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Abstract. Multiplicative cascades offer parsimonious models capable of capturing
the scale-invariant (multifractal scaling) behavior of some geophysical phenomena,
such as rainfall, over a large range of scales. While these models achieve a remarkable
degree of universality, it is still unclear how to characterize individual events within
this framework. The present work offers- an event description based on a few

most important (amplitude-wise) branchings of the event’s multiplicative cascade

generator. The proposed method is based on the modulus extrema of wavelet
transforms and indexes the branches (or generator weights in the multiplicative
cascade model) such that their number at each branching, magnitude, and the
relative scales at which they occur can be extracted and memorized. In this way,
a particular event can be characterized in a multiplicative cascade framework by
only a few significant weights and their respective positioning within the cascade.
The application of the present model to rainfall is supported by the evidence of
branching of the wavelet modulus extrema as well as by the findings [ Venugopal
and Foufoula-Georgiou, 1996; Cdrsteanu et al., 1997] that an important part of the
signal energy of temporal rainfall events can be recovered from a few wavelet-packet

components.

1. Introduction

Multiplicative cascades generate measures defined on
the appropriate support (e.g., a surface and/or a time
axis), showing scale invariance in the form of multifrac-
tality or, in particular cases, monofractality. The main
motivation in modeling processes with multiplicative
cascades is to capture the scale-invariant behavior of the
process when present, and hereby obtain a parsimonious
description over several scales. For overviews of multi-
plicative cascade models and multifractal measures, see,
for example, Gupta and Waymire [1990], Lovejoy and
Schertzer [1991), and Davis et al. [1994]. Cascades can
be constructed in terms of an infinite iterative proce-
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dure. Beginning with a given “mass” uniformly dis-
tributed over the support, each subsequent step divides
the support and generates a number of weights (called
the “branching number” of the generator), such that the
mass is redistributed to each branch by multiplication
with the respective weight (Figure 1, top).

To achieve conservation in the ensemble average of
the mass, the expected value of the sum of weights at
each branching should be equal to unity. If the sum
of the weights at every branching is exactly equal to
unity, then weights are said to be complementary (“mi-
crocanonical” cascade). Note that once a process is
assumed to be described by a cascade, the available
measurements are treated as aggregates of the infinitely
cascaded values. These aggregates (the reconstructed
or “dressed” cascade, see Figure 1, bottom) are equal
to the cascading values (the “bare” cascade) only in the
case of complementary-weights cascades. Moreover, the
measurable quantity, which is seen as the result of the
cascading process over a large number of aggregation
levels, could be a tracer in the cascading process and
not the cascading quantity itself, possibly related to the
cascading quantity by a power law at the smallest scales
[Schertzer and Lovejoy, 1987].
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Figure 1. A “bare” cascade, i.e., the levels of generating a multiplicative cascade (top), and
the last three levels of reconstructing the cascade, the simplest “dressed” cascade, from those
small-scale values (bottom). Notice that in the generating mechanism the quantity m contained
on the whole support is first “split” between the two halves of the support according to the
respective weights w, then the quantity in each half is split between quarters, and so on. Notice
that when reconstructing the cascade, the “weights” that can be defined by analogy with the
generating process, i.e., the ratio between each quantity and its “parent” from which it split,
will not have the same values as in the generating process, unless each pair of weights is exactly
complementary, i.e., sums up to 1. Note also that the same procedure which is illustrated here
on a one-dimensional (1-D) support can be applied in 2-D and 3-D.

The cascade generator properties (branching number,
support division, as well as finite-dimensional joint and
marginal distributions of weights) are overdetermining
the cascade, in the sense that certain combinations of
them lead to identical cascades, and some other combi-
nations lead to asymptotically identical cascades (i-e.,
as the cascading process goes to infinity, the generated
cascades tend to become identical). Thus there is a ten-
dency to believe that certain parameters, such as the
branching number and the support division, can be ar-
bitrarily chosen when building a multiplicative cascade
model, and only the weights distribution should be of
concern. However, over a finite range of scales generally
available from a process, it is shown here that assuming
different branching numbers may lead to different prop-
erties of the reconstructed cascade. Most importantly,
depending on the properties of the weights distribution,
it can even obscure the presence of scale invariance in
the cascade. The influence of the branching number is

shown to be felt if the scale-invariant properties of the
cascade occur at a discrete set of scales, as opposed to
occurring over a dense range of scales, in which case
there is no preferential branching number.

This paper examines modeling choices of the cas-
cade generator properties, using as an example tem-
poral rainfall series. It proposes a method, based on
the modulus extrema of continuous wavelet transforms,
which identifies whether for a given series the choice
of branching number is critical and, if so, determines
it uniquely. It is further shown how in the context of
a cascade model (using the respective branching num-
ber), a discrete equivalent of the proposed wavelet-
based method can be used to select a few most sig-
nificant weights and their position within the cascade.
The reconstruction process using only these few weights
and the statistics of generator weights is shown to be
remarkably successful in reproducing temporal rainfall
series in our case.
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2. Modeling Choices for Cascade
Generator Properties

Customarily, at each step of the cascade, a branching
number is assumed, as well as an equal division of the
support by the branching number. The most widely
used branching number is thus b = 2¢, where R is the
cascade support. Then, with the assumed branching
number and support division, the weights distribution
of the reconstructed (“dressed”) cascade can be com-
puted, and it can be checked whether it is scale in-
variant. It is important to notice though that when
reconstructing a cascade in the presence of discrete
scale invariance (i.e., scale invariance over a discrete
set of scales only), the misspecification of the assumed
branching tree, comprising branching number and sup-
port division, may hide the existing scale invariance in
a process.

To illustrate this fact, a ternary multinomial cascade
(i.e., a cascade with branching number equal to 3 and
multinomial distribution of weights) was used to gener-
ate a series. This series was then used to reconstruct the
cascade binarily. Notice here that although the true un-
derlying branching number is 3, we assumed a branch-
ing number of 2 in the reconstruction. The marginal
cumulative distribution functions (CDFs) of weights at
each level of the reconstructed cascade (each level corre-
sponding to a different scale) were then estimated and
are displayed in Figure 2. It is noted from Figure 2
that the differences between the CDF's at different lev-
els (scales) can be misconstrued into an indication of
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Figure 2. Marginal distributions of weights in a
ternary complementary-weights multinomial cascade
(solid line), as well as in the reconstruction of the same
as a binary cascade, at the first (dashed line), second
(dashed-dotted line), and third (dotted line) level of re-
construction. To observe are the differences between
the distributions at the different levels of reconstruc-
tion, showing that the binarily reconstructed cascade is
not scale invariant.
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lack of scale invariance of the process, although here,
clearly, the complementary-weights, ternary cascade is
built in a strictly scale-invariant manner (complemen-
tary weights also imply that the generated cascade is
identical to the reconstructed cascade; see, for exam-
ple, Cérsteanu and Foufoula-Georgiou [1996] and Ols-
son [1998] for further discussion of this issue).

It should be thus observed that in the case of the
presence of discrete scale invariance (a) the branching
number is not trivial to determine from the data and
(b) detecting the presence of scale invariance over a fi-
nite number of scales may depend on using the correct
(unknown) branching number. This is the reason why
a tool is needed to determine the branching number
from a data set that has supposedly been generated by
a cascading process.

For a given data series the marginal weights dis-
tribution is dependent, as shown above, on the cho-
sen branching number. When the branching num-
ber is established, to every generated (“bare”) cascade
weights distribution there corresponds (noninjectively)
a reconstructed weights distribution (identical to the
former only if the generated cascade has complementary
weights). Noninjectivity (the fact that several gener-
ated cascades can produce the same reconstructed cas-
cade) could favor the idea of using a complementary-
weights cascade for modeling purposes in the first place
[Olsson, 1998], unless there are strong reasons to favor
the selection of a particular noncomplementary weights
generator, such as universality criteria [e.g., Lovejoy and
Schertzer, 1991]. Identifying a reconstructed weights
distribution as being some theoretical distribution is,
however simple it seems, actually not an easy task. This
is because all those distributions are defined on the unit
interval, are symmetric, and many of them are concen-
trated around 1/2 (see also Figure 9, bottom). Also, the
mass exponents spectra (or equivalently, the spectra of
singularities) cannot be used for that purpose, because
their shape often does not depend significantly on the
marginal weights distributions of the reconstructed cas-
cades [Cdrsteanu, 1997]. Moreover, very little is known
about the joint distributions of weights and their effects
on the reconstructed cascades. For example, a study by
Cirsteanu and Foufoula-Georgiou [1996] linked the au-
tocorrelation of cascade weights to the oscillation pat-
terns of the produced series and demonstrated that
multiplicative cascades with negative autocorrelation in
their weights are more appropriate for modeling tem-
poral rainfall series than cascades with independent
weights.

It should also be noticed that specification of the
branching number of the generator and the weights dis-
tribution still leaves one more degree of freedom related
to the way the support is being divided (e.g., whether
the support is being split equally or unequally and, if
unequally, how it is being split). It turns out that there
is a redundancy in the cascade generator properties
(branching number, support division, and distribution
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of weights) and that the support division is equivalent
to different choices of branching number/weights distri-
bution combinations. Exploring, however, systematic
ways in which support division can be chosen to un-
veil scale-invariant weight distributions is still an open
matter but is beyond the scope of this paper.

In section 3, the wavelet transform modulus maxima
method [Muzy et al., 1993; Arnéodo et al., 1994] is re-
viewed, as it is used in section 4 to develop a method-
ology by which the branching number of the cascade
generator can be determined directly from observations.

3. Review of the “Wavelet Transform
Modulus Maxima” (WTMM) Method

3.1. Characterizing Singularities Using
Wavelets

The strength of a singularity of a function or a distri-
bution f at a point zg is characterized by an exponent
called the Holder exponent h(zg). The Holder expo-
nent h (zo) is the greatest h, so there exists a constant
C and a polynomial P,(z) of order n, satisfying

[f(2) = Pu(z — 20) | < Cle— zo"®). (1)

The polynomial P,(z) above corresponds to the Taylor
series expansion of f around z = zo. Thus h(zg) mea-
sures how irregular f is at the point z¢. The higher the
exponent h(zo) the more regular the distribution f.

Typically, to characterize the regularity of a func-
tion or a distribution f, one studies the behavior of its
Fourier transform f at co. This, however, characterizes
the global regularity (recall that Fourier transform is
a global transform and is poor at space localization).
Wavelets provide a framework to characterize local reg-
ularity of a function or a distribution, as explained and
illustrated below.

The continuous wavelet transform (CWT) of a func-
tion f is defined as

Ty[f)(b, a) = |a|=3 /f(xw (“’T‘b> de, a>0,b¢€R,
(2)

where a is the scale parameter, and b is the transla-
tion parameter. 1 defines a family of wavelets; that
1s, for varying values of a, wavelets of different length
scales can be constructed. (For a general reference on
wavelets, see Daubechies [1992].)

Assume that the Holder exponent of a distribution
f(z) around the point z = zo is h(zg) € Jn,n + 1] .
Then, it can be shown (see Appendix) that with an an-
alyzing wavelet having a number of vanishing moments
ny greater than n, the wavelet transform of the function
satisfies the following power law:

Ty[f](zo,a) ~ |a|*=o), (3)
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This says that the local singular behavior of f around zg
is characterized by a power-law behavior of its wavelet
transform, with exponent h(zo).

3.2. Wavelet Transform Modulus Maxima

Modulus maxima of the wavelet transform Ty [f] are
maxima of the modulus of Ty [f](z,ao), taken across z
and along a particular scale ag, i.e., the local maxima at
any point zo such that |Ty[f](zo,a0)| > |Ty[f](z,a0)]
on either side of zg. Maxima lines are curves connecting
the modulus maxima.

Given a wavelet v, with a maximum at zero, we de-
fine decaying of the wavelet as a property that as the
scale a — 0, ¥ — § (Dirac) in its integral norm. No-
tice from (1) that if a function f has an extremum (say
at z¢), then the wavelet transform (WT) of f will also
have an extremum at zo as ¢ — 0. Hence singularities
of f, which are a special case of extrema, will be char-
acterized by extrema in the wavelet transform domain.
From the continuity of ¥ with a we can also conclude
about the existence, in a neighborhood of zq, of a con-
tinuous line of wavelet extrema with scale (converging
to o as a — 0).

The capability of the wavelet transform, through its
maxima, to pick out singularities of different orders is
illustrated for the function f(z) = C+|z—=zo|*® in Fig-
ure 3. It is clear from the functional form in the exam-
ple that there exists a derivative singularity at ¢ = z;
such that h(zg) = 1.5. The function, its wavelet trans-
form with a Mexican hat wavelet (number of vanishing
moments is equal to 2), and WT maxima line(s) are
shown in Figure 3, where the power-law behavior of
|Ty(f]] around zo is depicted by a straight line in log-
log coordinates. The estimated slope is ’f;(xo) ~ 1.5.
Notice that this was expected from equation (3), since
ny > h(zg). If a wavelet with ny < h(zo) were selected,
then the slope would be equal to the least order larger
than n, for which the Taylor series of f around z( has
a nonzero coefficient.

4. Use of the WTMM Method to
Detect the Branching Structure in a
Multiplicative Cascade Model

As we have seen in the previous section, the WITMM
enable one to study isolated singularities. If, in addition
to the maxima lines, the minima lines are also plot-
ted, one obtains a path-connected plot. This feature
is important (although the asymptotic small-scale po-
sition of minima lines, unlike that of the maxima lines,
does not have any special meaning), since together the
two types of lines create the bifurcations that allow the
identification of the “natural” branching of the cascade.
This simple observation is the basis of the proposed
methodology which uses the WTMM method to detect
the branching structure of a multiplicative cascade, as
contemplated by Foufoula-Georgiou [1997].
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Figure 3. (top) Function f(z) = C + |z — zo|*%; (bot-
tom) the continuous wavelet transform (CWT) of the
function with a Mexican hat wavelet. The modulus
maxima line is also shown and its slope (= 1.5) is the
value of the Holder exponent of the function in zo.

The sequence of maxima/minima lines along each
scale, across the support, tells of the fact that the bifur-
cations of the extrema lines will be of either the saddle
type or the branching type (see illustration in Figures
4-T). We turn our attention to fractal, specifically, self-
similar measures where singularities are not necessarily
isolated. A classic example is the triadic Cantor mea-
sure (p1 = 1/2, p2 = 0, ps = 1/2 over equal supports, in
the multiplicative cascade terminology). Figure 4 shows
the Cantor set and the corresponding wavelet transform
modulus maxima (black) and minima (white) lines. It
is evident right away that the branching structure of
the cascade is captured well by the modulus extrema
lines. The ratio of scales, where branching occurs, turns
out to be 3. The fact that this ratio remains constant
over scales indicates that we are dealing with a scale-
invariant measure. In addition, the value 3, in the con-
text of geometric self-similarity (i.e., different regions
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of the plot are rescaled versions of each other), signifies
that we are looking at a ternary cascade.

Figure 5 shows a binary deterministic cascade (p; =
1/3, p» = 2/3) and the corresponding wavelet transform
modulus maxima and minima (called here WT modulus
extrema (WTME)) lines. Again, notice the regularity
in branching and the self-similarity. The ratio of scales
where branching occurs this time turns out to be 2. This
correctly indicates that the underlying process could be
a binary cascade.

Once the cascade is random (Figure 6) or if we deal
with real-life data (rainfall time series in Figure 7), the
scale invariance and self-similarity of the WTME plots
become statistical in nature and are not easily discov-
ered visually. Unlike the case of regular monofractal
cascades, where the branching points are equally log-
spaced along the scale axis because of their exact scale
invariance and self-similarity, in the case of multifrac-
tal cascades, having an entire spectrum of singularities,
branchings have an irregular character (more so, differ-
ent wavelets will locally “prefer” one or another of the
aforementioned singularities). We therefore need a sta-
tistical tool to infer and quantify scale invariance of the
WT modulus extrema. Ideally, the tool should also in-
dicate whether there is any indication of discrete scale
invariance, such that the appropriate branching number
can be chosen in that case.

Such a statistical descriptor has been found to be the
ratio of the number of modulus extrema to the inverse
scale (or inverse support length, if applicable) of the
analyzing function. We call this descriptor “fraction of

WTME” and we denote it by fwTMmE, 1-€.,

fwrMme = (number of WTME)

x (scale of analyzing function). (4)

Notice that for a rectangular-window analyzing func-
tion (Haar scaling function), the above descriptor turns
out to be exactly the second-order oscillation coefficient
Ct defined by Cirsteanu and Foufoula-Georgiou [1996],
whose scaling behavior (for both multiplicative cascades
and rainfall) has been already studied. Figure 8 shows
the scale-invariant behavior of this descriptor for two
multiplicative cascades and for two rainfall time series.
Moreover, it shows how the descriptor picks up dis-
crete scale invariance in a multiplicative cascade where
the weights distribution is not infinitely divisible (the
strong, equally spaced spikes), as opposed to the case of
continuous scale invariance. The analyzed rainfall time
series do not exhibit signs of discrete scale invariance.
Because no evidence of discreteness in the scale in-
variance of temporal rainfall has been found, we are
comfortable with choosing a branching number of 2 for
modeling purposes (for reasons of simplicity). Figure 9
shows weights distributions from the binary reconstruc-
tion of the Iowa City temporal rainfall data of Novem-
ber 1, 1990 (A). It is observed that at the first three
reconstruction levels the weights distributions turn out
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Figure 4. Analysis of the classical two-thirds Cantor set (a multiplicative cascade with weights
p1 = 1/2, po = 0, p3 = 1/2) with a Mexican hat wavelet. Geometric self-similarity (different
regions in the plot are rescaled versions of each other) and scale invariance (ratio of scales where
branching occurs remains constant over scales and equal to 3) are visible. Bifurcations are of the
branching type.
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Figure 5. Analysis of a deterministic binary cascade with weights p; = 1/3, py = 2/3, with a
Mexican hat wavelet. Geometric self-similarity and scale invariance are visible. Bifurcations are
of the saddle type.



CARSTEANU ET AL.: EVENT-SPECIFIC CASCADE MODELS AND RAINFALL

Binary Random Cascade
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Figure 6. Analysis of a random binary, binomial cascade with weights py = 1/3, ps = 2/3, with
a Mexican hat wavelet. For a random cascade, self-similarity and scale invariance (discrete or

continuous) are not obvious to the eye anymore. Both types of bifurcations appear.
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Figure 7. Modulus maxima (black) and minima (white) of the first ~ 85 min of the April 12,
1991, Towa City rainfall time series (bottom plot), as analyzed with a Mexican hat wavelet.
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Figure 8. Wavelet transform modulus extrema (WTME) fraction, i.e., the ratio of the num-
ber of extrema to the inverse scale of the analyzing function (here the scale of the analyzing
function is normalized by the signal length), for a discrete-scale (top left) and a continuous-scale
multiplicative cascade (top right), and for two rainfall time series (bottom).

to be nearly identical, validating the stated choice of
branching type as one of the correct choices.

5. Constructing a “Cascade Basis”
From Data for Parsimonious
Representation

A multiplicative cascade model fitted to a data set
can be used for simulation purposes, i.e., for generation
of synthetic sequences that resemble the original data
in terms of its scaling properties, such as its spectrum
of singularities. Possibly, more properties of the data
are desired to be preserved, for example, certain regu-
larities in the transform extrema (such as those in the
deterministic cascades), or the ability is desired, to link
the cascade to the dynamics of the process. This would
allow one to particularize a cascade to a specific event
of interest and also provide insight about the underly-

ing generating mechanism of this process (possibly by
means of its WTME skeleton). At the very least, one
thing that can be done is to find the most “important”
(from an amplitude point of view) branches of the cas-
cade and hereby generate a parsimonious description
of the cascading process. A method to do just that is
proposed below.

To analyze a process and identify its underlying cas-
cading mechanism, the use of a continuous wavelet
(which has redundancy) is appropriate. However, for
modeling purposes, where a few “model parameters” or
“coeflicients” are desired to be able to reproduce the
statistical properties of the process, a discrete (prefer-
ably nonredundant) wavelet transform must be used.
Similarly to the case of the continuous wavelet trans-
form, for the discrete wavelet transform of a signal we
can define local extrema of the transform along the
support at each scale. Path connectivity in the time-
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Figure 9. Weights distributions in a binary cascade re-
constructed from the Iowa City temporal rainfall data
of November 1, 1990(A), at the first three reconstruc-
tion levels. The distributions are almost identical at all
three levels (scales) of reconstruction.

frequency plane is, of course, not a meaningful property
for the discrete wavelet transform, and consequently,
neither is the relation to singularities. Also, it should
be noted that the branching structure is in this case pre-
determined (e.g., dyadic, if the “multiresolution frame-
work” of Mallat [1989] is chosen). The branching num-
ber choice should be therefore inferred from the contin-
uous WTME, as explained earlier. Notice that using a
discrete cascade reconstruction for a process exhibiting
scale invariance over a continuous range of scales is no
contradiction, if in constructing the cascade, one uses a
log-infinitely divisible distribution of generator weights.

The usefulness of the proposed procedure (i.e., identi-
fying the most “important” branches of the cascade for
a parsimonious description) lies in the identity between
the time-frequency positions of the discrete wavelet co-
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efficients and those of the weights of a multiplicative
cascade. If the latter is being used to model the pro-
cess, then the former can be used to identify the weights
that carry the most information. Notice also that cer-
tain wavelet packet bases [see Wickerhauser, 1991] can
accommodate a similar procedure. By sorting the most
important (amplitude-wise) modulus maxima of the
convolution of the process with the analyzing wavelet,
one can utilize a few of the cascade weights, for exam-
ple the largest ones in amplitude, for the purpose of
achieving a parsimonious representation of the process.

In the case of a dyadic cascade description, retain-
ing the most important weights amounts to using the
largest dyadically reconstructed weights, with their value
and position, as well as the values and positions of the
weights located on the same branch, all the way down
to the largest scale (see Figure 1, bottom). The process
reconstruction is performed by a dyadic cascade using
randomly generated complementary weights, with the
exception of the retained weights, which are used with
their exact values, in their respective positions.

The above procedure was applied to the rainfall se-
ries with very encouraging results. Figure 10 shows a
comparison between the Iowa City rainfall of April 12,

1991, and its reconstruction from the 1, 8, and 16 largest
weights. The reconstruction of rainfall events by this
method shows R? coefficients (“explained variability”)
of 0.58 to 0.85 for seven Iowa City rainfall events re-
constructed from the eight largest weights. These val-
ues are quite high (considering that we deal with se-
ries of 2000 to 10000 values, which were reconstructed
in their entirety) and are competitive with other non-
redundant representations, such as those using wavelet
packet bases [e.g., Venugopal and Foufoula-Georgiou,
1996; Arnéodo et al., 1998]. It is interesting to note
that it was found by simulation that the advantage of
the event-specific multiplicative cascade representations
presented herein increases as the degree of multifractal-
ity in the modeled process increases. This is because the
farther the process is from a nonfractal or a monofrac-
tal, the more do other nonredundant representations fail
to reconstruct the process. This result is theoretically
expected but difficult to quantify formally.

Selecting the few “important” weights to be retained
in the reconstruction, as described in the above proce-
dure, also drastically improves the capacity of a mul-
tiplicative cascade model to reproduce the autocorre-
lation function (ACF) of the process. Figure 11 shows
how much closer the ACFs, obtained with the presented
reconstruction method, are to the ACF of the process
than the ACF of a multiplicative cascade with indepen-
dent, identically distributed (i.i.d.) pairs of weights.

It should be noted that the proposed reconstruction
procedure, being microcanonical in nature, preserves
the scaling exponent spectra (and singularity spectra,
respectively) of the original series. These scaling expo-
nent spectra and also the weights statistics of temporal
rainfall seem to be remarkably stable during each event,
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Figure 10. The April 12, 1991, Iowa City rainfall time series (top left) and its reconstruction
from 1 (top right), 8 (bottom left), and 16 (bottom right) cascade weights, including the large-
scale average. Notice the improved similarity of the reconstructed series to the original series as
the number of selected cascade weights increases to only a few. An explained variability R? of
0.75 is achieved here with only 16 cascade weights.

to the point that they can be predicted from the incipi-
ent period of a rainfall event (i.e., its first few minutes),
for the whole event [Cdrsteanu, 1997].

6. Summary and Conclusions

We have shown how the wavelet transform modu-
lus extrema (WTME) method can sensitively detect
scale invariance in a process, and whether the detected
scale invariance is discrete or continuous in scale. For
modeling purposes the proposed method establishes the
branching number (if scale invariance is discrete) in a
process that exhibits a multiplicative cascading struc-
ture. Also, using a discrete version of the WTMM, we
showed that a few weights of a cascade can be selected
to reconstruct a temporal rainfall process, from an oth-
erwise random nonlinear basis of weights, and the re-

semblance of that reconstruction to the original process
is rather remarkable.

It should be noted that if one were able to relate the
values and positions of the few largest weights of the
cascade to prestorm physical parameters, as for exam-
ple was done for the scaling exponents of rainfall fluctu-
ations [Perica and Foufoula-Georgiou, 1996], the possi-
bility would exist of using the proposed reconstruction
for predictive purposes too. This, however, is beyond
the scope of this paper.

Appendix: Vanishing Moments of an
Analyzing Wavelet and Their Relation
to Singularities of a Function

The behavior of a function f around a point z can
be expressed from definition (1) as
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Figure 11. Decay of the autocorrelation function for
the April 12, 1991, Iowa City rainfall time series (solid
line) and of its reconstruction from 1 (large-scale av-
erage only, independent, identically distributed (i.i.d.)
pairs of weights) (dashed-dotted line), 8 (dotted line),
and 16 (dashed line) cascade weights. Notice the much
better agreement with the original series as the number
of selected cascade weights increases to only a few.

f(z) = coter(z—z0)+ - +en(z — 20)"+Clz — zoih(”)
(A1)
Recall from (2) that the wavelet transform of f is the
convolution of f with the family of wavelets 9, , =
a™ /% ((z —b)/a).
Thus if one assumes that the wavelet ¢ has ny > n
vanishing moments, that is,

/oo 29 f(z)dz = 0,

—00

0<g<mny, (A2)
(note that the zeroth moment is one of the ny, vanishing
moments), then 1 is orthogonal to polynomials up to
and including order n. Hence the wavelet transform of
f becomes

77 eo.0) = 7€ [v (252 ) e rolhwc(i;)

With appropriate transformation of coordinates, it can
be shown that

LAz 0) = CVa [ Y(@)laz s

= Clalh(”")H/z/Tﬁ(ar)lx]h(“)d;c

= Cla|?EIH2T, (] (z0,1). (A4)

Notice that by simply using a different normalization
in the CWT, that is, 9,5 = a~ ¢ ((z — b)/a) instead of
Yap = a~ 24 ((z — b)/a) (not an Ly norm anymore),
one can reduce (A4) to

Ty[f] (o, a) = Cla/* Ty [f] (20, 1). (A5)
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This is the scaling expression used in equation (3) and
subsequently. It shows that the local singular behavior
of f around z is characterized by a power-law behavior
of the wavelet transform with power exponent h(zg).

The relationship between the number of vanishing
moments ny of the wavelet and the Holder exponent
h(zo) can be summarized as follows: Given ny, the last
vanishing moment is (ny — 1). Thus if h(zo) > ny,
the wavelet picks up the least order larger than n, for
which the Taylor series of f around zy has a nonzero co-
efficient. On the other hand, if A(zg) < ny, the wavelet
picks up h(zo), if h(zo) is fractionary, and picks up zero,
if h(zo) is an integer.
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