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Empirical evidence suggests that statistical properties of storm rainfall at a location and within a
homogeneous season have a well-structured dependence on storm duration. To explain this depen-
dence, a simple scaling model for rainfall intensity within a storm was hypothesized. It was shown both
analytically and empirically that such a model can explain reasonably well the observed statistical
structure in the interior of storms, thus providing an efficient parametrization of storms of varying
durations and total depths. This simple scaling model is also consistent with, and provides a theoretical
basis for, the concept of mass curves (normalized cumulative storm depth versus normalized
cumulative time since the beginning of a storm) which are extensively used in hydrologic design. In
contrast, popular stationary models of rainfall intensity are shown unable to capture the duration
dependent statistical structure of storm depths and are also inconsistent with the concept of mass

curves.

1. INTRODUCTION

This paper deals with the analysis and modeling of the
stochastic structure of rainfall intensities within storms of
varying duration. Storms are defined here as rainfall events
which are independent of each other as based, for example,
on Poisson storm arrivals. The need to parametrize the time
distribution of storms which are ‘‘similar’’ apart from total
storm depth and storm duration arose very early, and the
concept of mass curves, i.e., nondimensional cumulative
storm depth versus nondimensional cumulative time since
the beginning of a storm, has been extensively used for
hydrologic design [e.g., Grace and Eagleson, 1966, p. 90;
Huff, 1967; Eagleson, 1970, p. 194; Pilgrim and Cordery,
1975]. The idea behind those efforts was the recognition that
for a particular location or within a meteorologically homo-
geneous region and for a homogeneous season, storms are
expected to exhibit similarities in their internal structure
despite their different durations and total storm depths. In
addition, the concept of normalized mass curves was
adopted in some advanced rainfall models, such as those of
Bras and Rodriguez-Iturbe [1976], Hjelmfelt (1981], and
Woolhiser and Osborn [1985].

Empirical evidence from this and other studies (see sec-
tions 5 and 6) regarding the dependence of the statistical
properties of incremental and total storm depths on storm
duration led us to the hypothesis of a simple scaling model
for the instantaneous rainfall intensity within a storm with
storm duration as the scaling parameter. This model is
thoroughly examined in this paper, and the properties of the
total storm depth and incremental rainfall depths are analy-
tically derived and are used for model fitting and model
evaluation. Another motivation for examining the simple
scaling model is that it is consistent with, and provides a
good theoretical basis for, the concept of mass curves which
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are very often used in hydrologic applications and rainfall
modeling.

Most of the available continuous time rainfall models,
e.g., the Neyman-Scott model [e.g., Kavvas and Delleur,
1981; Rodriguez-Iturbe et al., 1984], used to describe rainfall
intensities are stationary. In this paper we show that any
stationary model is unable to capture the duration dependent
statistical structure of rainfall intensities and is also incon-
sistent with the concept of mass curves.

This paper is structured as follows. Section 2 introduces
notation. In section 3 the simple scaling model for instanta-
neous rainfall intensities within a storm is presented. The
statistical properties of the total storm depth and incremental
storm depths, e.g., hourly depths, are derived in section 4.
In section 5 some important properties implied by the model
structure are compared with features of rainfall documented
in the literature. In section 6 the simple scaling model is
fitted to hourly data from 89 storms in Chalara, Greece, and
the performance of the model is evaluated in terms of its
ability to capture statistical properties not explicitly used for
model fitting. In section 7, two stationary models of instan-
taneous rainfall intensity are examined, and it is shown both
analytically and empirically that these models are not able to
reproduce some of the observed characteristics of storm
rainfall that the simple scaling model is able to describe. In
section 8 the connection of simple scaling models to mass
curves is examined, and it is shown that mass curves are
consistent with the hypothesis of simple scaling but are
inconsistent with the assumption of any stationary model for
instantaneous rainfall intensities. Finally, in section 9 the
scaling model is applied to generating synthetic storm hye-
tographs and mass curves which are shown to compare well
with the corresponding empirical ones. Some concluding
remarks are given in section 10,

2. TERMINOLOGY AND PRELIMINARIES

Let D denote the duration of a storm and &7, D), 0 = ¢ =<
D, the rainfall intensity process within the storm duration.
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Fig. 1. Definition of terms.

Let h(¢, D) denote the cumulative rainfall depth process
defined as

h(t, D)=fr &s,D)ds, 0<t=<D 1)
0

and X, (i, D) denote the incremental rainfall depth in the
interval ((i — 1)A, iA) i.e.,

iA
XA(i’ D) = J‘
(i- 1A

where k is the integer part of D/A (see Figure 1). It is
assumed that within a meteorologically homogeneous region
and season every storm of duration D can be considered as
a realization of an ensemble characterized by that duration.
Note that the process &(t, D) is a process of finite duration
(0 <= ¢t = D), and thus its ensemble average is, in fact, a
function of the duration D.

Let n,(¢, D) denote the ensemble average of &1, D), i.e.,

n¢(t, D) = E[£(¢, D)] (3)

and R (¢, t5; D) the second-order product moment of £(z,
D) in the interval of a storm event, i.e.,

R(ty, t3; D) = E[£(1y, D)é(ta, D)] 4)

g, D)ydt  i=1,2,-,k (2

0<t,t,=<D

where again expectation refers to ensemble average. The
covariance function of &1, D) is then given as

Cy(ty, t3; D) = Cov [£(t;, D)é(ty, D)) = R(ty, 125 D)
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In a similar manner we define the statistical properties of the
cumulative depth process h(t, D), i.e., n,(¢, D), Ry(zy, #5;
D), and C,(t;, t,; D), and those of the incremental depth
process X, (¢, D) i.e., nXA(i, D), Ry, i, J; D), and Cy, (1, J;
D).

3. ScALING MODEL OF STORM INTENSITIES

The hypothesis is set forward that the process of instan-
taneous rainfall intensities within a storm, i.e., £&t, D), 0 =<
t = D is a self-similar (simple scaling) process with scaling
exponent H, i.e.,

d
{£(1, D)} = {2 "Hg(ar, AD)} (6)

where the above equality is in terms of the finite-dimensional
probability distribution, i.e.,

Prié(ty, D) =xy, -+, £(ty, D) =x,]
=Pr[A "HgAt, AD) = xy, -+,
ATHe(At,, AD) = x,], N
O0=st,--,t,=D

(see, for example, Lamperti [1962], where, however, infi-
nite-duration stochastic processes are considered). Conse-
quently, the kth moment of &(r, D) is given as

E[£(r, D)¥] = A “HE[£(A1, AD)Y] (8)
and the (&, /) second product moment as
E[&(ty, D)*&(ty, D))

= A "H&TDEE(A ey, ADYE(ALy, AD)] ()

An intuitive feeling of the notion of scaling in (6) can be
obtained from Figure 2 where, for example, if D, = AD,
then under appropriate scaling of time, i.e., 1, = At;, the
statistical (ensemble) properties of the rainfall intensity in
storms of duration D, are related to the corresponding

£(t,D)

t=D

Fig. 2. Schematic for explanation of scaling.
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statistical properties of the rainfall intensity in storms of
duration D according to (7).
It is noted that by setting A = 1/D in (6) we obtain

d
{e(r, D)} = {DHe(iD, 1)}

where £(t/D, 1) represents the intensity process of a storm
event normalized to unit duration. It is then realized from
(10) that the hypothesis of scaling implies that the statistical
properties of the rainfall intensity in storms of any duration
can be obtained by appropriate scaling of the statistical
properties of the rainfall intensity in a storm normalized to
unit duration.

For reasons of simplicity we will assume that the process
&, D) is stationary within a storm event, i.e., the finite-
dimensional distribution function is invariant to time trans-
lation within a storm,

(10)

d
{€(t, D)} = {£(r + 7, D)} O<t,t+1=<D (n

Note that this is a weak stationarity condition in that it
represents stationarity of £(¢, D) only within storm events of
a fixed duration and not over any storm independent of
duration (or over the whole time axis), which would imply

d
{&(0} = {&(t + 1)}

as most available rainfall intensity models, e.g., the Ney-
man-Scott model, assume.

The weak stationarity assumption (11) should not be
considered as a structural constraint of the simple scaling
model but rather as a convenient simplification. The data
examined, as well as other data [e.g., Grace and Eagleson,
1966, p. 90], are not far from this assumption. Note that this
assumption results in a ‘‘mean’’ mass curve which is a
straight line. Apparently, however, any mass curve derived
by the use of the model as a realization of a stochastic
function characterizing the mass curves (see development in
section 8 and application in section 9) will not be a straight
line, but it will have a nonlinear shape in agreement with
empirical evidence.

Under our assumption the ensemble statistical properties
of the process £(¢, D) do not depend on ¢ for a given duration
D, and the ensemble statistical properties of £&t/D, 1) are
independent of ¢+ and D. Let us define as ¢, the ensemble
mean of the process &t/D, 1), i.e.,

(12)

cy = E[¢(1/D, 1)] (13)
Since £(t/D, 1) is stationary we also define
& (r/D) = E[£(t/D, 1)E((r + 7)/D, 1)] (14)

Based on the above relations and (6) the ensemble statistical
properties of &1, D) can be written as

E[£(t, D)] = ¢,D¥ (15)
Cr: D) = Cov [£(1, D), &(t + 7, D)]
= (¢(r/D) — cHD* (16)

These equations imply that under the hypothesis of simple
scaling (equation (6)) and the assumption of stationarity
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within an event (equation (11)) the statistical properties of
&, D) can be obtained from the statistical properties of the
normalized to unit duration process &1t/D, 1) and a scale-
changing transformation which is a power law of the storm
duration. Note that the mean of the rainfall intensity process
depends on the duration according to a power law with
exponent H, while the covariance of the rainfall intensity
process is also a power law of duration with exponent 2H.
Higher product moments follow similar relationshios as
implied by (10).

4. PROPERTIES OF TOTAL AND INCREMENTAL
STtoRM DEPTHS

To be able to test the hypothesis of scaling for &+, D)
using available rainfall data, the statistical properties of
incremental and total storm depths need to be derived. In
this section we show that both total storm depths h(D, D)
and incremental storm depths X 4 (i, D) follow simple scaling
laws, and expressions for their mean and covariance are
derived.

4.1.

It can be shown (see Appendix A) that under some rather
mild restrictions on the covariance of £+, D) the cumulative
rainfall depth process h(t, D) is also a simple scaling process
with exponent H + 1, i.e.,

Cumulative and Total Storm Depths

d
{h(t, D)} = {A "H* Dp(ar, AD)} a7

Setting tr = D and A = 1/D in the above equation we obtain

d
={p"* ', 1)}

{h(D. D)} (18)
Noting that E[A(l, )] = ¢, and defining
¢, = Var [A(1, 1] (19

we can write the ensemble mean and variance of the total
storm depth as

E[h(D, D)]=c¢,DH*! 20)

Var [h(D, D)] = ¢, D*#+ D (21)

Note that as a result of the simple scaling model for rainfall
intensities, the coefficient of variation of the total storm
depth is constant and equal to (c,) ”Z/c,.

4.2. Incremental Storm Depths

The incremental storm depth at discrete time r = i, i.e.,
XA(i, D) defined in (2), can be written as the difference of

cumulative storm depths as
Xa(i, D) = h(iA, D) — h((i — 1)A, D) 22)

In view of the scaling of h(r, D) (equation (17)) the discrete-
time incremental depth process X (7, D) is also scaling, i.e.,

d
{Xali, D)} = {A"H* DX, (ri, AD)} (23)
It is easy to show that the ensemble mean of X (i, D) is

E[X (i, D)) = c,AD" = ¢,6D" *! (24)
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where 8 = A/D. After some algebraic manipulations (see
Appendix B), one can derive the variance of X, (i, D) as
Var [X,(i, D)] = [(0; 8) — c]8%IDXH* D (25)

where
(0; 8) =2 fs S(y)(5 = y) dy (26)
0

Similarly (see Appendix B), the covariance can be derived as

Cyx,(m; D) = Cov [X,(i, D), X,(i + m, D)]

=[¥(m; 8) — ¢} ID*H*V  (27)
where
mé
y(m; 8) = f (y —(m—1)8)d(y) dy
(m-1)8
(m+1)8
+J' (m+1Ds-Né(Ndy m>0 (8
mé
The autocorrelation function can then be written as
P(m; 8) — c?s?
D) s ——————- 29
pXA(m ) w(o’ 6) _ (31282 ( )

It is interesting to note that as a manifestation of the scaling
hypothesis for &t, D) the autocorrelation function of the
incremental depth process depends on 8 = A/D, that is, on
the integration interval normalized by storm duration, and it
does not depend directly on the storm duration or the
integration interval, nor on the scaling exponent H.

5. DiscussioN oF MODEL PROPERTIES AND
RAINFALL FEATURES REPORTED
IN LITERATURE

Before we embark on the details of fitting the proposed
model to a specific data set and evaluating its performance
(section 6) as well as theoretically and empirically comparing
it to stationary models (section 7) we prefer to provide a little
more insight into some important properties implied by the
model structure and compare these properties with features
of rainfall documented in the literature, Particularly, we will
focus on the average intensity of a storm, the coefficient of
variation of the total storm depth or the average intensity,
and the correlation structure of incremental depths. Later, in
section 8, we will examine the model consequences regard-
ing the normalized mass curves. In both sections we will
illustrate that the proposed model, in spite of its novel
mathematical formulation, describes adequately well-known
features of rainfall and is in agreement with some models
while in disagreement with others.

5.1. Average Intensity of Storm

As results from (20), the time average intensity of a storm
(D) is a function of the duration with expected value given
by

E[RD)] = ¢,D¥ (30)
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The model allows H to take either positive, zero, or negative
(but greater than —1) values. In the first case we have a mean
intensity which is an increasing function of duration, while in
the second the mean intensity is constant and independent of
duration. The third case seems to be the most frequent, since
a negative correlation of duration and mean intensity is quite
common as will be discussed below. Note in that case that
when D — 0t is easily shown that all the statistical moments
of both the iustantaneous and time-averaged intensity tend
to . However, this is not a problem since the total depth
h(D, D) — 0, as follows from (20) and (21). Thus with H <
0 when D = 0 we have a rainfall impulse with an infinite
intensity but zero total depth, which seems to be reasonable.
Recall that other models (e.g., Poisson white noise model,
Neyman-Scott white noise model [see Rodriguez-Iturbe et
al., 1984]) use the concept of rainfall impulses with zero
duration.

The dependence of total storm depth or mean intensity on
the duration of a storm has been investigated in several
earlier studies. For example, Grace and Eagleson [1966]
have studied summer storm data of Truro, Nova Scotia, and
St. Johnsbury, Vermont. After classifying the storms in
three types (trace, moderate, and peaked storms) they
established linear regression relationships between storm
depth and duration of the form (keeping the notation of the
present study)

E[h(D, D)]=aD + b 31)
where a and b are parameters estimated by linear regression
using all the data of each type. From this equation it follows
that

E[i(D)]=a + b/D 32)
which is a hyperbolic form not practically different from (30)
(as shown in their figures the power relationship might be
used as well). Depending on the sign of b, the mean intensity
can be a decreasing (b > 0) or increasing (b < 0) function
of D. In five of the six cases studied by the authors (two
stations times three types), b was positive, which corre-
sponds to a negative scaling exponent H, and in one case b
was negative, which corresponds to a positive H. Quite
similar is the analysis of Woolhiser and Osborn [1985]).
Closer to the present study is the approach and the findings
of Hershenhorn and Woolhiser [1987], who studied a 23-year
data set of summer (July and August) storms from a rain gage
at Walnut Gulch Experimental Watershed, Arizona. In order
to determine the conditional distribution of duration given
the storm depth, they adopted a linear regression relation-
ship between logarithms of depths (minus a lower threshold)
and durations. This relationship is equivalent to a power
relationship of the untransformed quantities similar to (20).
A conclusion on the correlation between mean intensity and
duration does not result directly from their study (the
regression made concerns duration versus depth; the con-
verse regression is not seen in their paper). However, it
seems that there is a positive correlation between duration
and intensity (intensity increasing with duration), which
corresponds to a positive scaling exponent.

The above literature findings as well as the proposed
scaling model are in disagreement with any stationary
model, i.e., a model which does not assume any dependence
of instantaneous or incremental rainfall intensity on the
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duration (see also section 7). In the case of a stationary
model the mean intensity is obviously a constant, indepen-
dent of duration. This may seem at first view as a special
case of the scaling model with zero scaling exponent. How-
ever, as will be shown later, the scaling model is structurally
different from any stationary model.

5.2. Coefficient of Variation of Storm Depth
or Average Intensity

As pointed out in section 4.1, a consequence of the scaling
assumption is that the standard deviation of the total storm
depth (or, equivalently, of the average intensity) is ex-
pressed as a power law of duration. This power law is
exactly the same as the power law of the expected value of
the depth (or average intensity) versus duration. Thus the
coefficient of variation is constant and equal to (c,)'?/c,.
As will be shown later, this property is strongly supported by
the data used in this study (see Figure 4). In addition, this
property is consistent with other data sets and models of the
literature.

Grace and Eagleson [1966], in order to describe the
residuals from the mean storm depth given the storm dura-
tion, adopted a relationship of the form

h(D, D) — E[h(D, D)]
=cW-1
E[h(D, D)]

(33)

where ¢ is a constant and W is a beta-distributed random
variable, independent of D. Obviously, this form leads to a
constant coefficient of variation of A(D, D), independent of
D.

Eagleson [1978], using a data set from Boston and assum-
ing that the average intensity and duration are independent
random variables with exponential distributions, determined
the marginal distribution of the storm depth in terms of a
modified Bessel function of the first order. A similar assump-
tion was made by Bras and Rodriguez-Iturbe [1976] in order
to construct a rainfall generation model. They assumed that
the distribution of the total depth (averaged over an area)
conditional on duration is given by an exponential function
of the average intensity. This implies that the average
intensity is independent of the duration and exponentially
distributed. The assumption of an average intensity indepen-
dent of the duration apparently results in a constant coeffi-
cient of variation of the total storm depth as is easily
obtained from A(D, D) = iD. In fact, this assumption can be
considered as a special case of the scaling model with zero
scaling exponent.

On the contrary, no stationary model can yield a constant
coefficient of variation for total storm depth. Indeed, any
model of this category would imply

E[h(D, D)] = ,D (34)

where 7, is the mean instantaneous intensity, and if a
constant coefficient of variation is hypothesized then it is
required that

E[h(D, D)*] = n,D* (35)

where 7, is a constant. However, as is proved in Appendix
C, the last equation is impossible for a stationary model,
except for the case where the instantaneous intensity is
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constant with zero variance, which has no interest or phys-
ical meaning.

5.3.

Another important consequence of the scaling model is
that the autocorrelation coefficient for a certain lag is an
increasing function of storm duration. Indeed, from (29) we
obtain, for example, that px,(1; D) = px,,(1; 2D), which
means that the lag-one autocorrelation coefficient of hourly
data in a storm of duration D is equal to the lag one
autocorrelation coefficient of 2-hour data in a storm of
duration 2D. Since, normally, the autocorrelation increases
with decreasing lag, it follows that the lag one autocorrela-
tion coefficient of the hourly data in a storm of duration 2D
is greater than the lag one autocorrelation coefficient of the
hourly data in a storm of duration D. Thus the lag one
autocorrelation coefficient is an increasing function of storm
duration, and this is also true for coefficients of higher lags.

As will be seen in the next section the hourly data we
analyzed support this property. To the authors’ knowledge,
this property has not been discussed elsewhere in the
literature, though it is not associated with the scaling model
only. This property can be considered simply as a conse-
quence of the constant coefficient of variation of the total
storm depth, which was discussed earlier. As a simplified
example, consider the disaggregation of the total depth into
incremental depths X, for a time increment A and assume a
Markovian dependence between X, with lag one correlation
coefficient equal to p. Also consider that the average inten-
sity is independent of D. In this case we have

Autocorrelation Structure of Incremental Depths

> Cov [Xs(DXa(D]= (- n)D?  (36)
I1=<ij=<D/A
or
DIA-1 D/A
DIA+2 > > o7 Var [X,] = (n; - n])D?
i=1 j=i+1
37
and after algebraic manipulations
2p[(D/IAY(1 — p) — 1 + pP'
pia + 2L TP
(1-p)
“Var [X,]=(n, - n))D?  (38)

In (38) we observe that the left-hand side depends linearly on
D (considering that p?’2 is very small) while the right-hand
side depends on D2. Thus we conclude that either p or Var
[X,] should be an increasing function of D.

Another interesting point to note is that the theoretical
autocorrelation coefficient of the incremental process is
allowed to take on negative values (see equation (29)), a
property exhibited by rainfall data of this study and others
[e.g., Grace and Eagleson, 1966, pp. 91-92] but not allowed
by many stationary models as will be discussed in section 7.

6. MoDEL FITTING AND PERFORMANCE EVALUATION

6.1.

In section 4 the covariance function of X,(i, D) was
derived in terms of the covariance function of &¢, D). In

Model Fitting Procedure
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order to be able to fit the model to incremental rainfall depths
a parametric form for the covariance function of &(¢, D)
must be specified and the covariance of X, (i, D) must be
consequently derived. As is recalled from (16) the covari-
ance function of &, D) involves a power function of
duration D and a function ¢(7/D) of the normalized lag.
Here we assume the following power law form for ¢(y):

d(y) =ky P (39)

which implies the following power law second product
moment for £(¢, D):

Ry(r; D)= kDP*2H "8 (40)

Note that this is in contrast to stationary rainfall intensity
models for which the above product moment would be a
function of lag 7 only and not duration.

Based on this and after the computation of the integral in
(26) it is shown that

Cx,(0; D) = Var [X,(i, D)]

= DX+ Ds2ok/[(1 - B)2 - B)16 P -]}
(41)

By considering Cx, (0; D) from the above equation (by
setting & = 1) and equating it to (21) one can see that the
parameters k, 8 of the covariance function of &¢, D) are
related to ¢, and ¢, by

¢+ ¢l =21 - B)(2 - B)]

By computing the integral in (28) the covariance function of
the incremental storm depths is

(42)

Cx,(m; D) = D * V§[(c; + c))8 Pflm, B) - cf]

(43)
mz=0
where
fim, B)=[m=1)>"P+(m+1)? P2 —m?~#
(44)
m>0
flo, By =1 (45)
Consequently,
px,(m; D)= (c2 + ) flm, ) - ci (46)

(ca+ e8P —¢c?

The model thus has four independent parameters H, ¢,
¢3, and B (note that k is not an independent parameter, since
it is related to the others by (42)) which in the empirical
analysis that follows were estimated from the following
relationships:

E[h(D, D)} = c,DH*1 47
Var [A(D, D)} = c,D*#* 1 (48)
1+ cyfcDs 82! 7P ~1) -1
PxA(IZ D)= ( calcy) ( ) 49)

(1+cycHs P -1

KoUTSOYIANNIS AND FOUFOULA-GEORGIOU: SCALING MODEL OF A STORM HYETOGRAPH

From the first relationship, ¢; and H can be estimated by
least squares, and ¢, and B can be estimated from the second
and third relationship, respectively (see also next subsec-
tion). Then using (42) the parameter k£ can be obtained. To
further evaluate the model performance based on properties
not explicitly used for model fitting, the mean, variance, and
autocorrelation function of the hourly rainfall depths for
storms of different durations were estimated and compared
to the theoretical values for the fitted model (equations (24),
(41), and (46), respectively).

6.2. Performance Evaluation

The data used to implement the scaling model for &(¢, D)
consist of hourly rainfall depths for a total of 89 storm events
of duration greater than or equal to 2 hours. All events
occurred during April and during 13 years of record (1971-
1983) at the Chalara station (latitude 40°39’'N, longitude
21°14'E, elevation 880 meters above sea level) in the Aliak-
mon River basin, province of Macedonia, Greece. The rain
recorder of this station is a weekly drum chart type with a
rain depth resolution of tenths of millimeters. Due to ab-
sence of tabulated data, the charts were manually digitized
under the authors’ supervision. The set of one month (and
not the complete annual sample) was used in order to avoid
possible nonhomogeneity of the rainfall properties due to
seasonal variability. The reason for the selection of April is
that this month is characterized by a sufficiently high fre-
quency of rainfall events leading to an adequate sample size,
and, at the same time, the temperatures are greater than 0°C,
thus preventing the rain recorder from freezing and leading
to inaccurate data, which is not the case for previous
(winter) months.

Events were identified based on the assumption of inde-
pendence between events. This amounts to testing for a
Poisson process of storm arrivals or exponential distribution
for interarrival times. A Kolmogorov-Smirnov test was used
for this purpose. Thus events were allowed to include
periods of zero rainfall. Starting with a trial value of the
maximum zero rainfall period allowed in an event (or,
equivalently, the minimum period for separating an event
from the preceding and succeeding ones), a record of inter-
arrival times was constructed and tested for fitting an expo-
nential distribution at a 50% significance level. With an
iterative application of this method, the minimum zero
rainfall period separating two events was found equal to 7
hours. This is very close to the arbitrary value adopted by
Huff [1967], i.e., 6 hours. The 89 storm events had durations
varying from 2 to 45 hours with a mean duration of 11.8
hours. General characteristics of the set of storms used are
given in Table 1.

The meteorological conditions responsible for the genera-
tion of the 89 storms of April belong to several types.
According to a classification of the weather types in Greece
by Maheras [1982; also unpublished data and personal
communication, 1992], 37% of the 89 events belong to SW1
type, i.e., passage of a depression possibly accompanied by
a cold front (and rarely a warm front) having SW orbit.
Twenty-four percent of the events are produced by SW2
weather type, i.e., passage of a depression originating from
the Sahara desert. Thirteen percent are produced by a
special weather type (DOR) characterized by a cold upper
air mass (determined at the 500-mbar level) producing dy-
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TABLE 1. General Characteristics of the 89 Storms Used in the Analysis
Standard
Minimum Maximum Mean Deviation
Duration, hours 2 45 11.8 8.9
Interarrival time, hours 10 470 101.3 106.2
Total depth, mm 0.3 38.9 7.5 7.7
Mean intensity, mm/h 0.1 2.55 0.69 0.48
Hourly depth, mm 0.0 8.2 0.64 0.93

namic instability. Also 11% and 6% of the total events are
produced by NW1 and NW2 weather types, respectively,
characterized by depressions and/or fronts with NW orbits.
The remaining 9% of events are produced by the other four
of the total 16 weather types of this specific classification.
The orography of the region (North Pindos mountains) plays
an important role in all regional rainfall phenomena. It was
found that storm durations and depths of the examined data
set are uniformly distributed in each of the above five most
frequent weather types (SW1, SW2, DOR, NW1, and NW2),
with the likely exception of the DOR type, which is charac-
terized by slightly higher durations and depths. Thus no
special treatment of the events classified by weather type
was done, though one could consider application of the
model to different types of storms with different parameter
values (obviously, this would require a large set of data).

To be able to estimate ensemble statistics, the 89 storms
were grouped in five classes (1-5) according to their duration
as shown in Table 2. For example, class 1 includes all 14
storms with duration 2 and 3 hours, and class § all 17 events
with duration between 19 and 45 hours. The basis for
selecting this grouping was to have approximately the same
number of events in each class. To each class a duration was
assigned equal to the mean duration of all events in that
class. The events were further grouped into two larger
classes (A and B) where class A includes all 39 events of
classes 2 and 3 and class B all 36 events of classes 4 and 5.
Again the mean duration of each class was used as a
representative duration of that class, and events in classes A
and B were used to estimate the ensemble autocorrelation
functions for two different storm durations. The enlarged
size of classes A and B was necessary in order to achieve
reliable estimates of the autocorrelation coefficients for large
lags.

Because there is variability in the durations of the events

TABLE 2. Classification of Storms According to Their Duration

Number of Total Number
Events of Hourly

Class Dmin Dmax B Op (N] ) DCpthS (Nz)

1 2 3 22 04 14 31

2 4 7 54 1.2 20 108

3 8 11 9.7 1.1 19 184

4 12 18 142 19 19 269

5 19 45 27.1 6.2 17 461

A* 4 11 7.4 2.4 39 292

Bt 12 45 203 7.9 36 730

Total 2 45 11.8 8.9 89 1053

The storms in each class were used to estimate the ensemble
statistics of that class.

*Class A consists of classes 2 and 3.

tClass B consists of classes 4 and S.

of each class around the mean duration D assigned to that
class a correction procedure was applied (when necessary)
in estimating the variance of the total depth in each class.
This correction consisted of subtracting from the calculated
variance the quantity o3(k? + k%) where o} is the variance
of the durations in that class and k,, k, are constants
obtained from the linearization of the mean and standard
deviation of total depths, respectively, in the neighborhood
of D, i.e., E[h(D, D)] = k; D and {Var [h(D, D)]}'? =
k,D (the proof for the appropriateness of the above correc-
tion is omitted). For the scaling process we have ¢, D*! =
kD and c,D*H*V =~ k25? and thus the correction applied
was

ob(ct+ c) D (50)
It was found that this correction was negligible for all classes
except the class with the larger durations (class 5). The
necessity of such a correction implies an iterative process for
the estimation of ¢, (one iteration is usually sufficient).

Based on the parameter estimation procedure discussed in
the previous section the following parameter estimates were
obtained for this data set:

A=-020 2,=1.05 ¢,=0.44 p3=0.32 (61))
For these parameters the value of k is £ = 0.88. The
parameters H and c; were estimated by least squares on the
power relationship of the mean total depth of each of the five
classes versus the mean duration of the class (equation (47)).
Then ¢, was estimated as the average over all classes of Var
(h(D, D)l/ID?*#H+D (equation (48)). Finally, B was estimated
with an iterative procedure for best fit of the theoretical
curve of py,(1; D) (equation (49)) to the empirical lag one
correlation coefficients of all classes (see Figure 5).

The empirical mean and standard deviation of total storm
depth as a function of duration as well as the theoretical
curves from the fitted model are shown in Figure 3. Figure 4
shows the empirical coefficients of variation of the total
storm depth, which is almost independent of duration, and
the theoretical coefficient of variation, which is constant and
equal to (c,)"?/c, = 0.63. The empirical and theoretical lag
one autocorrelation coefficients of hourly rainfall depths are
shown in Figure 5 as a function of storm duration. Although
deviations between the empirical and theoretical values are
observed, the model captures the general behavior of the
empirical data, and when 90% approximate confidence in-
tervals (computed by using the Fisher-Z transformation for
the autocorrelation coefficient) were positioned around the
theoretical values only one of the five values was outside the
confidence intervals as statistically expected. Note that the
empirical autocorrelation coefficients were calculated inde-
pendently of any other estimated or theoretically anticipated
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Fig. 3. Scaling model: empirical and theoretical means (squares

and solid line, respectively) and standard deviations (triangles and
dashed line, respectively) of total storm depths as a function of
storm duration (log-log plot).

parameters, by considering all possible pairs (with a fixed
lag) of hourly depths located in each of the events of a
specific class.

To check the performance of the model we computed the
empirical and theoretical mean and standard deviation of the
hourly rainfall depths for different durations (shown in
Figure 6) and the autocorrelation functions for classes A and
B (shown in Figure 7). It is seen that the scaling model
performs reasonably well in terms of capturing statistical
properties of total and incremental storm depths in storms of
different durations. The largest departure of the empirical
statistics from the theoretical ones are found for the standard
deviation of storms of duration 2-3 hours (see Figure 6).

Apparently, other interpretations of the examined data set
are possible, and other models can be used to capture the
statistical structure of the data. For example, motivated by
Figure 6, one can consider that the data point from the
smallest duration is anomalous and, for medium and long
durations, rainfall intensity is independent of duration and
rainfall depth does not scale with duration. However, the
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Fig. 4. Scaling model: empirical (squares) and theoretical (solid
line) coefficient of variation of total storm depths as a function of
duration,
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Fig. 5. Scaling model: empirical (squares) and theoretical (solid
line) first autocorrelation coefficient of hourly rainfall depths as a
function of duration. Dashed lines represent the 90% approximate
confidence limits.

selection and fitting of the scaling model must be considered
as a whole, i.e., with simultaneous regard to all properties of
the total and incremental storm depths. In that respect, the
model’s ability to capture the power function of the variance
of the total depth or the constant coefficient of variation
(Figures 3 and 4) and the increase of the autocorrelation
coefficients with duration (Figures 5 and 7), is worth noting.
As will be seen in the next section, it is not easy to find an
alternative simple model capable of capturing these second-
order properties, although any model can perform well with
first-order properties (i.e., expected values).

It should be noted that the above adopted parameter
estimation procedure depends on the selection of classes,
which raises a source of subjectivity and nonrobustness.
Another weakness of the procedure may be the estimation of
the two parameters H and ¢, from only the mean values of
the total depth, while they also appear in the equations for
variance of total and incremental depths, and autocorrela-
tion coefficients of the incremental depths. A more robust
parameter estimation procedure is a feasible future improve-
ment of the model. Finally, it is worth noting that the
developed model should not be considered a very detailed
and general model that can explain perfectly all properties of
the examined data set as well as of any other data set. The
authors are well aware of the fact that the rainfall structure
exhibits a wide variety of patterns in different regions of the
world or even in the same region under different weather
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Fig. 6. Scaling model: empirical and theoretical mean (squares
and solid line, respectively) and standard deviation (triangles and
dashed line, respectively) of hourly rainfall depths as a function of
duration.
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respectively).

conditions, thus making it impossible to develop a single
model applying to all situations. The proposed model is
better to be viewed as an improved alternative to the simple
stationary models, itself still having a simple structure (in
spite of the somewhat complicated mathematical deriva-
tions) and being characterized by parsimony of parameters.
It is emphasized that the model has only four parameters
while other detailed models can have even tens of parame-
ters (e.g., the model of Woolhiser and Osborn [1985] which
has a total of 26 parameters).

7. CoMPARISON WITH STATIONARY MODELS

In this section we derive the statistical properties of total
and incremental storm depths for two simple stationary
models, i.e., models satisfying (12), and demonstrate both
analytically and empirically that these models are not able to
capture important statistical characteristics of storm rainfall
that the simple scaling model is able to capture.

7.1. Derivation of Statistical Properties

It is easy to see that

E[h(D, D)} = E{h(D)] = n\D (52)

E[X,(i, D)] = E[X ()] = n,A (53)

where n, = E[&(1, D)} = E[&1)]. T derive the expressions
for the variance and covariance of h(D) and X (i) we need
to specify functional forms for the autocorrelation function
of &(¢). The following two common models (power law and
Markovian) are examined:
Model 1

Ce(r, D)= Cylr) = k7P (54)
Model 2

Ce(r, D) = Cy(1) = kye B (55)

After algebraic manipulations it can be shown that for model 1

2%
Var [h(D)] = ; : 2= (56)

D
=82~y
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2k A2 B (<
— A D

Ta-gN2-py

1
PxA(m) =5[(m - B (m+ 1)2—31]_ mi- B
(58)

where 0 < B; < lifky >0 (or 1 < B, <2ifk; <0), as
becomes apparent from (56) and (54). Similarly, for model 2

Var [/(D)] = 2(k3/B})(B,D ~ 1+ e PPy (59)

Var [X,(0)] = 2(k3/1B3H(B,A — 1 + e #%)  (60)
(1 — e B4y2

px(m) =2 TRAmm DA (61)

(B2A — 1 + ¢ P24y

Note that in both of the above models the coefficient of
variation of the total storm depth is not contant but is a
function of the storm duration. For example, for model 1 the
coefficient of variation is {[2k,/((1 — B;)(2 — B NI
1}D ~#'%. This property of the model is in disagreement
with the empirical evidence (see section 5 and Figure 9) that
the coefficient of variation of total storm depths is constant
and independent of storm duration.

In the next section these two models are fitted to the data
from the 89 storms described earlier.

7.2. Model Fitting and Performance Evaluation

Both models have three parameters. Equation (52) can be
used to estimate %, using the sample of total depths.
Equations (58) and (61), when setting m = 1, can be used to
estimate B, and B,, respectively. The empirical lag one
autocorrelation coefficient used in these equations can be
calculated from the whole sample of hourly data. Finally, &,
and k, are estimated from (57) and (60), respectively, by
using the sample of total depths. The following parameters
were estimated for the above two models:

Model 1

7, =0.65 k,=0.61 B8,=0.51 (62a)

Model 2
71 =0.65 Ez =1.25 [32 =1.58 (62b)

Figure 8 shows the empirical and theoretical mean and
standard deviation of the total storm depths. It is observed
that both stationary models are not able to capture the
duration dependent structure of these statistics. This is
further verified by Figure 9, which shows the empirical and
theoretical coefficient of variation of the total storm depths
as a function of duration. The empirical and theoretical first
autocorrelation coefficient of the hourly rainfall depths is
shown in Figure 10 as a function of duration. As was
analytically seen from (58) and (61), the autocorrelation of
hourly rainfall depths is independent of the duration and
cannot obtain negative values. As the lag increases, p x,(m;
D) is always positive in (61), and if the ranges of 8, and k,
are as given in the previous subsection, this is also the case
for px (m; D) in (58). This is in disagreement with the
empirical observations (see, for example, Figure 10).

To further evaluate the model performance based on
properties not explicitly used in model fitting we evaluated
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Fig. 8. Stationary models: empirical and theoretical means

(squares and long-dashed line, respectively) and standard deviations
(triangles and short-dashed line for model I, solid line for model 2,
respectively) of total storm depths as a function of storm duration
(log-log plot).

the empirical and theoretical mean and standard deviation of
the hourly rainfall depths (equations (53), (57), and (60); see
Figure 11) and autocorrelation functions (equations (58) and
(61); see Figure 12) for models 1 and 2, respectively. These
figures together with Figures 8, 9, and 10 demonstrate the
superiority of the scaling model and the inability of the
stationary models to capture important statistical properties
of storm rainfall.

8. Mass CURVES

In this section we examine the concept of normalized mass
curves in reference to the scaling model and, also for
comparison, in reference to the stationary models. We will
see that the stationary models are incompatible with this
concept, while a scaling model can be compatible and, thus,
can provide a means for stochastically generating mass
curves for storms with independently generated totals. In the
next section we will see how the model can be practically
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Fig. 9. Stationary models; empirical (squares) and theoretical
(dashed line for model 1, solid line for model 2) coefficient of
variation of total storm depths as a function of duration.
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Fig. 10. Stationary models: empirical (squares) and theoretical
(solid line) first autocorrelation coefficient of hourly rainfall depths
as a function of duration. Dashed lines represent the 90% approxi-
mate confidence limits.

applied for the stochastic generation of storm hyetographs,
and, as a result of this application, we will observe that the
proposed model with only four parameters can be a rela-
tively good representation of the traditional mass curves
determined as a set of curves each corresponding to a
specific probability level.

The use of dimensionless mass curves, i.e., normalized
rainfall depth A*(¢/D) versus normalized time /D, implies
that a stochastic function A*( ) can be found such that

h(t, D) = h*(¢/D)h(D, D) (63)

where h(D, D) is a stochastic variable (the total storm
depth) apparently independent of ¢, whereas h*(¢/D) is a
stochastic function independent of both D and A(D, D)
satisfying 4*(0) = 0 and A*(1) = 1. A similar relationship
holds for the instantaneous intensity, that is,

&(r, D) = £*(4/D)ID) (64)

where £ ) denotes the derivative of A*( ) and (D) =
h(D, D)/D. Taking k moments in (63) and (64), we obtain,
respectively,

E{h(t, D)*] = E[h*(¢/D)*IE[R(D, D)]  (65)

E[£(t, DYX] = E[¢*(/D)*E[T(D)*] (66)
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Fig. 11. Stationary models: empirical and theoretical mean
(squares and long-dashed line} and standard deviation (triangles and
short-dashed line for model 1, solid line for model 2, respectively) of
hourly rainfall depths as a function of duration.
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Similar relationships hold for the (k, /) second product
moments, i.e.,

E[h(t), D)*h(t,, D)']

= E[h*(1,/D)*n*(t,/D)E[R(D, D)** 1] (67)
E[£(1,, D) (14, D)
= E[£*(1,/D)*&*(1y/D)E[AD)** "] (68)

Under the assumption of stationarity over time none of the
above relationships can hold. Consider, for example, model
1 for which

E[h(t, D)] = nt = n(¢/D)D (69)
Elh(t, D)*] = qft? + {2k/[(1 - B2 - BB~ #
= n(/D)*D? + {2k,/[(1 = B2 - B )]}
- (1/D)? " Pipr~ A (70)

It becomes apparent that for K = 2 no function h*(¢/D) can
be found to satisfy (70). A generalized proof of the incom-
patibility of any stationary model with the concept of mass
curves is found in Appendix D.

On the contrary, the self-similar models are not incompat-
ible with normalized mass curves. It is easy to show that if
the process £(¢, D) is defined by (64) (or, equivalently, if A(z,
D) is defined by (63)) and at the same time the dependence
between total depth and duration is of a power type, i.e.,

h(D, D) = DHW (71)

where W is a random variable independent of D (or, equiv-
alently, the logarithm of the total depth is linearly dependent
on duration), then &t, D) is a self-similar (simple scaling)
process, as defined by (6). The proof is obvious and will be
omitted. As we will see below, the reverse is not valid in all
cases, i.e., not any scaling model can satisfy (63) or (64) in a
strict and complete way. Nevertheless, (65) and (66) are
satisfied for any simple scaling model. Indeed, for a scaling
model

E[h(t, D)¥] = D*H * VE[h(1/D, 1)} 72)
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while
E[h(D, D)¥] = D¥H* VE[R(1, 1)}] (73)
Hence
E[h(t/D, 1)¥] :
Me——— D)* 74
E[h(t, D)¥] Elh(L, D] Elh(D, D)"] (74)
which is consistent with (65) since it results in
E[h(t/D, 1)F
E[h*(1/D)*] = [ ] (75)

E[A(1, D]

which is a function of only #/D. Equation (75) defines
completely the marginal distribution of A*( ) at every
dimensionless time position. Concerning the multivariate
distribution and joint product moments the situation is more
complicated. It can be shown that there exist simple scaling
models that satisfy (67) and (68), but this is not true for any
model. The problem originates from the constraint 2*(1) =
1 along with the requirement of full independence of h*(¢/D)
and h(D, D). In Appendix E it is proved that the assumption
of weak stationarity which was made for reasons of simplic-
ity (equation (11)) is inconsistent with (68). The task of
building a model fully consistent with the requirement of
complete statistical independence of A*(¢/D) and h(D, D) is
possible but implies mathematical complexity and inflexibil-
ity. So we preferred in this study to build a simple and easily
applicable model by reducing the requirement of complete
independence to that of orthogonality of h*(t/D)* an (D,
D)* (for k = 1, 2, -+ ). It is apparent that the condition of
orthgonality is assured by (65) which is valid for any scaling
model. As will be shown later (section 9 and Figures 13-14)
this compromise is practically negligible.

9. GENERATING STORM HYETOGRAPHS

The scaling model can be applied for generating storm
hyetographs at an incremental basis for any time step A. One
can recognize that the correlation structure implied by the
scaling model, even in the case of the weak stationarity, is
somewhat complicated and differs from the structure of a
typical linear model, i.e., an autoregressive moving average
(ARMA (p, q)) model. However, the introduction of a
nonlinear model for the generation is not necessary. Since
the consecutive storms are isolated and the number of
generation steps in each event is limited, a proper linear
model can be established to carry out the generation. Two
possible procedures are discussed below, both presuming a
given storm duration D. The first is a typical sequential
procedure where the incremental depths X, (i, D) are gen-
erated one at a time and the total storm depth A(D, D) is
then obtained by summation. The second is a disaggregation
procedure where a given total storm depth is disaggregated
into incremental depths. In both cases the scaling model is
utilized to determine the parameters of the generation
model.

Denoting X = [X,(1, D), X4(2, D), -+, Xalk, D)7,
where & = D/A (assumed to be an integer), the parameters
required for the generation of X are the first moments E[X]
given by (24) and the second moments Cov [X, X] given by
(27) or more specifically by (43). Also required is an assump-
tion about the marginal distribution. Here after examination
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of the data set of this study and in light of other studies the
two-parameter gamma distribution was adopted. The gener-
ation scheme for the sequential procedure can be based on

X=QV (76)

where £ = [w;;] is a kK X k matrix of coefficients and V =
[Vy, -, V.17 is a vector of mutually independent random
variables with unit variance and a three-parameter gamma
distribution function. The parameters of this scheme are
determined by the following equations which are easily
obtained:

Q07 = Cov [X, X] an
i—-1

wE[V] = E[X,(i, D)) = >, waE[V]  (78)
I=1
i-1

winslVil = wslXsli, D= X wiuslV]  (79)

=1

where u;[V;]is the third moment of V; and p3[X (i, D)] is
the third moment of X, (i, D) determined analytically from
the assumed marginal distribution. The £ matrix is consid-
ered as lower triangular and is computed by deconvolution
of QT

In the case of the disaggregation procedure, first one might
have to generate h(D, D) (if it is not already known). This
can be done by using (20) and (21) after assuming a distri-
bution function (a two-parameter gamma distribution was
adopted here).

Motivated by the concept of normalized mass curves, the
following procedure was adopted for the disaggregation: (1)
apply the sequential procedure as described above to obtain
an initial sequence X, (i, D), i = 1, -+, k; (2) determine a
normalized sequence X% (i, D) = X',(i, D)/S’, where §' =
> ,-’;, X, (i, D). This sequence determines a realization of a
dimensionless mass curve; (3) calculate the final sequence
X,li, D) = X\(i, D)h(D, D).

Both the above procedures have some sources of inaccu-
racy. The values of X,(i, D) generated by the sequential
procedure can be negative, a possibility arising either from
the three-parameter gamma distribution of V; or from pos-
sibly negative values w;. To avoid this, when negative
values X (i, D) are generated they can be set zero, a
correction consistent with the definition of a storm which
allows for zero incremental depths. Furthermore, the sum of
three-parameter gamma variables implied by (76) theoreti-
cally is not gamma distributed, though a good approximation
can be obtained by the introduction of third moments.
Finally, a third source of inaccuracy is expected in the case
of the disaggregation procedure due to the incomplete inde-
pendence of the total depth and normalized mass curve
discussed in section 8. To delimit such an effect during the
execution of the generation we can reject sequences X (i,
D) leading to a ratio A(D, D)/S' quite far from unity.

By using the parameter set of section 6 we applied both the
above procedures for generating 10,000 synthetic hyeto-
graphs on an hourly basis for a storm of duration of 20 hours.
A series of comparisons between theoretical values of sev-
eral statistics with the corresponding values obtained by
simulation were made. The examined statistics are first-,
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Fig. 13. Theoretical (solid line) and simulated (triangles) distri-
bution function of the incremental depth X, (10, 20) (the tenth-hourly
depth of a storm with duration 20 hours). The simulated distribution
is obtained (a) by the sequential model and (b) by the disaggregation
model.

second-, and third-order marginal moments, marginal distri-
butions, and autocorrelation coefficients of hourly depths.
All the comparisons (which are not presented here, except
for the following three examples) had satisfactory results.
Originating from this exercise, Figure 13 indicates the degree
of inaccuracy due to the first two of the above discussed
sources of inaccuracy in reproducing the distribution of the
hourly depths. It is shown that the deviation of the simulated
frequency curves from the theoretical ones is confined to
values of X,(10, 20) = 0.5 mm. The departures of the
disaggregation model-simulated curves are remarkably
smaller than those of the sequential model. Figure 14 shows
that both (sequential and disaggregation) procedures per-
form well in reproducing the covariance structure of hourly
depths as theoretically determined by the scaling method.
Note that Figure 145 corresponding to the disaggregation
procedure does not differ in performance from Figure 144
corresponding to the sequential procedure. This means that
the potentially expected inaccuracy due to the previously
discussed violation of the complete independence of A*(¢/D)
and (D, D) (we only satisfied orthogonality) is not substan-
tial and, consequently, this weakness of the model in being
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Fig. 14. Theoretical (solid lines) and simulated (symbols) corre-
lation structure of the incremental (hourly) depths for a storm of
duration 20 hours. The simulated structure is obtained (a) by the
sequential model and (b) by the disaggregation model.

fully compatible with mass curves does not appear important
for all practical purposes.

Finally, Figure 15 referring to the normalized mass curves
was constructed from hyetographs of the so-called [after
Huff, 1967] second-quartile group (i.e., hyetographs having
their heaviest part in the second quarter of their duration).
The curves presented are similar and were drawn with the
same method as proposed by Huff [1967) and correspond to
the 50% (median) as well as 10% and 90% probability levels.
Three groups of curves appear in Figure 15. First are the
synthetic curves computed at step 2 of the disaggregation
procedure from that portion of the hyetographs that belongs
to the second-quartile group. Second are the curves com-
puted from the historical data of this study. Specifically,
from the total historical sample, 19 storms of a total of 75
(about 1/4) were found to belong to the second-quartile type
{note that the storms of class 1, i.e., those of duration less
than 4 hours, were discarded since it was not possible to
identify the quartile they belong to). Due to the lack of a
sufficient sample size of historical data in April, we plotted
also a third group of curves from historical data of 140
second-quartile storms recorded at the same station Chalara
but for all months of the year. The third group of curves
originates from another study [Stylianidou, 1985}, The com-
parison plot shows that all three synthetic and historical
groups of curves are very close to each other without any
remarkable deviation (perhaps, except for the lower part of
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the 90% synthetic curve). Thus Figure 15 gives a good
indication that the scaling model with as few as four param-
eters can represent or summarize effectively the statistical
characteristics of a storm population otherwise given by a
family of curves. Additionally, note that the curves of Figure
15 are based on the assumption of weak stationarity, i.e., a
‘“‘mean’’ mass curve which is a straight line of uniform mean
intensity. However, as observed in Figure 15, the synthetic
curves (even the median curve) have nonlinear shape in
accordance with the historical curves. To understand this,
one must consider that the curves correspond to a portion of
the totally generated hyetographs conditionally selected so
as to have the main slope located at the second quarter of
their duration.

It must be emphasized that the above model is not a
complete rainfall generator but rather is a generator of
hyetographs of individual storms. However, it can be easily
extended to a complete generator by appending a component
for the storm and interarrival time durations.

10. CONCLUDING REMARKS

The developed simple scaling model for the temporal
structure of storm rainfall has a simple mathematical struc-
ture with only four parameters, but it explains reasonably
well the statistical properties of the examined historical data,
thus providing an efficient parametrization of storms of
varying durations and total depths. In addition, it is consis-
tent with, and provides a theoretical basis for, the concept of
normalized mass curves.

It was found that the scaling model is superior to the
examined stationary models, which were unable to capture
important statistical properties of storm rainfall and were
inconsistent with the concept of normalized mass curves.
Furthermore, the scaling model provides a stochastic non-
dimensionalization approach which is apparently superior to
the popularly used mass curves, because of the contraction
into a few parameters of all the information otherwise given

—
=
s
g
=
) IS S T O B
8 1B 20 30 4p 56 60 7P 80 90 100
t/D
Fig. 15. Comparison of historical and synthetic normalized

mass curves of second-quartile storms at Chalara station, province
of Macedonia, Greece, for 10%, 50% (median), and 90% probability
levels. Synthetic curves (thick solid lines) are obtained from a
simulated sample by using the disaggregation procedure. The two
groups of historical curves correspond to the records of April
(circles) and all months of the year (squares), respectively.
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by a family of curves and the implication of a stochastic
approach to storm hyetograph generation, which is not
possible by the traditional method of mass curves.

The proposed model, when combined with a stochastic
process of the storm arrivals (e.g., a Poisson process) and a
set of distribution functions for the rainfall duration and total
storm depth can give a complete rainfall generator at a point
or on an areal basis. Moreover, the scaling model alone can
be useful in hydrologic applications, such as in evaluation of
design storms, as an evolution of the concept of mass
curves.

Different configurations of the model can be obtained by
using, for example, different forms of the covariance func-
tion of the rainfall intensity. In addition, the weak stationar-
ity condition (i.e., stationarity within each storm), used here
as a convenient assumption, is not a necessary structural
constraint, and it can be removed or substituted in cases
where the historical data exhibit nonstationarities within
each event. A more robust parameter estimation technique
and model evaluation at time scales different than hourly are
feasible future improvements of the model.

APPENDIX A: SELF-SIMILARITY OF h(t, D)

Let us consider the (k, /) second product moment of
h(z, D),

E{h(t,, D)*h(2;, D)"}

k 1
=E[f‘g(s,mds j’g(q,mdq }
0 0
=fj f"..-f”E{f(s,,m
0 o Jo 0

e g(skr D)f(ql’ D) e g(qlv D)}

vdsy -+ dsidqy - dq (80)
Similarly,
E{h(rty, AD)*h(r1,, AD)Y
S e [ s a0
0 0 0 0
- €(sg, AD)é(qy, AD) - -+ £(qp, AD)} ds
-~ dsy dq,
Ny —
* (Ao, AD)E(AYy, AD) -
cEAYy, AD)AK T day o doy dyy - dy (81)

where the last equality has been obtained by setting s; = Ag;
and g; = Ay;. Note that this last equality would not hold if
n - d mamen antained Dira delta te i x
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E[&(s, AD)], and observing that if that term had the form
fs)8(s — so) then [ E[&s, AD)] ds = [¢' fis)8(s — s¢)
ds = f(s,) while the term obtained by substituting s = Ao
would give [{ E[&(Ao, AD)] A do = [§ flde)8(Ao — sp) A
do = AﬂSO) #ﬂSO).

In view of (9) the above equality can be further written as

E{h(At;, AD)*n(A1,, AD)Y}

h no[n £}
=/\k+’)tH(kH)J f f f E{¢(Aoy, AD)
0 0 Jo 0

*€(Aoy, AD)E(AY, AD) - -+ £(Ayy, AD)}
vdoy - dog dy - di, (82)
By comparing (80) and (82) we obtain
A"HEDKADE(R(A L, AD)*h(Aty, AD)Y}
= E{h(t,, D)*h(t,, D)}  (83)

This result can be similarly extended to the product mo-
ments of any order and thus we conclude that

d
{h(t, D)} = {A " * Dn(rs, AD)} (84)

APPENDIX B:
CoVARIANCE FUNCTION OF INCREMENTAL DEPTHS

From the definition of X, (i, D) in (2) we obtain
) iA
E{[X,(i, D)]} = .
(i-naJi-na

- E[&(ty, D)¢(ty, D)) dty dt,

iA A
=f J’ Rf(tl_tz; D) dt] dfz
(i-DA Ji-1nA

A
=J Ry(r; D)|A ~ 7| dr
-a

=2 fA R (r; D)A - 7) dr (85)
0

where the next to last equality results from simplification of
the double integral by setting r = ¢, — ¢, and observing that
the integration area is equivalent to |A — 7| dr with 7 varying
from —A to A, whereas the last equality comes from recog-
nizing that R,(7, D) is an even function of 7 containing no
concentrated masses. Substituting R .(r; D) from (16) in the
above expression we obtain

E{[X,(i, D))’} = D*¥* Vy(0; 8) (86)
where 6 = A/D and y(0; 8) is as defined in (26). From the
above the expresswn (25) can be easnly obtalned
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Ry (m; D) = E[XA(m + 1; D)X,(1; D)]

A {(m+ 1A
=f f E[&(1y, DYE(ty, D) dry dt,
0 mA

A [(m+1)A
=f f Rty — t5; D) dt, dt,
0

ml

=f'"A Re(r; D)(r = (m = 1)A) dr
{m- DA

(m+ 1)A
+
ma

- 7)dr

Rg(r; D)((m + DA

&7

Substituting R (7, D) from (16) and setting § = A/D we
obtain

Ry(m; D) = D*#*VDy(m; §) (88)

where y{m; 8) is defined in (28). Equation (27) for the
covariance function of X(i, A) is then easily obtained from
the above.

APPENDIX C: INCOMPATIBILITY OF STATIONARY
MopELS WITH SCALING PROPERTIES

The expected value of the storm depth in any stationary
model is given by

E[h(D, D)] = n,D (89)

where 7, is the mean instantaneous intensity. Let us exam-
ine the possibility that the second marginal moment is given
by a power function of D, i.e.,

E[h(D, D)*] = n,D° (90)

where 7, and 6 are constants. In the case of a stationary
model we have

D D
ELh(D, D)?] = f f ELE(t)€(tp)] diy dty
0 0

D (D
=f f RE(tl_tZ) df] dtz
0 0

where R ( ) is the second product moment for the instan-
taneous intensity &¢) (which is not a function of D). The last
double integral can be simplified [e.g., Papoulis, 1965, p.
325], and then equated to (90) to give

on

D
2 f RAr)D - 1) dr = 'nzD‘9 (92)
0

Taking the derivative of the above equation with respect to
D we get

D
2f R(1) dr = n,0D° ! (93)
0
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Taking derivatives once more and substituting D with 7, we
obtain the form of R (7), that is,

6(6—-1)
"72 2 T9_2

Ry(r) = >0 (94)

Besides, the variance of the storm depth is

Var [i(D, D)] = n:D? ~ n}D? = n{DH(nyn}D° "2 - 1](95)

Now we can observe that the case where 8 > 2 is impossible
since it implies that Var [hA(D, D)] would be negative for
some large D and, also, would yield a correlation function of
the instantaneous intensity increasing with lag 7, which is
unreasonable. Likewise, the case where 8 < 2 is also
impossible since it implies a negative Var [h(D, D)] for
some small D (though in this case we do not have any
problem with the autocorrelation function). Finally, the only
possibility with mathematical meaning is the case where 6 =
2. But, as results from (94), in that case R ( ) is constant
and, consequently, the instantaneous intensity would be
constant with zero variance, a case with no interest or
physical meaning.

APPENDIX D: INCOMPATIBILITY OF STATIONARY
MobpELS WiTH Mass CURVES

Here we examine the compatibility of stationary models
with mass curves in the general case. From (65) for k = 2 we
get

E[h(t, D)*] = E[h*(t/D)*)E[A(D, D)*]  (96)
Note that the left-hand side of (96), in the case of a stationary
model, is in fact a function of only 7. Thus denoting ¢(z) =
E[h(t, D)?] and ¢{A) = E[h*(A)?] we can rewrite (96) as

¢(AD) = ¢(A)p(D) (97
and since
¢(AuD) = ¢y(A)(uD) = ¢(A)p(n)d(D)  (98)
while at the same time
¢(ApuD) = (Au)$(D) (99)
we conclude that
w(Ap) = ¢(A)y(n) (100)

Thus

Pp(A)=A° (101)
for some constant 8. Furthermore, with the substitution of
(101) into (97) and after setting A = 1/D we get

¢(D) = n,D°* (102)

where the constant n, = ¢(1). Equation (102) is equivalent to
(90), and thus it cannot be valid with the exception of the
case that 8 = 2, which was described in Appendix C. We
conclude that any stationary model is incompatible with the
concept of normalized mass curves.
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APPENDIX E: INCOMPATIBILITY OF INDEPENDENCE
OF NORMALIZED AND TOTAL DEPTH WITH THE
WEAK STATIONARITY CONDITION

Starting with the obvious relation

f‘ £4(u) du = 1 (103)
0

written in the form

f5 & (u) du + jl EMu) du=1 (104)
0 8

where § is an arbitrary number (0 = § =< 1) we obtain that

s r

J Jé E[£*(0)6*(5)] du ds
1} [1]

_ f ! f " ELe*(w)e*(s)] du ds
8 8

- J ® ELe*w)] du - f ' Ele*w)] du

0 8

(105)

To prove (105), multiply (104) successively by the first and
second integral terms of its left-hand side, then subtract the
two obtained equations, and take expected values. It is easy
to show that (105) is inconsistent with the following concur-
rent equations:

E[£*(w)] = ¢} (106)
E[E*(u)€*(s)] = ¢*(|u — s)) (107)

where ¢ is an arbitrary constant and ¢*( ) is an arbitrary
function. Indeed, (107) implies that (see analogous cases in
Appendices B and C)

f ’ f * e w)er(s)] du ds = 2 f * $*(r)8 ~ 1) dr
0 0 0
(108)

f‘ fl E[£*w)é*(s)] du ds = 2 fl - ¢*(r)(1 - 6 — 1) dr
& /8 0

(109)
Thus (105) becomes
5 1-6
f &*(t)(6 — 1) dT — f d*(r)(1 —86—-1)dr
0 0
=ci(8 - 1/2) (110)
and, after taking derivatives with respect to 8,
ain

] 1-8
f ¢*(r) d7v — f oM7) dr =}
0 0

or
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F o*(7) dr = ¢ (112)
1-6

It is apparent that there is no function ¢*( ) consistent with
the above equation (except for the case ¢*(7) = 0). Thus the
function £*(r) cannot have concurrently both properties
(106) and (107). At the same time the assumption of weak
stationarity (equations (13) an (14)) along with (64) implies
that

E[£(t,, D)é(15, DY = D*¢([t) — 1,//D)

= E[¢*(1)/D)¢*(1y/D)ID)Y]  (113)

and, if £*(+/D) and i(D) are hypothesized independent, then

E[£*(t/D)&*(1/D)] = (it — t3l/DV(cy + ¢D)  (114)

which is equivalent to (107) with ¢*(u) = $(u)/(c, + Clz)_
We conclude that either £*(¢/D) and i(D) should not be
hypothesized independent (but only orthogonal) or the co-
variance function C (¢, t3; D) should not be considered to
be a function of (|t; — t,|/D). If one wants to keep the
complete independence assumption, one has to adopt a
complicated covariance function which adds considerable
complexity to the model.
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