns (see Figure 4.14). Obviously, the
tendency of the DAD curves to increase or decrease is related to the build-up
or dissipation of the storm which might not be well reproduced in the model at
least for the selected period of this particular storm. Such discrepancies would
have significant effects on the predicted runoff and careful investigation and
further study is warranted. v

Overall, it was concluded that the above measures provided significant
insight into subtle differences between the space-time structure of the predicted
and observed patterns at a range of scales. These differences, although not
fully interpreted yet, are much more informative than typical measures of
forecast performance, such as threat scores and root-mean-square errors (see
Wilks, 1995; or Fritsch et al., 1998). In addition, the scaling measures are
normalised measures and are not influenced by how well the exact magnitudes
and exact locations of rainfall intensities are predicted. Thus, they provide a
direct assessment of how well the internal spatial structure and dynamics of
the observed and predicted patterns compare to each other at a range of
scales. It is hoped that these measures can provide useful feedback and gui-
dance for improving numerical weather prediction models and this is an issue
of current investigation.

4.6 CONCLUSIONS AND DISCUSSION

Many studies (for example, see Winchell et al., 1998 and references therein) have
documented that the small-scale space-time variability of rainfall patterns has a
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significant effect on the infiliration-excess runoff volume produced by a basin.
Thus, severe underestimation of the basin runoff may result when the small-scale

precipitation variability is ignored and a low-resolution precipitation input is

supplied into a distributed rainfall-runoff model. Similarly, if the small-scale
variability of rainfall is erroneously reproduced by an atmospheric model and
these predictions are used for hydrologic studies, a severe impact on the predicted
runoff hydrograph may result. Moreover, concerns about the effects of climate
change on water resources at the basin scale require the ability to downscale the
large-scale general circulation model (GCM) predictions and to reconstruct the
small-scale space-time rainfall variability to be used as an input to a hydrologic
model.

In this paper, a review of a class of current approaches in parameterising the
space-time variability of rainfall patterns at a range of space-time scales was
presented. Although we concentrated more on methodologies developed in our
group, other approaches such as Over and Gupta (1996), Seed et al. (1999) and
Marsan et al. (1996) could be used in a similar way. We favour approaches based
on scale-invariance because their parameterisations are scale-independent (for
example, parameters H and z.in the schemes presented earlier). Such parameter-
isations are attractive because they are parsimonious and may be related to
physical properties of the storm environment as compared with parameters

which depend on scale.

Tt is reminded that if high-resolution precipitation patterns are available, I
can be estimated directly from them via a multiscaling analysis. However, if
only large-scale patterns are available and need to be downscaled, the para-
meter H needed in the downscaling scheme must be externally predicted or
assumed. The same applies for the parameter z. As discussed, the variability in
the parameter H has been found empirically to be well explained by the
variability in the convective available potential energy (CAPE) of the prestorm
environment (Perica and Foufoula-Georgiou, 1996a) and thus CAPE can be
used to predict H. Prediction of the parameter z, which parameterises the
space-time evolution of rainfall at a range of scales from a similar physical
observable quantity, has not been studied yet. It is anticipated that z might be
related to the temporal evolution of a vertical instability measure, for exam-

- ple, the change of CAPE over time (0CAPE/ d7) or to parameters describing

parcel buoyancy and vertical wind shear (for example, see Weisman and
Klemp, 1982). Empirical confirmation of the above assertions would require
extensive meteorological observations not typically available (for instance,
radiosonde observations are sparsely available in space and time). It could
also well be that z can be empirically related to the standard deviation of A
InT of the evolving fields. Although some preliminary evidence suggests such a
possible relationship, a few cases deviated from this pattern. Analysis of more
storms from different regions of the world and different climates must be done

to provide an insight into the variability of the parameter z and its depen-

dence on statistical or physical parameters of the atmosphere. Also, controlled
experiments, via a state-of-the-art numerical weather prediction model which
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can simulate precipitation fields together with other physically-consistent para-
meters of the atmosphere, might provide a way of overcoming the lack-of-
dense-meteorological-observations gap and at least point to possible predictive
relationships of z which can be further verified from observations.

Once the parameters H and z are available, we presented evidence that the
space-time downscaling scheme developed by Venugopal et al. (1999b) is fairly
successful in reproducing not only the spatial correlation of the rainfall fields at
the subgrid scale, but also the temporal correlation. Preserving the temporal
correlation might be important when the downscaled precipitation fields are to
be used in a rainfall-runoff model or a coupled atmospheric-hydrologic model to
predict soil-moisture fluxes and water and energy partitioning over a basin. This
remains to be demonstrated via simulation studies. '

For prediction of severe flood events several hours ahead of time, we rely on
state-of-the-art three-dimensional non-hydrostatic storm prediction models
which can predict rainfall patterns to be used in a hydrologic model. Although
numerical weather prediction models have advanced impressively over the last
decade, quantitative evaluation of their performance as far as their ability to
accurately reproduce the space-time structure of precipitation patterns at a
range of scales, lags behind. In this chapter, we have presented some recent
efforts to develop new multiscale measures for quantitative precipitation forecast
(QPF) assessment. Preliminary results suggest that numerical weather prediction
models might not always perform well in capturing the space-time organisation
structure of the observed rainfall fields and, in particular, they might have a
tendency to produce patterns with less scale-to-scale spatial variability and faster
temporal decorrelation. Analysis of more cases is needed to fully quantify dis-
crepancies between the statistical structure of predicted and observed precipita-
tion patterns and understand the sources (such as, physical parameterisations,
data assimilation methods, model resolution etc.) of these discrepancies. The
increased availability of high-resolution data from NEXRAD and increased
computational resources available for such studies offer unique opportunities
for scientific breakthroughs and advances in atmospheric/hydrologic research,
quantitative precipitation forecasting, and flood forecasting over small to
large-size basins. -
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