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[1] This paper investigates the multiscale statistical structure of the area and width
functions of simulated and real river networks via state-of-the-art wavelet-based
multifractal (MF) formalisms. First, several intricacies in performing MF analysis of these
signals are discussed, and a robust framework for accurate estimation of the MF
spectrum is presented. Second, it considers the following three questions: (1) Does the
topology of river networks leave a unique signature on the MF spectrum of area and width
functions? (2) How different are the MF properties of commonly used simulated trees
and those of real river networks? and (3) Are there differences between the MF properties
of width and area functions, and what can these tell us about the topology of hillslope
versus channelized drainage patterns in a river basin? The results indicate discrepancies
between the statistical scaling of the area functions of real networks (found to be
multifractal with a considerable spread of local singularities and the most prevailing
singularity ranging from 0.4 to 0.8) and that of several commonly used stochastic self-
similar networks (found to be monofractal with a single singularity exponent H in the
range of 0.5–0.65). Moreover, differences are found between the MF properties of width
and area functions of the same basin. These differences may be the result of distinctly
different branching topologies in the hillslope versus channelized drainage paths and need
to be further investigated.
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1. Introduction

[2] The width function of a river network is a one-
dimensional functionwhich summarizes the two-dimensional
branching structure of the river network. It represents the
distribution of travel distances through the network and,
under the assumption of constant flow velocity, the proba-
bility distribution of traveltimes. Thus its significance
for understanding the hydrologic response of basins and
the scaling characteristics of streamflow hydrographs is
important. The link of hydrologic response and channel
network topology via the width function has been recognized
early on. For example, see Kirkby [1976], Troutman
and Karlinger [1985], Gupta et al. [1986], and Gupta and
Mesa [1988], who proposed a width function formulation of
the geomorphologic unit hydrograph (GUH). These studies
focused on the low-frequency component of the width
function which exhibits a similarity to the shape of the
instantaneous unit hydrograph. More recently, interest has
been expressed in the high-frequency component of thewidth
function and especially its multiscaling properties. This paper
is a contribution in this direction.
[3] The width function W(x) is defined as the number of

channelized pixels at a flow distance 0 � x � L from the

basin outlet, where L is the length of the longest channelized
path in the network, i.e.,

W xð Þ ¼ # channelized M : x � l Mð Þ � xþ dxf g; ð1Þ

where l(M) is the flow distance of pixel M from the outlet
and dx is the scale of ‘‘coarsening.’’ Typically the distance x
is normalized by L (in which case the support of W(x) is
between 0 and 1) and W(x) is normalized by the total
number of pixels rendering it a density. For a given network
topology, W(x) can be viewed as a stochastic process
indexed by the distance x.
[4] Another function of interest is the so-called area

function A(x) defined as the number of pixels, not neces-
sarily channelized, at a flow distance x from the basin outlet:

A xð Þ ¼ # all M : x � l Mð Þ � xþ dxf g: ð2Þ

[5] It is noted that A(x) does not require the extraction of
the channel network from DEMs, a task that still faces the
challenge of specifying the channel initiation processes
[e.g., Montgomery and Dietrich, 1988; Montgomery and
Foufoula-Georgiou, 1993], and reflects both the channel-
ized and unchannelized (hillslope) parts of the basin.
[6] Several previous works have studied, analytically or

via numerical simulation, the statistical scaling properties of
W(x) or A(x) for tree topologies such as the Peano basin,
Shreve’s random topology model, and self-similar trees
(SSTs) as well as real river networks [e.g., Troutman and
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Karlinger, 1984, 1985; Marani et al., 1991, 1994; Rinaldo
et al., 1993; Veneziano et al., 1995; Gupta and Waymire,
1996; Agnese et al., 1998; Yang et al., 2001; Richards-
Pecou, 2002]. Following earlier work of Troutman and
Karlinger [1984], Gupta et al. [1986], and Gupta and Mesa
[1988], recent studies have provided a renewed interest in
using simulated river networks and corresponding width
functions in efforts to understand, via hydrologic simulation
or theoretical derivations, the physical origin of the scaling
of floods as arising from the known scaling structure of
rainfall and the known fractal properties of river networks
[e.g., Menabde et al., 2001; Troutman and Over, 2001].
[7] Given the increasing importance of W(x) and A(x) in

hydrogeomorphologic studies, the questions considered in
this work are the following: (1) Does the topology of river
networks leave a unique signature on the MF properties of
the area and width functions? (2) How different are the MF
properties of commonly used simulated trees and those of
real river networks? and (3) Are there differences between
the MF properties of width and area functions and what can
these differences tell us about the topology of hillslope
versus channelized drainage patterns in a river basin?
[8] The ability to answer the above questions heavily

relies on using the correct tools for MF analysis. Veneziano
et al. [1995] pointed out some deficiencies in using the
standard techniques of MF analysis for width functions,
mainly addressing the nonstationary nature of these signals.
In this paper, we present a robust framework for MF
analysis of width and area functions which (1) offers
accurate estimates of the MF spectrum without the need

to know apriori the intrinsic nature of the analyzed signal
(i.e., measure versus function) and the form of nonstatio-
narity (linear versus higher-order trends) and (2) offers a
concise parameterization of multifractality (two parameters
only) even for short signals for which high-order moments
are unreliable. We use this framework to point out important
differences between the MF properties of simulated and real
river networks. Specifically, we show that the width func-
tion of real networks has a richer MF structure than reported
before (i.e., high intermittency) which differs from the
mostly monofractal structure of several commonly used
simulated networks. We also point out that the MF proper-
ties of width and area functions are different, possibly
reflecting the difference between the hillslope and channel-
ized drainage patterns and begging further study.
[9] This paper is structured as follows. Section 2 presents

a review of theoretical branching trees commonly used in
hydrology and describes models for their corresponding
width and area functions. Section 3 presents a concise
overview of MF formalisms which includes the commonly
used box aggregation and structure function methods but
goes beyond with the use of wavelet-based methodologies.
It also presents the cumulant analysis method for accurate
estimation of the singularity spectrum parameters especially
for short signals as those available for geomorphologic
analysis. Section 4 presents a robust framework for MF
analysis of area and width functions and demonstrates that
care must be exercised in selecting the proper multiresolu-
tion coefficients. Section 5 derives numerically the MF
properties of the area function of stochastic self-similar

Figure 1. (top) Peano’s basin and (bottom) Shreve’s random network construction schemes.
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trees. Results from MF analysis are then presented and
discussed for area and width functions of real river networks
(section 6). Finally conclusions are given in section 7.

2. Models for Area and Width Functions of River
Networks

2.1. Horton-Strahler Stream Ordering and
Self-Similar Trees

[10] River network streams are usually classified accord-
ing to the Horton-Strahler ordering scheme [Horton, 1945;
Strahler, 1957]: the network is divided in links that connect
either two tributary junctions (internal links) or a tributary
junction and a channel source point (external links). (Note
that for simplicity the definitions here are given for binary
junctions but they can easily be extended to nonbinary
ones.) Every external link is given order w = 1. One then
applies a recursive algorithm to compute the order of every
link: at every junction, two links of the same order w give
birth downstream to a link of order w + 1 while two links of
order w and w0 with w 6¼ w0 give birth downstream to a link
of order max(w, w0).
[11] Self-similar trees (SSTs) are topological descriptions

of river networks first introduced by Tokunaga in 1966 and
further studied by Tokunaga [1978] and Peckham [1995],
among others. According to SSTs, every stream of order w
has two upstream tributaries of order w 
 1 and several side
tributaries of order w0 such that 1 � w0 < w. Let
Tw,w0 denote the average number of tributaries of order w0 that
branch into a stream of order w. The assumption of self-
similarity between streams (and associated drainage basins)
of different orders [see, e.g., Rodrı́guez-Iturbe and Rinaldo,
1997] results in the constraint Tw,w0 = Tw
w0 = Tk with 1 �
k = w 
 w0 � w 
 1. Tokunaga’s trees [Tokunaga, 1978] are

trees for which the additional constraint holds Tk+1/Tk =
const which leads to a simple expression for Tk:

Tk ¼ a:bk
1: ð3Þ

This class of trees has been used to describe real river
networks. For instance, Peckham [1995] successfully
characterized a real river network with values a = 1.2 and
b = 2.4.
[12] Under the assumption that links are of constant

length, it can be shown [Peckham, 1995] that the fractal
dimension of such trees is

D ¼
log2 2þ aþ b þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ aþ bð Þ2
8b

q� �

 1

log2 b
: ð4Þ

[13] This result is important since it defines a constraint
on the choice of parameters a and b: one should choose
these parameters such that D < 2 (non-space-filling net-
work) or at most D = 2 (space-filling network). For instance
(a, b) = (1, 2), which corresponds to Shreve’s model to be
discussed later, results in D = 2, i.e., a space-filling network.

2.2. Peano’s Basin

[14] In a seminal work, Peano [1890] defined a fractal
structure which has been widely used as a model of
drainage networks, the so-called Peano’s basin. Peano’s
basin defines a space-filling drainage network for which,
as a result, the width and area functions coincide, i.e., A(x) =
W(x).
[15] Peano’s basin is a specific case of the class of

recursive replacement self-similar trees [see Peckham,
1995; Gupta and Waymire, 1996; Mandelbrot and Viscek,
1989] which is a subclass of the SSTs. The iterative building
scheme of Peano’s basin is illustrated in Figure 1. The tree
at first step w = 1 consists of only one link of length 1. The
tree at step w is built from the tree at the previous order
according to the following rule: each mother link of the
network at step w is replaced by four children links (whose
lengths are the same and equal to half of the mother link),
organized according to a cross pattern. The number of steps
used for construction coincides with the largest stream order
within the network and thus with the order of the network.
This construction rule (which is purely deterministic)
defines asymptotically a space-filling tree.
[16] The Peano’s basin area function A(x) can be easily

derived and is shown to converge (when the number of
iterations entering the Peano’s basin construction tends to
infinity) toward the Besicovitch’s measure [e.g., Marani et
al., 1991]. First, note that the distance x takes values in
[0, 1] for every order w. The area function at step w (A(w; x))
is related to that at the previous step w 
 1 through

A w; xð Þ ¼ 1

4
A w
 1; 2xð Þ if 0 � x <

1

2

3

4
A w
 1; 2x
 1ð Þ if

1

2
� x � 1

ð5Þ

and thus does coincide with the definition of Besicovitch’s
measure (or binomial measure) with parameter p = 1

4
. This

last is the archetype for a MF measure (equivalently called

Figure 2. (a) Peano’s basin, (b) Shreve’s random network,
and (c) stochastic self-similar model (with (a, b) = (1, 2))
area functions. The corresponding order is w = 18 for
Peano’s basin and w = 11 for the stochastic self-similar
model. The vertical dashed lines define the central half.
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distribution) and its singularity spectrum D(h) (see appendix
for definition) can be easily derived and expressed with the
parameterized formulas [see, e.g., Schroeder, 1991]

D ¼ 
t log2 t 
 1
 tð Þ log2 1
 tð Þ
h ¼ 
t log2 p
 1
 tð Þ log2 1
 pð Þ ð6Þ

with 0 < t < 1 and p = 1
4
for the specific case of Peano’s

basin.
[17] The Peano’s basin model then predicts for the area

function A(x) a MF measure for which the singularity
spectrum is known. The distribution A(18; x) is plotted in
Figure 2a and its MF analysis will be discussed in
section 4.1.

2.3. Shreve’s Random Topology Model

[18] Shreve [1966] introduced a stochastic model for river
networks which provides also models for area and width
functions. Shreve’s model has been widely used to describe
scaling properties of drainage networks and of their area and
width functions [see, e.g., Rodrı́guez-Iturbe and Rinaldo,
1997; Troutman and Karlinger, 1984; Agnese et al., 1998].
[19] Shreve’s model is a binary branching tree defined

through the very simple following construction rules. The
main ingredient is the assumption that every link has equal
probability to be either an exterior link (not connected to
any other link upstream) or an interior link (connected to 2
links upstream). Construction of a realization of such a tree
starts with one link. This link is then chosen with the same
probability 0.5 to be an exterior link, and then the construc-
tion process ends, or an interior link and then 2 new
children links are connected to it. The construction process
recursively applies to each of the children links and so on
until there are no more children links (i.e., all children links
at previous steps have been chosen to be exterior links). The
number of links of the Shreve’s model is a random variable
taking different values for every realization.
[20] The Tk coefficients can be computed for this model

and are shown [see Shreve, 1966; Tokunaga, 1978; Peckham,
1995] to coincide with those of Tokunaga’s SSTs:
Tk = a.bk
1 with specific values (a, b) = (1, 2).
[21] Shreve’s random topology model defines a space-

filling network [Peckham, 1995] and thus area and width
functions coincide as for the Peano’s model. A(x) =W(x) is a
stochastic process for which realizations can be generated
using the following algorithm. A(x) is indexed with an
integer argument and is initially set as A(1) = 1. Then
A(x + 1) is computed from A(x) as A(x + 1) = Sk=1

A(x) y(k)
where the y(k) are independent and identically distributed
random variables that take the values 0 or 2 with equal
probability (i.e., probability 1/2). The construction algo-
rithm ends when A(x) = 0. A realization with 109,270
samples is plotted in Figure 2b.
[22] The MF properties of the area function of Shreve’s

model can be roughly understood as follows. The incre-
ments of A(x) can be written as

A xþ 1ð Þ 
 A xð Þ ¼
XA xð Þ

k¼1

z kð Þ; ð7Þ

where z(k) = y(k) 
 1 are independent and identically
distributed random variables that take the values {
1; 1}

with equal probability. The central limit theorem [see, e.g.,
Feller, 1966] states that the normalized sum of i.i.d. random
variables with zero mean and unit standard deviation (that
are thus finite), i.e, 1ffiffiffi

N
p Sk=1

N z(k), does converge (in the limit

N ! + 1) toward a random variable distributed with a
normal law of zero mean and unit standard deviation. One
may hence approximate Sk=1

A(x) z(k) by a random variable
distributed with a normal law with zero mean and standard
deviation

ffiffiffiffiffiffiffiffiffi
AðxÞ

p
, if A(x) is ‘‘sufficiently’’ large. Then, the

previous equation becomes

A xþ 1ð Þ 
 A xð Þ ’
ffiffiffiffiffiffiffiffiffi
A xð Þ

p
n xð Þ; ð8Þ

where n(x) is a Gaussian random variable with zero mean
and unit variance. This last equation is a discrete version of
the stochastic differential equation:

dA xð Þ ¼
ffiffiffiffiffiffiffiffiffi
A xð Þ

p
dB xð Þ ð9Þ

where B(x) is the ordinary Brownian motion. The Feller
diffusion process is solution of this equation and A(x) may
thus be interpreted as a discrete version of the Feller
diffusion process [see, e.g., Etheridge, 2000]. This last is a
process whose realizations are functions (and not measures).
This property may be easily understood since A(x) is
defined from a (discrete) differential equation. Moreover,
the MF properties of the Feller diffusion are known: this
process is monofractal, with Hölder exponent: H = 0.5
(J. Beresticky, University of Provence, Marseille, private
communication, 2006).
[23] This last interpretation is clearly confirmed by nu-

merical analysis of realizations of the process A(x), as it will
be shown in section 4.1.

2.4. Stochastic Self-Similar Trees and Their Area
and Width Functions

[24] The following recursive algorithm is proposed to
generate the area and width functions of SSTs. Note that
every link is assumed to have the same length, which
defines the unit length (i.e., every link has length 1).
[25] 1. The coefficients Tk are chosen to correspond to

those of Tokunaga’s trees: Tk = a.bk
1.
[26] 2. Streams of order 1 possess only one link.
[27] 3. For every stream i of order w, the number Xk

w,i of
side tributaries of order w 
 k is chosen as the value taken
by a random variable which is an integer and is distributed
with a Poisson distribution with parameter l = Tk. (Note that
the mean of such a random variable is l and its variance is
also l.) All the values X k

w,i are statistically independent; the
choice of the X k

w,i then fixes the number of side tributaries
of the stream i to Sk=1

w
1 X k
w,i and hence its number of links to

Cw,i = 1 + Sk=1
w
1X k

w,i.
[28] 4. The locations of the junctions of every side

tributary to the stream i are randomly and independently
chosen, with a uniform distribution; that is, the probability
of a given side tributary to link the stream i at the end of one
of the Sk=1

w
1 X k
w,i links is the same for every link and

independent of the location of other side tributary junctions.
[29] 5. Two things are noted. First, a different choice for

Tk coefficients than stated above can be used for the
generation of area and width functions although this is not
explored in this paper. Second, a specific choice of Tk does
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not suffice in defining a unique model for width or area
functions as will be demonstrated in section 5. This can be
easily understood since the Tk are only the means of the
distributions of the side tributaries and thus do not fully
characterize them.
[30] 6. It is noted that the SSTs generated by the above

algorithm form a specific case of the more general stochastic
Tokunaga trees introduced by Cui et al. [1999]. The MF
properties of the stochastic SSTs are not analytically derivable
and will be studied via simulation in section 5.

3. Multifractal Analysis

3.1. Practical Multifractal Analysis

[31] MF formalisms aim to perform on actual data a MF
analysis, i.e., estimate the singularity spectrum D(h) (see
Appendix A) from the statistics of the local fluctuations of
the signal at different scales a and different locations x0. Let
us denote these fluctuations, also called multiresolution
coefficients, c(x0, a), and define the partition functions
S(q, a) as estimates (by space averaging) of their qth
statistical moments:

S q; að Þ ¼ 1

n að Þ
X
x0

c x0; að Þj jq; ð10Þ

where n(a) is the number of coefficients c(x0, a) available at
scale a. The scale invariance property of a signal results in
power law behavior for the partition functions:

S q; að Þ � at qð Þ; ð11Þ

defining the usual spectrum of scaling exponents t(q),
indexed by moment order q. The MF formalism eventually
states that the scaling exponents relate to the singularity
spectrum through a Legendre transform:

D hð Þ ¼ 1þminq qh
 t qð Þ½ � for functions

1þminq qh
 qþ t qð Þð Þ½ � for measures:
ð12Þ

It is noted that the difference in the definitions of Legendre
transform for functions and measures (see Appendix A for
definition of a measure) is due to the common choice for
normalization of the multiresolution coefficients (indeed, if
one uses a.c(x0, a) instead of c(x0, a), the scaling exponents
t(q) are shifted to q + t(q)).
[32] Note that if the signal under analysis is monofractal

then the scaling exponents vary linearly with respect to the
moment order q, i.e., t(q) = qH. In contrast, if the singu-
larity spectrum takes finite values on an interval [hmin, hmax]
with hmax > hmin, the scaling exponents t(q) no longer
define a linear but rather a nonlinear function.

3.2. Multiresolution Coefficients

[33] As discussed in the previous section one first needs
to compute the multiresolution coefficients c(x0, a) in order
to perform a MF analysis. There are several choices of
multiresolution coefficients, that can be valid or not depend-
ing on the nature of the data under analysis, e.g., function or
measure and the presence of nonstationarities. The correct
selection of multiresolution coefficients is thus of first
importance in order to perform a meaningful MF analysis.
3.2.1. Catalog of Multiresolution Coefficients
[34] The MF formalism was historically introduced with

partition functions computed with first-order increments for
functions (the so-called structure function method [Parisi
and Frisch, 1985])

c x0; að Þ ¼ d x0; að Þ ¼ s x0 þ að Þ 
 s x0ð Þ ð13Þ

and box aggregation coefficients for measures [Hasley et
al., 1986]

c x0; að Þ ¼ b x0; að Þ ¼ 1

a

Z x0þa=2

x0
a=2

s xð Þdx: ð14Þ

Wavelet coefficients [Mallat, 1998] provide a more versatile
and efficient choice for multiresolution coefficients and can
be used for MF analysis of both functions and measures and
for nonstationary signals [Arneodo et al., 1995; Jaffard,
1997] (see also discussion below). Wavelet coefficients
w(x0, a) are defined as the inner product between the data
s(x) and the wavelet yx0,a

(x), associated with location x0 and
scale a:

c x0; að Þ ¼ w x0; að Þ ¼
Z
R
yx0 ;a xð Þs xð Þdx; ð15Þ

where yx0,a
(x) is a scale-dilated and time-shifted template of

the mother wavelet y0(x):

yx0 ;a xð Þ ¼ 1

a
y0

x
 x0

a

� 	
: ð16Þ

[35] A commonly used wavelet family is the Gaussian
wavelets (which are continuous wavelets; that is, spatial
location x0 and scale a can take on any real value), defined
as the N-order derivative of a Gaussian function, modulus a
proper multiplicative factor to ensure correct normalization.
The derivative of order N is denoted as g0

N(x). Wavelets
g0
3(x) and g0

4(x) are plotted in Figure 3.

Figure 3. (left) Wavelets g0
3 and (right) g0

4 (arbitrary
units).
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[36] An important feature of the mother wavelet y0 for
practical purposes is its number of vanishing moments: N �
1 such that

R
xky0(x)dx = 0 if 0 � k � N 
 1 andR

xNy0(x)dx 6¼ 0. The use of a wavelet with a given N
allows the removal of an additive polynomial trend of
degree less than N (which can cause a failure of MF analysis
[see Arneodo et al., 1995]). From a practical point of view,
the number of vanishing moments has to be chosen suffi-
ciently high such that robustness of the results is achieved;
that is, there is no dependence on the chosen wavelet. The

Gaussian wavelet g0
N(x) can be easily shown to have N

vanishing moments.
3.2.2. Choice of Multiresolution Coefficients
[37] The previous section depicts several choices of

multiresolution coefficients: increments or wavelet coeffi-
cients for MF analysis of functions (including functions
with polynomial trends) and box aggregation coefficients or
wavelet coefficients for MF analysis of measures. The
ability of wavelet coefficients to be used for analysis of
both functions and measures can be understood qualitatively
since a wavelet gathers local average and differentiation
patterns (cf. Figure 3): the wavelet coefficients are thus a
common extension of both increments and box aggregation
coefficients. This assertion will be quantitatively illustrated
in section 4.1 via an example.
[38] It is important to point out that an erroneous choice,

such as the use of increments for a measure or the use of
box aggregation coefficients for a function, or use of incre-
ments of insufficient order for a nonstationary signal, leads
to artifacts and thus to misleading conclusions: a correct MF
analysis requires a correct choice of multiresolution coef-
ficients. Since often one does not know before hand the
exact nature of the analyzed signal, a robust MF analysis
framework is proposed in this paper (see section 4) which
can both identify the correct mathematical nature of a signal
(measure, function, degree of nonstationarity) and correctly
estimate its singularity spectrum.
3.2.3. Moments of Negative Order q
[39] From the Legendre transform relationship

(equation (12)), it is seen that

q ¼ dD hð Þ=dh; ð17Þ

and thus for estimating the decreasing (right) part of the
D(h) function, in order to gain access to the whole range of
singularities from hmin to hmax, one needs to consider
estimation of t(q) for negative moments q. The MF
formalism based on increments, or even on continuous
wavelet transform (CWT) coefficients c(x0, a), suffers from
the fact that it is not valid for estimation of t(q) for q < 0.
This is because the probability distribution of increments or
CWT coefficients is centered at zero and thus negative
moments diverge [see, e.g., Venugopal et al., 2006b]. This
drawback can be overcome by using the WTMM (Wavelet
Transform Modulus Maxima) methodology which operates
on the modula of the wavelet coefficients which are always
positive [Muzy et al., 1993, 1994; Arneodo et al., 1995].
This methodology defines the WTMM coefficients, denoted
as m(x0, a), which can be used to compute the partition
functions and thus the scaling exponents and the singularity
spectra of functions. The reader is referred to Muzy et al.
[1993, 1994], Arneodo et al. [1995], or Venugopal et al.

[2006a, 2006b] for detailed presentation and illustration of
this MF formalism. It is also noted that a new MF
formalism, relying on a well-defined mathematical basis
and based on the so-called wavelet leaders (defined from the
discrete wavelet transform [Mallat, 1998]) has been recently
introduced in order to overcome this difficulty [Jaffard et
al., 2005; Lashermes, 2005; B. Lashermes et al., Wavelet
leaders based multifractal formalism: A comprehensive
analysis of turbulent velocity, submitted to European
Physical Journal B, 2007].

3.3. Multifractal Parameter Estimation With
Cumulant Analysis

[40] The scaling exponent function t(q) reflects the MF
properties of the data under analysis since it is the Legendre
transform of the singularity spectrum D(h). As discussed
above, estimation of t(q) typically relies on computation of
the partition function S(q, a) for different order moments q
(equation (10)) and estimation of the slopes of the log-log
linear plots of S(q, a) versus scale a. In order to depict the
deviation of t(q) from linearity (the hallmark of multi-
fractality) one has to estimate moments of high-order (the
literature reports moments up to order q = 10). This presents
not only problems of statistical convergence for short
signals but also problems of interpretation of high moments
due to a degenerate linear behavior of t(q), theoretically
expected for q > qmax, where qmax depends on the inherent
MF nature of the analyzed signal. Basically, the maximum
interpretable q is determined by the largest Holder exponent
hmax present in the signal; for q > qmax a linear t(q) curve is
expected even for a true MF signal. The reader is referred to
Lashermes et al. [2004] and also Venugopal et al. [2006a]
for further details on these estimation problems.
[41] An alternative estimation methodology, called cumu-

lant analysis method, which avoids the need to compute
high-order moments and also leads to a concise MF param-
eterization, has recently been introduced in the literature
[e.g., Arneodo et al., 1998; Malécot et al., 2000; Delour et
al., 2001] and has been used in geophysics for the analysis
of high-resolution temporal rainfall [Venugopal et al.,
2006a, 2006b]. The reader is referred to these publications
for details on the methodology.
[42] The cumulant analysis method, provides an estima-

tion of the parameters cp of the Taylor series expansion of
t(q) for q ! 0:

t qð Þ ¼
X
p�1


1ð Þp
1 cp

p!
qp ð18Þ

by computing the statistical cumulants C(p, a) of order p of
the logarithm of the absolute value of the multiresolution
coefficients c(x0, a) at a given scale a. Similarly to the
partition functions (cf. equation (10)), the cumulants define a
function of p and awhich is furthermore linear with respect to
ln a for MF functions. For instance, for p = 1 and 2,

C 1; að Þ ¼ 1

n að Þ
X
x0

ln jc x0; að Þj ’ a1 þ c1 ln a ð19Þ

C 2; að Þ ¼ 1

n að Þ
X
x0

ln jc x0; að Þj 
 C 1; að Þ½ �2’ a2 
 c2 ln a: ð20Þ
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Linear regressions of C(p, a) versus ln a thus allow
estimation of the cp.
[43] If the process under analysis is monofractal then c1 =

H 6¼ 0 and cp = 0 for p > 1. A nonzero value for c2 explicitly
establishes the multifractal (versus monofractal) nature of
the data: c1 is the most prevailing Hölder exponent value
(D(h) is maximum at h = c1) and the parameter c2 (also
called the intermittency coefficient) relates to the spread of
D(h) around c1. The quadratic approximation of the scaling
exponent function

t qð Þ ’ c1q
 c2q
2=2; when q ! 0; ð21Þ

which corresponds to a quadratic approximation of the
singularity spectrum,

D hð Þ ’ 1
 h
 c1ð Þ2

2c2
; when h ! c1 ð22Þ

is a commonly used model of multifractality. This model
has been shown to be both meaningful and a good
approximation in turbulence (for which it corresponds to
the so-called lognormal model).
[44] These tools will be applied in the sequel to charac-

terize the MF properties of the width and area functions,
using the CWT and the WTMM multiresolution coeffi-
cients. Since the WTMM coefficients allow the scaling
exponent estimation both for q < 0 and q > 0, in contrast

to CWT coefficients which only allow estimation for q > 0,
they are known to provide better estimators (faster statistical
convergence for instance) at least for p � 2. The reader is
referred to Delour et al. [2001] and Venugopal et al. [2006b]
for further details of the methodology.

4. Potential Pitfalls and a Robust Methodology
for Multifractal Analysis of Width and Area
Functions

4.1. Discrimination Between Function and Measure:
Peano’s Versus Shreve’s Models

[45] As was shown in section 2, different network topol-
ogies result in area and width functions that are distinctly
different in terms of their mathematical nature. For example,
the Peano basin area function is a mathematical measure
(distribution) while that of Shreve’s model is a mathematical
function. Analyzing both signals with the same multireso-
lution coefficients for estimating their singularity spectra,
e.g., using for both the first-order structure function ap-
proach or the box-counting approach, can lead to mislead-
ing interpretations. The purpose of this section is (1) to
quantitatively demonstrate that erroneous results on MF
characterization can be obtained by an innapropriate choice
of the multiresolution coefficients and (2) to present a
framework for MF analysis which does not require a priori
knowledge of the mathematical nature of the signal, but

Figure 4. Measure or function? (top) Scaling exponents t(q) and (bottom) predicted singularity spectra
D(h) computed with box aggregation (circles), increments (pluses), and wavelet coefficients (crosses) for
(left) Peano’s basin and (right) Shreve’s model area function A(x) (wavelet g0

4). Scaling exponents are
computed for negative q values for box aggregation coefficients in order to provide the right lobes of the
singularity spectra; negative moments cannot be computed for increments or wavelet coefficients (see
text for discussion).
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rather the framework identifies the underlying structure and
selects the appropriate multiresolution coefficients.
[46] Let us denote the scaling exponent function t(q)

defined with box aggregation, first-order increments and
wavelet coefficients, respectively, as tb(q), td(q) and tw(q).
We will demonstrate below that when all of them are
computed from a sampled signal (data set), if tb(q) and
tw(q) coincide and depart from td(q), then the data under
analysis correspond to a measure, whereas if td(q) and
tw(q) coincide and depart from tb(q), then the data under
analysis correspond to a function

td qð Þ 6¼ tw qð Þ ¼ tb qð Þ
!measure

td qð Þ ¼ tw qð Þ 6¼ tb qð Þ
!function:
ð23Þ

[47] Moreover, if the interest is not really in inferring the
mathematical nature of the signal but in correctly estimating
its MF spectrum, the above framework depicts the appro-
priate multiresolution coefficients and leads to a correct
estimate of the MF spectrum.
[48] MF analysis of the Peano’s and Shreve’s models area

functions (cf. section 2) are performed using box aggrega-
tion, increment and wavelet coefficients (the wavelet used is
g0
4) and the results are shown in Figure 4. Scaling exponents

with negative q values are computed with box aggregated
coefficients only, thus yielding the right lobe of singularity
spectrum, since negative moments are statistically mean-
ingless for increment or wavelet coefficients. As theoreti-
cally expected, the Peano model results in a (multifractal)
measure for A(x) and one observes td(q) 6¼ tw(q) ’ tb(q),
whereas the Shreve model results in a (monofractal) func-
tion for A(x) and one observes td(q) ’ tw(q) 6¼ tb(q). These
results clearly show how to characterize the intrinsic math-
ematical nature of the digital (sampled) data under analysis
without apriori information about the signal.
[49] Figure 4 illustrates as well the fact that an erroneous

choice of multiresolution coefficients leads to an incorrect
estimate of the spectrum of singularities. For instance,
performing MF analysis of the function A(x) predicted by
the Shreve’s model using box aggregation coefficients (see
Figure 4, right plots) leads to the erroneous conclusion that
the singularity spectrum D(h) (in the measure regularity
sense) is reduced to one point with coordinates (h = 1, D = 1)
with a decreasing right lobe. However, using first-order
increment and wavelet coefficients gives results in perfect
agreement with the expectation discussed in section 2, i.e.,
td(q) ’ tw(q) ’ 0.5q which is indeed the Legendre
transform of the singularity spectrum of a monofractal
process with H = 0.5. As will be discussed below such
analyses, i.e., using box aggregation coefficients for real
network width functions, are commonplace in the literature
and have resulted in suggestions that real networks have
area functions with D(h) = 1 at h ’ 1.

4.2. Nonstationarity Property of Area and Width
Functions

[50] The area and width functions by definition start and
end at zero. Moreover, if the length of the longest flow path
is L, few pixels or links are located close to the basin outlet
(i.e., at flow distance x� L) or at distance close to L (i.e., at
flow distance x such that (L 
 x)� L). These functions then
exhibit a nonstationary behavior which one has to deal with
before performing practical MF analysis. As discussed
previously, the MF analysis indeed assumes a stationarity
property for the local distribution of Hölder exponents: this
last is expected to be everywhere the same, which allows to
replace statistical averages by spatial averages for the
estimation of moments defining the partition functions (cf.
equation (10)). It is noted that although the wavelet-based
MF formalism can automatically deal with nonstationary
signals in terms of removing polynomial trends (since by
using wavelets with N vanishing moments a polynomial of
degree N is filtered out from the signal), the form of
nonstationarity in the width and area functions is of a
particular type arising from the fact that close to the outlet
and the upper end of the river basin, the branching structure
is not well developed yet and this is reflected in the

Figure 5. Effect of nonstationarity: average over N = 100
realizations of Shreve’s model area function of (top) first
and (bottom) second cumulants of the whole realization
(dashed line) and the central half (solid line) computed with
CWT coefficients (wavelet g0

4).

Table 1. Different Parameter Sets Investigated for Stochastic Self-Similar Model

(a, b) (0.75, 1.894) (1, 2) (1.25, 2.095) (1.5, 2.183) (1.75, 2.266) (1.5, 2.5) (1, 3)

D 2 2 2 2 2 1.76 1.41
order 13 12 11 11 10 10 10
n 3894 4160 3618 5817 3950 6435 14827
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statistical nature of the width function fluctuations close to
x = 0 and x = L.
[51] To assess the effectiveness of practical MF analysis

to accurately estimate the MF spectra of the data under
consideration, the analysis is performed both on the whole
realization and on its central half only (i.e., if the realization
has n samples, its central half is defined as the part between
n/4 and 3n/4) of the Shreve’s model area function (cf.
section 2.3). The results obtained with cumulant analysis
are discussed below.
[52] Averages over 100 realizations (of length between

4096 and 8092 samples) of first and second-order cumulants
(computed with CWT coefficients and wavelet g0

4) for both
the whole realization and the central part are plotted in
Figure 5. All cumulants exhibit power law behavior and the
cumulant exponents can hence be estimated. Estimation of
the first-order cumulant exponent results in c1 ’ 0.53 ± 0.02
for the whole realization and c1 ’ 0.49 ± 0.03 for the central
half, both statistically consistent with the expected value
c1 = 0.5. However, it is obvious that for the case when the
whole realization is used, C(2, a) has a significantly
different than zero slope (c2 > 0) while when the central
half only is used, C(2, a) is constant (c2 ’ 0). Interpreting
these results through a MF lens would lead to conclude a
multifractality for the whole realization and monofractality
for its central half. MF analysis on the whole realization is
then misleading since the function A(x) is known to be
monofractal with H = 0.5.
[53] We then conclude that the data fluctuations within

the central part of the width and area functions may be
assumed to be stationary and that MF formalisms may be
meaningfully applied to the central half giving results that
correctly reflect the properties of the underlying branching
structure of the network [see also Veneziano et al., 1995].
MF analysis of area and width functions of all networks
(either synthetic or real) discussed in this paper is then
performed on the central half for the remaining of this paper.

4.3. Analysis of Real Width and Area Functions:
A Review of Other Efforts

[54] Several studies have considered MF analysis of
width and area functions of real and simulated river net-
works [e.g., Rinaldo et al., 1993; Marani et al., 1994;
Veneziano et al., 1995; Yang et al., 2001; Richards-Pecou,
2002] but some of the findings need to be reconsidered.
First, several studies have reported that the area function of
real river networks is a multifractal with D(h) = 1 at h ’ 1
and a slowly falling right limb for h > 1 [e.g., see
Rodrı́guez-Iturbe and Rinaldo, 1997, Figures 3.16, 3.17,
3.23; Yang et al., 2001]. The same results have been
reported for simulated optimal channel networks (OCNs)
[e.g., see Rodrı́guez-Iturbe and Rinaldo, 1997, Figures 4.26,
42.7].
[55] These studies have used the box-counting method,

which works fine for the Peano basin whose A(x) is a
measure, but is not appropriate for the Shreve model or for
real networks for which the A(x) is a function. It is worth
noting that an estimate of D(h) concentrated around h = 1
has prompted suggestions in the literature that the width
function of real networks is close to that of the Peano basin
for which the theoretical H is 1.207. This is an artifact of the
analysis methodologies.
[56] A second problem is that inferences about the

deviation from multifractality (nonlinear t(q)) have been
based on very high order moments (e.g., from 
10 up to 10)
computed from short series. This can lead to spurious lobes
of the singularity spectrum. Yet, since the left lobe is always
found to decrease very rapidly allowing thus no discrimi-
nation (e.g., see the previously mentioned figures in the
literature), the right lobe has been used for discriminating
among modeled and real networks and also for assessing the
effects of threshold area for channel initiation on the MF
properties of width functions [e.g., see Rodrı́guez-Iturbe
and Rinaldo, 1997, Figure 3.23; Yang et al., 2001]. This

Figure 6. Stochastic self-similar model ((a, b) = (1, 2))
partition functions of order q = 1, 2 computed with CWT
coefficients (wavelet g0

4).

Figure 7. Stochastic self-similar model ((a, b) = (1, 2))
cumulants of order (top) p = 1 and (bottom) p = 2 computed
with CWT coefficients (wavelet g0

4).
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right lobe however is all an artifact of the analysis method-
ology; it relies on negative statistical moments which,
although statistically feasible to compute from box aggre-
gation coefficients, have no meaning since the box aggre-
gation coefficients are not appropriate for analyzing a MF
function. The proposed framework (using WTMM coeffi-
cients and cumulant analysis) provides accurate estimates of
the whole singularity spectrum and also a concise parame-
terization which does not require the computation of high-
order moments.

5. Numerical Multifractal Characterization of
Stochastic Self-Similar Trees

[57] The stochastic SSTs presented in section 2.4 do not
receive analytical expressions for the MF properties of their
area and width functions. Thus these properties are investi-
gated through numerical analysis of a large number (100)
of realizations with the same values for order w and param-
eters a and b (cf. Table 1). Several values of the parameters
(a, b) are investigated with practical MF analysis,
corresponding both to space-filling or non-space-filling
networks. Note that the network orders have been chosen
so that the average number of samples, denoted as n, is
almost the same for every choice of parameters a and b.
[58] The first step is to check that both partition functions

and cumulants do behave like power laws with respect to
scale a. For (a, b) values corresponding to space-filling
networks this is indeed true (cf. Figures 6 and 7 for (a, b)
= (1, 2); similar power law behaviors are observed for other

parameter value choices) but no clear power law behavior is
observed when the network is not space filling. The origin of
the departing behavior from scaling is intriguing and requires
further study in the future. Here, only (a, b) values such that
D = 2 are considered, thus defining processes for which the
practical MF analysis is fully consistent and results in reliable
estimates of the scaling and cumulant exponents.
[59] MF analysis is performed on the central half of every

realization, using both the CWT and WTMM methodology
(the wavelet used is g0

4). Table 2 presents the results
obtained for the three first cumulant exponents. For every
set of parameters (a, b), the results obtained from the
numerical analysis, within confidence intervals (confidence
interval is the common 95% confidence interval for the
empirical average estimator on N samples of a Gaussian
random variable: ±2 sffiffiffi

N
p where s is the estimated standard

deviation), show a monofractal behavior, characterized by
the parameter c1 only. Moreover, the estimated value of c1
depends on the choice of (a, b) and ranges from 0.54 to
0.65, which are all larger than the one corresponding to
Shreve’s model area function (i.e., 0.5). Also, it is interest-
ing to note that for (a, b) corresponding to space-filling
SSTs, c1 clearly decreases when a increases. In other words,
when the ‘‘branching rate,’’ that is, the number of tributaries
of streams of a given order increases, the area function
exhibits wilder fluctuations and becomes more and more
irregular.
[60] Another interesting result concerns the values ob-

tained for (a, b) = (1, 2): though the Tk coefficients of the

Table 2. Mean of Cumulant Exponents for Area Functions of Stochastic Self-Similar Trees, Computed on the

Central Half Portion With CWT and WTMM Coefficients Averaged Over N = 100 Realizationsa

(a, b) (0.75, 1.894) (1, 2) (1.25, 2.095) (1.5, 2.183) (1.75, 2.266)

CWT c1 0.65 ± 0.01 0.62 ± 0.01 0.55 ± 0.01 0.55 ± 0.01 0.55 ± 0.01
c2 0.00 ± 0.01 0.01 ± 0.01 0.00 ± 0.01 0.01 ± 0.01 0.00 ± 0.01
c3 0.00 ± 0.04 0.01 ± 0.02 0.01 ± 0.02 0.00 ± 0.02 -0.01 ± 0.04

WTMM c1 0.64 ± 0.02 0.60 ± 0.01 0.56 ± 0.01 0.56 ± 0.01 0.54 ± 0.01
c2 0.01 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.01 ± 0.01
c3 0.02 ± 0.01 0.00 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01

aThe wavelet used is g0
4. The given confidence intervals are ±2s /

ffiffiffiffi
N

p
, where s is the estimated standard deviation. Note that

all considered combinations of (a, b) parameters result in space-filling trees (see equation (4)).

Figure 8. Stochastic self-similar model ((a, b) = (1, 2)) (left) scaling exponents t(q) and (right)
singularity spectrum D(h) of area function A(x) computed with CWT (circles) and WTMM (squares)
coefficients (wavelet g0

4).

10 of 19

W09405 LASHERMES AND FOUFOULA-GEORGIOU: RIVER NETWORK AREA AND WIDTH FUNCTIONS W09405



underlying trees do coincide with those of the Shreve’s
model (cf. section 2.3), the related area functions clearly
exhibit different regularity properties, i.e., with H = 0.50 for
Shreve’s model (see Figure 4, right) or H = 0.60 for SSTs
(see Figure 8). This result supports the fact that knowledge
of the coefficients Tk is not sufficient information to fully
characterize a river network, since the Tk are only the means
of the distributions of the number of side tributaries and do
not account for higher-order statistical moments. A system-
atic analysis of the MF properties of the more general
stochastic SSTs introduced by Cui et al. [1999], is an
interesting topic for further study which however falls
outside the scope of the present paper.

6. Multifractal Analysis of Real River Basin Area
and Width Functions

6.1. Data Used for Analysis

[61] Analysis of area and width functions extracted from
DEM of three real river basins (Figure 9) is performed in
this paper. Walawe River is a river located in Sri Lanka and
its drainage area is almost 2000 km2. The area (A(x)) and
width (W(x)) functions are extracted from DEM of spatial
resolution 90 m � 90 m. The area function of the upper part
of the South Fork Eel River basin, California, USA
(corresponding drainage area of 154 km2) is extracted from
high-resolution 1 m � 1 m DEM (LIDAR technology) and
10 m � 10 m DEM (see Gangodagamage et al. [2007] for
more details on this basin). Finally, the area and width
function of the Noyo River basin, California, USA are

extracted from DEM of spatial resolution 10 m � 10 m
(corresponding drainage area of 143 km2 [see Sklar et al.,
2006, and references therein] for more details on this basin).
All these basins are plotted in Figure 9.
[62] From a practical point of view, one important pa-

rameter when extracting the area and width functions from a
DEM is the bin size dx: {A(dx; x)} = # {all M: x � l(M) �
x + dx}, where l(M) denotes the flow distance of pixel M to
the outlet. One should carefully select the value for dx: if
dx is too close to the DEM spatial resolution, then the
computed A(x) or W(x) will take only small integer values
and thus will be polluted by high-digitization noise. This
effect can be specifically important for W(x) since the
percentage of channelized pixels is very small. On the other
hand, a large value for dx may mask, because of averaging,
the MF signatures of the underlying network structure. The
bin size dx is chosen sufficiently large so as not to affect the
results presented in this paper. The number of samples is
2,513 for the Walawe River area and width functions, 3,962
for the South Fork Eel River area function and 1,948 for the
Noyo River area and width functions. All area and width
functions are plotted in Figure 10.

6.2. Multifractal Characteristics of Several River Basin
Area Functions

[63] The singularity spectra of the area and width func-
tions of the Walawe river basin have been computed using
box aggregation, increment and wavelet coefficients (the
wavelet used in this section is g0

4).
[64] The results are plotted in Figure 11 in a similar way

as for the synthetic data (see Figure 4). Both for area and

Figure 9. Drainage basins and river networks for (top left) Walawe River (DEM resolution 90 m), Sri
Lanka; (top right) South Fork Eel River (DEM resolution 1 m), California, United States; and (bottom)
Noyo River (DEM resolution 10 m), California, United States.
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width functions an agreement between the scaling expo-
nents computed with increments and wavelet coefficients is
found: td(q) ’ tw(q), whereas the scaling exponents com-
puted with box-aggregated coefficients tb(q) clearly depart
from td(q) ’ tw(q). We then conclude that both the area and
width functions extracted from the Walawe River basin are
by nature functions and not measures. The same result is
obtained for the area function of the South Fork Eel River
and Noyo River basins. Furthermore, as it is seen in

Figure 11 using box aggregation coefficients results in the
wrong inference of MF properties close to those of Shreve’s
model as previously reported in the literature (cf. Figure 4),
i.e., one point with coordinates (h ’ 1, D = 1) with a
decreasing right lobe, while using the increments or wavelet
coefficients results in singularity spectrum centered at c1
approximately 0.4 for A(x) and 0.5 for W(x).
[65] Figures 12 shows the log-log plots of the partition

functions S(q, a) versus a for q = 1, 2 computed using CWT
and WTMM coefficients for the three different basins. The
range of scales over which linear fits of the log2(S(q, a))
versus log2(a) plots have been performed is shown in
Table 3. On the basis of these fits, the t(q) and (via the
Legendre transform) D(h) spectra were estimated and are
shown for all three basins in Figure 13.
[66] Cumulant analysis for estimation of the parameters

cp has also been performed for all these basins using the
CWT and WTMM coefficients. For illustration purposes,
Figure 14 shows the cumulants C(p, a) versus loga for p =
1, 2 for the Walawe basin; similar plots were found for the
other basins. Using the range of scales reported in Table 3,
the estimates of c1 and c2 were computed and are reported in
Table 4. It is observed that the singularity spectra of the area
functions of the three analyzed basins are clearly different as
are the estimates of their c1 and c2 coefficients. More
precisely, the singularity spectra of South Fork Eel River
and Noyo River basins have their peak at h = c1 ’ 0.8
which is significantly larger than the value around which the
peak of the singularity spectrum of the Walawe River basin
is found: h = c1 ’ 0.4. It is moreover worth noting that the
numerical analysis performed on both 1 m and 10 m
resolution data sets (South Fork Eel River) yield the same
results (cf. Table 4) supporting the fact that the observed
difference in the value of c1 is not an artifact due to the fine
1 m spatial resolution.
[67] The observed differences in the estimated values of

the parameter c1 means that the South Fork Eel River and
Noyo River basins area functions exhibit more regular (in
terms of singularity, i.e., larger c1) local behavior than the
Walawe River one. Eventually, all these area functions are
MF functions, characterized by values of the parameter c2
around 0.05 to 0.11. These values can be compared to the
well known value of c2 ’ 0.025 for Eulerian turbulent
velocity [e.g., Frisch, 1995] and values c2 ’ 0.30 for fine
resolution (seconds) temporal rainfall [e.g., Venugopal et
al., 2006a].
[68] The robustness of the estimation methods used in

this work enables us to confidently conclude that indeed
there are significant differences in the singularity spectra of
A(x) of different basins. This is an encouraging result and
points to the possibility that differences in the geomorpho-
logical processes controlling flow paths, both on the river
network itself and on the hillslopes, might be reflected in
the scaling properties of the area and width functions. A
comprehensive analysis of a large number of basins needs to
be undertaken to systematically study these connections.

6.3. Comparison Between Area and Width Functions

[69] In this section, the MF properties of the width and
area functions of the Walawe River and Noyo river basins
are compared. The scaling properties of the width function
of the South Fork Eel River basin could not be reliably

Figure 10. Area and width functions for Walawe River
basin (a) area and (b) width functions, South Fork Eel River
basin (c) area functions, and Noyo River basin (d) area and
(e) width functions. The vertical dashed lines define the
central half portion of the signal on which the MF analysis
was performed.

12 of 19

W09405 LASHERMES AND FOUFOULA-GEORGIOU: RIVER NETWORK AREA AND WIDTH FUNCTIONS W09405



analyzed because no sufficiently large scaling range was
available for estimation.
[70] The scaling exponents t(q) and the cumulant expo-

nents cp are computed from the CWT coefficients, using the
wavelet g0

4. The results are reported in Figure 15 and Table 5.
It is first important to note that the width function W(x)
cannot be analyzed using the WTMM coefficients as the
scale range within which a power law behavior is observed
for the partition functions defined from the CWT coeffi-
cients is quite small, and it is known that use of WTMM
coefficients results in an even smaller scaling range (a larger
value of amin), making it hard to estimate the scaling or
cumulant exponents.
[71] Figure 15 shows that the computed scaling expo-

nents t(q) and then the estimated singularity spectra D(h)
vary appreciably. This difference is quantified with the
cumulant exponent c1 since this is actually the abscissa of
the maximum value of D(h): c1 ’ 0.5 for W(x) and c1 ’ 0.4
for A(x) for the Walawe River basin, and c1 ’ 0.5 for W(x)
and c1 ’ 0.8 for A(x) for the Noyo River basin (see
summary in Table 5). It is worth noting that while the MF
properties forW(x) are similar for these two basins, A(x) was
found much ‘‘rougher’’ for the Noyo River basin and
‘‘smoother’’ for the Walawe River basin. The apparent
‘‘smoothness’’ of the hillslope dissection for the Walawe

River basin may simply be the result of the 90 m DEM
resolution which is not enough to resolve the drainage
patterns at the hillslope scale. This needs further study by
a systematic analysis of several basins at high resolution and
also by theoretical constructs in which distinctly different
branching structures are superimposed on the basic branch-
ing structure of the river network. However, it is worth
noting that both A(x) and W(x) are found MF (as opposed to
monofractal) functions as their singularity spectra are not
reduced to one point and c2 is significantly different than
zero.

7. Concluding Remarks

[72] The problem of extracting geomorphologic features
from landscapes which allow distinct characterization and
can be used for discrimination or classification purposes,
has been of continuous interest in hydrogeomorphologic
research. It is therefore of interest to examine whether the
width and area functions of real basins imbed in them
distinct signatures of landscape dissection which could be
used to differentiate between different network or drainage
path topologies. These distinct geomorphological features
would also be expected to result in distinct hydrological
behavior.

Figure 11. Walawe River (top) scaling exponents t(q) and (bottom) predicted singularity spectra D(h)
computed with box-aggregation (circles), increments (pluses), and wavelet coefficients (crosses) for (left)
area function A(x) and (right) width function W(x) (wavelet g0

4). Scaling exponents are computed for
negative q values for box aggregation coefficients in order to provide the right lobes of the singularity
spectra; negative moments cannot be computed for increments and wavelet coefficients (see text for
discussion).
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[73] In this paper we presented a robust framework for
multifractal (MF) analysis of width and area functions of
simulated and real river networks using wavelets. We
pointed out the subtleties and potential pitfalls of such
analyses, and introduced a new methodology, called cumu-
lant analysis, for accurate and concise parameterization of
multifractality using mainly two parameters, c1 and c2: c1 is
the most frequently occuring singularity, and c2, the so-
called intermittency coefficient, depicts the degree of devi-
ation from monofractality and characterizes the degree of
spatial heterogeneity of fluctuations. It is noted that for a
monofractal, c1 = H and that a higher (lower) value of c1
implies a ‘‘rougher’’ (‘‘smoother’’) signal.
[74] The results obtained in this work establish some

trends but also highlight the need for further research along
three main directions.

Figure 12. Partition functions of area functions A(x): partition functions of order q = 1, 2 computed
using (left) CWT and (right) WTMM coefficients for (top) the Walawe River basin, (middle) the South
Fork Eel River basin, and (bottom) the Noyo River basin (wavelet g0

4). Vertical lines denote the range of
scales over which estimation of t(q) is performed (see Table 3).

Table 3. Scale Ranges Used for Log-Log Linear Regressions of

the Partition Functionsa

Function Method amin, m amax, m

Walawe River A(x) CWT 425 2960
WTMM 911 2960

W(x) CWT 2400 5920
South Fork Eel R. A(x) CWT 49 552
(1 DEM) WTMM 79 552
South Fork Eel R. A(x) CWT 64 837
(10 DEM) WTMM 112 837
Noyo River A(x) CWT 66 429

WTMM 76 429
W(x) CWT 132 697

aSee Figure 12. Note that the same wavelet (g0
4) has been used for all the

analyses.

14 of 19

W09405 LASHERMES AND FOUFOULA-GEORGIOU: RIVER NETWORK AREA AND WIDTH FUNCTIONS W09405



7.1. Simulated Versus Real River Networks

[75] Our results established differences between the multi-
scale statistical structure of area functions A(x) of real
networks (found to be multifractal, as opposed to mono-
fractal, with c1 between 0.4 to 0.8 and a considerable
intermittency) and that of a large class of commonly used
space-filling SSTs (found to be monofractal with H between
0.5 to 0.65). We also pointed out that previous studies that
have inferred multifractality in real river networks with c1
close to 1.0 suffer from artifacts of the analysis methodology.
Given the increased use of simulated river networks in
understanding the interplay between space-time precipita-
tion variability and river network topology on the emergent
scaling of floods, the proposed robust MF analysis frame-

work offers opportunity to study several new and relevant
questions that have emerged from our analysis.
[76] 1. Do simulated self-similar trees (SSTs) which are

not space-filling exhibit scaling in their width functions?
Preliminary evidence in this paper suggests that scaling
might not be present in these trees (see section 5) but this
needs to be further investigated. This question is relevant as
real river networks are not always space filling.
[77] 2. What class of SSTs exhibits multifractality in their

width functions W(x) similar to that exhibited by real river
networks? One possible class is the extended class of
stochastic SSTs proposed by Cui et al. [1999], which
considers an additional source of spatial variability by
randomizing the mean l of the Poisson distribution of the
number of side tributaries (see section 2.4). The MF
properties of this extended class of models have not been
studied yet, to the best of our knowledge. It is conjectured
that this class might lead to width functions with multi-
fractal (as opposed to monofractal) singularity spectra as
those found in real networks and that this extra source of
‘‘randomness’’ might be a necessary condition for multi-
fractality. This problem requires further study.
[78] 3. Do the MF parameters of W(x) relate to any

specific topological properties of the branching trees? In
this study we found that for space-filling SSTs, a decreasing
c1 (rougher W(x)) corresponded to an increasing branching
rate (see section 5). This implies that a ‘‘smoother’’ W(x)
might be expected for a branching network that has a
smaller branching rate. Does this relation hold for other

Figure 13. Area functions: (left) scaling exponents t(q) and (right) singularity spectra D(h) of Walawe
River basin (diamonds), South Fork Eel River basin (squares), and the Noyo River basin (circles) area
functions A(x) (wavelet g0

4).

Figure 14. Walawe River cumulants of order p = 1, 2 of
the area function A(x) computed with WTMM coefficients
(wavelet g0

4).

Table 4. MF Characteristics of A(x) for Several Basinsa

Walawe River

South Fork Eel
River

Noyo River1 DEM 10 DEM

CWT c1 0.37 0.78 0.80 0.77
c2 0.06 0.05 0.05 0.11

WTMM c1 0.42 0.78 0.77 0.78
c2 0.03 0.06 0.04 0.10

aCumulant exponents are computed with CWT and WTMM coefficients
(wavelet g0

4).
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non-space-filling simulated trees and does it hold for real
river networks?

7.2. Area A(x) Versus Width W(x) Function

[79] Our analysis suggests that the area function A(x) of
different real networks possesses distinctly different MF
properties, whose meaning needs to be carefully interpreted.
For the three basins analyzed, the larger Walawe basin was
found to have A(x) with c1 ’ 0.4 and c2 ’ 0.03 which are
distinctly different from those of the much smaller, steeper
and still tectonically active California basins (c1 ’ 0.8 and
c2 ’ 0.05 to 0.10). To rule out the possibility that the
unusually large value of c1 = 0.8 is the result of the 1m
DEM resolution, the results were confirmed with area
functions extracted from DEMs of 1m and 10m DEMs.
Our analysis also indicates that the A(x) and W(x) functions
of the same basin posses distinctly different MF properties
depicting the different drainage topologies of the main river
network and the hillslope drainage paths. For example, for
the Noyo River basin, we found c1’ 0.8 for A(x) versus
c1 ’ 0.5 for W(x), while for the Walawe basin c1 ’ 0.4 for
A(x) versus c1 ’ 0.5 for W(x).
[80] However, several questions remain unanswered,

such as the following.
[81] 1. What is the effect of DEM resolution and the

channel initiation criterion for river network extraction
(critical threshold area versus a slope-area threshold) on

the MF properties of W(x)? Notice that these questions have
been studied before in the literature but with limited MF
analysis methodologies as discussed in 4.3 and have to be
repeated with the proposed more robust methodology.
[82] 2. When the DEM resolution is small enough (1m to

10 m DEMs) and is able to resolve hillslope flow paths,
does in general A(x) emerge as ‘‘less rough’’ than W(x) as
was suggested by the two very high resolution basins we
analyzed? Note that when the DEM resolution is low, we
found that the MF properties of A(x) and W(x) were
approximately the same (and in fact A(x) was slightly
‘‘rougher’’ than W(x)), but this might be due to the inability
of 90 m DEMs to resolve hillslope flow paths and thus to
‘‘see’’ the hillslope drainage patterns.
[83] 3. Can the MF properties of W(x) and A(x)

be classified according to basin size as suggested by

Figure 15. Area function versus width function: (left) scaling exponents t(q) and (right) singularity
spectra D(h) of area A(x) (circles) and width W(x) (squares) functions computed with CWT coefficients
(wavelet g0

4) for (top) Walawe River basin and (bottom) Noyo River basin.

Table 5. Comparison Between A(x) and W(x)a

Walawe River Noyo River

A(x) c1 0.37 0.77
c2 0.06 0.11

W(x) c1 0.51 0.46
c2 0.13 0.10

aCumulant exponents are computed with CWT coefficients (wavelet g0
4)

for the Walawe River basin and the Noyo River basin.
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Richards-Pecou [2002]? While our results do not contradict
this hypothesis, we believe that factors other than basin size
are at work. Although it is possible that large-scale forcing
due to boundary constraints spill over to all other smaller
scales of landscape dissection, basin slope, drainage density,
geology, etc. might play a role in the MF properties of river
networks. A comprehensive analysis using the proposed
methodology would provide insight into this problem.
[84] 4. How do two different branching topologies, say

one corresponding to the river network at larger scales and
another corresponding to the hillslope path topology at
smaller scales, mix to give rise to the MF properties of
A(x)? Can this problem be studied theoretically via con-
structed multiscale mixed-topology networks?
[85] 5. Do the MF properties of A(x), mostly dominated

by the hillslope flow paths, relate to the MF properties of
the River Corridor Widths (RCW) introduced by
Gangodagamage et al. [2007] to directly depict the hill-
slope topography roughness?

7.3. Hydrologic Implications

[86] Finally, one wonders whether the multiscaling prop-
erty of area and width functions, apart from a geometrical
interpretation related to flow path topology, can be given
any hydrological significance. Recently, Richards-Pecou
[2002] suggested that the multiscaling structure of the area
function (actually the author refers to the width function but
analyzes the area function) might associate to the scaling
structure of at-site flood peaks and can thus serve for
regionalization purposes. Specifically, the conjecture was
made that the one parameter of the universal multifractals
(the Levy-stable a parameter) might relate to the heaviness
of the tails of the distributions of floods (see also Dodov and
Foufoula-Georgiou [2005] for fitted Levy-stable pdfs to
maximum annual floods). This is a plausible hypothesis, but
one has to be careful with the chosen parameterization of
multifractality; in our study we chose a nonparametric class
of models as opposed to the universal multifractals used by
Richards-Pecou [2002] and thus no direct comparison can
be made.
[87] Some preliminary ideas on a different hydrologic

interpretation of the MF structure of W(x) are offered in this
paper. Recalling that W(x) denotes the number of channels
intersected by a contour of equal length x to the outlet,
jW(x + d x) 
 W(x)j can be interpreted as the net number of
channels within a strip of flow distance d x to the outlet.
First, the presence of multifractality (c2 different than zero)
implies a strong dependence of the statistics of jW(x + d x) 

W(x)j on the size of the strip (scale) d x and especially a
coefficient of variation of this pdf which increases as the
scale d x decreases. That is, there is a disproportionally
larger net change in the number of channels (or drainage
pathways) expected to appear or disappear in the network at
smaller distances apart than at larger distances apart (the
larger the value of c2 the larger this dependence on scale is).
On the basis of the above argument, it is clear that the
values of c1 and c2 are directly related to the scale-
dependent probability distribution of the number of in-phase
hillslope hydrographs joining the network within a strip of
size d x from the outlet, thus expected to affect the
properties of the overall hydrograph at the outlet. It is
suggested that this scale dependence of W(x) should be
further explored toward a scale-dependent convolution

framework for routing and toward alternative explanations
of geomorphologic dispersion using higher-order moments
of river network topology.

Appendix A: Singularity Spectrum

[88] A MF function f (x) is described as a collection of
local singularities, i.e., jx 
 x0jh(x 0) whose strength is
characterized by the Hölder exponent. The Hölder exponent
h(x0) is properly defined as follows (these definitions
actually hold for h < 1 but easily extent to h � 1):

h x0ð Þ ¼ Sup a : f 2 Ca x0ð Þf g; ðA1Þ

where

f 2 Ca x0ð Þ if j f xð Þ 
 f x0ð Þj � Ajx
 x0ja ðA2Þ

for jx 
 x0j � �. The Hölder exponent can be interpreted as
follows: the closer h(x0) is to 0, the more irregular the
function is at point x0. In contrast, larger values for h(x0) are
related to a smoother (more regular) behavior at x0. For a
MF function, the Hölder exponents are spatially distributed
on interwoven fractal subsets

S hð Þ ¼ x0 : h x0ð Þ ¼ hf g; ðA3Þ

where S(h) is the collection of points with Hölder exponent
h. An efficient framework to characterize MF functions with
a hierarchical classification of the subsets E(h) is by using
the Hausdorff dimension of these subsets [see, e.g.,
Schroeder, 1991]:

D hð Þ ¼ DimHS hð Þ: ðA4Þ

[89] The function D(h) is called the singularity spectrum
of the function f (x) and its estimation is the goal of MF
analysis.
[90] Monofractal functions are an important subclass of

MF functions for which the Hölder exponent takes every-
where the same value H and then the singularity spectrum
reduces to a single point: D(h) = 1 if h = H and D(h) = 
1
if h 6¼ H (by convention, D(f) = 
1 if f denotes the empty
set). A well known example of monofractal process is the
ordinary Brownian motion, for which H = 0.5. MF func-
tions have a D(h) curve which spans a range of Hölder
exponents from hmin to hmax. The MF formalism [Parisi and
Frisch, 1985] relates D(h) to the spectrum of scaling
exponents t(q) describing how the statistical moments of
fluctuations change with scale.
[91] A similar description can be made for positive

measures (or distributions) m(x) which are mathematical
objects defined through their integral over any interval of
R: x !

R
0
xm(u)du defines an increasing function which may

not posses any derivative. A measure is also described as a
collection of singularities:

R
x0
r/2
x0+r/2m(u)du � rh(x0) with

Hölder exponent h(x0) defined as

h x0ð Þ ¼ Sup a : m 2 Ca x0ð Þf g; ðA5Þ
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where

m 2 Ca x0ð Þ if
Z x0þr=2

x0
r=2

m uð Þdu � Ara ðA6Þ

for r � �. Except for the Hölder exponent definition and the
Legendre transform definition (see equation (12)), the MF
framework for measures is the same as the one for
functions.
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Lyon, Lyon, France) made available to us the codes implementing the
WTMM methodology. Finally, we would like to thank Paola Passalaqua for
a thorough review of the manuscript and many useful suggestions. This
work has been partially supported by the National Center for Earth-Surface
Dynamics (NCED), a Science and Technology Center funded by NSF under
agreement EAR-0120914. Computer resources were provided by the
Minnesota Supercomputing Institute, Digital Technology Center, at the
University of Minnesota.

References
Agnese, C., A. Criminisi, and F. D’Asaro (1998), Scale invariance proper-
ties of the peak of the width function in topologically random networks,
Water Resour. Res., 34, 1571–1583.

Arneodo, A., E. Bacry, and J. Muzy (1995), The thermodynamics of fractals
revisited with wavelets, Physica A, 213, 232–275.

Arneodo, A., S. Manneville, and J. Muzy (1998), Towards log-normal
statistics in high Reynolds number turbulence, Eur. Phys. J. B, 1,
129.

Cui, G., B. Williams, and G. Kuczera (1999), A stochastic Tokunaga model
for stream networks, Water Resour. Res., 35, 3139–3147.

Delour, J., J. Muzy, and A. Arneodo (2001), Intermittency of 1d velocity
spatial profiles in turbulence: A magnitude cumulant analysis, Eur. Phys.
J. B, 23, 243–248.

Dodov, B., and E. Foufoula-Georgiou (2005), Fluvial processes and stream-
flow variability: Interplay in the scale-frequency continuum and implica-
tions for scaling, Water Resour. Res., 41, W05005, doi:10.1029/
2004WR003408.

Etheridge, A. (2000), An Introduction to Superprocesses, Am. Math. Soc.,
Providence, R. I.

Feller, W. (1966), An Introduction to Probability Theory and Its Applica-
tions, vol. 2, John Wiley, Hoboken, N. J.

Frisch, U. (1995), Turbulence: The Legacy of A. N. Kolmogorov, Cam-
bridge Univ. Press, New York.

Gangodagamage, C., E. Barnes, and E. Foufoula-Georgiou (2007), Scaling
in river corridor widths depicts organization in valley morphology, Geo-
morphology, 43, doi:10.1016/j.geomorph.2007.04.414.

Gupta, V. K., and O. Mesa (1988), Runoff generation and hydrologic
response via channel network geomorphology—Recent progress and
open problems, J. Hydrol., 102, 3–28.

Gupta, V., and E. Waymire (1996), Multiplicative cascades and spatial
variability in rainfall, river networks, and floods, in Reduction and Pre-
dictability of Natural Disasters, edited by J. B. Rundle, D. L. Turcotte,
and W. Klein, Santa Fe Inst. Stud. Sci. Complexity, vol. 25, Addison-
Wesley, Boston, Mass.

Gupta, V. K., E. Waymire, and I. Rodriguez-Iturbe (1986), On scales,
gravity, and network structure in basin runoff, in Scale Problems in
Hydrology, edited by V. K. Gupta, I. Rodriguez-Iturbe, and E. F. Wood,
pp. 159–184, D. Reidel, Hingham, Mass.

Hasley, T., M. Jensen, L. Kadanoff, I. Procaccia, and B. Shraiman (1986),
Fractal measures and their singularities: The characterization of strange
sets, Phys. Rev. A, 33, 413–423.

Horton, R. (1945), Erosional development of streams and their drainage
basins: Hydrophysical approach to quantitative geomorphology, Geol.
Soc. Am. Bull., 56, 275–370.

Jaffard, S. (1997), Multifractal formalism for functions, SIAM J. Math.
Anal., 28(4), 944–998.

Jaffard, S., B. Lashermes, and P. Abry (2005), Wavelet leaders in multi-
fractal analysis, paper presented at 4th International Conference on
Wavelet Analysis and Its Applications, Univ. of Macao, Macao, China.

Kirkby, M. (1976), Tests of random model and its application to basin
hydrology, Earth Surf. Processes Landforms, 1, 197–212.

Lashermes, B. (2005), Practical multifractal analysis: Wavelet leaders and
critical orders. Applications to fully developed turbulence. Finite Rey-
nolds number effects, Ph.D. thesis, Ecole Normale Super. de Lyon, Lyon,
France.

Lashermes, B., P. Abry, and P. Chainais (2004), New insights into the
estimation of scaling exponents, Int. J. Wavelets Multiresolut. Inf. Pro-
cess., 2(4), 497–523.
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