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A Multicomponent Decomposition of Spatial Rainfall Fields
2. Self-Similarity in Fluctuations

PRAVEEN KUMAR! AND EF1 FOUFOULA-GEORGIOU

St. Anthony Falls Hydraulic Laboratory, Department of Civil and Mineral Engineering, University of Minnesota, Minneapolis

In the first paper (Kumar and Foufoula-Georgiou, this issue) we developed a methodology for the
segregation of large- and smali-scale features (fluctuations) of spatial rainfall fields. In this paper we
develop a framework for testing the presence and studying the nature of self-similarity in the
fluctuations. It is found that rainfall fluctuations may be approximated by stable distributions and show
scaling up to a certain scale. We define and estimate parameters that characterize the scaling and
spatial dependence of the rainfall fluctuations and we use these parameters, estimated for several radar
rainfall frames (in time), to relate to and identify the evolutionary nature of rainfall. Two radar depicted
rainfall fields have been extensively analyzed: a severe spring time midlatitude squall line storm and
a mild midlatitude winter type storm. The type of scaling in rainfall fluctuations shows significant

variation from one rainfall field to another.

1. INTRODUCTION

In the work by Kumar and Foufoula-Georgiou [this issue]
the hypothesis was set forward that rainfall can be decom-
posed into a large-scale component representing the mean
behavior of the process and small-scale fluctuations which
exhibit self-similarity. In that paper we developed a meth-
odology for segregating large- and small-scale features. The
basic requirements from any methodology designed for this
purpose are (1) data windowing capability so that nonhomo-
geneities can be localized, (2) adjustable window size so that
no a priori information on the size of these features is
required, and (3) consistency across scales, i.e., features
extracted at a certain scale directly from the data, or through
an intermediate scale, should be the same. The methodology
(based on orthogonal wavelets) developed in the first paper
[see Kumar and Foufoula-Georgiou, this issue] elegantly
embodies these requirements. The multiscale segregation
achieved is such that statistics like the mean and correlation
function of the component processes are additive. Also, the
orthogonality of scale function and wavelets provide some
additional optimality properties of multiscale discretization
of the process or its fluctuations, without any redundancy or
loss of information [Kumar and Foufoula-Georgiou, this
issue, section 4]. These properties are particularly attractive
for the statistical analysis and inference of the rainfall
process.

By applying the above methodology we accomplished a
decomposition of the inner variability field X(r), i.e., the
rainfall field conditioned on being positive, into two uncor-
related components

X(t) = X(t) + X'(t) (1)

where the mean process X(t) and fluctuation process X ’(g)
were approximated using scale functions ® and wavelets ¥°,
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respectively, as X(t) = )?,,,o(t) and X'(t) =
5(t) where

X (t) = D (X, @) P i) @)
n.k

Xi= > D X, ¥h Vi, (3)

m=my n,k

1 + X5t +

where m, is the critical scale that segregates large- and
small-scale behavior. We showed that these components are
physically meaningful. X(t) represents the large-scale behav-
ior of the process and X'|(t), X(t), and X(t) capture the
horizontal, vertical, and diagonal high correlations of the
fluctuation process.

In this paper we hypothesize that X’ (t) may exhibit scaling
(in the sense defined below), and we test this hypothesis. We
say that the fluctuation process X'(t) scales if

xyan} = APy, 4)

{xsat)} = {A#xy(0)}, (%)
d

x50} = (A x50} (6)

where the above equalities are in terms of the joint distribu-
tion of the corresponding fluctuation processes. The scaling
exponents H,, H,, and H; need not be the same. In the
event that the process is ‘‘isotropically self-similar,”’ the
three scaling exponents H,, H,, and H, are equal. The
difference in the values of H,, H,, and H; help us charac-
terize differences in the dependence structure of the storm in
the three directions.

In general, the fluctuations may have finite or infinite
variance and be dependent or independent. A general frame-
work for the identification of self-similarity and parameter
estimation techniques for a class of distributions for which
self-similarity holds are developed in section 2. The method
described here is geared toward fitting distributions to the
fluctuations and not just performing moment analysis as in
the work by Gupta and Waymire [1990]. This overcomes
both drawbacks of moment analysis, i.e., unreliability of
higher-order moments and taking moments when moments
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of the distribution under examination might not exist. As is
discussed by Kumar and Foufoula-Georgiou [this issue]
radar rainfall intensities should be interpreted as integral
quantities over the measuring space-time interval instead of
point values. The theory of self-similarity needs to be
extended to include such generalized processes. This is
developed in section 3.

In general, when the wavelet coefficients have a distribu-
tion with infinite variance then the process is no longer
square integrable, i.e., L2, Some of the nuances introduced
by this situation in the application of the multiresolution
framework are discussed in section 4. In section 5 we
present the analysis of two storms, a severe midlatitude
squall line storm and a midlatitude winter type storm. It is
found that scaling models can provide reasonable represen-
tations of rainfall fluctuations up to a certain scale and the
type of scaling varies significantly from one storm type to
another. Some closing remarks are made in section 6.

2. SELF-SIMILAR PROBABILITY DISTRIBUTIONS

2.1. Definition

The distinguishing feature of self-similar processes is their
inherent lack of dependence on the scale of description of
the process. Mathematically, such processes are defined as
processes whose finite dimensional joint distribution func-
tion satisfies equation [see Lamperti, 1962]

Pr(A"Hx(At) <xq, -+, ATHX(At,) <x,)

=Pr(X(t;)<xy, -, X(t,) <x,). )]

which is also written as

{X(r0)} : {A\4X(1)} HER,AER" 8)

By nature of the transformation involved, the n dimensional
multivariate joint probability distribution function, p(x; t),
x, t € R”, of the random vector X = {X{(¢,}, -+ -, X(t,)},
necessarily satisfies

p(x; 1) =2 p(aFx; Ay )
The marginal distribution function satisfies
p(x; 1) = AHp(AHx; An). (10)

The notation p(x; t) indicates that the distribution function
of X is specified by parameters that depend on t. The above
condition (9) can be translated into a requirement for the
characteristic function of the multidimensional distribution,

pE; 1), as
pE;t) = I p(x;tye % dx = Aﬂf p(Afx; At)e 8% dx

which on substituting A7x = y gives
p(&; ) = p(A~"E; A1) an

or, equivalently, for the characteristic function of the mar-
ginal distribution

p(&; 0 =pa g Ar). (12)
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Relationships between moments (if they exist) of the
marginal distribution can be obtained as

E[X"(n]= f xhp(x; 1) dx = j "\ Hp(AHx; A1) dx

which on substitution of A%x = y gives

E[X"(t)] = A ME[X"(A0)] (13)

It is noted that if the distribution is symmetric about the
origin then all the odd moments are zero for which the above
equation holds trivially.

In general, the probability distribution p(x; t) satisfying (9)
can be classified into one of the three categories: (1) Gaus-
sian, (2) non-Gaussian infinite variance distribution (stable
distributions), and (3) non-Gaussian finite variance distribu-
tions. The authors are not aware of any known examples in
the third category and hence this category will not be
discussed further. Below we elaborate on the first two
categories which will be used in the analysis of rainfall
fluctuations.

2.2. Gaussian Distributions

In general, the finite dimensional Gaussian distribution is
given by

1
p(x; t) = (2n|2(t)()"2

cexp {—3([x — p(®]- T7O[x ~ p®OD}  (14)
where 3(t) is the covariance matrix, p(t) € R" is the mean
vector, and x - y represents the inner product of two vectors.
Let us assume that, in accordance with (13),

p(At) =Afp)  Z(at) = A3 (15

implying 2 "1 (At) = A 7273 ~}(t). It can then be verified that
under these conditions, and only under these conditions,
p(x; t) satisfies (9).

2.3. Stable Distributions

2.3.1. Definition and properties. As is described by
Feller [1971, p. 169}, if X, X, X;, - - are mutually inde-
pendent random variables with a common distribution Fg,
then the (nondegenerate) distribution F is said to be stable
if for each n € Z, there exist constants C,, > 0 and r,, such
that

d
S,=CX+r, (16)

where §, = X; + X, + :-+ + X,. The norming constant
C, is of the form n'* with 0 < « < 2. The constant a is
called the characteristic exponent of the distribution Fg. The
distribution Fg is termed strictly stable if , = 0. Thus by
the defining property (16) stable distributions are invariant
under convolution up to a scale and location parameter.

Closed-form expressions for the probability density func-
tions (pdf) of stable densities exist only for a few selected
values of a. In general, the stable densities are described
through their characteristic function which is given by [see
Stuart and Ord, 1987, p. 147]
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p(€) = exp {iné — [c&|*[1 +iB sgn (E)w([¢], &)]}  (17)
where
ma
w(l¢], a) = tan (T) a # 1,
(18)
2
w(|¢], @) = (—) log |¢f a=1
™
sgn (§) = 1 £>0
sgn (¢§) =0 £=0 (19)
sgn (§) = -1 £<0

and —o < u<xo, ¢c>0,0<a=<2,and -1 = 8=1.Here
p is a location parameter, ¢ is a scale parameter, and 8 a
skewness parameter.

For a = 2, p(§ gives the characteristic function of the
normal density with mean p and variance 2¢2. Fora = 1 and
B = 0 we get the Cauchy distribution with pdf (1/7){c/[c? +
(x ~ w)?]}. For a = 1/2 and B = —1 we get a pdf given by

x—3/28—1/2x x>0

p(x) = (21‘_)1/2

p(x)=0

Although, closed-form expressions do not exist for other
values of (a, B), the probability densities can be numerically
obtained through certain series expansions [see Holt and
Crow, 1973].

A multidimensional extension of the characteristic func-
tion (17) for symmetric stable distributions is given by [see
Press, 1982, equation (6.5.9)]

px(E) = exp {ip &~ L(E - 0§}

x=0

(20)

where () is a positive semidefinite n X n matrix called scale
matrix and X, & p € R”. It is remarked that the joint
distribution function (20) does not characterize all possible
multidimensional symmetric distributions [see Paulauskas,
1976].

Stable distributions possess the following interesting prop-
erties which will be used in setting up the framework of
analysis of rainfall fluctuations.

1. The characteristic function of the standardized vari-
able (X — u)/c is of the form given in (17) with p = 0, ¢ =
1; equivalently,

Fs(x;a,ﬁ,u,c)=F5( ’L;a,ﬁ,O, 1>. (21)

2. The pdf of stable densities satisfy p(~x; a, B) = p(x;
a, —f).

3. The pdfs of stable densities are unimodal [see
Gawronski, 1984] and are symmetrical if 8 = 0. They have
thick tails of the form P(X > x) ~ C;x~® and P(X < —x)
~ Cyx % as x > », C;, C, € R*, where ~ indicates an
asymptotic equality with increasing x. Evidently, the thick-
ness of the tail increases as a decreases and results in the
following property.

4. If the random variable X has a stable distribution then
EI|X|*] exists only for h < a, 0 < a < 2. The mean exists
for 1 < a =2, but for 0 < a < 1 neither mean nor variance
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exists. Thus normal distributions are the only stable distri-
butions with finite variance. It is noted that moments of all
orders of the logarithm of absolute values of stable random
variables, i.e., log |X|, exist [see Zolotarev, 1986, p. 213].

2.3.2. Self-similar stable distributions. Not all stable
distributions, i.e., distributions characterized by (20), satisfy
the condition (11) of self-similarity. For rainfall analysis we
focus on symmetric stable distributions which are self-
similar, although more general forms are possible. We con-
sider stable distributions whose joint characteristic function
can be written as

p(&; 1) = exp {in(t) - € — 3(E- QT Q)

where the matrix {}(t) is positive semidefinite. Let us assume
that Q(t) is such that Q(At) = A2HQ(0). In order that pE; t)
= p(A"HE; At), we in addition need to have p(At) =
A u(t). In the event that p(t) = 0, the condition Q(At) =
A0t is sufficient for p(E; t) to be the characteristic
function of a self-similar distribution. In general, the mar-
ginal characteristic function of a symmetric stable distribu-
tion (B8 = 0) with & = 0 is given by

o(&; 1) = p(&; 1) =p=0 = exp (—[c()€]%).  (23)

For it to be self-similar, i.e., satisfy (11), we need to have

c(At) = a8c(D) (24)

or, equivalently,

log c(At) = H log A + log c(1). (25)

A typical example of such a process whose joint character:
istic function satisfies (22) and the scale parameter c(t) of the
marginal characteristic function satisfies (25) is constructed
in the Appendix. This process (which is a particular con-
struction of a fractional Levy motion process) can be used to
model the multidimensional structure of rainfall fluctuations,
since, as will be seen from the rainfall data analysis, rainfall
fluctuations exhibit long-range dependence with probability
distributions having infinite variance.

2.3.3. Parameter estimation. Parameter estimation for
stable distributions is tricky because (1) moments do not
exist and therefore method of moments cannot be used and
(2) pdfs cannot be written in an explicit form, and hence
method of maximum likelihood cannot be used. Here we
consider the parameter estimation of a class of univariate
stable distributions that are symmetric (8 = 0) and have
finite mean, i.e., 1 < a < 2. For this case the parameters can
be obtained as described here which is a slight modification
of the method discussed by Arad [1980]. For 1 < a = 2, the
location parameter u equals the mean which can be seen
from (1/i}(d/d&p(0) = wu. Hence the sample mean can be
used as an estimator for u. Subtracting the mean p we get a
symmetric stable distribution whose characteristic function
is given by

g (&) = exp (—|c&l?). (26)

Therefore log g(£) = —|c§* =
Equivalently,

o

~ v, where y = ¢*.

log (—log 2(£)) = a(log ¢ + log |£]) = « log |¢| + log .
27)
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The sample characteristic function is estimated as

Z cos (X;¢) +i 2 sin (X;£)

i=1
=C(§) +iS(§€)

Notice that since |exp (iX ,-g)] is always bounded by unity,
o(&) always exists. Comparing (27) and (28) we see that the
parameters a and log y can be obtained as slopes and
intercepts of the linear regression on log (—log C(§)).
Considering the periodic nature of the cosine function, one
needs to consider several values of £ only between 0 < £ <
/2 for the regression. For rainfall analysis we use the
method described above as it is found that 1 < a < 2. For the
case 0 < a = 1, if u can be obtained by some other means,
say, by the estimation of the location of the mode, then the
above estimation procedure can be used for this range of a
also. For parameter estimation in the general case see Press
[1982].

(28)

3. GENERALIZED SELF-SIMILAR PROCESSES

We would like to extend the class of self-similar processes
50 as to also include processes that do not have point values
and are meaningful only when defined through an integral
transform, X (1) = J X(u)p(t — u) du, such as the rainfall
process. Toward this objective we use the definition of
Dobrushin [1978]. We shall call a process X ,(t) self-similar
if

1 t—u i H
fX(t)Iq:T dip = {A fX(t)(p(t-M)dt

(29)

which is the analogue of equation {X(A1)} £{A”X(1)}. For
processes that are self-similar in the sense of (8), the above
relationship holds. If ¢(r) has N vanishing moments, i.e.,

ftk¢(t)dt=0 k=0,---,N—-1 (30)

and X (2) is stationary and self-similar in the sense of (29),
then we say that the process is self-similar with (generalized)
stationary increments of order N. As is discussed by Kumar
and Foufoula-Georgiou [this issue], wavelets with N van-
ishing moments provide a very attractive tool for studying
such processes.

In the event that we have a process on a d dimensional
space, i.e., X(t) such thatt & RY, then the equivalent scaling
equation is

oot

i{/\”fX(t)qa(t—u)dt], t,ue RY (3D
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and the finite dimensional multivariate distribution function
satisfies

p(x; t) = A¥p(afix; At) (32)

where x is now a value assumed by the random variable
X,(t) and t is a v dimensional vector whose elements are d
dimensional vectors t € RY. Equivalently, the characteristic
function satisfies

p(&; t) = p(A ~HE; at).

The probability distribution (32) of the random variables
X ,(t — u) could lie in either of the three classes discussed
earlier, i.e., generalized Gaussian or stable or non-Gaussian
finite variance distribution. When d = 2, we will call X(¢t),
satisfying (31), self-similar generalized random field. It is in
this framework that we will study self-similarity of fluctua-
tions obtained using wavelet transform of the inner variabil-
ity rainfall field X(t).

Now a few words of clarification.

1. For multidimensional processes, i.e., processes on d
dimensional space RY, the requirements of self-similarity
developed on the distribution function (equation (9)) or the
characteristic function (equation (11)) for one-dimensional
self-similar processes do not change. Only the way in which
the parameters of the distribution (or characteristic) function
depend on the dimension of the underlying space being
considered changes. For instance, for generalized Gaussian
self-similar processes, condition (15) changes to

p(at) = afu(t),  =(a)= A3

where t € R” is a v dimensional vector whose elements are
two-dimensional vectors t € RZ, and likewise for other
distributions.

2. Iff @t)dt = 1,t € R ie., ¢t) is an averaging
kernel, then [ (1/A9)p[(t — u)/A}] dt = 1, which illustrates
the reason for using the prefactor 1/A¢ in the left-hand side
of (31). Due to this, the dimension d of the underlying space
does not appear along with the scaling exponent H in the (31)
and (33).

3. For the multidimensional case, the condition (30) can
be written as

(33)

(34)

thp(t) dt =0  k=0,---,N—1 335)
where t¢ = ¢fi -5 and ky + --- + k; = k for the d
dimensional vector t = [¢; - - 14].

4. STABLE FLUCTUATIONS

The mathematical representation of the rainfall compo-
nent processes X (t), X3(t), and X5(t) becomes involved if
their discretizations (X, ¥} ,,) are found to have a stable
distribution. In this event the fluctuation processes X(t),

5(t), and X(t) do not belong to the Hilbert space L2(R).
If 1 < @ < 2 then these processes belong to L* spaces where
P = a. However, the entire wavelet transform framework
described by Kumar and Foufoula-Georgiou [this issue] for
L? is valid for LY(1 < P < =) as wavelets constitute
unconditional bases for these spaces [see Daubechies, 1992,
theorem 9.1.6). Properties P, P2, and P3 [see Kumar and
Foufoula-Georgiou, this issue, section 4] which do not
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require orthogonality but merely linear independence, en-
sure that {(X, W] ,0}i=1 ; and {(X, ®,,,,)} may be regarded
as optimal discretizations of the fluctuation and the average
processes, respectively, for our purpose of stochastic iden-
tification and representation. The case of 0 < a =< | is more
complicated and will not be considered here.

In studying the fluctuation process two cases may arise,
i.e., the distribution functions of the fields X%, X, and

73 (which are the discretizations of the fields X (t), X5(t),
and X;(t), respectively) may have (1) different characteristic
exponents a;, a,, and a3, respectively, or (2) the same
characteristic exponent. If the fluctuation components
{X4i}i=1.2,3 have different scaling exponents then they are
described by different distribution functions. Hence they can
be analyzed independently of each other for scaling charac-
teristics. If the rainfall fluctuation components have the
same characteristic exponent «, then a weaker condition of
being ‘“‘uncorrelated” in a sense to be discussed below is
sufficient to justify the independent analysis of these com-
ponents.

Recall from (22) that the symmetric joint stable distribu-
tion of two random variables X| = X;(t;) and X, = X{;(t;)
{i,je L, 3l,i#=j} t,t, € R?, obtained from two
different components of the fluctuations is given as

& &) { (e g)(n” G e
, =expy—z )
Px . x\&1s &2 p 2 12 Q7 Qpn/\E,

(36)

where () is a positive definite matrix. We define an associa-
tion parameter

Q4

=— 37
Q) Q)" G7)

y

In the event that @ = 2 (Gaussian distribution) y gives the
correlation coefficient of X| and X,. In general, the follow-
ing properties hold for vy [see Press, 1972): (1) —-1 = y= 1;
(2) if X, and X, are stochastically independent then y = 0;
and (3) if y = 1 then the distribution is degenerate. Thus y
possesses all the properties of correlation coefficient. The
condition we require for the independent analysis of the
rainfall fluctuation components is that y = 0 Vi, j. For the
purpose of this research we will assume that this condition
holds without formally proving it. We will call random
variables satisfying this condition uncorrelated (although it is
reminded that these random variables do not have second or
higher order moments) and rely on the context to clarify the
sense in which this term is used.

5. DATA ANALYSIS

5.1.  Analysis Framework

To find if the fluctuations of the rainfall process scale in
the sense of (4)-(6) we study the marginal distribution
function of the discretizations of the component processes
{X'4i m}i=1,2,3 at different scales 27 ™. The steps involved in
the analysis are summarized below.

1. Check if the discretization of rainfall fluctuations
X4i.m at each resolution obeys a stable law or can be
approximated by one. At each resolution m, the character-
istic exponent « and the scale parameter c¢ is estimated by
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the method described in section 2.3.3. The Gaussian case is
treated as a special case for @ = 2 with variance o? = 2¢2.

2. Check the goodness of fit. Having estimated the
parameters by the above procedure, the theoretical and
empirical cumulative distribution function (CDF) is plotted
for each component at each scale to see the goodness of fit.
The empirical CDF was obtained using Weibull plotting
positions [Haan, 1977]. The theoretical CDFs for various a
and ¢ were estimated by the following procedure. (1) Prob-
ability distribution function p g(x) for a range of values of x
were numerically obtained for the values of a = {1, 1.1, 1.2,
1.25,1.3,1.375, 1.4, 1.5, 1.5556, 1.6, 1.625, 1.6667, 1.7, 1.75,
1.7778, 1.8, 1.875, 1.9, 2.0} at ¢ = 1 using the procedure
described by Holt and Crow [1973] (also see section 2.3.1).
The results matched exactly with those given by Holt and
Crow {1973]. (2) The pdf thus obtained were numerically
integrated to get CDFs at the respective values of « and ¢ =
1. (3) For all other values of a« the CDF was obtained by
linear interpolation. (4) CDFs for ¢ # 1 were obtained using
the relation (see equation (21))

Flx;a,B=0,p0=0,c)

X
=F,(—;a,B=0,p=0,c=1).
c

3. If the rainfall fluctuations can be described by a stable
law, test to see if they exhibit scaling. This test is based on
the fact that if a component is scaling, the scale coefficient ¢
estimated at different scales A will show log-log linearity with
A (see equation (25)).

4. If the rainfall fluctuations are not self-similar for all
scales, determine the critical resolution m, up to which
scaling is observed and estimate H. The resolution m, is
determined from the point of departure from linearity in the
log-log plot of scaling parameter ¢ with scale A. The slope of
the graph up to scale 2™ gives the estimate of the param-
eter H.

5. Study the evolutionary behavior of the storm by
studying the changes in {a;};,~; 23 and {H;};-, .3 across
frames. Under our hypothesis the characteristic exponent
{e;} for the marginal distribution of {X; ,,};=123 is ex-
pected to be the same for all resolutions m. However,
variations were observed in the estimated values of a. The
variations differed between various data sets but in general it
was observed that variations were larger for smaller «. We
took the mean &;, obtained over various scales 2™ up to
the critical scale 2 7™, as the representative value of a; for
that frame. To study the evolutionary structure of the storm,
a; and H; were plotted for various frames for all data sets.

5.2. Results

The fluctuations of two rainfall fields, one squall line storm
and a convective winter type storm, were analyzed using the
above framework for the purpose of identifying the type of
scaling present and estimating the scaling parameters. The
squall line storm data set was described by Kumar and
Foufoula-Georgiou [this issue]. The winter type storm was
monitored by the same radar on February 22, 1985, over
Norman, Oklahoma. Rainfall intensities for the squall line
storm are available at two temporal integration scales, 1 hour
and 10 min, for 360 azimuths, with every azimuth containing
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Fig. 1.
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Winter type storm (at 11:45 A.M.) monitored by National Severe Storms Laboratory, Norman, Oklahoma,

on February 22, 1985. The field represents the average rainfall intensity (in millimeters per hour) over 5 min interval.
The vertical represents the north-south direction and the radial marks are 25 km apart.

115 estimates for a range of 230 km (i.e., data at every 2 km
by 1 degree). Rainfall intensities for the winter storm are
available only at temporal integration scales of S min inter-
vals. Intensities at the 1-hour integration scale were obtained
by averaging 12 consecutive nonoverlapping 5 min scans.
Intensity values for each radar scan over the 360 azimuths
will henceforth be referred to as a “‘frame.”” The precipita-
tion processing system, used to correlate reflectivity and
rainfall intensity, taking into account the raingage observa-
tions, and adjustment for ground clutter, etc., is described
by O’Bannon and Ahnert [1986]. For the purpose of our
analysis the data were converted to a rectangular grid of size
512 x 512 by bilinear interpolation on the polar grid. For
future reference we will use the following mnemonics for the
above data sets: S1, squall line data at 1 hour integration
time; S2, squall line data at 10 min integration time; W1,
winter type storm data at 1 hour integration time; and W2,
winter type storm data at 5 min integration time.

Frame 1 of the 10-min integrated intensities of squall line
storm (data set S2) is displayed in Figure 13 of Kumar and
Foufoula-Georgiou [this issue] and frame 1 of the 5-minute
integrated intensities of winter type storm (data set W2) is
displayed in Figure 1. Small-scale features of the above data
sets were obtained using the multiscale decomposition ap-
proach using Haar wavelets as explained by Kumar and
Foufoula-Georgiou [this issue].

Frame 1 of data sets S1, W1, and W2 and frame 3 of data
set S2 were chosen for illustration of results, as they were
characteristic of the behavior of the storm across several
frames. Figure 2 shows empirical and theoretical cdfs for
frame 1 of data set S1 after one level of decomposition of the
original data set on a 512 X 512 grid; i.e., it shows cdf of the
fluctuations on a grid of 256 x 256 for each of the compo-
nents D, D,, and D;. Figure 3 shows the same plot for
frame 1 of data set S2. The fit of the distribution at other
levels of decomposition are similar and are not reported

here. As is evident from Figures 2 and 3, the data set S2
shows a thicker tail and, consequently, lower value for o, as
compared to data set S1, indicating that time integration has
the effect of smoothing the violent behavior of the storm.
Since data sets W1 and W2 correspond to a mild storm, the
effect of time integration is not that dramatic in the estimates
of a (see Figures 4 and 5) and the « values themselves are
very close to 2, i.e., the distribution is almost Gaussian.
Tables 1 and 2 give the estimates of a and scale parameter ¢
for the first frame of each of the four data sets at six levels of
decomposition. Table 1 shows some variation in the esti-
mates of a with respect to scale which could be due to

. )
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Fig. 2. Empirical (solid curves) and theoretical (dotted curves)
cumulative distribution functions for the three components: (a) D,
(b) D,, and (c) D5 of frame 1 of data set S1 (squall line storm at the
1-hour integration time) after one level of decomposition. Figure 24
shows the deviation between the empirical and theoretical cumula-
tive distribution functions.
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Fig. 3. Same as Figure 2 for frame 3 of data set S2 (squall line

storm at the 10-min integration time).

sampling, or a limitation of the estimation technique, or the
fluctuations may have different « at different scales. The
exact cause for the variation is under investigation. For the
current research, we will use the mean value of « (mean
obtained over several scales) for each component as the
representative value for that component.

In comparing the theoretical and empirical cdfs some
remarks are in order. First, the empirical CDFs have been
displayed using Weibull plotting position which is expected
to be biased for stable distributions. We are not aware of any
literature on the problem of choosing appropriate plotting
positions for stable distributions. This issue needs further
research. Second, no results of statistical testing, e.g.,
Kolmogorov-Smirnov or x? tests, are reported for the com-
parison of empirical and theoretical distribution functions as
these tests are appropriate for independent samples and their
use on samples exhibiting long range dependence renders
them weak and unreliable. Third, as is observed from
Figures 2-5, the fitting is very good at the tails. This is
desirable since as Mandelbrot [1963, p. 425] shows, the
properties of samples of stable distribution are dominated by
the tail behavior of the distribution. For example, if X, (1 =

1 Component d2
08¢ ! a1.999
g g 06}  c:0.03617 |
= g o4f 1
02} 4
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L J 02
0.8 o 1998
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x (c) (d)

Fig. 4. Same as Figure 2 for frame 1 of data set W1 (winter type
storm at the 1-hour integration time).
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Fig. 5. Same as Figure 2 for frame 1 of data set W2 (winter type

storm at the 5-min integration time).

n =< N) have a distribution with hyperbolic tails with the
same a, i.c., P(X, > x) ~ C,x % (see property 3, section
2.3.1), then P(max {X,} > x) ~ (£,C,)x" %, ie., the
maximum is asymptotically hyperbolic with the same «; and
Pz, X, >x)~(2,C,)x"%, ie., the sum is asymptotically
hyperbolic with the same a and behaves asymptotically like
the largest of them. The consequence of the above properties
is that any statistic of interest with regard to the random
variables X,, will be dominated by a few large values and the
contribution of the several small values is negligible, i.e.,
behavior of the tail is dominant. Notice that for the above
invariance properties to hold, the distributions need not be
exactly stable but that they have hyperbolic tails.

Recognizing that rainfall intensities are dependent, Kedem
et al. [1990] fitted probability distributions using an estima-
tion procedure based on minimizing the x? statistic. Such an
estimation procedure applied to our data resulted in a very
good approximation of the body of the probability distribu-
tion function but very poor approximation at the tails, i.e.,
thicker tails (lower «). Such a fitting would be inappropriate
given the sensitivity of the order statistics to the value of a.
Estimation of parameters of stable distributions is an issue
that has not been adequately addressed in the statistical/
mathematical literature. Given the recent interest in long-
range dependent processes and scaling models further re-
search is needed in this area.

Figure 6 shows the log-log plot of the scale parameter ¢
with respect to scale A for frame 1 of data set S1, frame 3 of
data set S2, and frame 1 of data sets W1 and W2 described in
Tables 1 and 2. These frames were chosen because they are
illustrative of the average behavior of the storms over
several frames. As is clearly seen, data sets S1, S2, and W1
show log-log linearity of ¢ with respect to A indicating scaling
up to five levels of decomposition, i.e., up to an averaging
pixel size of 28.75 x 28.75 km. Data sets corresponding to
the winter type storm show a different albeit interesting
behavior. Although, the fluctuations at small temporal inte-
gration scales (5 min) do not show any significant scaling,
they exhibit scaling behavior at the larger temporal integra-
tion scale of 1 hour, and this result is consistent across
frames. Significant variations were observed in the estimates
of H between the data sets S1 and S2 where scaling was
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TABLE 1. Estimates of a and ¢ for the Squall Line Storm at Various Levels of Decomposition

Frame 1 of S1 (11:40 A.M, to 12:40 P.M.) Frame 3 of S2 (12:11 A.M. to 12:21 P.M.)

Grid a c @ H r a c a H r
Component D,
256 x 256 1.944 0.152 1.661  0.264
128 x 128 1.885 0.213 1.587  0.360
64 x 64 1.904 0.262 1.573  0.468
32 x 32 1.939  9.289 1.673  0.543
16 x 16 1.942 0390 1923 0315 098 1.775 0588 1.654 0291 0.972
8 x8 1.986  0.449 1.967  0.609
4 x4 2000 0.512 2.000 0.522
Component D,
256 x 256  1.845  0.188 1.463  0.257
128 x 128 1.722  0.240 1.354 0.341
64 x 64 1.491  0.259 1.269  0.404
32 x 32 1.509 0.331 1.305 0.540
16 x 16 1.635 0467 1.640 0309 0980 1461 0722 1371 0364 0.997
8§ x8 1.929  0.612 1.897  0.643
4 x4 1.979  0.958 1.924 1.090
Component D;
256 x 256  1.949  0.060 1.768 0.114
128 x 128 1952 0.116 1.720  0.212
64 x 64 1.883  0.181 1.466  0.249
32 x 32 1.770  0.220 1.642  0.410
16 x 16 1.864 0350 1.884 0.549 0980 1.785 0.580 1.677 0.564 0.988
8x8 1.949  0.339 1.968 0477
4 x4 2.000 0.404 2.000 0.405

Also given are the mean @ and H estimated using the first five levels of decomposition. The
correlation coefficient r for the estimation of # is also indicated.

observed at both large and small temporal integration scales. type of scaling at different temporal integration scales and
This behavior was consistently observed for other frames in  from storm to storm.

each of the data sets. These results have far reaching Table 3 gives the estimates of @; and H for each compo-
implications since they indicate significant variation in the nent D, D,, and D; for several frames in each of the data

TABLE 2. Estimates of a and ¢ for the Winter Type Storm at Various Levels of Decomposition

Frame 1 of W1 (11:45 A.M. to 12:47 P.M.) Frame 1 of W2 (11:45 AM. to 11:50 A.M.)

Grid a c a H r a c a H r
Component D,
256 x 256 1998  0.030 1.983 0.101
128 x 128 1.998  0.049 1.963 0.153
64 x 64 1.99%6 0.071 1.943 0.195
32 x32 1.995  0.09 1.978  0.204
16 x 16 1.998 0.098 1.997 0.0488 0.966 1.976 0.160 1.968 0.171 0.681
8§x8 1.999  0.120 1.998 0.135
4 x4 2.000 0.144 2000 0.135
Component D,
256 x 256 1999 0.036 1.978  0.104
128 x 128 1998  0.060 1.947  0.154
64 x 64 1.996  0.089 1.932  0.209
2 x3 1.994  0.121 1.965 0.221
16 x 16 199 0.133 19% 0477 0973 197 0.147 1.964  0.153 0.552
8x8 1.99% 0.161 1.99%6  0.153
4 x4 2,000 0.109 2,000 0.159
Component Dy
256 x 256 1.998  0.008 1.995 0.029
128 x 128 2.000 0.018 1.993 0.059
64 x 64 1.998  0.039 1.989  0.098
2 x3 1.996  0.068 1.979  0.154
16 x 16 1995 0.097 1997 0.880  0.991 1.984  0.138 1.988  0.594 0938
Bx8 1.995 0.102 1992 0.127
4x4 2000 0.072 2.000 0.064

Also given are the mean @ and H estimated using the first five levels of decomposition. The
correlation coefficient r for the estimation of H is also indicated.
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Fig. 6. Log-log plot of scale parameter with respect to scale for
frame 1 of (a) data set S1, (b) frame 3 of data set S2, and frame 1 of
(c) data set W1 and (d) data set W2. The solid line is for component
Dy, dotted line is for D,, and dotted-dashed line is for D;. The
regression lines obtained using five levels of decomposition are also
indicated. The slope H and the correlation coefficient r for the
regression lines are given in Tables 1 and 2.

sets S1 and S2. Each estimate is obtained by considering five
levels of decomposition. Figure 7 shows the plot of these
values which describe the evolutionary behavior of the
storm. As can be seen, a; shows significant variation at small
temporal integration scales and is almost constant for large
integration scales (Figure 75). The values of &; increase
(Figure 7b) as the storm goes through the dissipative stages
(recall that the squall line data were available beginning only
at the mature stage of the core of the storm), and this is
interpreted as the consequence of the decaying of the core of
the squall line which reduces the variability of the rainfall
intensities. A similar pattern, but with lesser variation, is
observed at larger temporal integration scales (Figure 7a).
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TABLE 3. Estimates of a; and H for Each Component D,, D;, and Dy Obtained Using Five
Levels of Decomposition, Across Several Frames for the Squall Line Data
D, D, D;
Frame Time a H, a H, a Hy
Data Set S1
1 11:40 A.M. to 12:40 P.M. 1.923 0.315 1.640 0.309 1.884 0.599
2 12:38 P.M. to 1:38 P.M. 1.935 0.328 1.826 0.380 1.897 0.570
3 2:38 P.M. to 3:38 P.M. 1.931 0.303 1.887 0.367 1.960 0.530
4 3:37 P.M. to 4:37 P.M. 1.919 0.406 1.862 0.402 1.955 0.618
5 4:35 P.M. to 5:35 P.M. 1.932 0.394 1.893 0.381 1.963 0.558
6 5:33 P.M. to 6:33 P.M. 1.922 0.355 1.893 0.424 1.961 0.376
7 6:31 P.M. to 7:31 P.M. 1.897 0.392 1.865 0.338 1.971 0.474
Data Ser 52
1 11:52 A.M. to 12:02 P.M. 1.483 0.366 1.222 0.381 1.575 0.475
2 12:02 P.M. to 12:11 P.M. 1.538 0.359 1.219 0.377 1.562 0.550
3 12:11 P.M. to 12:21 P.M. 1.654 0.291 1.371 0.364 1.677 0.564
4 12:21 P.M. t0 12:31 P.M. 1.747 0.272 1.533 0.291 1.796 0.456
5 12:31 P.M. to 12:40 P.M. 1.753 0.227 1.534 0.292 1.858 0.500
6 12:40 P.M. to 12:50 P.M. 1.632 0.332 1.536 0.381 1.738 0.480
7 12:50 P.M. to 1:00 P.M. 1.676 0.308 1.566 0.303 1.791 0.518
8 1:00 P.M. to 1:10 P.M. 1.797 0.302 1.748 0.375 1.830 0.546
9 1:10 P.M. to 1:19 P.M. 1.643 0.315 1.593 0.288 1.731 0.512
10 1:19 P.M. to 1:29 P.M. 1.612 0.309 1.540 0.315 1.766 0.588
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However, during the dissipative phase the @; values remain
almost constant indicating no significant variation in the
nature of the (tail of the) distribution functions. A similar
analysis for the winter type storm indicated that the rainfall
fluctuations at the 5-min integration scale (data set W2) do
not exhibit significant scaling. For an integration interval of
1 hour scaling was observed, but since the storm lasted only
3.5 hours the nature of the temporal variation of these
parameters could not be established.

6. CONCLUSIONS

The multicomponent decomposition methodology pre-
sented in these companion papers provides a new approach
to space-time rainfall analysis for segregating large- and
small-scale features, and identifying and estimating the na-
ture of self-similarity in the small-scale features (fluctua-
tions). This decomposition approach makes no a priori
assumption about the structure of the rainfall fields. If
self-similarity is found to be present in the fluctuations, the
maximum scale over which it holds is used to define the scale
below which physical or other nonscaling stochastic descrip-
tions should be sought. The idea behind this approach is that
the large-scale features represent the morphological organi-
zation or large-scale forcing specific to the particular rain
producing mechanisms and are scale dependent, whereas
when this effect is subtracted the resulting deviations might
exhibit scale invariant characteristics.

The analysis of two storms has indicated that rainfall
fluctuations, when appropriately decomposed to account for
anisotropy exhibit self-similar characteristics whose nature
persists over the evolution of the storm. The range over
which self-similarity holds and the type of self-similarity
depend on the storm type and for a particular storm on the
temporal integration scale at which the description of the
rainfall process is sought. For example, the squall line
rainfall fluctuations exhibited self-similar characteristics
over all the three directional components (D, D,, and D;)
up to a scale of 25-30 km, and this long-range dependence
was stronger at the 1-hour integration scale as compared to
the 10-min integration scale. For the winter type storm, the
rainfall fluctuations derived from the S-min integrated data
did not show any self-similarity, although the 1-hour inte-
grated data exhibited self-similarity. Unfortunately, its time
evolution was hard to characterize due to the short duration
of this storm. It is interesting to note that these results were
further corroborated with a different method of analysis
based on probability-weighted moments [see Kumar et al.,
1992].

Taylor’s hypothesis has been observed to hold for rainfall
intensities for time period up to 40 min {Zawadzki, 1973].
Gupta and Waymire [1987] showed that for Taylor’s hypoth-
esis to be valid for some scales, scaling laws should hold for
those scales, or vice versa. It is interesting to note that a time
period of 40 min for a storm moving at the speed of 10-12.5
m/s correspond to a spatial scale of 24-30 km. The results
reported in this research are remarkably consistent with the
above observation.

It has been argued in previous studies [e.g., Lovejoy and
Schertzer, 1987; Gupta and Waymire, 1990] that simple
scaling models are just too simple to provide adequate
description of rainfall intensities or rainfall fluctuations. Our
analysis indicates that simple scaling models can indeed
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provide a good description of the rainfall fluctuation process
if, however, this process is decomposed in a ‘‘clever” way to
account for the anisotropic nature of the storms. Note that if
each one of these three components D,, D,, and D, is
described by a simple scaling model, it does not mean that the
composite process of rainfall fluctuations is also simple scaling.
We propose to call such a process ‘‘multicomponent scaling.”’

Unlike other current approaches, our method provides the
ability to (1) analyze the data and let them tell us what
structure is present rather than imposing a structure a priori,
(2) account for anisotropy and inhomogeneities, and (3)
characterize the evolutionary structure of the storm. If
self-similarity is found to be present it is described by nine
parameters (three in each direction) for which we have
provided estimation procedures which do not suffer from the
two main drawbacks of current moment analysis methods:
unreliability of higher-order moments and estimation of
moments where, in fact, theoretical moments of the hypoth-
esized distributions do not exist.

In this paper we have presented analysis of rainfall fields
based on the proposed approach. Modeling and simulation of
rainfall fields have not been discussed but are feasible further
extensions to be pursued. An interesting application of a
modeling/simulation approach based on the proposed meth-
odology will be on subgrid scale parameterization and cou-
pling physical large-scale models with stochastic small-scale
descriptions. The absence of proper physical and dynamical
understanding of the precipitation process at a range of
scales of interest has lead hydrologists to resort to com-
pletely stochastic models for diverse applications. The point
process models of Waymire et al. [1984], multifractal models
of Lovejoy and Schertzer [1987], and more recent random
cascade models of Gupta and Waymire [1993] have been
geared toward this direction. However, over the last decade,
due to an increased understanding of atmospheric phenom-
ena and availability of more powerful computers, there has
been a revolutionary improvement in our ability to physi-
cally model regional and mesoscale atmospheric phenomena.
Clearly, models based on physical and dynamical consider-
ations are far superior to those based on purely stochastic
considerations. It is believed that coupling physical and sto-
chastic approaches provides an interesting and promising ave-
nue for significant further improvements in rainfall modeling
research. The methodologies presented in this paper should be
explored toward this direction since the obtained results indi-
cate that at least for some types of storms, scaling character-
istics in rainfall fluctuations seem to hold up to a scale of 30 x
30 km, which is the resolution of most mesoscale weather
models (see, for example, Pielke [1984]). Therefore multicom-
ponent scaling models of the type proposed herein, which are
efficient and consistent across scales, could be used for subgrid
statistical parameterization of rainfall in mesoscale weather
prediction models.

The line of research presented here opens several ques-
tions that deserve further study. For example, we have seen
that the small-scale statistical parameterization varies from
storm to storm, and we anticipate that it relates to the
large-scale dynamics, for example, the storm type and the
environmental conditions of the rain producing mechanism.
Indeed, it is true that there is a feedback mechanism between
large and small scales. This is also evident from the results
reported in paper 1 [Kumar and Foufoula-Georgiou, this
issue] where it was identified that large fluctuations were
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observed in regions of large mean values. As a first level of
approximation we ignored this effect and considered the
component fields to be homogeneous for the purpose of
statistical characterization. The results, even with this ap-
proximation, are very satisfactory. Further advances can be
made by studying the small-scale features conditioned on the
large-scale features to account for the observed inhomoge-
neities. It is remarked that the small-scale statistical charac-
terization we provide is linear in the sense that it is based on
a linear simple scaling model for each of the three compo-
nents. It can be argued that such a linear modeling frame-
work may not be adequate given the nonlinear nature of the
processes governing the formation of precipitation. How-
ever, as in many other processes, linear analysis often offers
good approximations to nonlinear processes and due to its
simplicity should not be discarded as inappropriate but
explored to its full extent, as done here. In fact, the results
from the data sets analyzed indicated that the linear approx-
imation was satisfactory for the description of rainfall fluc-
tuations for these two storms. Another issue that needs
further study is the effect of the choice of wavelets and the
choice of separable multiresolution framework on the ob-
tained results. One could explore other multiresolution
frameworks or decompositions with more directional selec-
tivity depending on the process at hand.

APPENDIX: FrRACTIONAL LEVY MOTION

Continuous self-similar processes with increments having
stable marginal distribution and long range dependence are
called fractional Levy motions (fL.m). Here we give a particular
construction of fL.Lm which is based on the idea in the work by
Taqqu [1987, equation 14] and specializes to fractional Brown-
ian motion for « = 2. The objective is to develop a process
whose increments are stationary, have stable distribution, and
show long-range dependence similar to fBm.

Define

R, (0, v) = = [Jul?# + ol = Ju = o] 4]

0<H<1, veER" (38)
where X, = X(«) and X, = X(v) for a process X(¢). Let Q
be gencrated as Q) = Ry y (u, u) = vul**, O, = Q
= Ry, x (4, v), Q3 = Ry x (v, v) = vJo|*#; thus
v 20u lua*H + [0~ = o
2 | [uf o ol = o 2|2

(39)
Since Ry y(u, v) is a positive semidefinite symmetric
kernel [see Ossiander and Waymire, 1989], 1 is a positive
semidefinite symmetric matrix. Therefore the joint charac-
teristic function of X(«) and X(v) is given by

AN
pX‘,va(gu’ gv) = €Xp {l(.u'u ”’v)(é_ ) _5((§u EU)

(911 Q2 <§u a/Z] 40)
Qg O f\é,

The matrix () depicts the dependence structure of X(t) and
for a = 2 it is the covariance matrix.
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Consider the symmetric distributions located at the origin,
i.e., p = 0 whose joint characteristic function is given as

px(§) = exp {— HE- QE)*%) (41)

The marginal characteristic function of X(«) is given by
px (€)= px, x (&4 0) = exp {— 10,607

=exp {- Q€0 (42

Under the condition of stationary increments and X(0) = 0,
this also gives the characteristic function of the distribution

of the increments with the scale parameter ¢ given by (after
substituting for {1,,)

1 a —
c= (5) v lul? (43)
or, equivalently, substituting A for u
log c = Hlog A + log « (44)

for some constant k € R*. We can use this to study the
behavior of the scale parameter ¢ with change in scale A and
also estimate H.

Notice that for H = 1/a the above expressions reduces to
that of stable Levy motion. Long range positive dependence
of increments of fLm occurs for l/a < H< 1, 1l < a =<2
[see Taqqu, 1987]. It is easy to verify that

px, x,Euw E)=px x (AE, AME)  (a5)

indicating that X(r) is self-similar with parameter H (see
equation (11)).
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