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Abstract. The scope of this paper is to introduce a suite of new multiscale
statistical measures which can be used, in addition to traditional measures, to
compare observed and model-predicted patterns for model validation. Recent
research on analysis of observed precipitation patterns at a multitude of scales
has revealed interesting spatial and spatiotemporal organizations which have
often been related to physical properties of the storm environment. By testing
whether this multiscale statistical organization is also reproduced in the model-
predicted patterns or whether there are significant biases and disagreements in such
comparisons is conjectured to hold promise for understanding model performance
and guiding future model improvements. Results from application of the developed
methodologies to the May 7-8, 1995, multisquall line storm over central Oklahoma
are presented and discussed in light of the additional information gained by the new

validation measures as compared to traditional measures.

1. Introduction

Accurate forecasting of the onset, duration, motion,
location, and intensity of precipitation is one of the
most difficult challenges facing modern-day meteorol-
ogy. The economic and societal impacts of such fore-
casts are enormous, ranging from the mitigation of life
and property loss associated with flash floods to the
application of effective management strategies in hy-
droelectric power generation. The next quantum leap
in quantitative precipitation forecasting (QPF) is the
explicit representation of storm-scale features in non-
hydrostatic numerical models; thus increasing attention
is now being given to storm-scale predictability [e.g.,
Droegemeier 1997]. -

An important initial step toward improving storm-
scale QPF involves establishing and correcting deficien-
cies in current microphysical parameterization schemes
through realistic simulation experiments using high-
quality observations (e.g., the Next Generation Radar
(NEXRAD) products) for both input and verification.
Procedures for effectively using these data as input and
in an assimilation mode are already well explored [e.g.,
see Droegemeier et al., 1996a, b; Xue et al., 1996a,
b]. However, methods that compare forecasted high-
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resolution precipitation patterns to observed ones at a
range of scales such that deficiencies in microphysical
parameterizations and other small-scale structure repre-
sentations can be depicted lag behind. Traditional mea-
sures of forecast performance [e.g., see Mesinger, 1996;
Murphy and Winkler, 1987] are too coarse for this pur-
pose. They provide valuable information on the model’s
ability to reproduce the areal extent and total precipi-
tation amounts but only limited information about the
model’s ability to mimic the statistical-dynamical envi-
ronment that created the observed spatiotemporal rain-
fall pattern. Consequently, there is limited feedback for
model improvement.

In this paper, we propose some new statistical mea-

~ sures which can depict how well the multiscale spa-

tial structure and space-time dynamics of forecasted
precipitation fields match those of the observed fields.
We demonstrate through a case study that these new
measures contain additional information not available
from traditional measures. We advocate that the pro-
posed methodologies, if used in conjunction with the
existing ones, may improve our understanding of model
performance and provide a systematic way of assess-
ing and guiding future model improvements in terms of
improved microphysics, increased model resolution and
improved data assimilation.

Throughout this paper, the term “domain” is used to
denote the areal extent of an analyzed field. The term
“resolution” is used to denote the smallest grid size at
which observations or model outputs of a field are avail-
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able. The term “scale” is used to denote any grid size
at which one chooses to view the field. In this paper,
only scales larger than the resolution of the original field
(i.e., not subgrid scales) are used, and the values of the
field at those scales are obtained from the original field
via averaging. Section 2 presents the theory behind the
proposed measures. Section 3 implements these mea-
sures in a case study, the storm of May 7-8, 1995, over
central Oklahoma and discusses the results. Conclu-
sions and directions for future research are presented in
section 4.

2. Proposed Multiscale Statistical
Measures for Assessing Forecast
Performance

2.1. Threat Score as a Function of Scale

The threat score (TS) measures the ability in cor-

rectly predicting the area of the storm having precip-

itation amounts exceeding a given threshold [e.g., see
Wilks, 1995; Fritsch et al., 1998]. It is defined as TS
= A./(A, + Ay — A.), where A, is the correctly fore-
cast area bounded by a given precipitation amount, 4,
is the observed area and Ay is the forecast area.

It should be noted that the computed value of TS car-
ries with it a specific “scale” at which the observed or
forecast pattern is seen. Usually, this scale is the “reso-
lution” of the numerical model but does not necessarily
have to be so. One could envision situations where a
storm-scale model is run at high resolution (e.g., 1 or
3 km grid size), whereas the assessment of the forecast
is needed at a larger scale pertinent to a hydrologic
application, for example, a scale below which rainfall
variability has been found not to affect the predicted
runoff for a basin or even the scale of the whole basin if
a lumped hydrologic model is to be used. Obviously, as
the scale increases the prediction (as judged by the TS)
becomes better. The rate of TS improvement as a func-
tion of scale can be seen as an extension of the typical
TS measure and can provide additional information for
model verification as demonstrated in section 3.

2.2. Depth-Area-Duration Curves

For a fixed duration, the depth-area (DA) curve is
a plot of rainfall depth versus the area of the storm
over which that depth is exceeded. Depth-area-duration
(DAD) curves are extensively used in hydrologic mod-
eling to reconstruct precipitation patterns and provide
them as input to rainfall/runoff models for computa-
tion of design hydrographs. A DAD curve does not di-
rectly compare the observed and predicted precipitation
patterns in terms of their overlapping areas but rather
depicts the areally variable internal structure of precip-
itation patterns irrespective of their location. Such a
measure ignores differences arising from incorrect pre-
diction of the location of the storm and instead con-
centrates on comparing the internal spatial structure of
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‘the predicted and observed precipitation patterns. The

same 1s true for the other two measures discussed in
sections 2.3 and 2.4.

2.3. Scale-to-Scale Spatial Variability and
Scaling

The structure of rainfall variability as a function of
scale has been studied by many researchers over the past
decade [e.g., see Schertzer and Lovejoy [1987], Gupta
and Waymire [1990], Kumar and Foufoula-Georgiou
[1993a, b], Olsson et al. [1993], Tessier et al. [1993],
Harris et al. [1996], Over and Gupta [1996], Veneziano
et al. [1996], among others). These studies have demon-
strated the presence of an interesting scale-invariant
structure in the organization of spatial precipitation
fields and have explored it for process understanding,
relation of statistical to physical descriptions, and devel-
opment of efficient stochastic rainfall models and rain-
fall downscaling schemes.

An extensive study of several warm-season convective
storms in the midwestern United States by Perica and
Foufoula-Georgiou [1996a] revealed that standardized

~spatial rainfall fluctuations, defined as &, = X}J/X_L,

where X}J is the spatial fluctuation (difference of inten-
sities in adjacent pixels) and X1 is the local rainfall av-
erage at scale L, exhibit Gaussianity and simple scaling
over at least the range of 4—64 km scales. This implies
that the variance of fluctuations at one scale relates to
that at another scale via the ratio of the two scales and
not their absolute values, i.e.,

o¢L, /¢, = (L1/L2)" . (1)

In other words, the increase of variance with scale re-
mains constant in a logarithmic scale, i.e., log o¢ 1 ver-
sus log L plots as a straight line with slope H. This
scale-independent constant value of H reflects how the
variance is distributed within a precipitation system
from larger to smaller scales. In the case that a pro-
nounced directionality is present in the storm system,
fluctuations in the latitudinal (7 = 1), longitudinal (i =
2), and diagonal directions (¢ = 3) are considered sep-
arately, and three scaling parameters {H;};=1 23 are
computed.

It was found empirically by analysis of several midlat-
itude convective storms that the parameter H (or aver-
age of Hi, Hy, and Hj in the case of pronounced direc-
tionality) is related to the convective available potential
energy (CAPE) in the prestorm environment (Perica
and Foufoula-Georgiou, [1996b]) as

H = 0.0516 4+ 0.9646(CAPE x 107%), (2)
where CAPE is given in m? s™2. Notice that this pre-
dictive relationship implies that the higher the value of
CAPE, the larger the value of H and thus the higher the
growth of variability of normalized rainfall fluctuations
as a function of scale.
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If such a spatial organization and scale invariance is
found to exist in the observed precipitation patterns,
one wonders whether this structure is also found to
exist in patterns predicted by atmospheric models. If
yes, this could provide more confidence that the model
physics and spatial resolution correctly capture the ob-
served storm dynamics. If not, it could provide useful
feedback for model improvements, especially in physi-
cal parameterizations. It is stressed that other measures
of multiscale rainfall variability than the one used here
could be employed. For example, one could use the
structure of the break-down coefficients [e.g., Harris et
al., 1996], the parameters of a multiplicative cascade
model [e.g., Over and Gupta, 1996], or the parameters of
a universal cascade [e.g., Schertzer and Lovejoy, 1987].
Also, the presence of scale invariance is not a require-
ment for the use of multiscale statistical measures for
model verification. Scale invariance provides a conve-
nient and parsimonious representation, for example, a
single parameter H in our case. However, the whole log
o¢ versus log L curve could have been used as a measure
if approximation by a straight line was not possible.

It is interesting to note that the proposed measure
for multiscale comparison of normalized rainfall fluc-
tuations (or gradients) can be seen as an extension of
the traditional S1 score. The S1 score which was in-
troduced in the 1950s [e.g., Teweles and Wobus, 1954]
compares horizontal gradients of the predicted and ob-
served fields but only at one scale, typically the spacing
of the grid. One of its limitations as discussed by Wilks
[1995] was exactly this scale dependency. The proposed
multiscale measure nicely overcomes this limitation by
comparing gradients at a multitude of scales. Moreover,
owing to the resulting scale-invariant parameterization,
which was possible by working with the normalized rain-
fall gradients and not with the gradients themselves as
the S1 score does, the proposed measure is very parsi-
monious.

2.4. Spatiotemporal Organization

As in any evolving natural process, including precipi-
tation, variability in space and time are related to each
other in ways that are not obvious by direct observa-
tion of the complex spatiotemporal patterns. Recen-
tly, Venugopal et al. [1999a, b] demonstrated that there
exists a simple scale-invariant spatiotemporal organi-
zation in rainfall patterns which can be unraveled by
proper renormalization of the space and time coordi-
nates.

Let If:j (7) and I%;(7 +t) represent rainfall intensity
values averaged over a box of size L centered around
spatial location (i,7) of the precipitation field at two
instants of time 7 and 7 + t, respectively. The evo-
lution of the field at scale L and a time period ¢ was
characterized by Venugopal et al. [1999a] by differences
in the logs of the rainfall intensities A In/, i.e.,

Aln ; +(L,t) = In(If; (7 +1)) - In(If; (). (3)
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This selection was made since there is evidence that the
temporal fluctuations of the rainfall process linearly de-
pend on the background rainfall intensities and thus
the normalized fluctuations (by the background inten-
sity) or the differences in the logs of intensities are in-
dependent identically distributed random variables [see
Venugopal et al., 1999a].

The A InJ measure described above was evaluated for
all locations (%, j) and all time instants 7, and for var-
ious spatial and temporal scales, L and ¢, respectively.
Then assuming stationarity in space (i.e., independence
of the specific (¢,j) position) and selecting regions in
time where the statistics (mean and variance) of A InJ
do not significantly deviate from their average value for
that region, the probability density functions (pdfs) of
A InI(L,t) were formed for various spatial and tempo-
ral scales, L and ¢, respectively.

Venugopal [1999] and Venugopal et al. [1999a] found,
by analysis of several storms in different geographical
regions of the world (the tropical region of Darwin,
Australia, the forested region of BOREAS in northern
Saskatchewan, and the Oklahoma region in the mid-
western United States) that the pdf of A InI(L,t) re-
mains statistically invariant if space and time are renor-
malized with the transformation ¢/L? = constant. That
is, the evolution of the rainfall field at spatial scale L
and during a time lag ¢, is statistically identical to the
evolution of the rainfall field at spatial scale L, and
time lag t2, as long as

t1/ta = (L1/L2)°, (4)

where z is the so-called dynamic scaling exponent. If
such organization is found in the observed space-time
patterns of a specific storm, it is relevant to determine
whether the model-produced patterns respect the same
spatiotemporal organization and if not, how to interpret
the differences.

3. Results From a Case Study
3.1. Predicted and Observed Rainfall Patterns

The storm-scale weather prediction model adopted
for this study was the Advanced Regional Prediction
System (ARPS), developed at the Center for Anal-
ysis and Prediction of Storms (CAPS) at the Uni-
versity of Oklahoma [Xue et al, 1995]. ARPS is a
three-dimensional, nonhydrostatic numerical prediction

~ system which includes a data ingest, quality control

and objective analysis package known as ARPS Data
Analysis System (ADAS) [Brewster, 1996], a single-
Doppler radar parameter retrieval and assimilation sys-
tem known as ARPS Data Assimilation System (ARPS-
DAS), of which ADAS is a component, the ARPS pre-
diction model itself, and postprocessing packages known
as ARPSPLT and ARPSVIEW. The ARPS model was
selected for its advanced abilities, good documentation
and flexibility of operation on broad classes of comput-
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ers. Nonetheless, the measures defined in this paper
and the results obtained are of general interest and not
particular to a specific model.

We selected as a case study the multiple squall line
storm system of May 7-8, 1995. The synoptic condi-
tions of this storm, radar observations, and the details
of the numerical experiments are given by Wang et al.
[1996] and Shapiro et al. [1996]. The ARPS model was
used in a one-way nested mode. The outer, coarse-grid
domain was 4032 x 4032 km (18-km grid spacing), and
the inner grid domain was 1008 x 1008 km (6-km grid
spacing). Fifty-three levels were used in the vertical,
and the vertical grid spacing varied from 20 m near the
ground to 980 m at the model top. There were 21 grid
levels in the lowest 2 km.

Identical model physics were used on the coarse and
fine grids except for moist processes. The coarse grid
included grid-scale condensation only, while the Kessler
warm-rain microphysics scheme was used on the fine
grid. A 1.5-order of Turbulent Kinetic Energy (TKE)-
based subgrid scale turbulence and a soil model cou-
pled with surface energy budget equations and an at-
mospheric radiation package were used.

Starting at 1200 UTC on May 7, 1995, the model
was run at the coarse grid domain for 18 hours with
the Rapid Update Cycle (RUC) analysis as the back-
ground field [e.g., see Benjamin et al., 1994]. The lat-
eral boundaries were forced by linearly interpolating the
6-hour RUC forecasts that started at 1200 UTC. Using
the ADAS analysis at 1800 UTC, the 6-hour forecasts
on the 18-km grid were used as the background and
Oklahoma Mesonet and Weather Surveillance Doppler
Radar (WSR-88D) data were assimilated in a new anal-
ysis. The surface and near-surface fields were most im-
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pacted by the addition of the Mesonet surface observa-
tions. ;

We used the model-predicted precipitation fields in
the inner grid domain (resolution of 6 km). The sim-
ulation started at 1200 UTC (denoted as ¢ = 0 hours
of the simulation time) on May 7, 1995. Data assimi-
lation included hourly nonradar data (surface observa-
tions from the Oklahoma Mesonet) from 1200 to 1700
UTC and Level II radial velocity data every 15 min from
1700 to 1800 UTC. The simulation ended at 0600 UTC,
May 8, 1995 (denoted as t = 18 hours of the simulation).
For this storm, radar-converted rainfall accumulations
were available every hour, and both radar reflectivities
and radar-converted rainfall intensities were available
every 6 min [see Zepeda-Arce, 1999]. The Z-R relation-
ship used to convert reflectivities to rainfall intensities
is Z = 300.86 R**°. This relationship was calibrated us-
ing raingauge observations and was found appropriate
for the Twin Lakes radar [e.g., see Smith et al., 1996].
It is worth noting that the scaling parameters H and
z are not overly sensitive to uncertainties in the Z-R
relationship (e.g., see sensitivity analysis by Perica and
Foufoula-Georgiou [1996a]), and this gives confidence
that estimates of these parameters depict the multiscale
statistical structure of the storms and are not artifacts
of our assumptions.

The domains over which the observed and model-
predicted precipitation fields were available together
with the spatial and temporal resolutions of the fields
are summarized in Table 1 and displayed in Figure 1.
As can be seen from this table, the domains over which
the predicted fields were available are much larger than
the domains over which observations were available. In
order to meaningfully compare the statistics of the ob-

Table 1. Domains and Resolutions Used for the Comparison of Observed and Model-Predicted

Patterns of the May 7-8, 1995, Storm

Time

Field Space Largest Domain Number of Domain
Resolution  Resolution, Domain Used for Pixels of Used for
km? Available, Scaling Domain Used TS and DAD
km? Analysis, in.Scaling Comparison,
km? Analysis km?
Observed 1 hour 4 x4 768 x 768 512 x 512 128 x 128 768 x 768
(R1)
Predicted 1 hour 6 X6 1008 x 1008 768 x 768 128 x 128 768 x 768
(M1)
Observed 18-min 4 x4 304 x 304 304 x 304 76 x 76 —
(R2)
Predicted 15-min 6 x 6 1008 x 1008 768 x 768 128 x 128 —_

(M2)
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Figure 1. Domains over which the predicted and observed precipitation fields were analyzed:
R1, domain of 1-hour observed rainfall accumulations; R2, domain of 18-min observed rainfall
accumulations; M1 and M2, domain of 1-hour and 15-min predicted rainfall accumulations (see

Table 1).

served and predicted fields, (colocated) subdomains of
comparable size were selected for the analysis.

For comparison of the threat score (TS) and the
depth-area-duration (DAD) curves of the 1-hour rain-
fall accumulations, a domain of 768 x 768 km? for both
model and observations was chosen. The scaling analy-
sis requires dyadic scales which implies that the domain
size must be equal to the resolution times an integer
power of 2. This constrains the domains to be of size
4 x 27 = 512 km for the observed fields and 6 x 27 =
768 km for the modeled fields. For the 18-min observed
fields, a padding of zeros was used to extend the do-
main of 304 x 304 km? to the required size of 512 x
512 km?. This padding was done at the top left corner
of the domain and was checked that it did not affect the
results of the scaling analysis.

As can be seen from Figure 2, at around 2200 UTC
(t = 10 hours of simulation) of May 7 a second squall
line started entering the simulation domain. This new
squall line stayed in the domain until the end of the sim-
ulation period while the original squall line moved out
of the domain at around 0100 UTC (¢ = 13 hours of sim-
ulation) of May 8 (see Figure 2). During the transition
period (¢ = 11—13 hours of simulation), the statistical
structure of the precipitation field within the domain of
observation was different than before or after the tran-
sition as will be discussed later in section 3.3.

Figure 3 shows the model-predicted 1-hour accumu-
lated fields. At ¢ = 9 and 10 hours of the simulation,

the predicted storm is more scattered than the observed

- storm. After that it organizes in a squall line until the

end of the storm. The predicted amounts are much
greater than the observed amounts throughout the sim-
ulation as can be seen from the maxima hourly accu-
mulations reported in Figures 2 and 3. This is an is-
sue that needs careful investigation but is beyond the
scope of the present article. It is emphasized that all
our measures (except the DAD curves) are normalized
measures, and thus they compare the similarity of the
statistical structure of the fields irrespectively of dis-
crepancies in their absolute magnitudes.

3.2. Threat Score and Depth-Area-Duration
Curves ' '

The TS and DAD curves were computed for the
hourly observed and model-predicted accumulated pat-
terns throughout the storm evolution. Here only the
results after the transition period, i.e., for ¢t = 13—15
hours of the simulation are presented and discussed.
This is because during that period the second squall line
was well established in both the observed and model-
predicted systems and comparison with storm-depth de-
pendent measures (such as TS and the DAD curve)
would be more meaningful.

The TS was computed at the scale of 12 km (common
scale between the radar data available at 4 km resolu-
tion and model data available at 6 km resolution). A
threshold depth of 5 mm accumulation in 1 hour was
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Figure 2. One-hour radar rainfall accumulations of the May 7-8, 1995, storm at resolution of 4
km. The square box has dimensions 512 x 512 km?2. Note that the scale we used for the display
of magnitudes is normalized such that the range of rainfall accumulations (maximum-minimum)
is mapped logarithmically onto 30 gray shades. The panels shown are for 2100, 2200, and 2300
UTC on May 7, 1995, and 0000, 0100, and 0200 UTC on May 8, 1995.

used to classify a pixel as rainy or dry. It is interesting
to observe from Figure 4 that in all cases the TS value
at scale of 12 km is almost zero, indicating that the
forecast and observed patterns had very little (if any)
overlap. As we change the scale at which the patterns
are compared, the TS increases (see Figure 4, left). At
t = 13, even at scales as large as 768 km, the TS is very
low (value of 0.2), whereas at ¢ = 14 and ¢ = 15 hours at
such large scales the TS is perfect (value of 1.0). This
indicates that the model has better captured the loca-
tion of the pattern at ¢ = 14 and 15 hours compared to
t = 13 hours. This is also depicted in Figure 5a, which
displays the TS versus scale curves as the storm evolved.
Judging from the values of TS at the small scale of 12
km, this forecast would not be judged very successful.
Even more important, little feedback for improving the
model has really resulted from this measure. The rate
of TS change with scale provided more information in-

dicating a constant improvement of model performance
over time, and this is consistent with the results found
from the DAD curves discussed next.

The DAD curves of the predicted and observed 1-
hour accumulation patterns at ¢t = 13, 14, and 15 hours
are shown in Figures 4 (right). At ¢ = 13 hours and ¢ =
14 hours, the model DAD curves are far from those of
the observations. This implies that the model-predicted
depths are much higher for a given areal coverage or al-
ternatively that for a given depth, a much lesser area
with this or greater amount was predicted than actu-
ally occurred. However, at ¢ = 15 hours the DAD curve
reflects a drastic change of the model forecast ability.
The model and observed curves are very close to each
other, while the TS has remained the same and has not
reflected this improvement. It is interesting also to no-
tice that the tendency of the DAD curves with time
in the model was in the opposite direction from that
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Figure 3. One-hour model-predicted rainfall accumulations of the May 7-8, 1995, storm at
resolution of 6 km. The square box has dimensions of 768 x 768 km2. Note that the scale we
used for the display of magnitudes is normalized such that the range of accumulations (maximum-
minimum) is mapped logarithmically on the 30 gray shades. The panels shown are for 2100, 2200,
and 2300 UTC on May 7, 1995, and 0000, 0100, and 0200 UTC of May 8, 1995.

of the observed patterns (see Figure 5b). During the 3
hours (¢ = 13—15 hours), the DAD curves of the model-
predicted patterns decreased while of the observed pat-
terns increased. Obviously, this tendency is related to
the build-up or dissipation of the storm which might
not be well reproduced in the model for this particular
case. Analysis of more storms needs to be performed to
better understand this measure and its significance in
suggesting model improvements.

3.3. Spatial Scale-to-Scale Variability

3.3.1. One-hour radar-observed versus model-
predicted accumulations. The 1-hour radar-observed
accumulated precipitation patterns were analyzed at
different scales, and the scale-to-scale variability of the
standardized rainfall fluctuations was computed as dis-
cussed in section 2.3. Figure 6 shows, as an example,
the standard deviations of the normalized rainfall fluc-
tuations with scale for the three directional components

(latitudinal, longitudinal, and diagonal) at one instant
of time (¢ = 12 hours) for the radar-observed and model-
predicted fields. Similar plots were found for all other
hours. A good log-log linear relationship in the stan-
dard deviation of normalized spatial fluctuations with
scale, as evidenced by a high R value, implies the pres-
ence of simple scaling.

It was found that all values of R were above 0.96
(and most of them were even above 0.98) implying good
scaling throughout the storm for both the observed and
model-predicted hourly accumulated patterns. Occa-
sionally, the model-predicted patterns showed a slight
tendency of concavity in the log-log plots. This resulted
in slightly lower R values although all above 0.96 imply-
ing still a good approximation to scaling. Only for ¢ =
14 hours, the standard deviation of the normalized fluc-
tuations of the model-predicted patterns at the largest
scale of 96 km was too low and was not included in the
estimation of the H values.
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Figure 4. The left plots display the TS as a function of scale, and the right plots show the
depth-area curves for the observed and predicted 1-hour accumulation patterns. The plots shown
above are for (top) t = 13, (middle) t = 14, and (bottom) ¢ = 15 hours of the simulation.

The values of the estimated parameters Hy, Hy, and
H3 as a function of time for the observed and model-
predicted patterns are shown in Figures 7a and T7b,
respectively. Comparison of Figures 7a and 7b re-
veal some subtle differences between the variability of
the normalized spatial fluctuations in the observed and
model-predicted patterns. First, the values of H in the
observed patterns show a more pronounced change over

time than in the model. This change is associated with
the transition period during which the original squall
line moved out of the domain (between ¢ = 11 and 13
hours) and the new squall line was established (after ¢
= 13 hours). This new squall line had generally larger
values of H than the original squall line. In addition,
it was observed that throughout the storm the values
of Hy and Hjy of the model were lower than H; and
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patterns.

H, of observations and that the difference between the
diagonal component Hz and the other -two components
was larger in the model than in the observations. It
is noted that although generally Hmodel < Hobs, the
standard deviations of the normalized fluctuations in
all directions were almost always higher in the model
than in the observations, i.e., 0¢ model > 0¢,obs (€.8., see
Figure 6).

These findings indicate that the model-predicted nor-
malized fluctuations are in general more variable than
the observed. However, the growth of this variability

with scale is slower in the model than in the observa-
tions at least for the longitudinal and latitudinal com-
ponents. In the diagonal direction, the scale-to-scale
variability growth in the model is comparable to that
of the observations. Further research will test whether
increasing the resolution of the model (reduction to grid
size of 1 km or less) will produce a better agreement be-
tween the scaling statistical features of the observed and
predicted fields.

3.3.2. Eighteen-minute radar-observed and
fifteen-min model-predicted accumulations. Sin-
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Figure 6. Log-log plots of the standard deviations
of the normalized spatial rainfall fluctuations (in the
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sus scale for the 1-hour rainfall accumulations from
the radar-observed (stars with solid lines) and model-
predicted (circles with fitted broken lines) at 0000 UTC
(t = 12 hours) on May 8 1995. Log-log linearity suggests
presence of simple scaling.

ce 1-hour rainfall accumulations integrate out the fine-
scale rainfall variability (i.e., that caused by small-scale
convection), the scaling analysis was also applied to
finer temporal scale rainfall accumulations: 18-min ac-
cumulations for the observed radar patterns and 15-min
accumulations for the predicted patterns. A sample of
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the log-log plots of the standard deviation of latitudi-
nal fluctuations with scale for these patterns is shown
in Figure 8. Similar plots were found for the other com-
ponents. Log-log plots with R > 0.95 were considered
as a good approximation to scaling. For the diagonal
fluctuations, whose interpretation is second derivatives
[see Perica and Foufoula-Georgiou, 1996b], the require-
ment for scaling was relaxed to R > 0.90 since there
is greater uncertainty in estimating the values of the
diagonal fluctuations.

Figures 9a and 9b summarize the results of the anal-
ysis. When scaling was not present (as judged by the
above criteria) the estimated values of H are reported,
but the lack of scaling is marked on the plot by a dark
square. As can be seen from Figures 9, the compar-
ison of the 18-min and 15-min rainfall accumulations
is more revealing than the comparison of the hourly
accumulations. Generally, the model was not able to
reproduce the pronounced temporal variation of Hj,
Hs, and Hs during the storm evolution. It is inter-
esting to observe that the change in the storm’s sta-
tistical structure during (f = 11—13 hours) and after
the transition period (¢ > 13 hours) is well captured by
the scale-to-scale variability parameter H in the obser-
vations: During the transition a break in scaling was
found, and after the transition (when the new squall
line was established within the domain) the parameters
H increased significantly. No such change was observed
in the model-produced patterns which had an almost
constant to only slightly increasing values of H during
that period. No directionality seemed to be present in
the observed patterns and Hy ~ Hy ~ H3. However, the
diagonal component (H3) was significantly higher than
H; and H, (by approximately 0.2) in the model. Again,
as in the hourly accumulations, the standard deviations
of the normalized fluctuations in the latitudinal, longi-
tudinal, and diagonal directions in the model, o¢ model
were higher than o¢ ops at any scale and at all times
(e.g., see Figure 8). Further investigation is needed to
conclude whether the difference between the statistical
multiscale structure of the observed and modeled pat-
terns has physical significance and what this can imply
for adjusting the model physics to better reproduce the
observed patterns.

3.3.3. Six-minute radar-observed rainfall ac-
cumulations. Finally, the scaling analysis was also
applied to the 6-min accumulations of the radar-observed
patterns. This was done in order to (1) understand the
multiscale statistical structure of the observed fields at
the finest temporal resolution available and (2) get a
better idea of the effects of temporal averaging on the
results of the scaling analysis. The results of this anal-
ysis are summarized in Figure 10. All points at which
scaling was not a good approximation (using again the
criteria of R > 0.95 for H; and Hy and R > 0.90 for
H3) are marked with a dark square on Figure 10.

As is observed from Figure 10, the latitudinal and lon-
gitudinal components of the standardized rainfall fluc-
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Figure 7. Scaling parameters Hy, Hj, Hz versus time from the (a) 1-hour observed and (b)
1-hour predicted accumulated precipitation fields.

tuations exhibited good scaling throughout the storm
except during the transition period of ¢ = 11—13 hours.
This agrees with the conclusions reached by the anal-
ysis of the 18-min rainfall accumulations. Before and
after the transition period (i.e., when each of the squall
lines was fully established within the domain), scaling
was present in the longitudinal and latitudinal com-
ponents but not in the diagonal component. As dis-
cussed earlier, the diagonal component of fluctuations
is equivalent to a second-order gradient (see explana-
tion given by Perica and Foufoula-Georgiou, [1996a])

which has greater uncertainty in its computation espe-
cially at larger scales. Break of scaling in the diagonal
component was also found from the 18-min observed ac-
cumulations but not from the 15-min model-predicted
accumulations.

Comparison of Figure 10 with Figure 9a reveals that
the multiscale statistical structure of the 6-min rainfall
accumulations is similar to that of the 18-min accumu-
lations in terms of the values of the estimated param-
eters H and their temporal variation over the storm
duration. This suggests that the pronounced temporal
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variation of the scaling parameters is an inherent prop-
erty of the observations and confirms some distinct dif-
ferences in the statistical structure of the observed and
model-predicted patterns.

3.4. Spatiotemporal Organization

The radar-observed and model-predicted rainfall ac-
cumulations were analyzed for the presence of dynamic
scaling. The differences in the log intensities A Inl were
used to characterize the evolution of the precipitation
fields. Figure 11 shows the standard deviation and the
mean of A InI for spatial scale L = 4 km and temporal
scale t = 6 min for the observed patterns and L = 6
km, t = 15 min for the modeled patterns. The follow-
ing observations can be made: (1) the mean of A InJ
for the observed patterns fluctuates around zero, while
for the modeled patterns, it is always above zero (ex-
cept for two instants of time); (2) the relative change of
the standard deviation of A InI within the storm du-
ration is larger in the observed than in the predicted
patterns. Venugopal [1999a] analyzed several storms in

different regions of the world and found that the mean
of A InI always fluctuated around zero. The observed
storm agrees with the findings of Venugopal, but the
modeled storm does not.

To perform a dynamic scaling analysis for both the
observed and predicted patterns, a period of time must
be selected over which the moments of A InI, u(A InI),
and (A Inl), do not vary significantly over time as
compared to their average values for that period. Fig-
ure 11 shows that no such period can be found that is
concurrent in both the observed and predicted patterns.
Periods with small relative deviations from the average
value in (A InI) had larger relative deviations in pu(A
InI) and vice versa. Thus two distinct and nonconcur-
rent regions in each of the observed and predicted pat-
terns were selected: one before the transition and the
other after the transition time of ¢ = 13 hours. Regions
1 (duration of 3 hours) and 2 (duration of 2 hours) of
the observed patterns had small relative fluctuations in
both p(A Inl) and o(A Inl) and were before and after
the transition, respectively. For the predicted storm,
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Regions 1 (duration of 5 hours) and 2 (duration of 3.5
hours) were selected for similar reasons. The duration of
these regions for the predicted storm was selected larger
than that for the observed storm since model output
was available every 15 min (instead of the 6 min for the
observations), and a smaller duration would not provide
enough time lags for dynamic scaling analysis.

For these regions, the pdfs of A Inl were calculated
for spatial scales L = 4, 8, 16, and 32 km and temporal
scales t = 6, 12, 18, 24, 30, 36, 42, 48, 54, and 60

min for the observed patterns. For the model-predicted
patterns the pdfs were calculated for spatial scales L =
6, 12, 24, and 48 km and temporal scales ¢t = 15, 30, 45,
60, 75, and 90 min. Then the standard deviations o(A
InI)(L,t) were computed and tabulated as a function of
scale L and time ?. Four such tables were formed: one
for each of Regions 1 and 2 of the observed fields and
Regions 1 and 2 of the model-predicted fields (e.g., see
Table 2 for Region 2 of the observed fields). Then, in
each table, a value of o(A Inl) was chosen such that it
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Table 2. Standard Deviations of ALn] With Time Lag and
Spatial Scale, for Region 2 of the Observed Patterns of the
Storm of May 7-8, 1995, Over Central Oklahoma

L, km Time Lag t, min
6 12 18 24 30 36 42 48
4 0.15 0.20 0.24 0.28 0.30 - 0.33 0.35 0.36
8 0.11 0.16 0.19 0.23 0.26 0.28 0.30 0.31
16 0.07 0.11 0.15 0.17 0.20 0.22 0.24 0.25
32 0.04 0.07 0.10 0.12 0.15 0.16 0.18 0.20

was within the range of (A InI) values of the table at
each spatial scale L (e.g., the value of 0.2 in Table 2).
For each spatial scale L the value of the time lag ¢ that
resulted in the chosen value of ¢(A InI) was computed
by linear interpolation. This procedure gave four pairs
of (L,t) for which ¢(A InI) was constant. These values,
L, t, were plotted in a log-log plot (e.g., see bottom left
plot in Figure 12 for Region 2 of the observed fields).
The same procedure was applied to the other regions of
the observed and model-predicted fields.

It was observed that to a good approximation, the
(t, L) transformation under which the standard devia-
tion of A InJ remained constant was of the form ¢/L?
constant (i.e., straight line relationships on the log-log
plots) for both regions and for both the observed and
predicted patterns (see Figure 12). However, the values
of z (estimated from the slopes of the log-log plots) were
significantly different before the transition (z = 1.4 for
the observed patterns and z = 1.0 for the predicted pat-
terns) but very close to each other after the transition
(z = 0.68 for the observed patterns and 2z = 0.76 for the
predicted patterns).

To understand the significance of the z value, consider
Ly = 2L, in the relationship ¢1/t2 = (L1/Ls)?. For z =
1 (prediction), one will obtain ¢; = 2¢; and for z = 1.4
(observations), to = 214¢; ~ 3.4¢;. This implies that
features twice as large will evolve two times slower in
the predicted fields, and they will evolve approximately
3.4 times slower in the observed fields. Therefore the
predicted fields seem to have a much faster decorrela-
tion than the observed fields before the transition and
slightly slower decorrelation after the transition.

4. Conclusions

The goal of this research was to investigate new
methodologies for verification of quantitative precip-
itation forecasts. The underlying premise was that
comparison of the multiscale spatial structure and dy-
namics of the observed and model-predicted patterns
would provide new insights on the Quantitative Precipi-

tation Forecast (QPF) verification problem and comple-
ment information provided by existing measures. The
motivation for this belief was the fact that observed
precipitation fields have been found to exhibit a self-
similar structure in space and time, which apparently
results from the physics of the atmosphere producing
the storm. The question then was whether the model-
predicted patterns exhibit the same statistical organi-
zation and whether discrepancies could reflect on how
well the physics of the model emulated the physics of
the atmosphere.

From the analysis of a multicell convective storm over
Oklahoma, the May 7-8, 1995, storm, as observed by
the Oklahoma Twin Lakes radar and as predicted by
a state-of-the-art numerical weather prediction model,
the following conclusions were reached:

1. The hourly accumulations of the model-predicted
patterns had a spatial multiscale structure similar to
that of the observed hourly accumulations. Both ex-
hibited good scaling of the standardized rainfall fluctu-
ations over all three directions. However, the hourly ac-
cumulations of the model-predicted patterns indicated
less temporal variability of the scaling parameters H as
the storm evolved while the observed hourly patterns
had a much more pronounced variability of H during
its evolution. Also, Hi 9 model Was less than Hj 3 obs by
about 0.1, although H3 model Was approximately equal
to H3 obs. These findings imply that the growth of vari-
ance of the longitudinal and latitudinal standardized
rainfall fluctuations as the scale increases is less in the
model than in the observations. Also, the growth of
variance of standardized rainfall fluctuations with scale
in the diagonal component was much larger compared
to the other two components in the model (by approx-
imately 0.2). This difference was not as pronounced in
the observations (see Figure 7). More analysis is needed
to test whether this is simply a model artifact or sig-
nifies a real shortcoming of the model to depict the di-
rectional multiscale statistical structure of the observed
fields.

2. The 15-min model-predicted rainfall accumulation
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patterns compared to the 18-min observed ones revealed
more distinctly some differences in the statistical struc-
tures of the observed and predicted fields. The model
did not seem able to emulate the pronounced variation
of the statistical structure of the observed patterns over
time and produced a much smoother variation of H over
the storm evolution. Consistently with the hourly com-
parisons, it was found that Hi 2 model < Hi,2,0bs and
H3 model >> Hi,2,model (by approximately 0.2). How-
ever, for the 18-min observed accumulations, it was
found that Hzobs < Hi,2,00s Which was not the case
for the hourly accumulations (see Figure 9). This im-
plies that the kinetics of the storm were such that when
the moving patterns were accumulated every hour, the
directionality (due to the elongation of the smaller cells)
was removed. Also, the scaling was not always present
in the third component in the observations and scal-
ing broke when abrupt changes in the spatial patterns
occurred. The model-predicted patterns did not seem
to be able to reproduce the scaling break and the pro-
nounced temporal variability of H.

3. The standardized rainfall fluctuations in the model-
predicted patterns seem to have more variability (larger
o¢) than in the observations. Despite the larger vari-
ability (in' magnitude) of the standardized rainfall fluc-
tuations in the model, the growth of this variability with
scale (i.e., slope of the log-log linear plot of o versus
H) is smaller in the model than in the observations, at
all temporal aggregation levels.

4. From the dynamic scaling analysis of the observed
and predicted patterns it was found that the predicted
fields had a lower dynamic scaling exponent z and thus
faster temporal decorrelation than the observed fields
before the transition period and a slightly slower decor-
relation after the transition period. This finding cou-
pled with a visual comparison of the observed and mod-
eled spatial rainfall patterns suggests some inability of
the model to mimic the spatiotemporal dynamics and
multiscale organization of the observed patterns.

Finally, our main conclusion is that indeed multiscale
measures of forecast performance are informative mea-
sures which in addition to traditional single-scale mea-
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sures can provide valuable insight and quantitative as-
sessment of not only the model’s predictive ability but
also about the need for improvements. Analysis of more
storms is needed to conclusively establish our findings
and make more general statements about the ability of
numerical weather prediction models to capture the sta-
tistical structure of the observed storms. Also, analysis
of the same storm predicted at higher spatial resolu-
tion (e.g., 1 or 3 km) or with different physics and more
enhanced data assimilation is needed in order to under-
stand how the proposed measures can deépict small-scale
differences resulting from these improvements. Such
understanding will enable us to address the practical
problem of pinpointing which specific improvements in
model physics, data assimilation, etc. are needed on
the basis of the quantified deviations of the statistical
structure of observed and predicted fields. It is believed
that studies of this sort can provide the means to sys-

tematically address the still open question of how the

physics of the atmosphere relate to the statistics of the
produced rainfall fields and how this knowledge can be
used to further improve quantitative precipitation fore-
casting.
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