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Abstract

Many of the relationships used in coupled land—atmosphere models to describe interactions between the land surface and the
atmosphere have been empirically parameterized and thus are inherently dependent on the observational scale for which they were
derived and tested. However, they are often applied at scales quite different than the ones they were intended for due to practical
necessity. In this paper, a study is presented on the scale-dependency of parameterizations which are nonlinear functions of variables
exhibiting considerable spatial variability across a wide range of scales. For illustration purposes, we focus on parameterizations
which are explicit nonlinear functions of soil moisture. We use data from the 1997 Southern Great Plains Hydrology Experiment
(SGP97) to quantify the spatial variability of soil moisture as a function of scale. By assuming that a parameterization keeps its
general form the same over a range of scales, we quantify how the values of its parameters should change with scale in order to
preserve the spatially averaged predicted fluxes at any scale of interest. The findings of this study illustrate that if modifications are
not made to nonlinear parameterizations to account for the mismatch of scales between optimization and application, then sig-
nificant systematic biases may result in model-predicted water and energy fluxes. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The importance of incorporating land-atmosphere
interactions in mesoscale and climate-scale atmospheric
model predictions has gained increasing recognition
over the past decade. In response, hydrological param-
eterizations developed for small (catchment) scales have
been coupled to atmospheric models which are applied
at grid scales ranging from several kilometers to hun-
dreds of kilometers. The converse problem is that as
computing resources have allowed the resolution of
climate-scale models to be significantly increased,
bucket-type hydrologic parameterizations developed for
global scales are being applied to much smaller scales
than those for which they were intended. In many cases,
no modifications are made to the land-surface schemes
to account for the change in scale of application. In
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other cases, ad hoc or empirical modifications (e.g.,
calibration) are made to parameterizations in an attempt
to balance the water and energy budgets at a desired
scale.

There are fundamental problems with applying
catchment scale hydrological parameterizations to
mesoscale or climate scales, and vice versa. Many of the
variables involved have pronounced spatial variability
which changes with scale, i.e., the resolution of the
hydrologic or coupled model. Furthermore, many of the
relationships describing land-surface hydrological pro-
cesses and land-atmosphere interactions are nonlinear
and thus statistical moments of large-scale averages
(pixel values) depend on the small-scale (within pixel)
variability of the variables involved. The combination of
nonlinearity and spatial variability makes the par-
ameterizations strongly dependent on the scale at which
the process is considered, i.e., the model grid-size (see
also discussion in [6]).

The purpose of this study is to investigate the sensi-
tivity of nonlinear parameterizations used in coupled
land—-atmosphere models to the spatial variability of the
involved variables and the degree of nonlinearity
of the parameterizing equation. We focus on
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parameterizations which are explicit functions of soil
moisture, a key variable in land-atmosphere interac-
tions. Soil moisture is used in land-surface parameter-
ization schemes to determine the sustainable
evapotranspiration, ground temperature, partitioning of
precipitation into infiltration and runoff, and partition-
ing of incoming solar energy between sensible and latent
heat fluxes. Many of the hydrologic predictive equations
involving soil moisture are nonlinearly parameterized
and are consequently sensitive to the spatial variability of
soil moisture and how this variability changes with scale.

Numerous studies have explored the natural varia-
bility of soil moisture and its scale-dependency. Rodri-
guez-Iturbe et al. [17] found that the variance of soil
moisture in the surface layer follows a power law decay
with increasing scale between 30 m and 1 km. Hu et al.
[11] found a similar scaling relationship and extended it
up to scales of 4.4 km. Cosh and Brutsaert [4] used
semivariogram analysis to study the statistical and
fractal characteristics of soil moisture. Famiglietti et al.
[8] used both airborne remotely sensed measurements
and impedance probe data to investigate the within-pixel
variability of remotely sensed soil moisture. Other
studies have investigated the effect of soil moisture
variability on surface runoff generation, evapotrans-
piration, partitioning of incoming solar radiation be-
tween sensible and latent heat fluxes and found that
including versus omitting this variability played an im-
portant role in model predictions (e.g., [1,7,14]; among
others). Chen and Avissar [2,3] established a link be-
tween variability in soil moisture and the atmospheric
response. They studied the impact of large-scale (80-240
km) discontinuities in soil moisture and found that it
can generate mesoscale circulations and enhance cloud
formation and associated precipitation.

The effect of spatial variability in other key land-at-
mosphere variables on model predictions has also been
investigated by numerous studies. Ghan et al. [10] per-
formed a systematic evaluation of the sensitivity of land-
surface schemes to spatial variability in precipitation,
vegetation, soil properties, solar radiation, and wind.
They quantified the effect of including or omitting small-
scale heterogeneity by comparing the predicted surface
runoff and evaporation at larger scales. Sivapalan and
Woods [18] studied the effect of spatial variability in
precipitation on surface runoff, soil moisture, and
evapotranspiration. Su et al. [19] explored the effect of
aggregating radiative versus aerodynamic fluxes on the
predicted areal average net radiation, ground heat flux,
and sensible and latent heat fluxes. Nykanen et al. [16]
studied the nonlinear propagation of small-scale rainfall
variability through the coupled land-atmosphere system
and found that including versus omitting small-scale
variability in rainfall, and consequently in soil moisture,
impacted the spatial organization of larger-scale land—
atmosphere fluxes.

Since there is enough evidence to suggest that keeping
parameterizations constant over a wide range of scales
introduces considerable biases in the predicted fluxes,
one could argue that an inverse approach of studying
how parameterizations should change with scale such
that fluxes of interest are preserved would be of practical
interest. For some of these parameterizations, it could
be possible to derive relationships between the grid scale
of the model and the parameter value needed to preserve
the average fluxes at a scale of interest. This is the
conceptual approach followed in this study and em-
phasis is given on parameterizations that explicitly de-
pend on soil moisture.

This paper is structured as follows. In Section 2, the
theoretical framework for studying the scale-depen-
dency of nonlinear parameterizations is presented in
detail. In Section 3, the spatial variability of soil
moisture is studied and characterized over scales of
approximately 1-50 km using remotely sensed soil
moisture data from the 1997 Southern Great Plains
Hydrology Experiment (SGP97). The scale-dependency
of nonlinear parameterizations is quantified in Section 4
by combining the developed theoretical framework and
the observed scale-dependency of soil moisture vari-
ability. A summary of the results and conclusions are
provided in Section 5.

2. Theoretical basis for the scale-dependency of nonlinear
parameterizations

2.1. Development of equations

The main goal of this study is to investigate the scale-
dependency of nonlinear parameterizations which de-
pend on a variable that has considerable spatial vari-
ability over a range of scales. We focus on
parameterizations which are explicit functions of soil
moisture since, as discussed in Section 1, soil moisture
has considerable spatial variability and is a key variable
in hydrologic predictive equations. Since many soil
moisture parameterizations can (at least over a range of
scales) be approximated sufficiently well by combina-
tions of power laws, we adopt here a nonlinear
relationship of the form:

F ~ s, (1)

where F is a predicted flux, s is soil moisture and «
is a parameter. Here, we denote by s the relative soil
moisture within the upper 5 cm surface layer. Depending
on the particular parameterization, however, s could be
representative of a deeper layer of soil or refer to the
volumetric soil moisture. This type of relationship is
common in hydrologic prediction. It is used, for exam-
ple, in the Biosphere-Atmosphere Transfer Scheme
(BATS) land-surface model [5] in computing surface
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runoff production, sustainable evapotranspiration, in-
ternal soil water fluxes, and thermal conductivity of the
soil.

Let us assume that the parameter o is not a constant,
but depends on the scale at which the predicted variable
F is considered. Let A, denote the scale at which the
parameterization was optimized, that is, the scale at
which predicted fluxes from Eq. (1) were close in some
statistical sense to the observed fluxes. Then recognizing
the dependency on the scale 4,, the power law
relationship of (1) can be written as

F}Lo ~ Sj:” (2)

where o;, denotes the parameter value at scale 4, s;, the
soil moisture at scale 4,, and F, the value of a flux (e.g.,
runoff, evapotranspiration, heat flux) at scale 1, as
predicted by a model run at resolution /,. The param-
eterization is nonlinear when «;, is not equal to 1.

There are several approaches that could be used to
study the scale-dependency of nonlinear parameteriza-
tions like the one given in Eq. (2). One approach would
be to apply the parameterization at scale 4, and also at
some other scale 4 # 1, keeping the value of the
parameter o;, the same. The differences in the areal
average model-predicted fluxes between the two simu-
lations would provide insight on the sensitivity of the
model to scale and the spatial variability of soil mois-
ture. As discussed in Section 1, numerous studies have
taken this approach to study the role of spatial vari-
ability of soil moisture and other variables in hydrologic
and atmospheric predictions. Alternatively, one could
proceed by assuming that the parameterization keeps
the same form at all scales but not the same value of its
parameters and study how the parameters should
change with scale in order to preserve the areal average
fluxes at the scale of interest. This is the approach fol-
lowed here and is along the same lines as calibrating a
model at different scales and seeing how the calibrated
parameters change with scale.

Let 4 denote some scale not equal to 4,, o; the value
of the parameter at scale 4, s, the soil moisture at scale A,
and F; the value of a flux predicted by the model run at
resolution A. The value of the parameter o; needed to
preserve the areal average flux will be quantified for
different scales A as a function of «;, and the scale-de-
pendent spatial variability of the soil moisture field. We
differentiate between two distinct cases:

(a) the case of applying the model at scales larger than
the one for which its parameterizations were opti-
mized (i.e., 1> 4,) which is shown schematically in
Fig. 1(a);

(b) the case of applying the model at scales smaller
than the one for which its parameterizations were op-
timized (i.e., 4 < J,) which is shown schematically in
Fig. 1(b).
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Fig. 1. Schematic of the case (a) 4 > 4, and (b) 4 < 4,, where / is the
scale of the model and /, is the scale of parameter optimization. When
the model is applied at scale A which is larger than the scale of
parameter optimization Z, (upper panel), the original parameter of the
model o; must change such that either (1) the fluxes F;; at every box
of size / are preserved (in which case a spatially variable parameter o, ;
must be applied) or (2) the fluxes at scale 4 are preserved on the av-
erage over a desired space-time domain (in which case a single effective
parameter o, o results). Similar constraints are also used in the case
shown in the lower panel.

Model grid-size: A

(a) Case of 2> 2,

For the case of applying the model at scales larger
than the one for which its parameterizations were opti-
mized, the constraint is to preserve the spatial average
flux within each grid box of size 1. Here, 4 is the model
grid-size and the scale of parameter optimization 4,
corresponds to a “subgrid-scale”. Denoting by n the
number of /, size pixels contained within a grid box of
size A and (F}_) i the spatial average of the A, scale fluxes
over grid box j of size /4, preservation of fluxes requires

1 n
Fj=- 2 :F;, = (Fy,);, ;- )
i=1

Substituting in the above equation the fluxes in terms of
the soil moisture at the appropriate scale and assuming
that the proportionality factor of (1) is a constant
(Appendix A examines a more general case in which the
proportionality factor is a scale-dependent spatial field),
we obtain
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Sil =85 ) (4)
Note that the spatial average of soil moisture at scale 4,

over model grid-size 4 is the same as the value of soil
moisture seen at scale A, that is,

815 = (8205, )+ (5)

The constraint equation (4) can be applied at each grid
box j of size / to find the parameter o, ; which preserves
the flux (F;,), ; at that grid box. This would give a
spatial distribution of o, across the domain as will be
presented later.

Alternatively, one could find an “effective” param-
eter o (denoted as o), which preserves the flux
(F,),,; on the average over all j grid boxes of a desired
space-time domain by taking the expectation over
space and time,

Els;*"] = Els;°]. (6)

/"0

Using Taylor series expansion of the function f(s) = s
around the mean Els|] and taking expected values, we
arrive at the known equation

Elf(s)] = £(E) + TR vars LD

X E[(s — E[s])"] + - - ()

Ignoring higher order terms and evaluating the second
derivative of f(s) at E[s] we obtain

E[s"] = E[s]" + 'VAR[s](« — 1)aE[s]* 7. (8)

It is noted that keeping higher order terms in (7)
does not present any technical difficulty but makes the
relationships more cumbersome to follow. Applying
(8) to (6) gives

E[S;V]OC;“Eff = E[S;VOV/"" —|—%VAR[S;LO](O(;LO — I)OCQOE[SZO

o %VAR [S/I} (“Z,eff - 1)OC)”effE[S;‘](a’i‘e“_z)_

](% -2)

)
For a specified space-time domain and scales 4, and 4,
the variance and expectation of soil moisture can be
computed and Eq. (9) can be solved iteratively for
o,cr. Notice that when the scale-dependency of a
nonlinear parameterization is not considered, it is the
terms involving VAR[s] in the above equation that are
ignored. It is instructive to observe from Eq. (9) that in
the limiting case when the grid-size of the model is
equal to the scale at which the parameters were opti-
mized (4 = 4,), then the solution for «; .+ would be o,
as expected. Otherwise if A # A,, «; would differ from
a,, depending on how much the variability of the soil
moisture field changes with scale. Notice also that if
the parameterization was linear (¢ = 1), the terms in-
volving VAR[s] in Eq. (9) would drop out and a con-
stant parameter o would suffice to preserve the average
fluxes across scales.

(b) Case of A < 2,

For the case of applying the model at scales smaller
than the one for which its parameterizations were opti-
mized, the constraint to preserve the areal average flux
becomes

SZ,O[ = <SZ/“[>AOJ' (10)

Here, 4 is again the model grid-size but the scale of
parameter optimization 4, corresponds to a scale larger
than A (see Fig. 1(b)). Similarly to Case (a), the con-
straint equation can be applied at each grid box i of size
Ao providing a spatial distribution of o, ; or alternatively
an o could be found by taking the expectation over
the space-time domain of interest.

Eqgs. (6)—(9) developed under the case of 4 > A, ap-
ply to the case of A< 4, in the same way. The only
difference between the two cases is that in Case (a) 4, is
a subgrid scale and in Case (b) 4, is an aggregation
scale, relative to the model grid-size A. It is important
to emphasize that the variance of soil moisture within a
box of a particular fixed size depends on the (subgrid-)
scale at which observations are available and that for a
particular fixed scale of observations the variance of
soil moisture depends on the box size within which the
process is considered. It is the interplay of these two
scales that contributes to the conceptual differences
between the cases of A > 1, and A< Z,. In the fol-
lowing section, we will explore the variance of soil
moisture as a function of (i) box size for a fixed scale
of observations, and (ii) scale of observations for a
fixed box size.

Then, we will connect these variances to the cases of
interest, i.e., 1 > A, and A < A,.

2.2. Dependence of soil moisture variability on scale of
observations and model grid-size

Fig. 2 shows the spatial variability of relative soil
moisture (top 5 cm of soil) derived from Electronically
Scanned Thinned Array Radiometer (ESTAR) images
during SGP97 at the scale of 0.8 km within an area of
51.2 km x 51.2 km. The solid white lines mark poten-
tial box sizes within which one might need to consider
the spatial variability of soil moisture. Using this type
of soil moisture fields from the SGP97 experiment,
computations were performed to characterize the soil
moisture variability with respect to the scale of obser-
vation and the size of the box within which the ob-
servations were considered. Before the computations
are presented in Section 3, a conceptual analysis and
intuitive explanation of the variability are given in this
section.

First, fixing the scale of observations to say /; (e.g.,
the highest resolution of 0.8 km for the SGP97 ESTAR)
the box size was expanded from A; to larger values



D.K. Nykanen, E. Foufoula-Georgiou | Advances in Water Resources 24 (2001) 1143-1157 1147

Fig. 2. Spatial variability of relative soil moisture derived from ES-
TAR during SGP97 within a 51.2 km x 51.2 km area for observa-
tional scale (pixel size) of 0.8 km. The solid white lines mark potential
boxes within which the variability of soil moisture could be computed.
By varying the observational scale (via aggregation of the finest reso-
lution observations) and the size of the boxes, the curves of Fig. 3 can
be computed.

A = J; and the variance of soil moisture as a function of
box size was considered (see top curve in Fig. 3(a)). It is
noted that for A = A; there is only a single observation
pixel within each box (no variability) and the variance of
the process within each box is therefore zero. As the box
size increases to say 4 = 21, (4 observation pixels within
each box) or 1 =44, (16 observation pixels within each
box) the variability of the process (always seen at the
scale of observations ;) increases. It is noted that the
variance is not computed from the 4 or 16 observations
in a single box but, as explained later, conditional
statistics are used to group together all boxes with
equal average soil moisture and consider the within-box
variability over the ensemble of boxes. By changing the
scale of observations to say 4, or /; (via aggregation of
the fine resolution data) and repeating the above pro-
cedure, the other curves in Fig. 3(a) can be obtained.

Now consider the box size fixed, to say A,, and the
scale of observations varying from 4, up to A,. Fig. 3(b)
illustrates how the variability of soil moisture changes
with the scale of observations for a fixed box size. As
expected, the larger the scale of observations (aggrega-
tion level) the smaller the variance of soil moisture
within areas of fixed size since aggregation smoothes out
small-scale spatial heterogeneities. Notice that the curve
of Fig. 3(b) can also be obtained as a special case of Fig.
3(a) by fixing the box size to a particular value (dashed
vertical line).

VAR[s, ]

(a) box size

VAR[s, | within region size 2. ]

0

(b) scale of observations

Fig. 3. Plot illustrating the dependence of soil moisture variability on
scale. In the top plot, 4;, 4, ..., etc. represent the scale at which ob-
servations are available. For any fixed scale of observations, as the box
size increases from the scale of observations to a large area, the vari-
ability of the observations increases (top plot). For a particular box
size, say 4., the variance of the process depends on the scale at which
the process is seen, that is, the scale at which observations are avail-
able. The larger the scale of observations the smaller the variance of
the process (bottom plot). Further explanation is provided in Section
2.

In the case of 1> A,, the “scale of observations”
represents the scale of parameter optimization A, and
the “box size”” within which VAR [s;_] is computed is the
model grid-size 4. The relevant variance as a function of
scale corresponds to one of the curves in Fig. 3(a) where
the x-axis would represent increasing model grid-size 4.
In the case of A < A,, the “box size” over which the
variance of soil moisture is computed corresponds to the
scale of parameter optimization A, and the “scale of
observations” now relates to the grid-size A at which a
hydrologic or coupled model is run. This corresponds to
Fig. 3(b) where VAR[s;] is computed at different model
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grid-scales 4 within a fixed 4, x 4, area. The x-axis in
this case would again represent increasing model grid-
size.

2.3. Conditional statistics of soil moisture

There is evidence in the literature (e.g., [11,8,17]) to
suggest that the spatial variability of soil moisture sig-
nificantly depends on the mean soil moisture. Thus, the
curves in Fig. 3 would better be described by con-
ditioning the variance on the mean soil moisture, i.e., by
considering the variability within boxes of the same box-
averaged soil moisture value. In the solution of Eq. (9)
for o, ¢, we will acknowledge this dependency of the
VAR|s] on Es] by taking the expectation conditionally
over a small range of E[s] values and finding the o; ¢
that applies to that Els] range.

In the conditional expectation for the case of 1 > A,
grid boxes of size /4 that have s; within a specified range of
soil moisture values are grouped together as shown in
Fig. 4. This conditional grouping can be performed by
selecting boxes with similar s; over a spatial or space—time
domain of interest. Note that the last term of Eq. (9) drops
out when the expectation is taken over conditions of
similar s; since the conditioning requires the s; values to
be similar (at the limit the same value) and consequently
makes the VAR [s;] negligible. Eq. (9) then becomes

J> do  Els;]

= Els;,]" +VAR[s;, ] (o, — Doty Elsy, |72 (11)

The VAR[s;,] in Eq. (11) is the variance of soil moisture
computed at the scale of parameter optimization /4, and
over the grouped 4 x 4 boxes with similar s; (i.e., a value
obtained from one of the curves in Fig. 3(a) where the
scale of observations is A, and the box size is 1). The
expected value of the soil moisture is determined by the
range of s; specified in the conditional grouping. This
procedure of grouping together boxes of area 4 x A with
similar s; creates a hypothetical domain of sufficient size
such that the conditional variance of soil moisture will
be independent of the domain size (for stationary fields)

domain

v

Fig. 4. Schematic of grouping together boxes of size / with similar s;
(gray shaded boxes) for conditional statistics in the case of 1 > 4,.

but dependent on the scale 4 used to perform the con-
ditional grouping.

For the case of /1< /,, the conditional grouping
would be performed by selecting boxes of size 4, with
similar s;, over a desired space-time domain. In this
case, conditional expectation for a specified s, range
would result in a negligible conditional VAR[s;, ] and the
second term of Eq. (9) would drop out, resulting in

) < Jo 1 Efs;] e
= E[S/lo]“/"o - %VAR[S)V](OQ@{{ — 1)0(2‘effE[Si](a}"e“72),
(12)

The VAR[s;] in Eq. (12) is the variance of soil moisture
at the model grid-size 4 and computed over the 4, x 4,
conditionally grouped boxes. That is, VAR[s;] would
correspond to a value obtained from the curve of Fig.
3(b) where the scale of observations is A and the whole
curve was obtained for a specified Els; | and by fixing
the box size to the scale of parameter optimization A,.

2.4. Analytical dependence of nonlinear parameterizations
on soil moisture variability

Having explored how VAR[s; | and VAR[s;] are com-
puted for the cases of 2 > 4, and 4 < 4,, respectively, we
return to the original problem of exploring the scale-
dependency of the parameter «; such that spatially av-
eraged fluxes are preserved across scales. Hereafter, the
parameter o, o Will be abbreviated to o;. We start from
Egs. (11) and (12) which are conditioned on the larger-
scale mean soil moisture and try to analytically compute
the value of o; as a function of the mean and variance of
soil moisture. For illustration purposes we assume the
value of o;, =4 as, for example, used in the surface
runoff parameterization of BATS for non-frozen soil
([5]; also see Appendix A). To get insight into the dif-
ferences between the values of o, and o;,, and more
generally on the scale-dependency of o, some analytical
solutions are shown in Fig. 5.

The case of 1 > 4, (i.e., model grid-size / larger than
the scale 4, of parameter optimization), is shown in Fig.
5(a). The curves correspond to analytical solutions of
Eq. (11) for «; as a function of VAR[s; ] for several
different mean soil moisture conditions. Similarly, Fig.
5(b) shows the analytical solution of Eq. (12) which
corresponds to the case of 1 < /, (i.e., model grid-size
smaller than the scale of parameter optimization). Figs.
5(a) and (b) illustrate that the difference between the
fixed value «;, (here assumed equal to 4) at the scale of
parameter optimization and the scale-dependent value
o; increases with increasing variance of the soil mois-
ture. Moreover, the rate of deviation of «, from o, as a
function of soil moisture variability also depends on the
mean soil moisture level, with the larger deviations being
observed at the extreme (both the low and high ends)
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Fig. 5. Analytically derived «; as a function of mean and variance of
soil moisture for (a) 4 > 4, and (b) 2 < 4,. At 1 = 4, the parameter
value was set to 4 (a typical value for runoff production). Notice that if
the model is applied at scale 4 which is larger than /, then the pa-
rameter o, decreases in value. Conversely, if the model is applied at
scale 4 which is smaller than the scale 4, at which the parameterization
was optimized, then the parameter «; increases in value.

mean soil moisture levels. For a fixed soil moisture range
and variability, the value of o; needed to preserve fluxes
across scales becomes less than 4 in the case of 4 > A,
and greater than 4 in the case of 1 < 4,. In the following
section, we use SGP97 airborne remotely sensed soil
moisture data to quantify how VAR][s; ] and VAR[s;]
change with scale such that the dependency of «; on
scale can be consequently quantified.

3. Soil moisture variability and its scale-dependency
3.1. SGPY97 ESTAR derived soil moisture

The scale-dependency of nonlinear parameterizations
involving soil moisture was shown in the previous sec-

tion to be theoretically related to the scale-dependency
of the variance of soil moisture. Rodriguez-Iturbe et al.
[17] found that the variance of soil moisture in the top 5
cm of soil follows a power law decay as a function of
increasing scale. Their findings were based on statistical
analysis of in situ soil moisture measurements and 200 m
resolution soil moisture data retrieved from Electroni-
cally Scanned Thinned Array Radiometer (ESTAR)
images during the Washita ’92 Experiment which
covered an area of 18 km x 45 km in southwest Okla-
homa (see [12] for details on the Washita ‘92 experi-
ment). Rodriguez-Iturbe et al. [17] found that this power
law decay held for scales ranging from 30 m up to 1 km
and that the slope of the log—-log plot of the variance
versus scale was dependent on the average soil moisture
conditions. Hu et al. [11] found that the scaling rela-
tionship of Rodriguez-Iturbe et al. [17] could be ex-
tended up to scales of 4.4 km for the Washita ’92
ESTAR derived soil moisture data.

The Southern Great Plains Hydrology Experiment in
June 18-July 18, 1997 (SGP97) provided an additional
source of observed high resolution soil moisture data.
The SGP97 Hydrology Experiment was a field campaign
covering south central Kansas and most of central
Oklahoma. Intensive field observations were collected,
quality controlled and cross calibrated and validated.
During SGP97, ESTAR was used to map soil moisture.
Data were collected over a strip of approximately 50 km
(West-East) by 250 km (North-South) at a 0.8 km
ground resolution. Details on the algorithm used for
converting ESTAR images to soil moisture, data pro-
cessing, and verification can be found in [12,13]. The
reader is referred to daac.gsfc.nasa.gov/CAMPAIGN/
DOCS/SGP97/sgp97.html for a detailed description of
the SGP97 experiment and information on where to
obtain the soil moisture data.

The SGP97 ESTAR derived soil moisture data were
used in this study to quantify how the variance of soil
moisture in the upper layer of soil (top 5 cm) changes
with scale. The soil moisture data mapped by the
ESTAR are volumetric soil moisture in absolute per-
cent, i.e., percent of the 0.8 km x 0.8 km x 5 cm vol-
ume of soil that is occupied by water. In order to obtain
the relative soil moisture, these values were divided by
the spatially variable porosity field of the soil co-located
with the SGP97 ESTAR region. The relative soil
moisture within the 0-5 cm surface layer is hereafter
denoted as s and the volumetric soil moisture as w.

Fig. 2 serves as an illustration of the pronounced
spatial variability of soil moisture observed during the
SGP97. The soil moisture data were aggregated from the
original 0.8 km ESTAR data to obtain fields at coarser
resolutions. An extensive analysis of the frequency his-
tograms of soil moisture for different aggregation levels
and different average wetness conditions can be found in
[15] but are not reproduced here for brevity.
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3.2. Scale-dependency of SGP97 soil moisture variability

As discussed before, there are two ways pertinent to
our study to look at how the variability of soil moisture
changes with scale. One approach is to fix the resolution
of the data at the resolution of the ESTAR instrument
of 0.8 km and follow how the variance of the soil
moisture changes with increasing area of consideration
or model grid-size (see Fig. 3(a)). The other way is to
specify a fixed area of interest, aggregate the data within
that area, and follow how the variance of the soil
moisture changes with aggregation level (see Fig. 3(b)).
The first case corresponds to the situation at which the
grid-size of the model 4 is larger than the scale of
parameter optimization Z, and thus the interest lies on
determining the effect of within-pixel variability (not
seen by the model) on fluxes or parameter values at scale
A relative to the initial values at scale 4,. The second case
corresponds to the situation at which the grid-size of the
model A is smaller than the scale of parameter op-
timization 1, and thus the interest lies on determining
the effect of the small-scale variability (not accounted
for in the parameter optimization which occurred at a
larger scale) on fluxes or parameter values at scale A
relative to the initial values at scale A,.

For the case of 1> A,, the SGP97 region was sub-
divided into 4 x A size boxes. In this case, A, was fixed at
0.8 km and the scale /1 (representing the scale at which
the model would run) was changed from 1.6 to 51.2 km.
Fig. 6(a) shows the SGP97 region subdivided into boxes
of 2 =12.8 km. For the case of 1 < 4, , the scale A, was
fixed at the 51.2 km approximate width of the SGP97
region and the scale A was varied from 0.8 to 25.6 km.
Here, the scale 1 represents aggregating the ESTAR
derived soil moisture data to coarser scales. The SGP97
region was subdivided into five boxes of size
51.2 km x 51.2 km as shown in Fig. 6(b). In both cases,
boxes over the selected space-time domain (here the
spatial domain of SGP97 was considered for each of the
16 days with available ESTAR images; one image per
day) were grouped according to the average relative soil
moisture (E[s]) and conditional statistics were computed
over the grouped boxes (see Fig. 4). Boxes with missing
data were discarded and variances were only computed
for scales and average soil moisture groupings with 30 or
more values for meaningful statistics.

The scale-dependency of the spatial variability of the
SGP97 soil moisture data is shown in Fig. 7. For the
case of 1> A,, when the scale of observations is fixed
at 1, = 0.8 km the VAR[s; | was found, as expected, to
increase with the box size within which the data were
considered (i.e., model grid-size A) as shown in Fig.
7(a). The magnitude of the variance as a function of
scale was also found to depend on the average relative
soil moisture and to be higher as the average soil
conditions became more wet. For the case of 1 < Ao,

(a) (b)

Fig. 6. (a) For A > A,, we fixed 4, (the scale for which the par-
ameterization was optimized) at 0.8 km and computed the VAR[s;, ]
within boxes of size A x A, where A is the scale at which the model
would run. The VAR[s;, ] is shown in Fig. 7(a). The scale A was varied
from 1.6 to 51.2 km. Here the boxes of 2 = 12.8 km are shown. (b) For
A < 2o, we fixed 4, (the scale for which the parameterization was op-
timized) at 51.2 km and computed the VAR[s;] within 4, x 4, size
boxes where A represents the scale at which the model would run (and
therefore at which the variability of the soil moisture field would be
seen by the model). The VAR[s;] is shown in Fig. 7(b). The scale 1 was
varied by aggregating the soil moisture data from the ESTAR reso-
lution of 0.8 km up to 25.6 km. As shown here, five 4, x 1, boxes fit
within the SGP97 region. In both cases (a) and (b), boxes with missing
data were discarded from the variance computation. The west and east
sides of the boxes were aligned parallel to the NASA P-3 aircraft flight
lines.

Fig. 7(b) shows how the variance of the relative soil
moisture changes with aggregation scale A within a
fixed box size of A, =51.2 km. Variances for scales
larger than 25 km are not shown in Fig. 7(b) since
there were not enough data points at the larger scales
to compute a meaningful variance. Our results indicate
that the trend of how the magnitude of the variance
changes with the average relative soil moisture might
not always be monotonic, i.e., an increase in average
soil moisture does not necessarily imply an increase in
VAR|s;] (see Fig. 7(b)). In fact, the range of E[s] = 0.4
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Fig. 7. Scale-dependency of the variance of soil moisture for (a) the
case when the scale /, at which the parameterization was optimized is
smaller (and here fixed to 0.8 km) than the model grid-size 4 and (b)
the case when the scale 4, at which the parameterization was optimized
is larger (and here fixed to 51.2 km) than the model grid-size A.

to 0.6 shows the highest spatial variability at all scales,
while the range 0.6-0.8 was found to have the most
drastic scale-dependency (i.e., faster rate of change in
magnitude of the variance with scale). As expected,
Fig. 7(b) shows that the variance of soil moisture de-
creases as the scale increases.

3.3. Scaling of soil moisture variance

The log—log plot of variance of relative soil moisture
versus scale found by Rodriguez-Iturbe et al. [17] for
Washita 92 data is shown in Fig. 8(a) along with the
curves found in this study for the SGP97 data. This
figure shows a potential scaling break at the intersection
of the scales of the two experiments. This break in
scaling could be caused by several different factors. One
possible reason is that there could truly be a scaling
break at scales of 1 km? switching from a log-log linear

relationship to nonlinear. Another possible reason for
the scaling break could be the difference between the
Washita '92 being a drydown period and SGP97 being a
period of frequent rainfall. Hu et al. [11] found that the
scaling relationship of Rodriguez-Iturbe et al. [17] is
valid over a wider range of scales. However, they were
using volumetric soil moisture rather than relative soil
moisture. In order to compare with Hu et al. [11], the
variance of the SGP97 volumetric soil moisture data was
computed using 51.2 km x 51.2 km boxes shown in Fig.
6(b) and aggregating the data inside the boxes. The
boxes were grouped according to the average soil
moisture and the conditional variance was computed for
each aggregation scale and volumetric soil moisture
class with more than 30 data points. Fig. 8(b) shows the
Washita ’92 data of Hu et al. [11] along with the SGP97
data. The lack of agreement between the Washita ’92
and SGP97 data suggests that the soil moisture fields do
not exhibit scaling under all conditions and at all
scales.

In order to test if the scaling break can be explained
by the differing rainfall conditions between SGP97 and
Washita ‘92, a 3-day period of drydown conditions
during SGP97 which occurred on July 1-3, 1997 in the
uppermost 51.2 km x 51.2 km box of Fig. 6(b) was used
to reassess the scaling relationships. The conditional
statistics procedure of grouping together boxes over the
space-time domain of similar average soil moisture
conditions was not used for the drydown period com-
parison. Rather, the same technique as used by Rodri-
guez-Iturbe et al. [17] and Hu et al. [11] of aggregating
soil moisture data inside one specified region and com-
puting the variance for each aggregation scale was used
for the SGP97 drydown period data. Fig. 9(a) shows the
log-log plot of variance of relative soil moisture versus
scale (1 x A resolution of the data) for the drydown
period of the subregion of SGP97 with that of Rodri-
guez-Iturbe et al. [17]. Fig. 9(b) shows a similar log-log
plot for the volumetric soil moisture of the drydown
period of the SGP97 subregion with that of Hu et al.
[11]. It can be seen from Fig. 9 that the scaling break
between SGP97 and Washita ‘92 is not the result of
differing rainfall conditions since it still occurs when
only drydown periods were considered. Furthermore, it
illustrates that the scaling break found in this study is
not an artifact of the conditional statistics approach
since now the same processing procedure used by Ro-
driguez-Iturbe et al. [17] and Hu et al. [11] on the
Washita ‘92 soil moisture data was also used on the
SGP97 data shown in Fig. 9. In fact, our processing
algorithms applied to the Washita ‘92 volumetric soil
moisture data (available at hydrolab.arsusda.gov/wash-
ita92/wash92.htm) reproduced the log-log linear
relationship reported in [11] (see Fig. 10). These dis-
crepancies and the question as to whether or not, or
under what conditions, soil moisture fields exhibit sim-
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Fig. 8. (a) Superposition of findings of Rodriguez-Iturbe et al. [17] where a log-log linear relationship of VAR[s] with scale was found from Washita
‘92 relative soil moisture data between scales of 30 m and 1 km and our findings where lack of simple scaling is found from the SGP97 relative soil
moisture data over scales of 0.8-25.6 km. (b) Superposition of findings of Hu et al. [11] where a log—log linear relationship of VAR[s] with scale was
found from Washita ‘92 volumetric soil moisture data between scales of 200 m and 4.4 km and our findings where lack of simple scaling is found from
the SGP97 volumetric soil moisture data over scales of 0.8-25.6 km. Here, area refers to the 1 x A scale of the data.

W92: June 11, 1992
221 o W92: June 14, 1992
o W92: June 18, 1992
—+—  SGPY7: July 1, 1997 N
“245 | _ x — SGPY7: July 2, 1997 *
—%— SGP97: July 3, 1997

o1 i i i i i i i i i
(a) 3 3.5 4 4.5 5 55 6 6.5 7 7.5

Log ( Area (m?))

215
—2.2f RN g
23} 2 B
2.4} E
Z o5t 1
[any
<
>
;—2.6 r B
o
|
2.7+ B
-2.8f : R - B
o W92: June 10, 1992 N x ~
—+—  SGP97: July 1, 1997 N
—29r | — =« - SGP97: July 2, 1997 N R
— %= SGP97: July 3, 1997 N “ o
_3 ] ] ] i i i
(b) 45 5 55 6 6.5 7 75 8

Log(Area(mz))

Fig. 9. Log-log plot of the variability of soil moisture versus area during drydown conditions characterized by a period of no rainfall for (a) SGP97
relative soil moisture at scales 0.8-6.4 km superimposed with the results of Rodriguez-Iturbe et al. [17] Washita ’92 relative soil moisture at scales 30
m to 1 km and (b) SGP97 volumetric soil moisture at scales 0.8-6.4 km superimposed with the results of Hu et al. [11] Washita *92 volumetric soil
moisture at scales 200 m to 4.4 km. The uppermost box shown in Fig. 6(b) was used for the SGP97 soil moisture data.

ple scaling need to be further examined but fall beyond
the scope of this study.

4. Scale-dependency of nonlinear parameterization

Combining the scale-dependency of the SGP97 rela-
tive soil moisture shown in Figs. 7(a) and (b) with Egs.
(11) and (12), the scale-dependency of the parameter o of
nonlinear relationships of the form F ~ s* involving soil
moisture can be computed. Fig. 11 shows the spatial
distribution of o; values for one 51.2 km x 51.2 km area

with a 0.6 average relative soil moisture. The parameter
o, was computed by solving the constraint equation (4)
at each 4 x A box and assuming o, =4, a typical value
used in runoff production. In this case, the scale A, for
which the parameterization was optimized was fixed at
0.8 km and the scale 4 was varied from 1.6 to 51.2 km
(i.e., 4 > 4,) as shown in Fig. 11(a)—(c). The cumulative
frequency of «; computed from an ensemble of
51.2 km x 51.2 km areas (over the SGP97 space-time
domain) with average relative soil moisture in the range
0.6-0.8 and for selected spatial resolutions of 1.6, 3.2,
6.4, and 12.8 km are shown in Fig. 12. It is interesting to
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Fig. 10. Log-log plot of the variability of soil moisture versus area for
the Washita *92 volumetric soil moisture data on June 10, 1992. The
open circles and dashed line linear fit correspond to the results of Hu et
al. [11]. The filled circles and solid line linear fit correspond to the
results found in this study. The agreement between the two sets of
results provides evidence that the lack of simple scaling found in this
study for the SGP97 soil moisture data is not an artifact of our pro-
cessing procedure.

observe that the values of «; needed to preserve the box-
by-box fluxes have a considerable variability from the
fixed value of o, =4 which is typically applied to all
boxes if scale-dependency is ignored.

When one considers preservation of fluxes on the
average over all boxes of the space-time domain of in-
terest, an effective parameter o, results which is com-
puted by solving Egs. (11) and (12) for the cases of
A> A, and A < 4, as is shown in Figs. 13(a) and (b),
respectively. (Note that the so-computed effective value
of ; 1s not necessarily equal to the arithmetic average of
the spatially variable o; values computed above due to
nonlinearities.) As the scale A (at which the model is run)
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Fig. 12. Cumulative frequency of the spatially distributed o; param-
eter values computed from an ensemble of 51.2 km x 51.2 km areas
with average relative soil moisture in the range of 0.6-0.8. Recall that
o, = 4 is the value that preserved the fluxes when the scale 4 was equal
to the optimization scale 4, (here assumed to be the 0.8 km resolution
of the ESTAR derived soil moisture).

deviates from /, (the scale at which the parameterization
was optimized), the value of o, needed to preserve the
average fluxes also deviates from o, . For 1> 4,, this
corresponds to |a; — oy, | increasing with increasing
scale. When A < 4, |a; — o, | increases with decreasing
scale. Moreover, the spread of the lines shown in Fig. 13
demonstrates the strong dependency of the variance of
soil moisture and, consequently, «; on the average soil
moisture conditions.

To get insight as to the significance of the difference in
considering o =4 versus « =4.2 on the computed
fluxes, we concentrate on the Ry = s*G relationship used
in BATS and discussed in more detail in Appendix A. In
this relationship, the flux R, is surface runoff, s is the
arithmetic average of the relative soil moisture in the 10

A=51.2km

=
DI%
(

(a) b)

© 3

Fig. 11. Spatial distribution of the parameter «; for the case of 2 > A, where 4, = 0.8 km and o, = 4. The 51.2 km x 51.2 km box shown has a 0.6
average relative soil moisture. Notice that if a single parameter o was to be used for the entire grid of 51.2 km then a value of « = 3.6 and not « = 4
would be needed to preserve the fluxes at the 51.2 km scale. If the grid size of the model was 25.6 km notice the spatial variability of soil moisture
would determine the spatial variability of the appropriate value of «; for box-by-box flux preservation.
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Fig. 13. Scale-dependency of the parameter «; for (a) the case when
the scale 4, at which the parameterization was optimized is smaller
than the model grid-size A and (b) the case when the scale A, at which
the parameterization was optimized is larger than the model grid-size
/. Recall that a;, = 4.

cm surface layer and the 100 cm root zone layer, and G
is the net input of water to the soil surface. As discussed
in Appendix A, the BATS surface runoff parameteriza-
tion was developed for climate scales but is often applied
at smaller scales. This corresponds to the case of 4 < 4,
which is shown schematically in Fig. 1(b) and analyti-
cally in Fig. 5(b). The percent changes in surface runoff
R, produced by keeping the same G and using o = 4
versus the values of «; for different VAR[s] and E[s]
values (see Fig. 5(b)) are shown in Fig. 14. Using o = 4
instead of o = 4.4, for example, results in a significant
overestimation (ranging from 10% to 50%, depending
on the average relative soil moisture) of the surface
runoff. It was shown in Fig. 13(b) that, for the case of
A < Z , the a; parameter increases as the scale decreases.
Although the relative soil moisture data used in Fig.
13(b) represent the top 5 cm of soil, it is expected that
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Fig. 14. Percent change in surface runoff produced by keeping the net
input of water to the soil surface the same and using o = 4 versus the
VAR][s] and E[s] dependent o parameter values (see Fig. 5(b)) in the
R = s*G relationship of BATS.

the trend would be similar for the weighted average rel-
ative soil moisture variable used in the BATS surface
runoff parameterization. In other words, as the model
grid-size decreases from the 50-100 km climate scale of
parameter optimization to much smaller model grid-sizes
used today, the systematic bias introduced in the surface
runoff prediction becomes very significant. Even if the
value of the surface runoff is not important to a partic-
ular application (e.g., not concerned with streamflow
prediction), the accuracy of the surface runoff must still

07 i i i i i i i i i i
0 5 10 15 20 25 30 35 40 45 50
scale A (km)

Fig. 15. Sensitivity of the scale-dependency of «; to the degree of
nonlinearity of the parameterization (value of o, ) for the range
0.6 <E[s] < 0.8 and when the scale 4, at which the parameterization
was optimized is smaller than the model grid-size /. Note that for a
fixed scale 4, the deviation of the “relative bias factor” o, /a;, from
unity increases as the nonlinearity of the relationship (i.e., |o;,|) in-
creases.
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be considered since it effects the soil moisture through the
water balance and, consequently, the surface tempera-
ture and latent and sensible heat fluxes through the en-
ergy balance. Moreover, as has been demonstrated by
other studies (e.g., [16]) these biases over small scales
may grow nonlinearly over time and create larger-scale
biases in the predicted fluxes.

As previously discussed, the scale-dependency of o is
affected by both the spatial variability of soil moisture
and the degree of nonlinearity of the relationship, i.ec.,
the specific value of o, . Fig. 15 shows the ‘“‘relative bias
factor” a;/o;, which depicts the effects of changing o,
on the scale-dependency of «; for positive and negative
values of «, . The larger the nonlinearity of the rela-
tionship (e.g., a,, =8 or —8), the larger the effects of
scale on the parameter value. This explains theoretically
why other studies have stated that the sensitivity of
predicted fluxes to spatial variability is different for
different models (e.g., [9,14]; among others).

5. Summary and conclusions

In this study, the scale-dependency of parameteriza-
tions which are nonlinear functions of variables exhib-
iting considerable spatial variability across a wide range
of scales was examined. The motivation of the study was
the fact that the scales at which hydrologic or coupled
atmospheric-hydrologic models are run are often dif-
ferent from the scales at which the model parameter-
izations were optimized. If the parameterizations are
kept the same, as is typically done, this discrepancy in
scales can cause significant biases in the computed fluxes
as has been documented by other studies. Alternatively,
if fluxes were to be preserved at a specific scale of in-
terest, the parameterizations could be modified accord-
ingly to account for the discrepancy in scales. This
second approach was adopted in this study and using an
analytical methodology the dependence of the par-
ameters on scale and the spatial variability of the in-
volved variables was documented. For illustration
purposes we focused on parameterizations which are
explicit nonlinear functions of soil moisture and have
the general form F ~ s* where F is a predicted flux, s is
soil moisture, and « is a parameter. The parameteriza-
tion was assumed to keep the same form at all scales and
the parameter o needed to preserve the areal average flux
at various scales was quantified in terms of the scale-
dependent variability of soil moisture. The SGP97 ES-
TAR derived data were used to characterize the spatial
variability of soil moisture.

Denoting by o, the value of o at the scale 4, at which
the parameterization was optimized and by o, the value
of o at the scale at 4 which the model is run, explicit
expressions of o, were derived as functions of scale, the
value of o, , the average soil moisture state, and the

spatial variability of the soil moisture field. It was found
that the deviation of o, from o, increased as the dis-
crepancy between scale 4 and /, increased, as the degree
of nonlinearity increased, and as the spatial variability
of the soil moisture field increased. Also, the scale-de-
pendency of o was higher for the extreme (both the low
and high ends) of mean soil moisture levels.

The results of this study emphasize that if modifica-
tions are not made to nonlinear parameterizations to
account for the mismatch between the scale for which
they were developed and the scale at which they are
applied, systematic biases may result in model-predicted
water and energy fluxes. An example involving surface
runoff predictions was used to illustrate the significant
magnitude of these biases. Our study also provides a
framework by which one can obtain how parameters of
nonlinear relationships might be modified to account for
the change in scale based on characterization of the
spatial variability of soil moisture.

An integral part of this study was to examine in detail
how the statistical moments of soil moisture (both rela-
tive and volumetric soil moisture representative of the 0—5
cm surface layer) depend on scale both for drydown pe-
riods (no rainfall) and periods of rainfall activity. It was
found that our results did not quite agree with the results
of Rodriguez-Iturbe et al. [17] and Hu et al. [11] who have
reported log—log linear relationships of the variance of
soil moisture with scale (simple scaling). Some reasons for
this discrepancy have been offered, but they point out to
the necessity to further examine these relationships over a
wider range of scales, under different wetting conditions,
and with observations from different sensors.
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Appendix A. Surface runoff parameterization of BATS

The surface runoff parameterization used in the Bio-
sphere-Atmosphere Transfer Scheme (BATS) (see [5]
for details) follows the general form of a nonlinear
power law relationship given by Eq. (1). At each model
grid box, the surface runoff is computed according to

R, = 5*G, (A.1)
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where R; is the surface runoff, s is the arithmetic average
of the relative soil moisture in the 10 cm surface layer
and the 100 cm root zone layer, o = 4 for unfrozen soil,
and G is the net input of water to the soil surface
computed as the precipitation minus evaporation plus
snow melt. Both s and G are variables that exhibit
considerable spatial variability across a wide range of
scales. It will be shown here that multiplication of the
right-hand side of Eq. (2) by a variable which also has a
scale-dependency does not alter the resulting equation
).

Yang and Dickinson [20] explain that the BATS
surface runoff parameterization was developed for cli-
mate scale (i.e., 4, = 50 to 100 km) and parameterized to
predict, on the average, similar surface runoff as is ob-
served at those scales. As inexpensive, powerful com-
puting resources become more readily available, the
BATS land surface model is being run at spatial scales
smaller than those for which its surface runoff par-
ameterization was intended. This corresponds to the
case of 1 < 4, (see Fig. 1(b)). The constraint equation to
preserve the /, scale surface runoff flux is

5,2.Gr, = (s, Gy) (A.2)

Josi*

Following the discussion in Section 2.1, a spatial
distribution of «;; could be found by applying the
constraint equation given above at each grid box i of size
/o or alternatively an o, could be found by taking the
expectation over the space-time domain of interest
E[s;°G,] = E[s7" G,). (A.3)

Expansion of the above equation gives
E[s;*]E|G,] + COV[s;*, G,,]
= E[s;"|E[G,] + COV[s}", G}]. (A4)

Since soil moisture is strongly correlated with coincident
precipitation or net input of water to the ground, it is
not unreasonable to assume that the covariance of s °

% eff

and G, is approximately equal to the covariance of s,
and G;. Further, noting that the expected value of G at
scale 4, over some domain is equal to the expected value
of G at scale 4 over that same domain (i.e.,
E|G,,] = E[G}]), we arrive at

Els°] = Els;"], (A5)
which is the same as Eq. (6) and therefore results in the
same Eq. (9). This demonstrates that there is no loss of
generality in assuming that the proportionality factor in
Eq. (1) is a constant versus a more general spatially
variable field. The assumption made above was that the
covariance between relative soil moisture s and effective
precipitation G is scale-independent. This is a reasonable
assumption given the high degree of covariation of these
variables at all scales.
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