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Convex Interpolation for Gradient Dynamic Programming

EF1 FourouLA-GEORGIOU

St. Anthony Falls Hydrautic Laboratory, Department of Civil and Minerat Engineering, University of Minnesota, Minneapolis

Local approximation of functions based on values and derivatives at the nodes of a discretized grid
are often used in solving problems numerically for which analytical solutions do not exist. In gradient
dynamic programming (Foufoula-Georgiou and Kitanidis, 1988) the use of such functions for the
approximation of the cost-to-go function alleviates the ‘‘curse of dimensionality’’ by reducing the
number of discretization nodes per state while obtaining high-accuracy solutions. Also, efficient
Newton-type schemes can be used for the stage-wise optimization, since now the approximation
functions have continuous first derivatives. Our interest is in the case where the cost-to-go function is
convex. However, the interpolants may not always be convex, introducing numerical problems. In this
paper we address the problem of interpolating nodal values and derivatives of a one-dimensional
convex function with a convex interpolant so that potential computational difficulties due to
approximation-induced nonconvexity are avoided, and an efficient convergence to global instead of
local optimal controls is guaranteed at every single-stage optimization.

1. INTRODUCTION

One of the oldest and most important algorithms in opti-
mal control theory is discrete dynamic programming (DDP)
[cf. Bellman, 1957]. This approach requires the discretiza-
tion of the state space (and, in most applications, of the
control space) and the solution of an optimization problem
for each of the grid points. However, due to the exponential
increase of the computer memory and computation time
requirements with the number of state and control variables
(‘“‘curse of dimensionality’’), the applicability of DDP is
limited to small-dimensional systems.

Several methods have been proposed over the years to
overcome the dimensionality difficulties of DDP. One of the
most well-studied methods is differential dynamic program-
ming [Mayne, 1966; Jacobson and Mayne, 1970]. This
method and other successive approximation methods (see,
for example, the review article of Yakowirz [1982]), despite
their success for deterministic optimization, are not directly
applicable to stochastic optimal control problems. The main
reason is that, because of the stochasticity of the input, a
single state trajectory cannot now be projected with cer-
tainty. Instead, the whole optimal control policy over all
states is needed, so that minimization of the expected cost
can be obtained through integration over a range of states.
Thus to date, the conventional DDP method remains the
only universal approach to stochastic optimal control prob-
lems. This imposes a severe restriction on the dimensionality
of the systems that can be solved under an explicit (and not
implicit) stochastic framework.

A straightforward way of alleviating the **curse of dimen-
sionality”’ associated with DDP is to use higher-order ap-
proximations of the cost-to-go function so that solutions of a
desired accuracy can be obtained with a fewer number of
nodes per state. Note that if n denotes the dimension of the
problem (i.e., the number of states) and N; denotes the
number of nodes of the ith state, the high-speed memory
requirements of conventional DDP are

Copyright 1991 by the American Geophysical Union.

Paper number 90WR02032.
0043-1397/91/90WR-02032$05.00

31

Thus reduction of N; by a factor of 2 induces a reduction in
storage requirements by a factor of 2”. The idea of higher-
order approximation and dynamic programming was initially
explored by Bellman and Dreyfus [1962, Ch. 12], who used
orthogonal polynomials for the cost-to-go functions so that
storage of only the polynomial coefficients was needed
instead of storage of the values of the cost function at all the
nodal points of the multidimensional state space grid. This
global approximation, however, has the main disadvantage
that, at least for fast-changing functions, oscillatory approx-
imations may be obtained. Also, if a function is hard to
approximate in a particular domain of the state space, a poor
approximation will result over the whole domain. Daniel
[1976] and Birnbaum and Lapidus [1978] recognized the
importance of using local approximations and explored the
use of multidimensional B splines [e.g., Schultz, 1973].
Although splines provide approximations with continuous
first and second derivatives, the first derivatives at the nodes
are not preserved. For optimal control problems, however, it
is the values of the derivatives (and not the values of the
function) that are used for the computation of the optimal
control. Also, in many cases, the optimal knots of the splines
must be determined (a time-consuming process), or esti-
mates of the derivatives must be provided so that a good
spline approximation is obtained.

Recently, Kitanidis and Foufoula-Georgiou [1987] and
Foufoula-Georgiou and Kiranidis [ 1988} studied a new com-
putational algorithm in which the cost-to-go function was
approximated within each element of the discretized state
space using Hermite interpolation, that is, the lowest-order
polynomials which preserve the values of the function and
the values of its derivatives with respect to the state vari-
ables at all the nodes of the discretization grid. This class of
algorithms was termed ‘‘gradient dynamic programming’’
because the gradient of the cost-to-go function is preserved
at the state nodal points and is explicitly used in the
calculations. The methodology and equations of gradient
dynamic programming (GDP) were developed by Foufoula-
Georgiou and Kitanidis [1988] in a general framework,
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permitting thus the incorporation of any interpolating func-
tion as long as it preserves the values of the cost-to-go
function and its derivatives with respect to all the state
variables at all the discretization nodes. Hermite interpola-
tion polynomials provide approximations of high accuracy
(see, for example, the error analysis of Kitanidis and Fou-
Soula-Georgiou {1987]) and are computationaily efficient
especially for multidimensional spaces (see the discussion by
Kitanidis and Foufoula-Georgiou [1988]).

A major handicap of optimization problems involving
function approximation is that the approximants of convex
functions may turn out to be nonconvex. This leads to
numerical problems in terms of convergence of the optimi-
zation algorithms. In this paper we first study the convexity
of the Hermite interpolation polynomials and give conditions
for convex interpolation with this type of functions. It is
shown that these conditions are much more restrictive than
the conditions for the existence of any convex interpolant of
a convex function. We then consider an alternative class of
interpolating functions which preserve the values of the
function and the values of its derivatives and are always
convex when, of course, the data at the end points of the
interpolating interval allow a convex interpolating function
to exist.

Our study pertains to the one-dimensional interpolation
problem as it is used in the context of gradient dynamic
programming. It is hoped that our analysis will motivate
research toward the development of a multidimensional
convex interpolation theory.

2. A BRIEF SUMMARY OF GRADIENT DYNAMIC
PROGRAMMING

Let N denote the number of decision times (stages), n the
dimension of the state vector x, m the dimension of the
control vector u, and r the dimension of a random forcing
function (input) w. Also, let x(k) be the state vector at the
beginning of period &, and u(k), w(k) the control and random
input vectors, respectively, during period k. Without loss of
generality we may assume that the random vectors w(k), k =
1, ..., N are independent of each other. Serially correlated
inputs can be accounted for through state augmentation.

Let the system dynamics be described by the state tran-
sition function T such that

x(k + 1) = TyIx(k), u(k + 1), w(k + 1)] ¢}

A typical set of constraints will consist of lower and upper
bounds on the control and state variables

o™k + 1) < ulk + 1) = 0™k + 1)
xM0k + 1) < x(k + 1) = Ty(x(k), u(k + 1), wk + 1))

=x™*k + 1) k=0,1,...,N—-1
We restrict our attention to linear state transition equations
and linear constraints.
The objective of a discrete-time stochastic optimal control
problem is to find the sequence of optimal controls {u*(k)},
=1, ..., N which minimizes the performance criterion

E 2 {Cdxtk), uk + D} + FAx(N)] )

w(l), w(N) &

J::

given an initial state vector x(0). The performance criterion
(objective function) consists of the sum of the single-stage
cost functions C[x(k), u(k + 1)] over the whole operating
horizon and a terminal cost Fy[x(N)]. The expectation is
taken with respect to the random vectors w(l), ..., w(N).

Let F; := F, [x(k)] denote the cumulative cost associated
with the state vector x(k) and the optimal control policy from
k to the end of the operating horizon. We will refer to this
function as the cost-to-go at stage k. Then, the functional
equation of the system takes the form

Fy—y[x(k — D] = min {Cy _y[x(k — 1), u(k)]
ulk)

+ E FT(x(k - 1), utk), wk)} k=1,...
wik)

N (3

On the basis of the principle of optimality [Bellman, 1957},
any multistage optimization problem which is separable in
stages may be decomposed through dynamic programming
into a sequence of single-stage optimization problems. Be-
low we describe the gradient dynamic programming meth-
odology at a typical stage.

The state space is discretized and represented by a finite
number of nodes. Let (x(k)) denote a discretized value of the
state vector x(k). Assume that at stage & the values of the
cost-to-go function F ((x(k))) and the values of its first
derivatives V,F, = dF(x)/dx|,-u are known for all the
grid points, that is, all nodal state vectors (x(k)). These
values are known at the last operation period, kK = N, and
can be explicitly updated from stage to stage as the algorithm
moves backward in time [see Foufoula-Georgiou and Kitani-
dis, 1988]. The GDP involves the following steps: (1) approx-
imation of the cost-to-go function F, with piecewise polyno-
mials which preserve F, and V_F, at all the grid points, (2)
computation of the optimal control u}{{x(k — 1))] associated
with the nodal state vector (x(k — 1)), using a Newton-type
constrained optimization method [Luenberger, 1984], (3)
computation of the Jacobian of w}[{(x(k — 1)}] with respect to
the state vector (x(k — 1)}, and (4) computation of the values
Oka_le(k - 1»] and vka_l = dF'k__|(X)/dx',‘=(x(k~ Vg Once
this is done for all possible state vectors (x(k — 1)}, the
solution to the single-stage optimization problem has been
completed. The procedure is then repeated for all stages.
Finally, a forward ‘‘sweep’’ starting at the given vector x(0)
will determine the sequence of optimal controls {u*(k)}, & =
1, ..., N. A detailed discussion of this method and an
application to the stochastic optimal control of a four-
reservoir system can be found in the paper by Foufoula-
Georgiou and Kitanidis {1988].

In step (1) of the above algorithm the function F; needs to
be interpolated. Although F is convex, problems may arise
due to the nonconvexity of the interpolating function. It is
precisely the problem of convex interpolants that is ad-
dressed in this paper. Thus from the whole dynamic pro-
gramming scheme schematically shown for the one-
dimensional case in Figure 1 we will concentrate only on one
element of the discretized state space, as shown in the insert
of Figure 1. In particular, let x,_; and x, denote the lower
and upper nodes of the discrete interval of interest and G(x)
denote the interpolation function such that it preserves the
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Fig. 1. One-dimensional schematic representation of the back-
ward-moving discrete dynamic programming method. The area in
the box is shown in detail in Figure 2.

values Fy(x,_), Fy(x,), dF (x)/dx|, _,, and dF (x)/dx], .
This element is shown in detail in Figure 2a and with further
notational simplifications in Figure 2b. In the sequel we will
use the terminology of Figure 25.

3. HERMITE INTERPOLATION AND REQUIREMENTS FOR
CONVEXITY

In this section we study the necessary and sufficient
conditions for the convexity of the one-dimensional Hermite
interpolating polynomial.

Proposition 1. Let g(x) be a third-degree polynomial
g0 =ax® + Bx? + @ + 8, x € [x), x3], x; = x; + A, such
that at the ends of the interval [x,, x,] satisfies the conditions

gx)=f  gx)=fi (4a)

gx)=fr gx)=f

Then g(x) is convex if and only if the following conditions
hold:

(4b)

0=f,-fi—-Af (Sa)

3_AUB-F) _
27 f-fi-Afi

Proof. Without loss of generality, we simplify the prob-
lem by defining the function

h(x) = g(x + x;) = (fi + xfD)
It is easy to see that A(x) is of the form

h(x) = x*(ax + B) M

(56)

x € [0, A] 6)

(a}

Fig. 2.

0=h0) =h(0 Ba)

h := h(A) d:= h'(A) (8b)
Below we derive the convexity conditions for h(x) in the
interval [0, A] which imply the respective conditions for g(x).

We note that (4, d, A) is related to (f}, f3, f1, f32) by
h=f—fi—Aafi )

d=fi-fi

From (7) and (8) we obtain the parameters a and 8 in terms
of (h, d, A) as

al 1 [ 2a -A%[k

Bl T a1| —-3a7 Al d
Clearly, h = 0 is a necessary condition for A(x) to be convex,
and this gives (5q). Elementary analysis shows that A(x) is
conveX if and only if either @ = 0 and 8 = 0 or « < 0 and the

inflection point x4, defined as the point where A"(xg) = 0, is
such that

{10

(1

xo=—-BRaz=A 12)

These cases are illustrated in Figures 3a and 3b, respec-
tively. Using (11), the first of the above conditions becomes

2hIA =<d < 3h/A 13)
while the second becomes
3n2A =d < 2h/A (14)

Combining (13) and (14), we obtain that #(x) is convex if and
only if

(15)

Using (9) and (10), (5b) follows.

Thus Hermite interpolation will result in a convex inter-
polant when the nodal values of the cost-to-go function and
its derivatives satisfy condition (15). If this condition is not
satisfied, the resulting interpolation function will be noncon-
vex, and the optimization procedure may experience numer-
ical difficulties in terms of efficiently converging to a global
optimum.

h{x)

0¢ 0,0

(b) (c)

An isolated element of the discretized state vector at stage k. (a) Definition of the variables used in the

general description of gradient dynamic programming. (b)) and (¢) Simplified terminology used in the convex
interpolation analysis. More details on the definition of the functions are given in the text.
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Fig. 3. Two cases of a cubic polynomial which is convex in the interval {0, A].

4. AN ALTERNATIVE CLASS OF FUNCTIONS FOR CONVEX
INTERPOLATION

In this section we propose and study a class of functions,
as an alternative to cubic polynomials, which are continu-
ously differentiable; they preserve the values and the deriv-
atives at the nodal points, and they are always convex when
the interpolation data allow a convex interpolant function to
exist. We first give necessary and sufficient conditions for
the existence of a convex interpolating function.

Proposition 2. Let g(x) be a convex function with con-
tinuous first derivative and such that at the ends of an
interval, [x,, x5 = x| + 4] satisfies the condition

gx)=fi gx)=1 (16a)
gx)=fr gx)=fi (16b)
Then the following hold:
0=f2~fi~Afi (17a)
0<fi-fr+Af (175)

Also, if the data (f}, f3, f}, f3) satisfy (17), then there exists
an interpolating function g(x) which satisfies (16) and which
is convex.

Proof. Without loss of generality, we work with the
function A(x), x € {0, A], defined in (6). Note that g(x) is
convex if and only if A(x) is. Clearly, h = f, — f;, — Af; =0
is a necessary condition. Provided h = 0, k(x) is convex if
and only if

Ad=h (18)

Sufficiency follows by noting that if (18) holds, a piecewise
linear and convex interpolating function exists. A convex
interpolating function with continuous first derivative can be
obtained by smoothing the piecewise linear function where
the first derivative is discontinuous.

To show the necessity of the condition (18), consider a
conveXx interpolating function with continuous first deriva-
tive. By virtue of the mean value theorem there exists a point
0 < xy < A such that

K’ (xo) = hiA

Since by convexity 4'(x) is monotonically nondecreasing in
[0, Al, d = A'(A) = h/A. This establishes (18). Finally, (175)
follows directly from (18).

Having established the necessary and sufficient conditions
in terms of the data (f, f3, fi, f3) for the existence of a
convex interpolating function, we proceed to present a class

of convex interpolating functions that can always fit the
given data.

Proposition 3. Let (fy, f3, f1, f5) satisfy (17). The
function

QX)) =fi+ (x = x) fi+ ay(x —x)® (19)
where
fHi—-fi—Afi
a =T (20)
b =M @1
Y

is convex in the interval [x, x,], x; = x; +A, and is such that
at the ends of the interval

alx)=f gilx)=Af

alxd=fH  gilx) =1

Proof. Note that (17) implies that a; = 0 and b, = 1.
Then g,(x) is convex in the interval [x,, x; + A] because

gi(x) = ayby(by — D(x — xp)> 2 (23)

(22a)

(22b)

is a nonnegative function. Conditions (22a) and (226) can be
verified by direct substitution.
Remark. Note that condition (17b) can be written as

- AfI-f)
Ch-hH-Af

By comparing conditions (17) and (5) it is interesting to
observe how restrictive (5), which guarantees the convexity
of the cubic Hermite polynomials, is. On the other hand, the
above class of functions g,(x) can always be used to fit
admissible data, that is, data (f}, f3, f}, f4) originating from
a convex function. However, in case b; < 2, the function
g:(x) has unbounded second derivative at x = x, as follows
from (23). Since evaluation of the second derivative of the
interpolating function at the end points of the interval [x;, x,]
is needed in the equations of gradient dynamic programming
[see Foufoula-Georgiou and Kitanidis, 1988], we construct
below a different convex interpolant which can be used in
case b, < 2.

Proposition 4. Let (fy, f2, f1, f5) satisfy (17). The
function

b (24)

g2A(x) =f+ (x2 = x) f3 + ax(x3 — x)* 25)
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8,(x) 8, (x)

l {

3/ 2

e

gl(x) and gz(x)

Hermite

Fig. 4. Regions of convexity and bounded second derivatives
(marked above the b, axis) and regions of convexity (marked below
the b, axis) for the Hermite interpolating polynomial and the
proposed functions g,;(x) and g,(x).

where
fi—fH+Af
Q=g (26)
A(f - f)
2= 27
H-hH+Af

is convex in the interval {x, x = x; + A] and is such that at
the ends of the interval

gx)=H  glx))=fi

gxx)=fr  @x) =13 (28b)

Proof. In this case, (17) implies that a; = 0 and b, =
Then in the interval [x; — A, x,] the second derivative

(28a)

g3(x) = azhy(by — 1)(xp — x)%2 72 29)

is a nonnegative function.

We now show that g,(x) has bounded second derivative
whenever g,(x) fails and vice versa.

Lemma. Define

hipi=fr—fi—AA
=fi-f+Af;

(30a)
(30b)
Then,

1=5h=202=h)=20shp=hy=x
Similarly,

1=b,=22=bh =0 0=shyshp=sw

Proof. The proof follows from direct algebraic manipu-
lations.

Remark. From the above lemma it is observed that if b,
= 2 (in which case g'{(x,) is unbounded), b, = 2, and thus
g>(x) has bounded second derivative at x = x,. Similarly, if
b, = 2 (in which case g%(x) is unbounded), b, = 2, and thus
g:1(x) has bounded second derivative at x = x,. Therefore
depending on the value of b,, one can choose between
Hermite interpolating polynomials and one of the proposed
functions g,(x) or g,(x) according to Figure 4 such that the
convexity requirements are satisfied and the interpolating
function has bounded second derivatives. In intervals where
more than one interpolant satisfies all requirements one
might choose the function with the smaller second deriva-
tive.

In optimization problems, when the cost-to-go function at
a stage is either ‘‘too smooth™ or ‘‘fast changing,”” the

Hermite polynomials may lead to nonconvex interpolation
(as explained in proposition 1). This is especially true when
input or state constraints introduce discontinuity in the
derivative of the cost-to-go function at the various stages. In
such cases, problems might arise with the convergence of
Newton-type optimization algorithms. In the context of
one-dimensional optimal control problems these difficulties
can be alleviated by the use of the convex interpolating

functions proposed in propositions 3 and 4.

5. CONCLUDING REMARKS

Local approximations of functions based on values and
derivatives at the nodes of a discretized grid are often used
in solving problems numerically for which analytical solu-
tions do not exist. In discrete dynamic programming, the use
of continuously differentiable interpolating functions such as
polynomials for the cost-to-go function alleviates the curse
of dimensionality by reducing the number of discretization
nodes per state, while obtaining high-accuracy solutions. It
also permits the use of Newton-type schemes for the single-
stage optimization problem (see, for example, Kitanidis and
Foufoula-Georgiou [1987] and Foufoula-Georgiou and Ki-
tanidis [1988]).

Hermite interpolating polynomials have found extensive
application in finite element methods [e.g., Zienkiewicz,
1971] for the numerical solution of partial differential equa-
tions arising in many engineering and scientific problems.
Few examples of the vast spectrum of finite element appli-
cations include potential flow problems [e.g., Frind, 1977],
boundary value problems {e.g., Villadsen and Stewart,
1967], contaminant transport [e.g., van Genuchten et al.,
1977], and stress analysis [e.g., Anderson et al., 1968], to
mention only a few of the applications and related refer-
ences. However, the advantage of using Hermite interpola-
tion both in the context of discrete optimization and in the
context of numerically solving partial differential equations
will be fully realized when these polynomials result on a
convex interpolation of convex functions.

In this paper we address the problem of interpolating
nodal values and derivatives of a convex cost-to-go function
with a convex interpolant so that computational difficulties
due to approximation-induced nonconvexity are avoided and
an efficient convergence to global instead of local optima is
guaranteed. We study conditions of the Hermite interpola-
tion functions to be convex and also provide a class of
convex functions that can interpolate any set of admissable
nodal values and derivatives.

Our analysis is for the one-dimensional case. The condi-
tions of convexity of the multidimensional Hermite interpo-
lation are fairly complicated, as is the study of the feasibility
and construction of multidimensional convex interpolants.
From the practical standpoint the usefulness of these meth-
ods is expected to be much greater in problems of large
dimensionality. It is hoped that the present study will
motivate research toward the development of a convex
multidimensional interpolation theory.
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