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A Multicomponent Decomposition of Spatial Rainfall Fields
1. Segregation of Large- and Small-Scale
Features Using Wavelet Transforms
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Issues of scaling characteristics in spatial rainfall have attracted increasing attention over the last
decade. Several methods based on simple and multiscaling and multifractal ideas have been proposed
and parameter estimation techniques developed for the hypothesized models. Simulations based on
these models have realistic resemblance to ‘‘generic rainfall fields.”’ In this research we analyze
rainfall data for scaling characteristics without an a priori assumed model. We look at the behavior of
rainfall fluctuations obtained at several scales, via orthogonal wavelet transform of the data, to infer
the precise nature of scaling exhibited by spatial rainfall. The essential idea behind the analysis is to
segregate large-scale (long wavelength) features from small-scale features and study each of them
independently. The hypothesis is set forward that rainfall might exhibit scaling in smali-scale
fluctuations, if at all, and at large scale this behavior will break down to accommodate the effects of
external factors affecting the particular rain-producing mechanism. The validity of this hypothesis is
examined. In the first of these papers we develop the methodology for the segregation of large- and
small-scale features and apply it to a severe spring time midlatitude squall line storm. The second
paper (Kumar and Foufoula-Georgiou, this issue) develops a framework for testing the presence and

studying the nature of self-similarity in the fluctuations.

1. INTRODUCTION

A characteristic feature of precipitation is its extreme
variability over time scales of minutes to years and over
space scales of a few to thousands of square kilometers. One
of the major challenges of hydrologists, meteorologists, and
climatologists is to measure, model, and predict the nature of
this variability over different scales. Recent research (e.g.,
Lovejoy and Schertzer [1990], Gupta and Waymire [1990],
and references therein) has indicated the exciting possibility
that rainfall may exhibit scaling-multiscaling characteristics.
The presence of such a hidden structure in the highly
irregular patterns of rainfall at different spatial scales prom-
ises improved understanding of the precipitation process and
new approaches to efficient modeling, measurement, and
prediction.

Early on, empirical study of contours of rain intensities
[Lovejoy, 1982] and probability distribution functions of rain
rates [Lovejoy and Mandelbrot, 1985] suggested scaling in
rainfall. Later, it was argued by Kedem and Chiu [1987] that,
since rainfall is an intermittent positive process giving rise to
a mixed distribution with an ‘‘atom at zero,”’ it could not be
self-similar or simple scaling at least to the extent that a
single parameter would not be sufficient to characterize this
process. Lovejoy and Schertzer [1989] argued that although
the rainfall intensities suffer this limitation, the rainfall
fluctuations do not and they could be modeled as a self-
similar process. They, however, did not empirically study
the rainfall fluctuations for scaling characteristics but rather,
using an analogy from turbulence which is also an intermit-
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tent process, concentrated on further developing their mul-
tifractal models of rain [Schertzer and Lovejoy, 1987]. Gupta
and Waymire [1990] studied the moments of marginal distri-
bution function of rainfall process conditioned on being
positive and reported deviations from simple scaling. They
proceeded with the development of a multiscaling theory of
rain.

In this research the hypothesis is set forward that rainfall
can be decomposed in a large-scale component representing
the mean behavior of the process, and small-scale fluctua-
tions which exhibit self-similarity. The motivation for our
hypothesis is based on physical arguments and empirical
evidence. It has been observed that the spectrum of spatial
rainfall deviates from power law behavior at very low
frequencies (see Figure 1), indicating that it is the fluctuation
process (deviations from a large-scale mean component) that
may exhibit self-similarity, if at all. Notice here that we do
not refer to a possible break in the spectrum caused from the
lack of data at large scales but rather to a break due to the
physical nature of the process which itself has limited extent.
The very low frequencies in the spatial rain-intensity spec-
trum represent the morphological organization due to the
large-scale forcing specific to that rain producing mechanism
(for example, effects of a front on a squall line). When this
effect is subtracted, the deviations which result from the
microscopic effects may obey some universality condition
like self-similarity. It might also be that we can attribute
low-frequency components to a deterministic process that
should be eliminated before any stochastic consideration is
taken into account. In all of the previous research, such a
consideration of segregating large-scale from small-scale
behavior, has not been taken into account for the purpose of
analysis and inference of rainfall process. The reason for that
seems to be that although theoretical attempts have been
made to study rainfall fluctuations [e.g., Waymire, 1985]
there seems to be no consistent method of obtaining fluctu-
ations in two or more dimensions. Our research is an effort
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Fig. 1. Horizontal and vertical cross sections through the two-

dimensional spectrum of the temporally integrated (10 min) spatial
rainfall field shown in Figure 10.

toward this direction and develops a theoretical framework
for segregating rainfall in large- and small-scale features and
studying small-scale features (fluctuations) for self-
similarity.

In addition to segregation of features of different scales,
other distinct advantages of our proposed method of analysis
are as follows:

1. It can incorporate anisotropy and inhomogeneity. For
example, the analysis, interpretation and modeling under the
framework of muitifractals is based on the assumption of
homogeneity and isotropy. Schertzer and Lovejoy [1987]
developed a methodology to incorporate anisotropy to some
extent but the problem of inhomogeneity has not been
addressed successfully.

2. It offers a natural way of coupling the hierarchical
preferred organization known to exist in rainfall fields with
self-similar features of rainfall fluctuations. Prior to evidence
of scaling in rainfall, attempts were made to model it using
cluster point process models [see Waymire et al., 1984]
designed to preserve the second-order properties and mimic
the hierarchical imbedding and clustering of high-intensity
areas within lower-intensity areas identified as large and
small mesoscale areas, and cells [e.g., Orlanski, 1975]). The
preferred organization, clustering, and hierarchical imbed-
ding of rainfall patterns at a few discrete scales seems, at
least at first, to be inconsistent with the current scale
invariant modeling frameworks mainly for two reasons.
Since, scale invariance implies absence of any preferred
scales we can either have clustering and imbedding at all
scales or none at all. Second, most models are based on the
assumption of homogeneity and isotropy, and consequently
they may not be able to account for any preferential organi-
zation that rainfall may exhibit. No progress has been made
so far to unify these two approaches, although research is
currently underway to identify conditions under which mul-
tiplicative cascade processes could give rise to desired
clustering structures [Gupta and Waymire, 1993]. We offer
an alternate approach to this problem.

3. It offers a way of dealing with processes which do not
possess point values. Rainfall is not a continuous process in
either space or time. If one recalls the falling of raindrops on
a car’s windshield, one would recognize that at any instant of
time not the entire windshield is covered with rain, but over
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a period of time it does get wet everywhere. We distinguish
such a process by saying that it does not have point values;
i.e., values of the process at every point are not defined,
although the integral of the process at certain spatial and
temporal scales is still meaningful. Thus both spatial and
temporal scales of integration are important for the charac-
terization of the process. However, even for large scales of
integration, areas of no rainfall amidst rainy areas continue
to exist. We call such a process intermittent. Intermittency
gives rise to its own distinctive characteristics. For example,
the mean and the standard deviations of the process condi-
tioned on being nonzero change with the scale of description
making ‘‘scale’” an essential parameter in the description of
the process; i.e., we have to specify the scale of analysis
whenever discussing these properties. In addition to inter-
mittency, the absence of point values makes certain opera-
tions like derivatives meaningless for the rainfall field. One
has to rely on equivalent integral transforms, so as to have a
certain amount of ‘‘smoothing,”’ to accomplish the objec-
tive.

4. Itis ideal for studying the evolutionary behavior of the
storm. Our main interest is in analyzing and eventually
modeling particular storms, e.g., a squall line or a winter
storm, and not a ‘‘generic storm’’ derived from ‘‘averaging’’
over many realizations often obtained by invoking the as-
sumption of stationarity over time and homogeneity over
space. Thus being able to account for anisotropy and non-
homogeneity and identify how they characterize the features
of the rainfall process under study as it evolves in time is an
essential element of our analysis.

This paper deals with developing the methodology and
relevant mathematical results for the segregation of large-
and small-scale features. It is structured as follows. Section
2 outlines the proposed methodology and broad framework
of analysis and provides at an intuitive level the motivation
and justification for choosing wavelet transforms for the
decomposition of large- and small-scale features. Section 3
presents a brief review of wavelet transforms focusing only
on the mathematical results essential for our analysis. In
section 4, the theoretical framework of analyzing rainfall
fields through wavelet transforms is presented, and some
new results related to wavelet transforms of stochastic
processes are discussed. Section § illustrates the results of
the wavelet transform applied to actual rainfall fields for the
segregation of large- and small-scale features. The compan-
ion paper [Kumar and Foufoula-Georgiou, this issue] devel-
ops a framework for testing the presence and studying the
nature of scaling exhibited by rainfall fluctuations.

2, METHODOLOGY

In this research we assume that the observed rain rate
process R(t), described on the two-dimensional space t =
(t;,15) € R?, is a composition of two independent processes
X(¢t) and I(t), and is given as R(t) = X(t)I(t), where I(t) is a
0-1 valued intermittency random field and X(t) is a positive
“‘inner variability’’ field (this terminology is due to Baran-
court et al. [1992]). The essential idea of our frammework of
analysis of rainfall for identifying self-similarity is to break
up the nonhomogeneous inner variability field X(t) as

X)) =X(t)+X'(v) 1

where X(t) is some large (mean or trend) process and X'(t) is
a fluctuation process such that X(t) and X'(¢) are uncorre-
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lated. In the above decomposition the statistics of X(t) are
broken up in a very tractable manner. For example, the
mean and the variances (expectations taken over ensembles)
are additive, i.e., m(t) = M(t) + m'(t) and (1) = (t) +
o’ (1), where () and %(t) are mean and variances of X (t)
and correspondingly for m’(t) and ¢’ (t). The ‘‘correlation’’
function (or ‘*noncentral’’ covariance function) of X(t) can
be written in terms of the correlation function of the com-
ponent processes as

R(t, s) = R(t, s) + R'(t, s) t,se R? )

where R(t, s) = E[X()X(s)], R(t, s) = E[X()X(s)], and
R'(t, s) = E[X'() X' (s)].

The decomposition of the spatial rainfall into mean and
fluctuations is achieved using wavelet transforms. Wavelet
decompositions, like Fourier decompositions, are series
expansions of a function using orthonormal bases. They
possess the following properties (among others) that are
attractive for our research: (1) scale-space or multiresolution
transformation of processes for multiscale study to identify
and extract properties of self-similarity, (2) multirate filtering
using quadrature mirror filter pairs for segregation of large-
and small-scale features without a priori information on the
size of these features, (3) “‘time-frequency’’ localization for
the study of nonhomogeneous/nonstationary processes
through localized fluctuations, and (4) spatially oriented
frequency channels to extract anisotropic behavior.

‘“‘Scale-space’’ transformation, i.e., transformation of a
given process at some scale to obtain a family of processes
indexed by a scale parameter, is desired if need exists for the
study, representation, and segregation of features of differ-
ent characteristic scales. For example, in image processing
large-scale features set the context of the image like house or
street, while the small-scale features give the details like the
window or car, etc. An analogous situation also exists for
physical processes like rainfall. The large-scale morpholog-
ical organization is governed by factors such as topography,
wind direction and speed, and thermodynamic conditions
like temperature gradient, etc. However, the small-scale
features are less likely to be dependent on such effects. The
scale-space transformation is achieved via recursively
smoothing the process with a smoothing function, called
scale function, of varying scale parameter. Thus large-scale
features, i.e., features that continue to persist for large
changes of scale, will be seen with increasing scale but
information about the details or small-scale features is lost.
When no a priori information about the size of the features of
interest is available, it is difficult to decide on the right scale
of analysis and one needs to look at the process at several
scales. The representation of the process at any scale (or
resolution) is most efficiently obtained by projection onto the
space defined by that scale (or resolution). In addition,
Koenderink [1984] argued that in order to conform to the
intuitive notion of no preferred scale analysis, one needs to
sample the scale parameter uniformly on the logarithmic
scale. The multiresolution framework discussed here encom-
passes both these requirements. The representation at dif-
ferent scales is obtained by orthogonal projections, and by
construction, the scale parameter is uniformly sampled on
the logarithmic scale.

When we smooth a process we loose structure or detail.
This is because details or small-scale features have a limited
range of resolution in which they can be identified. If a need
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exists to analyze the details that are lost during smoothing,
one has to find a way to preserve this information. This
information is essential in the study of self-similar processes
because a wide range of their spectrum contains information
that is significant to the process. The multiresolution frame-
work discussed here is again suited for this purpose. This is
achieved by constructing a band pass filter, called wavelet,
compiementary to the smoothing filter (scale function), i.e.,
it grasps all the information lost during smoothing (the filters
in the pair are called quadrature mirror filters {see Vaidy-
anathan, 1987]). Like the smoothing filters this is imple-
mented recursively at different scales, and this multirate
filtering using a quadrature mirror filter pair enables one to
segregate large- and small-scale features at any scale.

The wavelets, under the multiresolution framework, are
orthogonal to all their translates and dyadic dilates (i.e.,
dilates by powers of two) thereby allowing us to cover the
entire domain at several different scales. In this decomposi-
tion, the coefficients used in the expansion, i.e., the inner
product between the wavelets and the function under study,
are called wavelet coefficients and have a very specific mean-
ing. As will be shown later, they represent the discretization
(or sampling) of the fluctuation process at the given scale.
Scale is an explicit parameter in these decompositions allow-
ing us to (1) make direct influence about the behavior of the
process at different scales and (2) isolate features of different
characteristic sizes. Hence wavelet multiresolution decom-
position allows us to simultaneously address the problem of
segregating large-scale behavior from small-scale behavior
and overcome the problem that rainfall does not have point
values by defining all operations through integral transforms.

Another useful property of wavelets is that of time-
frequency localization. So far, Fourier transforms have been
used to study processes and their fluctuations at different
scales. However, in Fourier decomposition, the field is
assumed, a priori, to be homogeneous. Also, we would like
to go beyond the restriction of “‘global’’ description of the
process as is the case in Fourier decompositions. Since
rainfall exhibits ‘‘violent’’ behavior (i.e., the probability
distribution of the rain intensities is thick tailed and conse-
quently very large values can be obtained with high proba-
bility), we would like a definition of fluctuation that is
‘“‘local,” i.e., captures the violent behavior locally as large
value of the fluctuation, rather than being an average of the
behavior over the entire domain. Some windowing tech-
niques [see Gabor, 1946] have been marginally successful in
overcoming the limitations of Fourier transform. However,
wavelets achieved a dramatic success in this respect due to
two characteristics fundamentally different from Fourier
transform: (1) compact support of basis functions and (2)
basis functions that are obtained through dilations and
modulations of a basic function. Whereas the basis functions
sin nt and cos ntr in the Fourier transforms have infinite
support, the wavelets have a compact support; i.e., they are
zero everywhere outside the domain of finite size. This
enables the localization in time or space. Also, the basis
functions in Fourier analysis are constructed by the modu-
lation of a single function, i.e., sin ¢ or cos ¢, whereas the
wavelet basis are dilates and translates of a ‘‘mother wave-
let”” which (as we will see in the following section) enable
localization in frequency such that the size of the support is
proportional to the ‘‘size of the feature’’ it represents. We
have small support for high-frequency features and large
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Fig. 2. The effect of dilation on a *‘generic’’ wavelet and the
corresponding change on its Fourier transform |y{w)|. When the
wavelet dilates, its Fourier transform contracts and vice versa.

support for low frequency or large wavelength features. This
property enables one to zoom into the irregularities of a
function and characterize them locally. Furthermore, using
wavelets, fluctuations at different scales can also be obtained
due to the multiscale transform properties.

In addition to the above properties, two-dimensional
wavelet transforms enable the decomposition of a process
into spatially oriented frequency channels, i.e., features with
dominant frequencies in different directions are extracted as
separate components. This property is exploited to study the
anisotropic behavior of rainfall fluctuations. As is shown in
this paper, using wavelets we obtain further decomposition
of the fluctuation field into three components as

X'(t) = 3
The three components X, X3, and X represent three
different aspects of the process, namely, the vertical, hori-
zontal, and diagonal high correlations. Therefore the fields

'» X3, and X5 can be seen as capturing the anisotropic
behavior of the process. Each of the fields X}, X}, and X}
are studied for self-similarity in a manner made precise in
paper 2 [see Kumar and Foufoula-Georgiou, this issue].
Here it is sufficient to remark that the condition of positivity
and atom at zero discussed by Kedem and Chiu [1987] no
longer applies for the field X‘(t) and, therefore it can be
self-similar. As we will see later, the fluctuations of the
rainfall obtained in this manner are responsible for a signif-
icant contribution to the total variance (up to 55%).

1(t) + X3(1) + X5(1).

3. REVIEW OF WAVELET TRANSFORMS

In this section we briefly review the theory of wavelet
transforms in order to introduce the notation and provide a
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brief exposition so as to make the paper self-contained. A
comprehensive treatment of this theory can be found in the
work by Daubechies [1992] and references therein.

3.1. Continuous Wavelet Transforms

Let LZ(R) denote the vector space of complex valued,
square integrable functions f (), where r denotes a physical
coordinate of space or time depending upon the context. By
(f, g) we denote the L? inner productof f, g € L(R) given
by (f, 9) = [Z. f(1)§(t) dt, where () is the complex
conjugate of g(r). The L? norm of f(¢) is then || f|| = (f,
V2 ==, |f(®)|? dr)"*. The Fourier transform of f(¢) €
L%(R) is obtained as f(w) = [Z» f()e ' dt, and the
convolution of two functions f, g € L2(R) is given by (f *
Q) = [, fG)g(t — u) du. By 1%(Z), we denote the
vector space of square summable sequences, i.e., I2(Z) =
{e;: 35w |&;]> < », i € Z, £ € R}, where Z is the set of
integers.

3.1.1. Definition. The wavelet transform of a function
f(1) is defined as the integral transform

WFA, u) = jw SOt —u) dt (4

where A is a scale parameter, u is a location parameter, and
the function ¢, (1) = \/Xap()u) is called a wavelet. Changing
the value of A has the effect of dilating or contracting the
function y(¢) (see Figure 2 (top)) and changing « has the
effect of analyzing the function f(¢) around the point «. The
choice of the wavelet y(#) is neither unique nor arbitrary.
The function y(¢) is chosen so that it has a compact support,
or has a sufficiently fast decay, to obtain localization in
space. Invertibility requirement of the wavelet transform
dictates that y«(r) should at least have a zero mean, i.e., [~
y(t) dt = 0, although higher-order moments may also be
zero; i.e.,

r e dt=0  k=0,---,N-1. (5
The inverse relation is then given by

1 oo o
f(t)=c'—J' f W (A, uy,(t — u) dA du  (6)
[ —w JO

where

¥ 2
cw=f Wl <o %)
0

w

A typical example of a wavelet is obtained from the
second derivative of the Gaussian (also called the Mexican
hat wavelet because of its shape) given by (1) = (2/
V3)7m~Y4(1 — 12)e /2, This wavelet has found application
in edge detection [see Mallat, 19895b].

3.1.2. Time-frequency localization. The function ()
can be interpreted as the impulse response of a band pass
filter. Indeed, Wf (A, u) can be equivalently written as (f *
$)(w), where §,(1) = ¢,(—1t). The wavelet transform
WS (A, u) can therefore be viewed as filtering of £ (¢) with a
band pass filter ¢,(7) (notice that $(0) = 0 due to (5)). The
Fourier transform of ,(r) is given by
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. 1 . {w 8

Y(w) = J)T ¢ Iy ®)
Hence by dilating the fuqc_:tion (A < 1), we see that the center
of passing band Aw, of ,(w), where wy is given as

f 0l#(w)|? dw
wy = T ©
f [#(w)|? dw

0

decreases (see Figure 2 (bottom)). Consequently, longer
wavelength features will become dominant in the corre-
sponding wavelet transform. The root-mean-square band-
width Ao, of ¥,(w) around Aw, where o, is given by

ol = F (0 — wp)|(w)|? do (10)
0

also decreases. Hence by changing the value of A we can
extract the behavior of the function in different frequency
bands. It can be shown [see Mallat, 1989b] that these
frequency bands have a constant size on the logarithmic
scale. When scale A is small, the resolution is coarse in the
spatial domain and fine in the frequency domain. If the scale
A increases, the resolution increases in the spatial domain
and decreases in the frequency domain, i.e., when the
wavelet dilates its Fourier transform contracts and vice
versa. This enables localization in frequency. Thus time-
frequency localization is achieved by the properties of
compact support and dilation. When support is small we
capture high-frequency components and vice versa and this
information is localized in time and space.

3.2. Discrete Wavelet Transforms and
Multiresolution Representation

3.2.1. Multiresolution framework. For the implementa-
tion of the wavelet transform on a sampled function f(¢),
i.e., a sequence of numbers {c,},cz, the scale and location
parameters can be discretized giving rise to discrete wavelet
transforms. Note that the wavelet itself is continuous but the
location and scale parameters are discrete. The scales can be
selected as some sequence {a™},,cz, where a is an elemen-
tary dilation step. The location parameter is discretized so
that its sampling rate is uniform and proportional to o™, i.e.,
u is chosen as kB/a™, where a™/8 is the sampling rate of u
at the scale a”. The particular choices of a = 2 and B8 = 1
can be used to construct orthonormal wavelets for L2(R).
This is accomplished elegantly in the wavelet multiresolution
analysis by constructing a sequence of closed subspaces
{V u} mez of L2(R). These subspaces characterize the behav-
ior of a function at different resolutions. For example, V,,
describes functions at 2” samples per unit length. The
subspaces satisfy five important properties (referred to here-
after as M1 through MS5) which are listed in Appendix A. The
representation of functions in these subspaces V,, are ob-
tained through an orthogonal projection by constructing an
orthonormal basis for these subspaces. The orthogonal pro-
Jection of a function onto the subspace V,, corresponds to its
approximation at resolution m, i.e., approximation using 2
sample points per unit length (see the following discussion).
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Fig. 3. Schematic showing one-dimensional muitiresolution de-

composition.

Therefore by successively traversing through the projections
of £ (¢) on the spaces V,, we obtain multiscale representation
of the function f(¢).

Given the nested structure of V, (see property Ml,
appendix A), it is possible to construct a function ¢(#) in V,
such that {¢(r — n)},cz is an orthonormal basis of V. The
function ¢(r) is called a scale function and satisfies [ ¢(7)
dt = 1. Let O be the orthogonal complement of V in V;,
i.e.,

V,=V,®0, an

It is possible to find a function ¢{¢), based on ¢(?), such that
{y{r — n)},ez is an orthonormal basis of O,. The function
&(t) is orthogonal to its integer translates, and () is
orthogonal to its integer translates and dyadic dilates; i.e.,
(1) L $(t — n) Vn and Y1) L (2™t — n) Ym, n. The
function ¢(#) is such that if its integer translates constitute
an orthogonal basis of V', then the integer translates of ¢(27)
form an orthogonal basis of V.. Using the recursive
definition of (11) along with property M1 and the orthogo-
nality of ¢«(t) with its integer translates and dyadic dilates, it
can be shown that the dilates on the dyadic sequence and
translates on integers of (1), i.e., {2™2¢2™t — n)},, nez2, form
an orthonormal basis of L?(R) (see Figure 3), or equivalently,
LYR) = ®,,cz0,n. The function (1) is called an orthogonal
wavelet. The space O,, also satisfies the scaling property M3
[see Daubechies, 1992, equation (5.1.12)}, i.e.,

fheo,ff2ne o, +, VmEeZ.

An example of scale function is
(1) =1
¢(1) =0

and the corresponding wavelet is the Haar function (see
Figure 4a) given as

(12)

0=r<1

. (13)
otherwise,
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Fig. 4. Typical examples of scale functions ¢ and corresponding
wavelets ¢. The wavelets are called (a) Haar and (b) D4 (after
Daubechies) wavelets and they have one and two vanishing mo-
ments, respectively.

g =1 0=r<i
p(n=-1 j=<1<1 (14)
() =0 otherwise.

Another example of scale function and the corresponding
wavelet which has two vanishing moments is given in Figure
4b. For the general case of constructing the orthonormal
bases of scale functions and wavelets, see Daubechies
[19921.

3.2.2. Multiresolution approximation. The approxima-
tion of a function f () € L*(R) at a resolution m, i.e., 2™
sample points per unit length, is given by the orthogonal
projection of f(t) on V. Let P, represent this projection
operator, i.e., f(1) € LXR) = P,f(t) € V,, C L*(R).
Since P,, represents an orthogonal projection it implies that
|£(5) — P fl = inf | £() — gl Vg() € V,,. This
means that the approximation of the function f () at resolu-
tion m is optimal in the least squares sense. As a conse-
quence of property M1, we understand that P,.(f(t)
contains all the necessary information required to compute
P,.f(t). Note that the integral transform (4) can be also
looked at as an inner product in L2(R). Using the basis
functions ¢(¢) and y(t) as described above, we can obtain

Puf(®=2"" 3 (f(0), $mnltNbpmn () (15
where ¢,,,(t) = 2™$(2™t — n) (notice that [ ¢,,,(t) dt =
1). Let Q,, F (1) represent the orthogonal projection of f(f)
onto O,,. Then we can obtain

Omf () =2"" D0 (F(8), brmn®)malt)  (16)

n=—w

where i, (1) = 272"t — n).
In the interpretation of multiresolution approximation, the
projections of a function f(f) on the subspaces V, are
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viewed as successive approximations of f(¢) at finer and
finer resolutions as m increases. The values of the samples of
the function at resolution m are then exactly the inner
products of f(r) with the scale function ¢,,,(¢) for various
values of n. The wavelet coefficients are used to express the
additional details needed to go from one resolution to the
next finer resolution level. Therefore the set of inner prod-
ucts PLf = {(f(1), ¢pn(t))} ez gives the discrete approx-
imation of f(#) (or sampled f(¢)) at resolution m), and the
wavelet coefficients Q2 f = {(f (1), ¥un())} ez give the
discrete detail approximation of f(¢) (or difference in infor-
mation between functions at different resolutions). In other
words, we need to add the information contained in Q2 f to
P2f to go from resolution level m to the next higher
resolution level m + 1. For this reason, Q,.f(¢) is also
referred to as the detail function. Due to orthogonality of the
decomposition the number of values in P,’,’, f and Q,‘,‘, f are
each half of that in P2, f. Thus there is no increase in the
data size.

It was indicated that the integral transform (4) can be also
looked upon as convolution of f(¢) with the function W),
and the wavelet transform can be looked upon as a filtering
operation. The inner product with the scale function there-
fore corresponds to low pass filtering and that with the
wavelet to band pass filtering. It is therefore evident that the
construction of a function from a higher resolution to a lower
resolution is accomplished through low pass filtering and
details lost in this process are kept (as wavelet coefficients)
through band pass filtering.

3.3.

For two-dimensional multiresolution approximation we
consider the function f (¢, ¢;) € L2%(R?). A multiresolution
approximation of L2(R?) is a sequence of subspaces which
satisfy the two-dimensional extension of properties MI
through M5 enumerated in Appendix A for one-dimensional
multiresolution approximation. We denote such a sequence
of subspaces of LZ(R?) by (V,,) mez. The approximation of
the function f (¢, 1) at the resolution m, i.e., 22" samples
per unit area, is the orthogonal projection on the vector
space V.

A two-dimensional multiresolution approximation is
called separable if each vector space V,, can be decomposed
as a tensor product of two identical subspaces V,',, of L3(R);
i.e., the representation is computed by filtering the signal
with a low pass filter of the form ®(7,, t;) = ¢(t,)¢(z;). For
a separable multiresolution approximation of L*(R?),

Two-Dimensional Multiresolution Representation

Va=V,®vh (17)

where ® represents a tensor product. It therefore follows (by
expanding V., as in (17) and using property M1) that the
orthogonal complement O,, of V,, in V,,.; consists of the
direct sum of three subspaces, i.e.,

O,=(Vi@oh®o,evh®©,®0,. 18)

The orthonormal basis for V,, is given by
(2'"<I)(2”'t| - n, 2mt2 - k))(n,k)GZZ = (2'"¢,,,(2"'t|
- n)qS,,,(Z"‘tz - k))(n,k)GZZ' (19)

Analogous to the one-dimensional case, the detail function at
the resolution m is equal to the orthogonal projection of the
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Fig. 5. Frequency support of wavelets in two-dimensional multi-

resolution decomposition.

function onto the space O, which is the orthogonal comple-
ment of V,, in V,,. ;. An orthonormal basis for O,, can be
built based on theorem 4 in the work by Mallat [1989a, p.
683], who shows that if y(7,) is the one-dimensional wavelet
associated with the scaling function ¢(t,), then, the three
“wavelets” W!(t,, ;) = Ut (1y), Y1y, 1) =
(1) d(ty), and W3(¢,, 1) = y(1,)¥A1,) are such that

{(‘Ijmnk’ rznnk’ v

is an orthonormal basis for O,
The discrete approximation of the function f(z,, ¢;) at a
resolution m is obtained through the inner products

PLE={(f, Prmdniye 22} = {(fr ®mnd mdnircz2}

The discrete detail approximation of the function is obtained
by the inner product of f(¢;, ¢;) with each of the vectors of
the orthonormal basis of O,,. This is thus given by

D=1 Y mn ezt
2r= 11, ‘I',Znnk)(n,k)e z
BF={(f, ¥l niy e 22}

The decomposition of O, into the sum of three subspaces
(see (18)) gives the behavior of spatially oriented frequency
channels. Assume that we have a discrete process at some
resolution m + 1 whose frequency domain is shown in
Figure 5 as the domain of P2, 1 f. When the same process is
reduced to resolution m, its frequency domain shrinks to
that of P2 f. The information lost can be divided into three
components as shown in Figure 5: vertical high frequencies
(high horizontal correlation), horizontal high frequencies
(high vertical correlation), and high frequencies in both
direction (high vertical and horizontal correlations, for ex-
ample, features like corners). These components are cap-
tured as QZ4'f, Q ¢, and Q,fff, respectively. We will use
this property to characterize the directional behavior of
rainfall. Although wavelets with more than three frequency
channels can be constructed [see Daubechies, 1992}, they
will not be considered in this research.

3
mnk) (n.k) € 22}

(20)

(VA))
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For an efficient algorithm to implement orthogonal wave-
let transforms to discrete data, see Mallat [1989a].

4. WAVELET ANALYSIS OF RAINFALL
Fi1eLDS: THEORY

4.1. Basic Components of Analysis

For the purpose of this study we consider rainfall intensi-
ties (obtained using meteorological radar) averaged over
small intervals of time on a spatial grid at ground level. We
therefore have a temporally integrated two-dimensional pro-
cess which we call a frame. A sequence of frames with
temporal averaging over nonoverlapping windows and cov-
ering the entire time domain characterizes the behavior of
rainfall in time. Note that the actual storm is a three-
dimensional process that evolves over time. Here we do not
consider the three-dimensional storm structure but the *‘de-
rived rain intensity field”’ at the ground level at some
temporal integration scale. Inference about the evolution of
the rain intensity field can be made by studying the changes
in the parameters of interest, i.e., parameters found to
characterize the structure of the rainfield, across a sequence
of frames [see Kumar and Foufoula-Georgiou, this issue].

The process of arriving at the derived rain intensity field at
the ground level from observations made using meteorolog-
ical radar is quite complex involving vertical integration of
cloud reflectivities, applying corrections for ground clutter,
etc., converting them to rain intensities through nonlinear
relationships, and calibrating with rain gage observations if
available. Within the scope of this research we will assume
that the average rainfall over an area A during a time period
T is obtained as

R(1) —mf ds—J (s, 7) dny (22)
S=(S|, Sz)ERZ, nER+
gt(t)——-—f 7(s) ds (23)

where r(t, n) is some underlying rainfall field defined over
continuous space and time parameters t and 7, respectively.
That is, we will assume rain intensities obtained at the grid
points at an instant of time to be the output of a linear filter
applied to the underlying rainfall field. The field R(t) corre-
sponds to the actual observations obtained using the radar.
For several advantages, to be described below, we will
assume that the temporally integrated rain intensity of a
frame, at a grid point given by the index n, k € Z, where the
grid has a resolution of 2%" samples per unit area, is
obtained as

R (n, k)Ej(bm,,k(t)r‘(t) dt m,n k€Z (24)

i.e., the spatial filer is a scale function ®,,,; = 2" ®(2™t, -
n, 2™t, — k) corresponding to a multiresolution framework
(see section 3.3).

In several situations, average behavior provides only one
facet of the nature of the process. Information about fluctu-
ations, i.e., deviations from the mean, are as essential. In
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analogy with (24) we define a fluctuation field, at resolution
m, by

Ronln, k) = f ® mnk(tF() dt (25)

where ¢,,,,4(t) is any spatial filter (not necessarily a wavelet)
such that @, (t) = 2™ 2™ty — n, 2™ty — k), it has a
compact support and satisfies

f ‘Pmnk(t) dt = 0. (26)

By virtue of the property (26), R,(n, k) gives the value of
the deviation from the local mean at resolution m or scale
1/2™. To see this consider E[R,(n, k)] = [ @pmax(QEL[F()]
dt. Now assume E[F(t)] is some constant within the support
of ¢,..+(t). Then by (26) the above integral is zero. Hence if
at resolution m, the nonhomogeneous mean can be approx-
imated by a piecewise constant function then the fluctuation
can be obtained easily by the above procedure. The more
general case, where the nonhomogeneous mean can be
approximated by a polynomial of degree N, is discussed in
Appendix B. The advantage of such a methodology is quite
evident: in the region where 7(t) has a large variation from
the local mean, R’ will be large and vice versa and this
information is localized due to the compact support of ¢. The
only restriction placed on A(t) is that it be a measurable
function.

These characterizations enable us to overcome the prob-
lem of ‘‘absence of point values™ in rainfall, since the
averages and fluctuations are both defined through integral
transforms. Notice also that the description of scale is built
into the transform, which is a very desirable feature for our
purpose of multiscale study. If we have the rainfall process
sampled at some resolution mg, then under the multiresolu-
tion framework (property M1, Appendix A), fluctuations
corresponding to all resolutions m < m, can be obtained by
choosing the wavelets as the kernel function. This choice
also has certain other desirable features which are detailed in
the following subsections. The choices of ¥!, ¥?, or ¥3
extract different behavior of the process and this is also
discussed in the following subsections. Specifically, in what
follows we develop the following properties of wavelet
analysis of stochastic processes.

1. Weintroduce the notion of discretization of a stochas-
tic process using integration kernels that are orthogonal to
their integer translates. We discuss that this discretization
has no redundancy due to the linear independence of the
integration kernel, and that the discretization is optimal in a
sense to be defined. An attractive feature of this discretiza-
tion is that these properties continue to hold when we change
the scale of observation (on a dyadic scale). Both the scale
functions and wavelets provide integration kernels that give
attractive discretization of the process, albeit characterizing
different properties. These properties are essential to justify
the inference drawn about the underlying process from
discrete samples of the process.

2. The transformation of a given process using the scale
function provides a description of the process at different
scales. Alternatively, it can be also viewed as the discreti-
zation of the mean of the process with the mean obtained
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using the scale function. This property enables us to char-
acterize the large-scale features of the process obtained
using the scale function at some small resolution.

3. The transformation of a process using wavelets with
N vanishing moments is equivalent to removing a stochastic
trend of polynomial order N — 1. By using this we show that
the wavelet coefficients may be regarded as the fluctuations
of the process at the given scale. This property forms the
basis of treating the wavelet coefficients as (discretizations
of) fluctuations at various scales which characterize the
small-scale behavior of the process.

4. Given the interpretation of averages and fluctuations
to the processes obtained using the scale functions and
wavelets, we show that the two can be regarded as contain-
ing complementary information that are ‘‘practically uncor-
related.’” In practical situations where nonhomogeneity in a
process can be attributed to the mean, the fluctuations (i.e.,
wavelet coefficients) may be assumed homogeneous. This
gives us dual advantage: (1) it allows us to address the issue
of nonhomogeneity by segregating it from the original pro-
cess and (2) fluctuations, under the assumption of homoge-
neity, are easily amenable to statistical analysis.

The reader not interested in the mathematical develop-
ments of the above properties can skip the rest of this section
and go directly to section 5.

4.2. Wavelet Analysis of Stochastic Processes

The objective of this section is to illustrate an optimal
method (in a sense to be discussed below) of obtaining
values of the process X, (t) = [ X(D)¢(r) dt, t € R at
discrete arguments ¢, i.e., obtain an optimal discretization
of the process X (7). Without loss of generality, let us
denote ¢t,, by n. To minimize the redundancy of information
contained in the discrete samples we consider discretizations
of X (1) by considering the values of X o,(r) for ¢g,(?)
chosen orthogonal to all of its translates ¢g;(¢) on the set of
integers n, j € Z, where ¢,,, = 2™ ¢(2™t — n). In view of
the multiresolution wavelet analysis framework, obvious
candidates for ¢,,, () are either the scale functions ¢,,,(¢) or
the wavelets ¢,,,(?), both orthogonal to their translates. In
the next subsection we study the properties of the discreti-
zations obtained by choosing the scale function ¢,,,(f) as
the integration kernel. In section 4.2.2 the discretization
obtained using ¢,,,(¢) is discussed. The two-dimensional
extensions are given in the subsections 4.3.1 and 4.3.2.

4.2.1. Optimal multiscale discretization of a process.
From the theory of multiresolution decomposition it can be
seen that the discrete values {(X, @,,,)},ez Obtained as (X,
émn) = J X()¢,,,(2) dt constitute an optimal discretization
of X(t) at the resolution m in the least squares sense if the
realization of X(f) is regarded as a function in L3(R).
However, in a probabilistic framework, the multiresolution
framework provides additional, significant, nontrivial exten-
sions as can be seen from the following three properties.

PI: There is no redundancy in the discretization at any
resolution since the integration kernels are linearly indepen-
dent of their translates. This property is essentially a state-
ment about the nondegeneracy of the finite dimensional joint
distribution function of the random variables X = {(X,
bmn)s * s (X, Gy )} Since {¢pntne, are linearly inde-
pendent, the dimension of the space spanned by {¢,,, };-1,,
is ». The above property implies that there exists no sub-
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Fig. 6. (a) Discrete approximation of the Weierstrass-Mandelbrot cosine curve at decreasing resolutions using the

scale function shown in Figure 4a. () Continuous approximation obtained by interpolating with the scale function, i.e.,
P,X(t) = 2, (X, dpmn)®mn(t). (c) Discrete wavelet coefficients using the Haar wavelet. (d) Continuous approxima-
tion obtained by interpolating with the wavelets, i.e., Q,,X(1) = X, (X, ¢p,)¥ma(?). (¢) Mean removed process
obtained via Zmzm‘) 2n (X, Umn)¥ma() (or equivalently X(2) — 2, (X, Drgn) Pmgn(1)).

space of dimension v' < v such that fgv p,(x') dx’ = [g
Pm(x) dx, where x' € RY; i.e., the joint distribution
function of the vector X € R” is nondegenerate at scale m.
It is noted that for this property to hold the condition of
linear independence of {¢,,,} is sufficient and orthogonality
is not needed. This property will be useful in characterizing
a process in general L’ (Banach) spaces as wavelets form a
linearly independent basis for those spaces but the concept
of orthogonality does not exist.

P2: The discretization at any resolution m is ‘‘maximal’’
as the translates of the integration kernel span the complete
space V. This is a statement about the uniqueness of the
joint distribution function. Consider the infinite set {X, =
(X, ®mn)}nez of random variables. The uniqueness condi-
tion states that the joint distribution function of any finite »
number of random variables X = {X,},-, , does not change
if any additional information about another random variable
X, , n & [1, v] becomes available. In other words, the
equality

plxy, =, x,)= fp(xl. Ter Xy, X)) dxpy

holds. This property stems essentially from the property of
the completeness of the space V. This property is trivially
true for finite sets {x,} but not necessarily for infinite sets.

P3. The above properties hold for all dyadic scales

(resolutions), thus providing elegant discretizations at a
hierarchy of scales. This property makes multiresolution
framework very attractive for multiscale studies.

The scale functions ¢,,, provide a very large class of
functions that can be used for the discretization of the
process X(1). A special case which is often used in practice
is the discretization obtained by choosing ¢g,(f) as the
indicator function of intervals that arise from the partitioning
of the real line using the set of integers, i.e.,

eonl?) =1 nst<n+1

27

o) =0 otherwise.

Clearly, this is a particular case of the multiresolution
wavelet transform (see (13)) corresponding to the scale
function of the Haar wavelet.

To illustrate the approximation of a function at various
resolutions, we applied the multiresolution transform on the
Weierstrass-Mandelbrot cosine fractal function (see Appen-
dix C for a brief description). Its discrete approximation,
using the two scale functions shown in Figure 4 at decreasing
resolutions are shown in Figures 6a and 7a, respectively.
Figures 66 and 7b show the continuous approximations
obtained by interpolating with the corresponding scale func-
tions. It is observed that the scale function corresponding to
D4 wavelet (see Figure 4b) gives a better approximation of
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Fig. 7. Same as Figure 6 with D4 wavelet and the corresponding scale function (see Figure 4b).

the process than the scale function corresponding to the
Haar wavelet and this is particularly noticeable at lower
resolutions.

It is easy to show by change of variables in (X, ¢,,,) = 2"
J X()$p(2™t — n) dt that this is the same as [ X2 "1)¢
(t — n) dt, i.e., resolution and scale are inversely related. In
the first case we look at long-scale behavior of X(z) by

f(t)

2d0[ <o

0 0.25 0.50 0.75 1.0

Fig. 8. Schematic showing the concept of fluctuations using the
Haar wavelet for discretization with two samples per unit length.
The mean of the function in each interval [0, 0.5) and [0.5, 1} is ¢q
and c, (obtained as the scaling coefficients). Each of these intervals
are further divided into two intervals and the difference between the
averages over these smaller intervals, as is shown, gives an estimate
of the Aluctuation (here 24y where dg is the wavelet coefficient). It is
easy to see that at the next lower resolution the wavelet coefficient

will be (¢ — ¢})/2.

spreading out ¢(r) (m < 0), which is equivalent to studying
a contracted version of X(¢), i.e., X2 ™) 27" > 1),
through a window of constant size and vice versa. This
interpretation has the notion of map scale where large scale
indicates global view and small scale indicates detailed view
[see also Rioul and Vetterli, 1991]. Notice the structure of
the transformation where scaling of X(¢) is accomplished by
equivalently scaling the scale function ¢(t). Therefore the
choice of ¢,,,(¢) as an averaging function proves very useful
for multiscale analysis where discretization of X(¢) (which
may not have point values) at different scales can be ob-
tained by changing m. Alternatively, given the discretization
of X(r) at a particular scale, its discretization at different
scales can be obtained by an efficient algorithm [see Meallat,
1989a].

4.2.2. Wavelet coefficients as fluctuations. While the
representation of the process from one resolution to a lower
one is obtained via the scale function, the information lost
during this transformation is preserved as the sequence
(wavelet coefficients) Q22X = {(X, Yun)}scz- Alternatively,
these coefficients can be also viewed as discretization of
X (1) for ¢(1) satisfying equation

ftk(p(t) dt=0 k=0,---,N-1. (28)
By choosing the wavelet ¢,,,(7) for the integration kernel
emn(t) we see that the discretization we obtain satisfies
properties P1, P2, and P3 with the space under consideration

being O,,. The wavelet coefficients can be regarded as
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discretization of the fluctuations of X(¢) in the sense that
these values give the deviation of the process from its local
mean. This concept is schematically shown in Figure 8 for the
Haar wavelet. The local mean is obtained using the corre-
sponding scale functions ¢,,,(¢) as the integration kernel.

Figures 6¢ and 7¢ show the wavelet coefficients at differ-
ent resolutions obtained from the Weierstrass-Mandelbrot
cosine fractal function using the Haar and D4 wavelets.
Figures 64 and 7d show the continuous approximations
obtained by the interpolation using the corresponding wave-
lets. The interpretation of wavelet coefficients as fluctuations
and the scaling coefficient as mean is now apparent by
comparison of Figures 60 and 7b with Figures 64 and 74,
respectively. The interpretation of the wavelet coefficients
as discretization of fluctuations leads to interesting develop-
ments for using wavelet transforms in the study of stochastic
processes with stationary increments of order N as dis-
cussed in Appendix B.

So far we have focussed on the behavior, interpretation,
and significance of the averaged process and the wavelet
coefficients independently. However, at any scale, they
contain complementary information. Whereas the wavelet
coefficients represent the process with the (stochastic) trend
removed, the averaged process gives the approximation (at
the given scale) of the mean (see Figures 6b and 7b). We
therefore have an approximation at the given scale 2™ (or
resolution m) of the form

X(1) = X () + X3(0) (29)

where X, (¢) is the approximation of the mean (moving
average component) at scale 27™; ie., X, (1) = X, (X,
Gmn)dma(t) and X, (1) is the corresponding fluctuation
given by 2, (X, W) ¥ma(?). Equality in the above equation
could be obtained by summing up the fluctuation processes
at all scales greater than 2 ~™, where 2~ is the largest
scale of approximation, i.e.,

X(0) = Xp D+ D Xin(D)

mz=my

where Zmam“ X0 is obtained by Zmzmo Zn X, G W)
(or equivalently as X(1) — X, (X, S mgn) Pmyn(t)). The
approximation Z,,,Z,,,“ 2 Xy Ypmp)thmn(2) for the Weier-
strass-Mandelbrot function using the Haar and D4 wavelets,
for decreasing resolutions mg, are shown in Figures 6e and
7e, respectively. That is, when we add Figure 6b and Figure
6e we get the original signal.

In a practical situation we may assume the mean and
fluctuations to be uncorrelated. This is also justified since the
two components belong to orthogonal subspaces and al-
though the scale function and the wavelets are not orthogo-
nal in the frequency domain, the overlap region is very
small, and hence they may be considered approximately
uncorrelated. Several situations arise when the nonstation-
arity in a process can be attributed to the mean and the
fluctuations can be assumed stationary. A particular exam-
ple is a process with stationary Nth order increments. For all
such situations when this physical assumption is justified,
the wavelet coefficients can be also assumed stationary.

4.3. Two-Dimensional Analysis

4.3.1. Physical interpretation of wavelet transforms. In
the context of signal processing the wavelet decomposition can
thus be interpreted as a function decomposition in a set of

(30)
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Fig. 9. Schematic showing discretization on a two-dimensional
grid.

independent, spatiaily oriented frequency channeis. Q,‘f,‘ 'f gives
the vertical high frequencies (horizontal edges), Q%*f gives the
horizontal high frequencies (vertical edges), and Q,;",’f gives
high frequencies in both directions (the corners). However,
when dealing with physical processes in a stochastic frame-
work we need a more ‘‘tangible’’ interpretation of the wavelet
coefficients. In what follows, we attempt to provide such an
interpretation. Consider the discretization of a stochastic pro-
cess on a uniform grid as shown in Figure 9.

The mean of the process at scale A can be obtained as X =
(X;; + X1 + Xije1 + Xis1j+1)/4. However, there is no
unique way to define increments and usually in practice a
scheme such as the one below is adopted:

DX+ X Xivgjt Xivnj+

AX,l=5[ - > 31)
X+ Xivr; XijartXivnj+

AX,2=E[ . - - (32)
DX = Xivny Xijer—Xiv1j+1

AX,,, = 5 { 3 - 5 (33)

They may be looked as analogous to 9X/dr;, aX/3t,, and
a%X/dt,d1,, respectively.

The choice of Haar wavelet as the analysing wavelet, in
the discrete case, gives precisely the above three compo-
nents (up to a constant) for inner products with ¥'2, ¥!, and
W3 respectively. In the general case we call the above three
components as ‘‘discretization of fluctuations of the mar-
ginal local average process’” in f; and ¢, directions and
“‘discretization of fluctuations of the marginal fluctuation
process.”” This can be seen by looking at

(X, ‘l',lnnk)=fw Iw X(ty, ty)

Wty =270, 1, = 27k) diy di,  (34)
(X, ‘I’,lm,k) =f j X(ty, t3)
Pty = 27" (1 — 27 0) dt, dt;  (35)
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(X, ‘I’,lm,k) = f Ymlty —277k)

dt; (36)

. ([m X(ty, t2)bp(ty —27"n) di,

The component inside the parenthesis, with a proper choice
of m and n, is the discretization of the marginal local average
process in the ¢, direction. The component (X, ¥2,,), when
treated analogously, gives fluctuations of the marginal local
average process in the ¢, direction. The interpretation for the
third component follows analogously.

4.3.2. Removal of nonhomogeneity in the mean. Con-
sider the expected value of (X, ¢) given by
R
EU ALy, D)o, 1) aty a’zJ

= f m(ty, t)e(ty, 1) diy di; 37
E fX(t‘, t2)¢(tl, tz) dtl dtz} = f (000+ a10t1
+a02t2+a“t|t2+ "')(p(ll, tz) d’l dtz (38)

where >, >, a,,tft{ is the Taylor series expansion of
m(t,, t5) at scale 2 ™. We can choose ¥!, ¥2, or ¥3 for ¢.
If the two-dimensional wavelets are constructed using one-
dimensional wavelets with N vanishing moments then it is
easy to verify that using ¥2 and ¥' will eliminate a trend of
polynomial order N in the 7, and r, directions, respectively,
i.e., trends of the form m(¢y, ;) = X,y apetf and
m(ty, t;) = ¥ ,<n aogts, and ¥* will eliminate a polyno-
mial trend of the form m(ty, £;) = £ 3, <y ap tf17.

5. REPRESENTATION OF RAINFALL
AS A CoMPOSITE PROCESS

5.1. Component Processes Using Wavelets

In general, a nonhomogeneous process can be made
tractable by decomposing it into simpler component pro-
cesses in a variety of ways [see Vanmarcke, 1983, p. 224].
We choose the decomposition (1) for its physical significance
of capturing large- and small-scale behavior of the process.
We approximate the mean X(t) and fluctuations X'(t) at
some resolution m using scale functions and wavelets as
Xt = )T,,,D(t) and X'(t) = 2,5, X/n(t) where

)?m(t) = 2 (X’ cl)mnk)cljrrmlc(t)
nk

(39)

and the fluctuation field at resolution m is composed of three
components

Xo(® = D (X, WiV hi(t) + D (X, W2,002 (1)
nk nk

+ D (X, o0 Vaut)  (40)
n,k

(41)

X’m(t) = 'l,m(t) + X’Z,m(t) + Xs,m(t)
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where X ,,(t) is used to denote the component {0 X (1)} of
the wavelet decomposition. Therefore

XW= 2 (Xin(t) + Xy p(t) + X5 0(t)  (42)
X'(t) = X(t) + X5(t) + X3(). (43)

The scale 2 ™™ (or resolution m) will be determined from
statistical considerations, as the largest scale up to which
rainfall fluctuations exhibit self-similarity. Notice that if
rainfall fluctuations exhibit self-similarity at all scales then
mq does not exist (or is infinite), i.e., all scales are equally
significant in characterizing the process. In the case that
there is no self-similarity at all, m, will have to be deter-
mined from other considerations. For example, if the pro-
cess has two distinct scales then m can be chosen as a scale
in between these distinct scales,

The advantages of the above approximation are enumer-
ated below which also illustrate how the various properties
of wavelet transforms like multirate filtering, time-frequency
localization, and spatially oriented frequency channels pro-
vide useful characterization of the process.

1. The mean field X, (¢) represents the large-scale behav-
ior of the process. Because the storm is evolutionary, the
mean field cannot be obtained from the ensemble average of
the several frames of the storm. Since the mean field in
general represents the large-scale behavior, (39) offers a very
convenient way of representing this field and also studying
the evolution of the mean field of the storm. No assumption
about the homogeneity of the mean field is required since the
representation (39) is constructed using transformation that
is local.

2. The fluctuation field at some resolution m, X,(1),
itself consists of three components giving the directional
information about the storm. Since the wavelet transforms
are local (recall that wavelet transforms provide time-
frequency localization) and essentially represent the fluctu-
ations of the process, they can be assumed homogeneous
provided the nonhomogeneity is only the mean (as was
discussed earlier) and the mean of the appropriate polyno-
mial order has been eliminated. This second criterion will
essentially govern the choice of the wavelet used. For
example, if the mean can be approximated fairly well by
piecewise constant functions at the resolution of its repre-
sentation m,, then Haar wavelet would be good enough for
the study of fluctuations.

Since the fluctuation components are extracted using
independent spatially oriented frequency channels they are
uncorrelated [see Yaglom, 1987, equation (2.205)] and the
covariance R/, (t, s) of X, (t) itself can be written as the sum
of the covariances of these three components, i.e.,

R,(t, 8) = R ,(t, 5) + Ry ,(t, ) + Rj ,(t, s) 44)
R'(t,5)= > (Rymlt, )+ Rynlt, s) + RS (L, 8))

m=mg

(45)

R'(t, s) = Ri(t, s) + R5(t, s) + R;(t, s) (46)

We conjecture that the external factors governing the storm
mostly influence the large-scale behavior (or the mean field)
and the small-scale behavior (or fluctuation field) is relatively
independent of this influence. We perform multiscale analy-
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Fig. 10. Squall line storm (at 11:52 A.M.) monitored by National Severe Storms Laboratory, Norman, Oklahoma,
on May 27, 1987. The field represents the average rainfall intensity (in millimeters per hour) over 10 min interval. The
vertical represents the north-south direction and the radial marks are 25 km apart.

sis [see Kumar and Foufoula-Georgiou, this issue] on each
of these components to test the presence of scaling and
establish its precise nature.

3. By mg we will represent the largest scale up to which
all fluctuation components X/;;, Xy, and X'j3 show scaling
behavior. Although there is no a priori reason to believe that
the three components will show scaling up to the same
resolution mg, we will assume that this is true for the
purpose of this research (which is further supported by the
results of the data analysis). The critical resolution m
depends on the storm system under study and may vary from
storm to storm and cannot be determined a priori. However,
using the multirate filtering capability of wavelets, we find
my as the scale at which the fluctuation components cease to
show scaling behavior, i.e., my is determined a posteriori
from the behavior of the particular storm.

5.2. Application

To illustrate the decomposition of rainfall in large- and
small-scale component processes, we present the results of
multiresolution analysis on a severe squali line storm which
occurred over Norman, Oklahoma on May 27, 1987. This
storm was monitored by the National Severe Storm Labo-
ratory (NSSL) using a WSR-57 radar, which is a 10-cm
wavelength system with a peak power of 305 kW and a beam
width of 2.2°. The conversion of the cloud reflectivity (in
dbZ) to rainfall rates (in millimeters per hour) was done at
NSSL in Norman, Oklahoma using the relationship Z =
300%'4, where R is rainfall rate in millimeters per hour and
the reflectivity factor in dbZ is related to Z (mm®%m?3) by the
relationship 1 dbZ = 10 log Z. The rainfall intensity values
for this storm are available at two temporal integration
scales, 1 hour and 10 min (for a period of 7 hours beginning
with the mature stage of the core of squall line), for 360
azimuths, with every azimuth containing 115 estimates for a
range of 230 km (i.e., data at every 2 km by 1 degree). The

10-min integrated rainfall intensities will be used for the
illustration of the decomposition procedure.

Figure 10 shows the rainfall intensities of the squall line
storm (at 11:52 A.M.). The storm had a broken line formation
(see Bluestein and Jain [1985] for a classification of squall
line storms) and was classified as a severe storm with total
precipitation exceeding 25 cm in a period of over 8 hours.
The frontal high-intensity core region and the trailing low-
intensity anvil region of stratiform precipitation [see Smull
and Houze, 1985] are clearly evident in this squall line storm.

The wavelet decomposition of the 10-min integrated rain-
fall intensities at the original resolution will produce four
fields: one average field A (corresponding to the scale
function ®) and three fluctuation fields D, D,, and D,
{corresponding to the wavelets ¥!, w2, and W2, respective-
ly}, each at half the original resolution. For display purposes,
at every level of decomposition, the display area of the
average field is divided into four quadrants, each containing
one of the four fields A, Dy, D,, and D,, each at half the
previous resolution. The average field at this lower resolu-
tion will be displayed in the upper left quadrant of the
current average field, and the upper right, lower left, and
lower right quadrants are used to display the fields D, D,,
and D;, respectively. Using this scheme for display, Figure
11 shows the wavelet decomposition of the frame depicted in
Figure 10 carried on up to four levels. Evidently, the
fluctuation field shows large variability in regions of large
intensity and vice versa, indicating that the core behaves
differently from the anvil region both in mean and fluctua-
tions. That is, the core has large mean and fluctuations,
whereas the anvil region has small mean and fluctuations.
This storm therefore shows nonhomogeneity not only in the
mean but also in the fluctuations. Also, the fluctuation fields
D,, D5, and D; have different characteristics. The fluctua-
tion field D, is relatively *‘mild’” as compared to D and D5.

Figure 12 shows the large-scale features of the storm ob-
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Fig. 11.
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— 0.01 {0.000) mm/hr

.

13.01 (0.750) mm/br

26.01 (1.500) wm/hr

39.00 (2.250) mw/hr

TE62.00 (3.000) sw/hr

Three levels of multiresolution decomposition of the squall line storm using Haar wavelet. The absolute

values of the wavelet coefficients as they have negative and positive values are displayed. The scales for displaying the
magnitude of the wavelet coefficients are indicated in parenthesis along the gray scale bar.

tained by eliminating the details after four levels of decompo-
sition; i.e., it represents X, mt) at mg = 5. This evidently
captures the morphological organization of the storm and we
argue that it should be modeled deterministically, e.g., using
mesoscale weather models, to account for the environmental
conditions and meteorological forcings responsible for this
storm. Figure 13 shows the rainfall field of the storm after the
large-scale features depicted in Figure 12 have been eliminated;
i.e., it shows the fluctuation field |X'(t)|. We argue that this field
may exhibit scaling characteristics and that an appropriate way

of looking for these characteristics is by studying its compo-
nents X;(t), X5(t), and X3(t) obtained by decomposing X'(t)
using wavelets. This hypothesis is tested in paper 2 [Kumar
and Foufoula-Georgiou, this issue] and, indeed, it is found that
scaling laws hold up to certain scales.

It should be mentioned that a parsimonious statistical
parameterization of the fluctuations based on scaling laws (if
they are appropriate) is important since fluctuations contain
a considerable part of the total energy (variance) of the
storm. For example, as is seen from Table 1 for the squall

— 0.01 mm/hrx

13.01 mm/hr

26.01 wa/hr

39.00 mm/hr

- a—52.00 sm/hx

Fig. 12. Large-scale behavior of the squall line storm. This field is obtained by enlarging the average field obtained
after five levels of decomposition.
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— 0.01 m/hix

13.01 sm/hr

Small-scale behavior of the squall line storm. This field is obtained by eliminating the large-scale features

after five levels of decomposition and reconstructing the small-scale features using the inverse algorithm. Since this field
has both positive and negative values, the absolute values are used for display.

line, the fluctuations up to five levels of decomposition
account for 55% of the total energy of the storm.

6. CONCLUDING REMARKS

Over the last two decades precipitation modeling and
analysis has played an increasingly important role in hydro-
logic research. However, past trends indicate that model
development has outpaced the development of data analysis
and inference procedures. Most data analysis techniques
developed have been geared toward estimating parameters
of a hypothesized model. The results presented here are a
departure from this approach. We described a versatile data
analysis technique, independent of any hypothesized model,
that (1) segregates components having characteristic fea-
tures at different scales through an optimal multiscale trans-
formation without an a priori assumption of a homogeneous
field, (2) isolates directional information for the study of
anisotropic behavior of fluctuations, and (3) allows one to
track the evolutionary behavior of a storm. Since there is no
hypothesized model guiding the analysis and inference pro-
cedure, the methodology presents a unique way of studying
natural phenomena to unravel their statistical structure in
scale and space.

The statistical parameterization of rainfall fields at differ-
ent scales is needed for several hydrologic and atmospheric
applications. For example, a problem of considerable cur-
rent research and practical interest is that of subgrid scale
parameterization of hydrologic and land surface processes.
This interest is triggered by the fact that the outputs of
mesoscale weather prediction models or global circulation
models are available only at coarse grid scales, whereas
most regional or basin scale hydrologic applications require
more detailed information. It is common that processes at
unresolved scales are treated statistically either because
detailed physical information needed to describe and model

these processes is not available or the physics of the process
are not well understood at all these small scales or it is
computationally inefficient to run physical models with such
small grid sizes. Thus a determination of the statistical

TABLE 1. Second-Order Statistics of the Four Components for
One Frame (at 11:52 A.M.) of the May 27, 1987, Squall Line
Storm Over Norman, Oklahoma, Shown in Figure 10

Standard
Deviation, Energy
Grid Mean mm/h (Variance)
Component A
512 x 512 4.31 8.26 68.23
256 x 256 4.23 8.05 64.80
128 x 128 4.05 7.60 57.76
64 x 64 3.81 6.69 44.76
32 x 32 3.42 5.43 29.48
16 x 16 3.00 4.46 19.89
Component D,
256 X 256 0.0 0.88 0.77
128 x 128 0.0 1.25 1.56
64 x 64 0.0 1.58 2.50
32 x 32 0.0 1.46 2.13
16 x 16 0.0 1.44 2.07
Component D,
256 x 256 0.0 1.24 1.54
128 x 128 0.0 1.79 3.20
64 x 64 0.0 2.66 7.07
32 x 42 0.0 291 8.47
16 x 16 0.0 1.84 3.39
Component D;
256 x 256 0.0 0.34 0.12
128 x 128 0.0 0.59 0.35
64 X 64 0.0 0.91 0.83
32 x 32 0.0 1.24 1.54
16 x 16 0.0 1.41 2.0
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behavior of the process at unresolved scales and its coupling
with the dynamics of the process at the resolved scale is a
problem of considerable interest as it will significantly en-
hance our modeling capability. The methodologies presented
in this research can be explored toward development of a
framework for coupling the results of large-scale meteoro-
logical models with a statistical approach to subgrid scale
parameterization. Once the segregation of large- and small-
scale features from the data is accomplished using wavelet
decomposition and a statistical characterization of the small-
scale features (wavelet coefficients) is obtained (as will be
discussed in paper 2 [Kumar and Foufoula-Georgiou, this
issue]), the output of a numerical weather prediction model
can be treated as the process at the coarse grid (large-scale
features) and simulated fluctuations (small-scale features)
can be added to it to get an appropriate description at smaller
scales. If scaling laws are found to be present in the
fluctuations and thus statistical description of the small-scale
features of rainfall can be based on scaling models, then this
approach to subgrid scale parameterization is even more
appealing as it is very efficient and provides consistent
statistical descriptions at any desired scale. Whether fluctu-
ations can be treated as a scaling process, what kind of
scaling behavior they exhibit, and how can the scaling
parameters be estimated is the subject of paper 2 [Kumar
and Foufoula-Georgiou, this issue].

As a final comment, it is remarked that the success of both
analysis and modeling using the proposed decomposition
approach will depend largely on the appropriate choice of the
wavelet. As indicated in this paper, proper wavelet selection
can be guided by the behavior of the mean at the coarsest scale
of description. For the rainfall data sets studied as part of this
research, the Haar wavelet is found to be appropriate as
piecewise constant function approximates the mean behavior
adequately. Barancourt et al. [1992] have independently re-
ported that intrinsic random functions of order zero provide an
adequate description of the spatial mean behavior of rainfall.
The theory presented here is general and provides some
guidelines for the appropriate choice of wavelets from the
class of orthogonal wavelets if the criterion of selection is
removal of polynomial trends. The final choice will of course
be governed by the problem at hand.

APPENDIX A: PROPERTIES OF SUBSPACES V,,
IN THE MULTIRESOLUTION FRAMEWORK

The subspaces V,, satisfy the following properties: (1) M1,
Viu C Vo1 Vm € Z; i.e., a space corresponding to some
resolution contains all the information about the space at lower
resolution; (2) M2, U - ., V,, isdense in L?(R)and Njie_,, V,,,
= {0}; i.e., as the resolution increases the approximated func-
tion converges to the original function, and as the resolution
decreases the approximated function contains less and less
information; 3) M3, f(1) € V,,, if and only if f(21) E V,,;y Vm
€ Z; i.e., all spaces are scaled versions of one space (it is this
property that leads to the multiresolution framework); (4) M4,
f( e v, implies f(r — k2™) € V,, Yk € Z; i.e., the space is
invariant with respect to “‘integer translations’” of a function;
and (5) M$, there exists an isomorphism I from V; onto 1Xz)
which commutes with the action of Z. This property is best
explained by the commutative diagram
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f(x) €V, —l> {e,} €1%Z)
AN/ lz
flx-kyeVy 1 {e,_}el¥2)

i.e., translation (by integers) of the approximation of the
function is equal to the approximation of the translation of
the function (by integers).

APPENDIX B: REMovAL OF POLYNOMIAL TREND
OF ORDER N USING WAVELET TRANSFORMS

Here it is shown that the wavelet transform of a process
with stationary increments of order N, using a wavelet with
N vanishing moments (see (5)) denoted herein as py(r)
(using the notation of Daubechies [1988]) gives rise to a
stationary process. We briefly sketch the argument due to
Yaglom [1958] where, of course, wavelets were not in the
context. Consider the Nth order symmetric difference pro-
cess A X() corresponding to X(r) where

N
AMX(@y =D (—1)’*(2’)){(: — k1) (47)
k=0

If A X(z) is stationary then it can be represented as [see
Yaglom, 1958, equation (1.28)]

ax0 = [

-0

(1+i0)?

iwrl_ —ita\N
e —e T N

dZ(w) (48)

where Z(w) is a random process with uncorrelated incre-
ments. The process X(z) can be obtained from the above
difference equation as

X() = F efor —

(1 +iw)V N1
'W—dZ(w)+X0+Xlt+---+XN_lt (49)

where X, Xy, -+, Xy_ are arbitrary constants. Taking the
inner product of this equation with y¢,,,, and integrating we get
(1 +ie)V

(iw)™

(lon)™V 1
(N-1)!
1+ oV

l+iwt+---+

(X, N mn) = j " () dZ(w) (50)

Thus (X, nyW,.,) is uniquely determined by AV X(r). The
mean of the sequence {(X, ny¥..,)} at any scale 27™ is
constant and its second-order moments are given by

) = . ) 1+ wz)N
E[(X, N mn) ]=f |N'J‘mn(w)l _wz'ﬁ_ dF(w)
51
ELCX, 3 (Ko )] = f " wbon(w)
_ 1+ WZ)N
* Mo (w) NP dF(w)  (52)
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where E[|dZ(w)|?) = dF(w), and these moments are invari-
ant under the simultaneous translations of y¢,,, —
NUmin+ky and N = N +ky» kK € Z. We see therefore
that the transformed process is second-order stationary
implying that orthogonal wavelet transforms using wavelets
with N vanishing moments remove a polynomial stochastic
trend of order N — 1. If the process has stationary incre-
ments of order N then we obtain a process that has zero
mean and is second-order stationary. Thus wavelet trans-
forms provide an alternative way to study nonstationary
stochastic processes. In addition, the above results are valid
for all dyadic scales 277 (m € Z) which makes wavelets
attractive for multiscale study of nonstationary processes.
In practical situations, an assumption of a process having
Nth order stationary increments may break down due to
physical reasons. For example, (nonstationary) turbulent
flows may be approximated by processes with stationary
increments of order 1 for time intervals over which the mean
characteristics of flow may be regarded as linear [see Monin
and Yaglom, 1981]. One may therefore have to consider
higher-order increments for larger time intervals. Another
way to look at such a situation is by considering the equation

E[(X, y¥mn)] = f " ELX(D)In (D) dt

-

b
=f m(t)Nd’mn(t) dt (53)

where [a, b] is the region of support for y¢,,,. (Notice here
that the expectation is an ensemble average). If we consider
the truncated Taylor series approximation of m(r), i.e., m(t)
= SMLt aut, then

E[(X, Nw,n,,)] =0 M=<N (54a)
M b
E[X, nmn)] = runtm)= D, | tho,(1) dt (54b)
k=N +Ja
M>N

Here rpyp(m) is the residual component in the mean for the
scale 2™ which will depend upon both M and N. By
looking at the behavior of ry.y(m) for various choices of N
and different resolutions m, we can get an estimate for the
order of M, i.e., the order of the stochastic trend. Obvi-
ously, ryn(m) will increase with scale for a fixed N.

APPENDIX C: WEIERSTRASS-MANDELBROT
FRrRAcCTAL FUNCTION

The Weierstrass-Mandelbrot fractal function is a deter-
ministic function given by {see Berry and Lewis, 1980]

o

w(t) = z

n=—x

[(1 - e7e®"]

i (55)
,),(2 D)

1<D<2, y>1, ¢, = arbitrary phase

This is a continuous nondifferentiable function. The param-
eter D gives the fractal dimension of the curve. By choosing
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¢, = 0 and taking the real part of w(z) we get the cosine
function

1~cos v™t

¥ (2-D)n (56)

welt) = D

n=-—-x

The cosine function w.(t) is nonnegative and has a trend that
may be approximated as

272D — 1) cos (m(2 — D)/2)
(2-D)logy

(57)

W (1) =

A plot of w () for D = 1.5 and y = 1.5 is shown in Figure
6a (top).
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