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Fourier Domain Shape Analysis Methods:
A Brief Review and an Illustrative Application to Rainfall Area Evolution
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Morphological shape analysis technigues offer valuable tools for the study of several hydrologic and
atmospheric processes. Detailed description of patterns, as well as evolution and comparison of
patterns can be efficiently performed in the Fourier domain and by means of a finite number of Fourier
descriptors. In this technical note we present a brief summary of three Fourier domain shape analysis
methods: the complex plane method, the angular direction method, and the polar coordinates method.
We illustrate the use of the complex plane method for studying the evolution of rainfall areas within
a radar-depicted rainfall field for the purpose of short-term precipitation forecasting.

1. INTRODUCTION

Shape analysis deals with the extraction of a finite set of
numerical features from a closed curve. These features
should contain all essential information about the shape, so
that they can be used to reconstruct the shape, to mathe-
matically define and compute several of its geometrical
properties, to discriminate among shapes, to classify a shape
into one of a prespecified classes according to desired
criteria, and to measure geometric similarity among different
shapes. The need for description of irregular shapes and
patterns arises often in hydrologic and atmospheric pro-
cesses. For example, one may need to provide a concise but
detailed morphological description of a pollutant concentra-
tion profile, of the shape of a drainage basin, or of the
time-varying intensity profile of a storm. Traditionally, such
geometries have been described in terms of a few represen-
tative parameters, such as area, perimeter, equivalent ra-
dius, and elongation ratio. It is believed that a more precise
and mathematically based description of shapes would be
beneficial in many hydrologic and atmospheric studies. The
purpose of this paper is to introduce into the hydrological
literature the ideas and methods of morphological shape
analysis and present an example illustrating the potential of
this theory to storm monitoring and short-term prediction.

There are two distinctly different classes of methods for
obtaining numerical features from digital shapes. One class
is based on encoding the boundary as a sequence of curved
or linear segments and extracting features from these edges
and contours. Two such methods are the chain encoding
method [Freeman, 1970) and the polygonal approximation
method [Pavlidis and Ali, 1975]. The second class of meth-
ods is based on a parametric description of the boundary
curve of the shape. This function is then expanded in a
Fourier series [e.g., Cosgriff, 1960] or in terms of other
orthogonal functions such as Haar, Radamacher, or Walsh
functions [Beddow and Meloy, 1980, p. 141]. The selection
of one method versus another depends on the particular
problems (e.g., see discussion of Persoon and Fu [1977]), the
complexity of the profile, and the form of the original data
describing the profile. In this paper only the second class of
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methods is considered, and in particular only three methods
based on Fourier analysis are reviewed. Theoretical and
experimental evidence suggests that Fourier domain-based
methods result in efficient and useful descriptors {e.g., Zahn
and Roskies, 1972] as compared to methods using other
types of orthogonal functions.

The underlying idea of the Fourier domain analysis meth-
ods is the Fourier series representation of a parametric
description of the boundary curve of interest. This frequency
domain representation of a profile occurred to us recently as
a convenient way of representing storm shapes, only to
discover that it first appeared in the literature almost three
decades ago (e.g.. see Cosgriff [1960] for the earliest refer-
ence). It has since then been extensively studied in the
electrical engineering/pattern recognition literature and also
in the chemical engineering/material science literature. At
this point of time, theoretical and applied research on
morphological shape analysis is fairly advanced. This pro-
vides a solid background upon which developments and
applications unique to hydrologic and atmospheric processes
can be made. One such promising application, which is
preliminarily studied here, is in short-term extrapolative
precipitation forecasting where small-scale precipitation ar-
eas are extracted from the rainfall field and are subsequently
monitored and forecasted [e.g., Bohne, 1988].

In this paper, three Fourier domain methods are reviewed:
the complex plane method, the angular direction method,
and the polar coordinates method. The first two methods are
amenable to the analysis for any shape, whereas the third
method is useful only for convex shapes. The review that
follows is not exhaustive and is limited only to those
theoretical elements which are deemed relevant and neces-
sary for hydrologic and atmospheric applications. The
reader is referred to the original references for further
details. Under each method the discussion is organized as
follows: first the parametric representation of the boundary
curve is given together with its expansion in terms of Fourier
descriptors (FDs). Then, the reconstruction of the shape
from the FDs is discussed and several geometrical properties
of the shape are derived in terms of the FDs. Finally, an
application of the complex plane method to monitoring
rainfall areas is presented for the purpose of short-term
extrapolative precipitation forecasting.
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2. THE CoMPLEX PLANE METHOD

2.1.  Parametric Representation

Let ybe a simple piecewise continuous closed curve in the
complex plane. Using the normalized arc length ¢ = /L, t €
[0, 1] as a parameter, the closed curve y can be viewed as a
continuous mapping from the unit interval onto the set of
complex numbers, i.e.,

Z(t) = x(r) + iy(r) t € [0, 1] (€]

For convenience we assume that the curve y has a counter-
clockwise (CCW) orientation, in the sense that as one moves
along the boundary for increasing values of ¢, the interior of
the region enclosed by the contour lies to the left. Notice
that since the curve is closed, Z(1) = Z(0) and Z(¢') for t' €
[—oe, =] is defined and is periodic with period unity, i.e., Z(n
+ )= Z(1), where n € I, I being the set of integers and ¢t €
[0, 1]. Hence, Z(t) can be conveniently represented as a
Fourier series

Zy= 2 cpeltmh Q)
k= —o

where
1 .
cr = f Z(t)e 2 gy 3}
0

The piecewise continuity of Z(r) assures the absolute con-
vergence of the Fourier series at any point 7 and also the
uniform convergence on any closed interval [e.g., Voxman
and Goetschel, 1981, pp. 348-360].

Writing the complex coefficient ¢, as ¢, = a.e’™, the real
numbers a;, and a, are the kth harmonic amplitude and phase
angle, respectively. Hence,

®

x(t) = Z a; cos (2mkt + ay) 4)

k= ~x

y(t) = Z a; sin 2wkt + ay) %)

k=~

2.2. Calculating Fourier Descriptors
for a Polygonal Curve

In most practical applications the contour Z{r) will be
approximated by a piecewise continuous polygonal curve
consisting of m line segments. Persoon and Fu [1977] have
derived formulae for computing the Fourier coefficients ¢; in
case the curve 7y is polygonal. These are repeated here for
completeness.

Assume that y has m vertices Vy, « - -
is the starting point. Then,

ik2wi,
= L(k2w/L)2 2 br - exp[ ( L )] ©

where

) mel and that Vo
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=2 [Vi- Vi

n>0, I():O (7)
i=1
v -V
bnz"—ﬂ___.f'_’ ®)
Ivn+ [ an

so |b,] = 1. Having obtained ¢, the profile can be repro-
duced in detail by means of (2). Note that an infinite number
of harmonics would reproduce the profile exactly and that a
small finite number of harmonics would reproduce it only
approximately. Error bounds associated with the truncated
Fourier series can be found, for example, in the work by
Voxman and Goetschel [1981, p. 633].

2.3, Shape Properties of Interest

Several shape properties of practical interest, such as
orientation and aspect ratio, lose their physical meaning for
shapes that are nonconvex and very irregular. Thus these
properties are not defined under the general complex plane
and angular direction methods. They are, however, exten-
sively discussed under the polar coordinates method which
applies to convex shapes only. Below, only expressions for
three simple shape properties are given: area, equivalent,
radius, and center of mass.

2.3.1. Area. Using Green's theorem the area enclosed
within the closed contour Z(¢) = x(1) + iy(¢) can be derived as
1 1
A =3 f [x(e)y'(t) — y()x'(8)] dt )
=0

which after substitution of the Fourier series expressions
evaluates to

4+

A= D l|akw

k= —x

(10)

where a; = (c'ki‘k)m.
2.3.2. Egquivalent radius. This is defined as the radius
of a circle having the same area as that of the shape under

consideration. Hence,

12

x

> lad*

k= —x

Ro= an

2.3.3. Center of mass. The center of mass is given by

1
Z. = J Z(1) dt = ¢y
0

where ¢, is the zeroth harmonic.

(12)

2.4.  Contour Similarity

It is often necessary to compare two or more contours for
classification purposes or for monitoring and quantitatively
describing the shape evolution of a contour over time.
Formal ways of such an analysis are presented below. First,
contour similarity and the normalized form of a contour are
defined. Then using these results, formal measures of dis-
tance between contours are presented.
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The closed contour Z' is said to be similar to Z if the image
of Z can be mapped onto the image of Z' by a sequence of
translation, rotation, reflection, and change of scale opera-
tions. If T = x; + iyy denotes the translation vector, K the
scaling factor, a the angle of rotation about the origin, and ¢,
the shift in the initial point, Z’ is similar to Z if there exist
real positive parameters fy, @, K and a complex parameter T
such that for all ¢ € [0, 1] either

Z'(t) = K exp (ie)Z(t + 1g) + T (13)

if there is no reflection, or

Z'(ty=Kexp (ia)Z(—t — 1)) + T (14)

if there is a reflection about the x axis [Richard and Hemami,
1974]. The negative sign of ¢ in (14) preserves the CCW sense
of the curve for increasing ¢. This relation is an equivalence
relation and may be used for classification of a set of curves
into equivalence classes. It is easy to show that a reflection
about a line y = mx + d can be decomposed into a rotation
by an angle 8, where 8 = % tan~' m, and a translation by T
=0+ id.

If {c;} and {c;} denote the Fourier coefficients for the
contours Z and Z’, respectively, the above two equations
can be written in the form

ci = Kexp [ila + 2mktg)]ey + 640T (15)
if there is no reflection, and

¢ = K exp [i(a + 2mwktg)]cx + 8407 (16)

if there is reflection about the x axis [Richard and Hemami,
1974]. In the above equations, the indicator function §, y =
1ifk=0and 6,9 = 0ifk # 0.

2.5. Canonical Form of a Contour
The normalized form of a contour Z(1) is given by
Z*(t) = —E(t)_——z_,_ (17)
|z - Z|

where Z_. is the centroid of the curve and

1
lzity - z.)* = f |Z(1) = Z,)? dr (18)
(1}

Note that Z*(¢) has zero mean (centroid at origin) and norm
equal to unity. The normalized curve can be used as a
representative/prototype of an equivalence class and hence
defines the canonical form for that class.

It can be shown [Richard and Hemami, 1974] that the
Fourier coefficients {c}} of the normalized curve Z*(r) are

-2
+x

2 led? = leof?

= -x

ct=cy k#0 (19)

2.6.

Richard and Hemami [1974] propose a measure of dis-
tance between two curves by finding the deviation of the
correlation of the two normalized curves from unity, when
the correlation is maximized by shifting the initial point (by

Measure of Distance Between Curves
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), rotating (by B8*), and reflecting one normalized curve
with respect to the other. They give the following expression
for the distance d(Z,, Z,) between curves Z, and Z,

d(Zla ZZ) = min (daw db) (20)
where
d?=2| 1 - max| f‘ ZHOZ¥t + 1) di| Q21
ks 0
1 —_—
di=2|1- maxif ZXDNZK—1t— 1) di| 22)
T 0

for 0 = r =< 1. The angle of rotation of one curve with respect
to the other is given by

* = arg fl ZROZ3(t + 1) dt (23)
0

or

* = arg f' ZHOZ¥—1— %) dt (24)
0

for 0 < B* < 2w, where arg is the principal value of the angle
of the complex number and 7 is the point of maximization in
equation (21) or (22).

If {c,,} and {c;,} denote the Fourier coefficients of the
contours Z; and Z,, respectively, and if the contours are
represented by N-tuples over the field of complex numbers Z
= (21, 23, * "+, Zn), it can be shown that

ny

d2=2t —max| > ciickgexp {—i2ukiNY] (25)

i k= —ny

n:

di=2[1 —max| 2 clucsexp {-i2mkjiN}] (26)

J k= -n

with n; + n, + 1 = N. The maximization in the above
equation is easily obtained by taking the fast Fourier trans-
form (FFT) of the products ¢ 4c;,* and ¢ 4¢3 and finding
the jth component with the largest magnitude. This proce-
dure has been implemented in the example presented in a
later section.

Note that two curves are similar when d(Z,, Z,) = 0, i.e.,
when the maximized correlation between the two curves is
unity. If d, = 0, Z, fits Z;; if 4, = 0, Z, fits the reflection of
Z,. Also note that the rotation, scale, and translation param-
eters in (13) or (14) are recoverable from

a = fB* 27)
1Z) = Z
=— (28)
12, ~ Z,|l
T=2Z,—-Ke®Z, 29

For an alternate method of obtaining distance between
curves see Persoon and Fu [1977].
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Fig. 1. Parametric representation of a curve with the angular
direction method.
3. THE ANGULAR DIRECTION METHOD
3.1.  Parametric Representation

Assume again that yis a counterclockwise oriented simple
closed curve with parametric representation (z(/) = (x({),
y(1)) where [ is the arc length and 0 = [ < L. Following Zahn
and Roskies [1972], denote the angular direction of y at point
! by the function &) and let 6, = &0) be the absolute angular
direction at the starting point Z(0). Define the cumulative
angular function &(/) as the net amount of angular bend
between starting point and point / (see Figure 1). With this
definition ¢(!) = &I) — &0) except for possible multiples of
2. Note that ¢(0) = 0 and (L) = 27 because all smooth
simple closed curves with CCW orientation have a net
angular bend of 27. Also note that if the curve y winds in a
spiral then |¢(/)| can achieve values larger than 2w. The
domain of definition [0, L] of (/) contains absolute size
information and one would like to normalize to the interval
[0, 27} which is standard for periodic functions. Hence we
define a normalized variant ¢*(¢) as

o*(1) = ¢(Lti2m) — ¢ 30

where ¢ = 2#l/L ranges from 0 to 2. (We draw the attention
of the reader to the fact that our expressions differ from
those of Zahn and Roskies who consider clockwise oriented
curves). Note that ¢*(¢) = 0 for a circle and that ¢*(¢) is
invariant under translation, rotation, and scaling, i.e.,
changes of the perimeter L. With the above definitions, it is
apparent that two curves with same starting points and
identical shapes (i.e., curves that differ only by a combina-
tion of translation, rotation, and change in size) map into the
same function ¢*.
Expanding ¢*(¢) as a Fourier series

x

m

() = po+ > l(ai cos kt + by sin kr) 31
k=1
where
1 27
Mo = “f o*(1) dt (32)
27 ),
1 27
a;,=— f ¢*(1) cos kt dt 33
0
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1 27
b= — f $*(1) sin kt dt 34)
T Jo

Note that the Fourier coefficients (a;, &,) contain no infor-
mation relating to the absolute position or rotational orien-
tation of the curve. On the other hand (since ¢*(0) = 0)

Mo=—z ay
k=1

(35)

and therefore u carries information related to the particular
starting point used.

An equivalent expansion of ¢*(¢) in terms of amplitude
and phase angle is

o

1) = po+ > Agcos (kt — ayp)
k=1

(36)

where (A, a) are polar coordinates of the point (a;, b;).
Note that the harmonic amplitudes {A;} are invariant under
translations, rotations, changes in size, and shifts in the
starting point, whereas the phase angles {a,} are only
affected by shifts in the starting point.

3.2.  Calculating Fourier Descriptors
Jfor a Polygonal Curve

Zahn and Roskies [1972] have derived formulae for the
Fourier coefficients {ay, b;} and u, when vy is a polygonal
curve. These formulae are repeated here for easy reference.

Assume that vy has m vertices Vy, - -+, V,,_ and that the
edge (V;_;, V) has length &l;. The change in angular direc-
tion at vertex V; is 8¢; and L = Z[Z, &/;. With these
definitions

n+l

> osh=i< 2 8l

i=1

)= D 3¢, 37

i=1 i=1

d()=0 0=1[1<38l (38)

Using the definitions of ug, a;, by (equations (32), (33),
and (34)) and the definition of ¢*(¢) (equation (30)) and after
lengthy calculations one can obtain {see Zahn and Roskies,

1972]

l m
Bo=—T +z 2 [6¢;

(39)
Jj=1
m 2mkl;
ap=+— 2 d¢; sin 40)
k7rj=
m 2wkl;
by=—— 2, 8¢,cos (41

where I; = Z{_, 8l;.
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3.3.  Reconstruction of a Curve Using Fourier
Descriptors

If curve vy is described by &(/) and starting point Z(0), the
position of point Z(/) is given from the reconstruction
theorem [Zahn and Roskies, 1972)

[
Z{t) = Z(0) + f e N dx (42)
0
which is equivalent to
x({) = x(0) + J cos 8(A) dA (43)
0
!
y(l) = y(0) + f sin 8(A) dA (44)
0

Using the reconsiruction theorem and a truncaied Fourier
series expansion of ¢*(/) one can derive the following
practical formula for curve reconstruction based on the
Fourier descriptors {A;, a;}f*, and the triplet (L, 6,, Z(0))
giving length, initial tangential direction, and position of
starting point, respectively:

L 2w/l
Z() = Z(0) + — exp {i t+ 0+ o
27,0

N
+ > Ay cos (kt - ak)]} dt (45)
k=1

Note here that ) is not a free variable but is given by {4,
ay}ll, as po = S| Ay cos ay. Observe that if one desires a
curve of similar shape but with starting point Z(0), initial
direction @, and total arc length L the same formula is used
but with these values instead of Z(0), 6,, and L.

From the above formula one directly obtains

L 27liL
x(I) = x(0) + — cos § 1+ 8y + up
2m =0

x

+ > Agcos (kt — ak)} dt (46)
k=1

L 2w/l

y() = y(0) + —

sin ¢+ 8y + g
2w

t=0

+ 2 Ay cos (kt — ak)} dt 47)
k=1

It should be noted that not all curves described by equation
(45) are closed. Zahn and Roskies [1972] provide conditions
under which closure is ensured. They also provide relation-
ships between the Fourier descriptors of two curves yand ¥’
when v results from y by a geometric transformation, i.e.,
scaling, reflection, rotation, or using a different starting
point,
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4. THE PoLAR COORDINATES METHOD

4.1.  Parametric Representation

Let vy again be a counterclockwise oriented simple closed
curve with parametric representation R(6), where (R, 6) are
the polar coordinates of a point on the curve with respect to
an arbitrary coordinate system centered in the curve's
interior. R(6) is a periodic function with period 27 and
therefore can be expressed in terms of a Fourier series of the
form

x

R(8) =ag+ . (a,cos nd + b, sin nd)

n=1

(48)

where a,, and b,, are the Fourier coefficients corresponding
to the nth harmonic. Note that the polar coordinate method
is appropriate for convex shapes only since for nonconvex
(i.e., reentrant) shapes, at certain vaiues of @ there is more
than one value of R(6).

4.2.  Shape Properties of Interest

In this section, the following descriptive properties of a
geometrical shape are studied: area, center of mass, orien-
tation, moments of inertia and higher area moments, aspect
ratio, equivalent radius, and statistical properties of the
radius R(6) such as the mean, second, and third central
moments. These properties are first defined and expressions
are given in terms of cartesian (x, y) and polar (R, 6)
coordinates of the profile, as well as in terms of the Fourier
coefficients, whenever such expressions are derivable.

42.1. Area.

2w R(8}
A=ffdxdy=f f rdrdé
y Jx 6=0Jr=90

Using Parseval’s theorem [e.g., Carslaw, 1950, p. 285] the
expression of the area in terms of the Fourier coefficients can
be shown to be

(49)

1 x
A=mial+< 2 (@l+b) (50)

n=1

4.2.2. Center of Mass. The cartesian coordinates (x,,
¥.) of the center of mass are given by

1 1 27 R(&)
xc=—ffxdxdy=——f f rcos 0 rdrdé
A A 24 Jo-0Jr-0

1 27
=— R3(8) cos 0 do
34 Jo-0

(8

Similar expressions hold for y..

4.2.3. Orientation. We define orientation here by the
angle ¢, (measured from the 6 = 0 axis in a counterclock-
wise direction), where ¢y is solution of the equation 3f/d¢ =
0 under the condition 32f/ag?* > 0, where
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f= f f (xsin ¢ +y cos ¢)* dx dy (52)
A
27 R(&) ”
= f f rZ sin? (8 — ¢)r dr d6
8=0Jr=0
i 27
=- J R4(8) sin? (68 — &) dé (53)
4 =0

Note that the axis defined by the orientation ¢, can be
interpreted as the axis about which the moment of inertia is
minimum.

4.2.4. Area moments.
axis is

I\d d 1 2
M/m=jfy' xdy ==
4 k+2 ),

and a similar expression holds for M, ,. Of special interest
are the second moments or moments of inertia.

4.2.5. Aspect ratio. We define the aspect ratio (AR)
here as the ratio of the length of the line passing through the
center of mass and parallel to orientation over the length of
the line passing through the center of mass and perpendicu-
lar to orientation

The kth area moment about the x

R¥*2(9) sin* 9 do

(54)

R(do) + R(dp + m)

AR =
Rido + (7/2)] + R{pg + 37/2)]

(55)

Defining R'(8) = R(¢, + 6) and expanding R'(6) in Fourier
series with Fourier coefficients {a,, b,}¥,, the AR can be
written in the form

NI2
a+ 2 a,
n=1

AR =

(56)
N2

a+ 2 (—)"aj,

n=1

using a result of Beddow and Meloy [1980, p. 37]. Note that
the Fourier coefficients {a), b,} are obtained from the
corresponding coefficients {a,, b,} via the transformation

—sin ndJ()
cos nog

cos ngy

lay  ba]=[a, sin ne,

bl 57)
This transformation is analogous to that for a change in
coordinate system by rotation about the origin.

4.2.6. Equivalent radius. This is defined as the radius

of a circle having the same area as that of the shape. Hence,
12

1 & R
Ry = a8+5 > (@l + b)) (58)

n=1
4.2.7. Statistical moments of R(8). The first three sta-
tistical moments of R(6) are expressible in terms of the
Fourier coefficients. These expressions can be found in the
work by Luerkens et al. [1982] and are repeated here for easy
reference.
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w1 = E[R(8)] = a (59)
1S,
w2 = E[R(8) —ap? =5 2 (a;+by) (60)
n=1
3 w €L
K3 = E[(R(8) — 00)3] = Z 2 2 [amanam +n = bubuln i m

m=1ln=1

t dpbpbn v+ Bm@nby s o] ©h

It should be noted that the above measures of geometry are
not invariant under geometrical transformations such as
translation, scaling, rotation, and reflection, and therefore
cannot be used for shape comparison and classification. The
reader is referred to Luerkens et al. [1982] for derivation of
certain geometrically invariant shape descriptors.

5. COMPARISON OF METHODS

The relative merits of the three methods described above
can be best studied in the light of the following criteria:
representational convenience, reconstruction efficiency,
derivation of geometrical properties, derivation of transfor-
mation invariant properties, and classification of shapes.

The complex plane method and the angular direction
method are useful for any kind of shape whereas the polar
coordinate method can be used only for convex shapes. The
complex plane method presents advantages over the angular
direction method in both representation and reconstructional
efficiency since x and y are more natural coordinates both in
terms of measurement considerations and conceptual under-
standing as compared to the angular direction ¢ and arc
length /. As is evident from (46) and (47), the curve recon-
struction in the angular direction method involves an inte-
gration over an infinite sum which can be of concern from
the computational efficiency standpoint. Moreover, most of
the geometrical properties have to be evaluated numerically
in both of these methods, closed form expressions being
unavailable. Both the complex plane method and the anguiar
direction method present very useful analytical tools for the
representation of transformation invariant properties and for
comparison and classification of shapes. However, the com-
plex plane method is definitely more efficient since (25) and
(26) present an extremely powerful and efficient tool for
curve matching and (19) can be used to find the Fourier
coefficients of a normalized curve. An analogous tool in the
anguiar direction method is not avaiiable although Zahn and
Roskies [1972] have discussed an alternate method for curve
matching.

The polar coordinate method, whenever it can be used,
presents certain specific advantages over the other two
methods as it enables the direct definition of certain useful
shape properties such as orientation and aspect ratio. Be-
sides, closed form solutions are available for most of the
transformation invariant properties which makes the method
accessible for classification and curve matching.

6. MONITORING AND SHORT-TERM FORECASTING
OF PRECIPITATION FIELDS

Short-term precipitation forecasting (10 min up to 1 to 2
hours and spatial resolution of a few kilometers) can be
accomplished by monitoring the motion, shape, size, and
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I 1 L 1 I

Fig. 2.

20 30

Frame 23 (hour 1616 to 1716 LT). () Precipitation area enclosed within the contour of 4 mm/h (from the

original radar data; distances are in kilometers related to radar location). () Fourier coefficients a; = Re (¢;) (solid line)
and b; = Im (c;) (dashed line). (¢) Reconstructed form of the contour from 35 harmonics.

intensity of small-scale precipitation areas within a precipi-
tation field and extrapolating their trends in space and time.
This type of observation-driven extrapolative forecasting
methodology has been the topic of several previous investi-
gations [e.g., Bellon and Austin, 1976] and is currently
enjoying renewed interest [e.g., Bohne 1988; Browing and
Collier, 1989]. Past efforts on extrapolative forecasting have
concentrated on advection or cross-correlation methods
which basically translate the whole precipitation field. Cur-
rent research is directed toward methods that can account
for evolution of small-scale precipitation areas within the
rainfall field of interest. Under these methods, feature areas
are extracted by thresholding the data with selected intensity
levels, thus forming a series of areas enclosed within contour
boundaries. These areas are then monitored and forecasted.

One of the most important steps in such an extrapolative
forecasting methodology is feature representation. Bohne
[1988] describes two methodologies for feature description,
namely segmentation methods and whole contour methods
and discusses their advantages and disadvantages. Current
trend leans toward the whole contour methods, such as the
Fourier domain feature representation methods discussed in
this paper, which although more computationally intensive
are more amenable to automation and allow for interesting
interpretations. We believe that these methods, which have
not yet been extensively explored, offer a promising alter-
native worthy of further investigation.

In this section, an implementation of the complex plane
method to the quantitative description and monitoring of
precipitation patterns depicted by a radar is given. The storm
analyzed is a squall line which occurred over central Okla-
homa on May 27, 1987. It lasted for approximately 8 hours
(1130 to 1930 LT) and deposited a maximum point rainfall in
excess of 230 mm. The total area covered by nonzero rainfall
varied from 90,000 to 112,000 km?. This storm was moni-
tored by the National Severe Storm Laboratory (NSSL)
WSR-57 radar which is a 10-cm-wavelength system with a
peak power of 305 kW and a beam width of 2.2°. The
conversion of the cloud reflectivity factor (at four elevations)
to rainfall rates was done at the NSSL in Norman, Okla-
homa, using their standard conversion procedures which
include adjustments for ground clutter (Tim O’Bannon,
personal communication, 1989). The data provided to us
were rainfall rates (in millimeters per hour) averaged over
one hour intervals lagged by approximately 5-10 min from
each other. Each hourly rainfall pattern will be referred to as
a frame, i.e., average rate over the time period 1131 to 1231
LT will be called frame 1; 1140 to 1240 LT frame 2; up to the

last frame number 36 which is the accumulation over the last
hour of 1822 to 1922 LT. The rainfall data were provided in
polar coordinates over angular increments of one degree
(from 0 to 2 counterclockwise) and with 115 values per
degree at every 2 km radial distance covering the 230 km
radius of the radar field.

In this example implementation we have concentrated on
a mesoscale rainfall area enclosed within the contour of 4
mm/h and we have followed its evolution over the duration
of the storm. The 4 mm/h contour level was selected
arbitrarily but the procedure would be the same had another
cutoff level been selected. During the first hour of the storm
there were three distinct rainfall areas enclosed within
contours of 4 mm/h and having areal extent exceeding 1,000
kmZ2. The areal extents of these areas were approximately
10,000 km?, 1,200 km?, and 2,100 km?. These rainfall areas
kept their identity for the first 45 min and then some merged
with each other. This merging can be easily observed in the
Fourier domain due to abrupt changes in the Fourier descrip-
tors. Here we only report the results of the evolution of the
largest and most well defined of these rainfall areas during
the time period of 1448 to 1800 LT. The shape of this
precipitation area did not change much over the studied
period of time. It is shown here only for two frames, frames
23 (hour 1616 to 1716 LT) and 24 (hour 1625 to 1725 LT)
where the most abrupt change in shape took place (see
Figures 2a and 3a).

Cartesian coordinates (with respect to a system centered
at the center of the radar and having the positive direction of
the horizontal and vertical axes in the east and north
directions, respectively) of the boundary of the rainfall areas
of interest were extracted from the original polar coordinate
data using a contouring algorithm and specifying the cutoff
contour level of 4 mm/h. In order to be able to use efficient
FFT algorithms, a new array of cartesian coordinates was
formed from the original one by cubic spline interpolation.
The new array had a size of integral power of two (here 256
values were used) and had points uniformly spaced on the
total arc length. The Fourier series coefficients were com-
puted via FFT. The first 35 Fourier coefficients a; = Re (¢;)
(solid line) and b; = Im (c;) (dashed line) are displayed in
Figures 24 and 34 for frames 23 and 24, respectively. These
coefficients were used to produce the reconstructed profiles
shown in Figures 2¢ and 3¢. Note that the zeroth harmonic
corresponds to the centroid of the profile as can be verified
from the position of the original intensity contours.

In order to quantify the changes in the shape of the rainfall
area as it evolves, the distance measure between successive
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contours was computed as explained in section 2.6. For that,
the normalized forms of the contours were found (that is the
forms with centroid centered at the origin and having norm
equal to unity). Figure 4a shows the distance d(Z;_,, Z;)
between contours Z;_; and Z; versus frame number i. It is
interesting to observe that this measure faithfully reproduces
the qualitative observation that the most abrupt change in
shape occurred between frames 23 and 24. Figure 4b shows
the angle B* (in degrees) versus frame number. Recall that
this is the rotation angle needed to obtain maximum corre-
lation between successive frames and therefore provides
another measure of change. As was expected, this angle is
very small for a squall line development since during the
studied period there is hardly any change in the orientation
of the storm system. Figure 4¢ shows the scale factor K,
where Z;_, = KZ;, versus frame number. K 2 measures the
relative change in the size of the area enclosed within
successive contours, and as expected the most drastic
change occurs between frames 23 and 24, It is interesting to
note that the distance d between the intensity contour of the
first (frame 14) and the last studied frame (number 28) is
0.499 indicating the drastic overall difference between the
shape of rainfall intensity contours at the beginning and end
of the studied period. Also, the overall rotation angle 8* is
9.816°, and K is 0.945 implying a strong change in orientation
and a negligible change in areal extent of this precipitation
area over the studied period of two hours.

The example presented above was mainly illustrative of
the ability of these methods to quantitatively describe a
shape and measure changes in shape and size of tracked
figures. More extensive research is needed to fully explore
the potential of the Fourier domain shape analysis methods
for the quantitative description of the storm evolution pro-
cess and short-term precipitation forecasting. First, the
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Same as Figure 2 for frame 24 (hour 1625 to 1725 LT).

problem of deciding what feature areas should be extracted
and monitored from the precipitation field, i.e. what inten-
sity cutoff levels to use for feature definition, requires further
study. This issue is currently under investigation by the
authors [Foufoula-Georgiou and Kumar, 1989]. Second,
problems arising with merging and splitting of rainfall areas
and the automatic tracking of individual entities, especially
at smaller spatial scales such as rain cells, need special
attention. Fortunately, such abrupt changes in the rainfall
field are reflected in the Fourier descriptors of the individual
entities and the potential of these methods should be ex-
plored toward this end. Nevertheless, by visual inspection of
the radar data and understanding of the meteorological
conditions of the storm, a semiautomatic approach is always
feasible and becomes especially efficient when used simul-
taneously with shape analysis methods.

7. SUMMARY AND CONCLUSIONS

The study of shape properties is of special interest in
several hydrologic and atmospheric processes. For example,
it is often desirable to preserve the total area contaminated
with a pollutant or covered by a storm; the center of mass of
a catchment is often related to the distance from the outlet
along the main channel and is often used as an explanatory
variable of hydrograph parameters; the orientation of a
storm may provide an accurate descriptor of the direction of
storm movement; and the aspect ratio may provide a simple
descriptor of the stage of storm evolution (initiation, matu-
rity, dissipation) or may be related to physiographical prop-
erties of a drainage basin, as for example, catchment relief.
Also, the statistical moments of the radius of the shape are
useful in assessing, for example, the mean and variability of
the extent of a storm or a pollutant spill.
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(a) Distance d(Z;_,, Z;) between contours Z;_; and Z; for successive frames versus frame number. (b) Angle

of rotation B* (degrees) between contours of successive frames versus frame number. (¢) Scaling factor K between

contours of successive frames versus frame number.



KUMAR AND FOUFOULA-GEORGIOU: TECHNICAL NOTE

Frequency domain shape analysis provides convenient
mathematical tools for studying these properties. In this
paper, an attempt is made to illustrate the advantages of the
Fourier domain shape analysis methods, which lend consid-
erable ease in evaluation of certain geometrical properties,
and provide the tools for rigorous comparison, classification,
and study of shapes. The three methods reviewed here, i.c.,
the complex plane method, the angular direction method,
and the polar coordinates method, have relative merits and
the choice of a particular method depends on the shape
under consideration, the form in which data are available,
and the particular interest of the analyst. However, we
believe that the complex plane method, applicable to any
kind of shape, is more versatile and is also computationally
efficient. A promising application of the complex plane
method is in short-term extrapolative precipitation forecast-
ing where feature areas extracted from a precipitation field
are described in terms of a finite set of Fourier shape
descriptors. Thus the problem of precipitation forecasting
ultimately results in extracting and forecasting a set of shape
descriptors. An illustrative example of the implementation of
the complex plane method to the problem of rainfall area
monitoring for short-term precipitation forecasting has been
presented.
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