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Do the current landscape evolution models show self-organized

criticality?

Victor B. Sapozhnikov and Efi Foufoula-Georgiou

St. Anthony Falls Laboratory, University of Minnesota, Minneapolis

Abstract. In this note we question the relevance of the self-organized criticality concept
as currently applied to landscape evolution modeling. We also express concerns abqut
possible inference problems in testing hypotheses about landscape multifractality using

simulated landscapes.

1. Introduction

Landscape and river network evolution modeling is an active
arca of research [e.g., Willgoose et al., 1991a, b; Howard, 1994,
Kramer and Marder, 1992; Leheny and Nagel, 1993; Takayasu
and Inaoka, 1992; Rinaldo et al., 1993; Rigon et al., 1994;
Rodriguez-Iturbe et al., 1994]. In this article we concentrate on
the work of Takayasu and Inaoka [1992] and Rinaldo et al.
[1993] (see also Rigon et al. [1994] and Rodriguez-Iturbe et al.
[1994]), who presented models for river networks and land-
scape evolution and claimed that their behavior shows self-
organized criticality (SOC). We argue that these models do not
really fall under the SOC framework, since none of their states
behaves as a critical state. On a secondary but related account,
we give some thought to the recent hypothesis that multifrac-
tality in landscapes might be the result of heterogeneities of
field properties [Rodriguez-Iturbe et al., 1994]. Although this
hypothesis seems reasonable and may well be true, the way it
was tested using simulated landscapes from an “SOC” model
has potential inference problems and warrants further investi-
gation. The implications of our arguments may be significant
for further development of landscape evolution models and
interpretation of the underlying mechanisms of scaling ob-
served in natural landscapes.

2. What Is a Critical State in Traditional
Systems and in Systems Showing
Self-Organized Criticality?

Near critical points (i.c., at limiting states of equilibrium of
two-phase systems when the phases become identical) and
points of second-order phase transitions, physical systems show
anomalies in both static properties (thermodynamic coeffi-
cients, correlation length) and dynamic properties (relaxation
rates, transport coefficients). These anomalies are called criti-
cal phenomena [see, e.g., Ma, 1976; Patashinskii and Pok-
rovskii, 1979], and the state of the system is called the critical
state. It is established in modern theories of critical phenom-
ena that large-scale fluctuations play a crucial role in the be-
havior of systems in the vicinity of the critical state. The cor-
relation length of fluctuations (roughly their average length)
grows infinitely as the system approaches the critical state [see,
e.g., Ma, 1976, chap. 3; Patashinskii and Pokrovskii, 1979, chap.
2]. This means that any part of the system in the critical state
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can “feel” changes in other parts (cooperative behavior).
Therefore if the system is in the critical state, a small local
perturbation can cause a significant change in the configura-
tion of the whole system. In the critical state, systems show
both static and dynamic scaling. These two phenomena, ex-
pressed by scaling in the distribution of correlation lengths of
fluctuations (implying lack of characteristic scale in space) and
by corresponding power law distribution in relaxation times of
the fluctuations (absence of temporal scale), respectively, are
fundamentally related. Qualitatively, the reason for this rela-
tion is simple: the longer the correlation length of a fluctua-
tion, the longer the time it needs to relax. Specifically, the
characteristic frequency of fluctuations depends on their char-
acteristic length as a power law [see, e.g., Hohenberg and
Halperin, 1977, Ma, 1976; Patashinskii and Pokrovskii, 1979].

The concept of self-organized criticality was introduced by
Bak et al. [1987] as a general organizing principle governing the
evolution of nonlinear systems to a state which exhibits the
features of a traditional critical state: there is no natural scale
in this state, and the systems fluctuate strongly in space and
time, exhibiting spatial and temporal scaling. This enabled Bak
et al. (by analogy to traditional critical phenomena) to call the
state reached by such systems critical and to coin the term
“self-organized criticality” for these phenomena. For instance,
in the typical example of a sand pile, as the pile is built up, the
characteristic size of the largest avalanches grows until the pile
reaches the critical state. As soon as this happens, one sand
grain can produce an avalanche of any size up to the size of the
system [Bak et al. 1987, p. 382; 1988, p. 365]. The strength of
the avalanches (number of particles involved in an avalanche)
follows a power law distribution. Also at the critical state, the
sand pile surface shows fractal geometry. Another example of
a system showing self-organized criticality is presented in a
model of earthquakes [see, e.g., Bak et al., 1994]. In this model,
the transfer (according to some rule) of force to the neighbor-
ing elements may cause them to become unstable, thus trig-
gering a chain reaction (modeling the earthquake). Again, this
system evolves to a SOC state which is characterized by the
presence of earthquakes of all possible energies, the energy of
the earthquakes being distributed as a power law.

In systems showing self-organized criticality, similarly to tra-
ditional critical phenomena, temporal and spatial behavior are
interrelated. In fact, Bak et al. [1987, 1988] show that there is
a close connection between the ““1/f”” noise observed in many
natural phenomena and the spatial self-similar fractal structure
of the critical state. The relationship between spatial fractal
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behavior and temporal scaling in SOC systems was further
studied and formally established by Maslov et al. [1994].

Systems showing self-organized criticality are characterized
by two seemingly contradictory but in essence complementary
features:

1. On the one hand, large, catastrophic events are intrinsic,
unavoidable features of a system at the critical state [Bak ez al.,
1994, p. 69]. Under small perturbations, such systems are
proven to undergo changes which show power law distribution
of strength. These changes can alter the configuration of the
system dramatically. This feature corresponds to the dynamic
properties of traditional critical states.

2. On the other hand, however, once the critical state is
reached, the system stays there [Bak et al., 1988, p. 365]. In
other words, for systems showing SOC the critical state is an
attractor of the dynamics. This means that the state of self-
organized criticality is stationary; once it is achieved, the sta-
tistical properties of the system, such as spatial scaling and the
power law frequency distribution of the events that change the
system (avalanches or earthquakes), do not change. Except for
fluctuations (which can be very strong, though; see feature 1),
the system does not evolve. In that sense, the critical state of
such systems is their destination point. The interplay of these
two features determines the nontrivial behavior of systems
exhibiting self-organized criticality.

3. Do the Current Models of River Network and
Landscape Evolution Show Self-Organized
Criticality?

In the model of river networks and landscape evolution
introduced by Rinaldo et al. [1993] and further investigated by
Rigon et al. [1994] and Rodriguez-Iturbe et al. [1994], self-
organization takes place. However, we argue that none of the
states of the model is critical and that the model therefore
cannot be called an SOC model. In brief, the evolution rules of
the model are as follows:

1. A given threshold shear stress value 7, is assigned to the
model.

2. Two variables are assigned to each site of a two-
dimensional lattice: an elevation z, and a discharge surrogated
by the draining area 4,;.

3. For each site the shear stress is computed as 7, x
AY3Az,, Az, being the drop along the steepest descent. The
computed 7; are compared with the assigned critical shear
stress 7.. The elevation of the site j having the maximum
exceedance of 7; over 7. is then reduced to the value which
yields 7; = . (this reduction simulates erosion). The released
“mass” is evacuated from the system.

4. Drainage directions (fixed by the steepest descent in
each site) are recomputed because they are altered as a result
of the modified elevation of the site j. Accordingly, the values
of the draining areas A; and shear stresses 1; are recalculated
too.

5. Steps 3 and 4 are repeated until there are no ex-
ceedances of T; over 7.

6. The state achieved after step 5 is perturbed at random
by adding elevation to a node. The perturbation may lead to a
readjustment of the structure, and this is repeated until further
perturbations do not induce variations in the configuration of
the system.

For more details, the reader is referred to Rinaldo et al.
[1993, p. 824]. The earlier model of Takayasu and Inaoka
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[1992] in many respects is analogous to the model described
above except that the erosion is not modeled as a threshold
process.

The authors of the model call the intermediate states
reached after every step 5 (when there are no exceedances of
7, over 7,) critical. For example, Rigon et al. [1994, p. 976]
describe step 5 of the model as follows: “5.  Steps 3 and 4 are
repeated until no exceedances are isolated. Thus at any stage
the studied system evolves to a critical state (step 5). 6. The
critical state 5 is perturbed ....” The claim that the state of the
system after each step 5 is critical, is also made by Rinaldo et al.
[1993, p. 824] and Rodriguez-Iturbe et al. [1994, p. 3532]. We
argue that these states cannot be considered critical for two
reasons. First, the states achieved after every step 5 are inter-
mediate; the statistics of the system continue to change sys-
tematically from step to step, up to the final configuration. This
implies that the system does not exhibit one of the two inherent
features of SOC systems, namely, feature 2. As was mentioned
earlier, this feature requires that in SOC systems once a critical
state is reached, the system stays there; i.e., a system showing
self-organized criticality is stationary in the critical state, which
is an attractor of the dynamics of the system. Second, the
configuration of the system after every step 5, and before it
reaches its final state, does not yet show fractal structure; it still
has a characteristic scale as clearly demonstrated in Figures 4a
and 4b of Rinaldo et al. [1993, p. 824], where one sees that a
power law distribution of drainage areas and stream lengths is
not present at that state. This again indicates that the state of
the system after every step 5 is not a critical state.

Fractal structure indicated by a power law distribution of
spatial characteristics (drainage areas and stream lengths), is
present in the final state of the model. The authors of the
model do not explicitly call the final state critical (although at
one point they mention that “the studied system always evolves
into a stable critical state” [Rinaldo et al., 1993, p. 822]). How-
ever, as was discussed earlier, they do say that the critical state
is achieved after each step 5. If this were true, then the final
configuration of the system achieved after a series of pertur-
bations followed by step 5 would also have to be critical, since
once the critical state is reached, the SOC system remains
there. We point out, however, that although the power law
relations in spatial characteristics could mislead someone to
consider this final state critical, one must note that SOC sys-
tems in the critical state also show a power law distribution of
changes under small perturbations (e.g., a power law distribu-
tion of avalanche sizes or earthquake strengths), described
earlier in the discussion of feature 1. In contrast to the behav-
ior of SOC systems, in the final state of the landscape evolution
model there are simply no changes at all, let alone the absence
of large catastrophic events (characteristic of a critical state
and implied by a power law distribution of changes). Indeed,
since the drainage pattern (and consequently the feeding ar-
eas) do not change in the final state of the model, the shear
stresses do not change either, and thus they do not exceed the
critical value, which is a necessary condition for erosion to
occur in this model (step 4). The analogous model of river
network and landscape evolution by Takayasu and Inaoka
[1992] also evolves into a state in which the river patterns are
frozen. It should be pointed out, however, that in the final state
of this model, the water flow continues to erode the surface.
Takayasu and Inaoka recognized that the final state of their
model “is very different from that of the SOC model” [Taka-
yasu and Inaoka, 1992, p. 966] and introduced the term “a new
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type of SOC system” to imply a system with spatial but not
temporal scaling. We argue that this terminology is misleading
and that not any system evolving to a fractal structure can be
called an SOC system. As was mentioned earlier, in the critical
state, both for traditional and for SOC systems, spatial and
dynamic scaling are fundamentally related. Therefore a claim
that a system exhibits SOC because it evolves into a state
characterized by fractal geometry, i.e., shows “critical behavior
in space” but does not show any changes under perturbations,
seems internally contradictive. Thus since the final configura-
tion of the system, i.e., the drainage pattern in the model of
Takayasu and Inaoka [1992] and the drainage pattern and
landscape itself in the model of Rinaldo et al. [1993], does not
change under perturbations, the final state of the system can-
not be considered critical.

In a recent popularized article by Bak and Paczuski [1993],
the model of Rinaldo et al. [1993] was cited as an example of
SOC models. To the general scientific audience, this in itself
could put to rest any reservations such as the ones we raise
here. However, we invite the reader to carefully examine this
article, which in fact further supports rather than weakens our
arguments. For example, Bak and Paczuski [1993, p. 39] stress
that SOC systems are highly dynamic:

A common feature of these complex systems is that they are
driven by slowly pumping in energy, which is stored and later
dissipated ..., in an avalanche process ... They exist in meta-
stable states and small, seemingly insignificant, increments in en-
ergy input can trigger an arbitrary large avalanche.”

This is completely different from (in fact, opposite to) the
behavior of the considered landscape model which evolves into
a state where perturbations do not change the configuration of
the system. Furthermore, Bak and Paczuski [1993, p. 40] ac-
knowledge that traditional equilibrium systems in a critical
state also exhibit “fluctuations of all sizes and durations,”
which again implies not only spatial, but also temporal vari-
ability in such systems. Thus calling the considered landscape
model a SOC model contradicts not only the relatively new
concept of SOC systems, but also the concept of a critical state
established in equilibrium physics long ago.

4. Caution for Spurious Multifractality

Rodriguez-Iturbe et al. [1994] tried to reproduce with their
landscape evolution model the observed multifractal (as op-
posed to monofractal) structure of natural landscapes and ar-
gued that “multiple-scaling behavior ... cannot be explained
in terms of homogeneous processes” and that “heterogeneity
of field properties is needed for multiple scaling to emerge”
[Rodriguez-Iturbe et al., 1994, p. 3538]. To test this hypothesis,
they introduced spatial inhomogeneity in the critical shear
stress 7, in two different ways. First, the spatial variability of
shear stress was introduced as a correlated random field (log-
normal field 7.(x) with (7.} = 1, 02 = 0.2, and an exponen-
tial correlation structure with an integral scale equal to 2 pix-
els). In this case the simulated landscapes showed monofractal
behavior [see Rodriguez-Iturbe et al., 1994, Figure 9]. Second,
inhomogeneity was introduced in a different way: a “highly
bimodal distribution of critical shear stress” was used with
values 7, = 2 for the upper half of the field divided along the
diagonal through the outlet, and 7, = 0.5 for the lower half.
The authors state that the elevation field [Rodriguez-Iturbe et
al., 1994, Plate 2] shows multiscaling behavior in this case, as is
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Figure 1. (a) A realization of simple Brownian motion with a
step (in the middle) imposed. (b) Behavior of gth moments of
the process shown in Figure 1a (the moments are produced by
averaging over 500 realizations). Deviations from scaling pro-
duced by the imposed step are deceptively small, so the de-
pendencies can easily be taken for straight lines; from bottom
to top, the lines are for g = 0, 2, 4, 6, 8, 10. (c) K(g) curve
produced from Figure 1b under the (erroneous) assumption
that Figure 1b shows scaling. This example depicts the possi-
bility of inferring multifractality for a process which is clearly
monofractal but has an imposed step (change in level).

implied from the nonlinear behavior of the K(q) function [see
Rodriguez-Iturbe et al., 1994, Figure 10]. However, one can sec
in Plate 2 that the introduction of inhomogeneity of the second
type produced a significant step in the landscape along the line
dividing the two zones. We demonstrate that imposing such a
step onto a monofractal object, without any other change in the
structure of the object, can lead to a deviation of its behavior
from scaling which can be misinterpreted as multifractality.
The curve shown in our Figure la is a realization of simple
Brownian motion with a step imposed: x(¢) = B(t) + a for
0 <x =32andx(¢) = B(¢) for 33 = x < 64 (same length as
in the work by Rodriguez-Tturbe et al. [1994]), with a = 10.
Following the representation of Rodriguez-Iturbe et al. [1994,
Figure 12] the points in our Figure 1b, i.c., moments (Ay?)
versus distance (Ax) for different powers g, were calculated.
The points show some deviation from straight lines, but the
deviation is not very strong, making it easy to mistake this
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behavior for scaling (especially given the statistical variability
in the moment estimates). In this case, one is bound to get
misleading results if the calculation of the K(g) curve is done
using the “slopes” of the “straight lines” in Figure 1b. Indeed,
though the object we analyzed is definitely not a multifractal,
the curve K(q) obtained in this way shows a deviation from
linearity, as is shown in Figure lc. Of course, the K(g) curve
obtained for the same Brownian motion without the step was
perfectly linear. One can see that the curves K(g) in our Figure
1c and in Figure 12 of Rodriguez-Iturbe et al. [1994] are prac-
tically identical. Thus we caution that the deviation of the K(g)
curve from linearity in their Figure 12 may be caused by the
step in the landscape produced by the bimodality of the critical
shear-stress function and does not necessarily demonstrate the
multifractal structure of the simulated landscape. Notably, the
first way of introducing spatial heterogeneity in the critical
shear stress 7, such that the heterogeneity was spread over the
lattice, did not lead to a deviation of the K(g) curve from
linearity [see Rodriguez-Iturbe et al., 1994, Figure 9].

This example demonstrates that there are potential prob-
lems one should be aware of when analyzing real and simu-
lated landscapes. These problems deserve special study.

5. Concluding Remarks

In this note we argue that in the current river network and
landscape evolution models presented by Takayasu and Inacka
[1992] and Rinaldo et al. [1993], neither intermediate states nor

the final state can be considered critical, and therefore in our

opinion these models cannot be attributed to models showing
self-organized criticality. Although they may still be valid sim-
ulation models, we caution that some claims based on the
conclusion that they are SOC models should be revised. In
particular, the claim that “optimal channel networks (OCN)
obtained by minimizing the local and global rates of energy
expenditure” [Rodriguez-Iturbe et al., 1992, 1994; Rinaldo et al.,
1992] “are a particular case of self-organized critical struc-
tures” [Rodriguez-Iturbe et al., 1994, p. 3531} is not justified by
the model. The same caution applies to a more general ques-
tion raised by Rodriguez-Iturbe that all self-organized struc-
tures might evolve through some global principle of energy
minimization [see Yam, 1994, p. 26]. This conjecture may very
well be true. We just point out that it does not follow from the
models under consideration.

As the originators of the SOC concept have argued, the SOC
mechanism can be responsible for many natural phenomena
exhibiting both spatial and temporal scaling over a wide range
of scales. Therefore the SOC concept looks promising for the
description of natural landscapes which are known to show
spatial scaling and undergo changes constantly from small to
very large scales. However, in our opinion the considered mod-
els of landscape evolution do not really show SOC behavior.

As a final remark we point out that the considered models of
landscape evolution lead to a final state in which the drainage
pattern (model of Takayasu and Inaoka [1992]) or both the
drainage pattern and landscape (model of Rinaldo et al. [1993])
remain frozen. We question how realistic conceptually such
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landscape evolution models are, since natural landscapes do
change constantly and never really reach a “frozen state” of
equilibrium. This, however, is outside the scope of this note
and calls for careful investigation in itself.
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